Artif Intell Rev (2006) 26:291-323
DOI 10.1007/s10462-007-9059-9

Testing the performance of spoken dialogue systems
by means of an artificially simulated user

Ramén Lopez-Cézar - Zoraida Callejas -
Michael McTear

Published online: 23 November 2007
© Springer Science+Business Media B.V. 2007

Abstract This paper proposes a new technique to test the performance of spoken dialogue
systems by artificially simulating the behaviour of three types of user (very cooperative, coop-
erative and not very cooperative) interacting with a system by means of spoken dialogues.
Experiments using the technique were carried out to test the performance of a previously
developed dialogue system designed for the fast-food domain and working with two kinds
of language model for automatic speech recognition: one based on 17 prompt-dependent
language models, and the other based on one prompt-independent language model. The use
of the simulated user enables the identification of problems relating to the speech recogni-
tion, spoken language understanding, and dialogue management components of the system.
In particular, in these experiments problems were encountered with the recognition and
understanding of postal codes and addresses and with the lengthy sequences of repetitive
confirmation turns required to correct these errors. By employing a simulated user in a range
of different experimental conditions sufficient data can be generated to support a systematic
analysis of potential problems and to enable fine-grained tuning of the system.

Keywords Spoken dialogue systems - Speech recognition - Speech understanding -
User simulation - Artificial intelligence - Natural language processing -
Robust human—computer interaction

R. Lépez-Cézar (X) - Z. Callejas

Department of Languages and Computer Systems, Computer Science Faculty, Granada University,
Granada 18071, Spain

e-mail: rlopezc @ugr.es

Z. Callejas

e-mail: zoraida@ugr.es

M. McTear

School of Computing and Mathematics, University of Ulster, Shore Road, Newtownabbey,
Northern Ireland, UK

e-mail: mf.mctear @ulster.ac.uk

@ Springer

292 R. Lépez-Cézar et al.

1 Introduction

A spoken dialogue system enables a human user to communicate with a computer to obtain
information or engage in some form of transaction, which can range from a business service
such as banking or making a travel reservation to more informal interactions such as casual
conversation or playing an interactive game. Spoken dialogue technology has been an active
research area for the past two decades. A number of academic and commercial systems have
been developed, which demonstrate the potential of this technology (McTear 2004; Moller
2004, Lépez-Cozar and Araki 2005).

The design of an effective dialogue management component is a central aspect of dialogue
system engineering (Pieraccini and Huerta 2005). Essentially the aim is to create a system
that successfully addresses a number of disparate performance criteria, including user sat-
isfaction, task success, and minimization of dialogue cost factors such as transaction times
and error correction rates (Walker et al. 1997). However, this is by no means a simple task,
as there are many factors that can affect the performance of a system. These can be classified
roughly into the following three types: system performance factors, user factors, and dialogue
strategy factors.

One of the most obvious system performance factors is the speech recognition error rate.
Although a high rate of recognition error does not necessarily entail a low transaction suc-
cess rate, in general interactions in which there are many recognition failures, particularly
in respect of significant keywords, are likely to lead to unsatisfactory dialogues because of
the need for the user to repeat or rephrase and for the system to engage in correction sub-
dialogues. Given that recognition is unlikely to be perfect in current systems, there is a need
for robust error correction strategies. It is usually a task for the designer of a system to choose
particular error correction strategies based on experience and on iterative field testing of a
system.

User factors include the different ways that a user might interact with a system, deter-
mined on the one hand by user preferences (for example, for a system directed as opposed
to a mixed initiative dialogue), and on the other hand by factors arising out of the user’s
particular interactive style—for example, whether the user is co-operative or not, is willing
to accept certain system limitations, requires information quickly, and so on.

Finally, there are a number of different ways of implementing dialogue strategies. In addi-
tion to the choice between system initiative and mixed initiative, there are choices between
different methods for verification of the user input, ranging from explicit confirmation through
implicit confirmation to no confirmation at all (Litman and Pan 2002). In addition to this,
system prompts can be highly constraining or can be open-ended, with implications for the
types of recognition grammars required—on the one hand, restricted grammars, on the other
more open-ended to cover a wide range of potential input (Singh et al. 2002). As with the
other factors mentioned, decisions about which strategies to implement are usually a matter
of the designer’s choice.

Given this wide variety of factors that can influence how a system is designed and how it
will perform, there has emerged a recent trend involving the application of machine learning
algorithms in order to learn optimal dialogue management policies. The expected benefits of
this approach in comparison with hand-crafted and knowledge-based methods are a reduc-
tion in development time, greater robustness, and less developer bias. More specifically, the
dialogue system is modelled as a Markov Decision Process (MDP) in which all the states of
the system as well as the choices at each state giving rise to state transitions are modelled, and
reinforcement learning is applied to find the optimal dialogue policy (Walker 2000; Levin
et al. 2000; Young 2002).

@ Springer

Testing the performance of spoken dialogue systems 293

However, whether the factors that determine a system’s performance are anticipated by
the designer and addressed through hand-crafted methods or whether they are explored using
reinforcement learning, the problem remains of how to collect sufficient data to support either
of these approaches. This problem is closely related to the type of dialogue management used
by the system, in as much as simpler management methods will generally result in fewer
performance factors to consider.

The simplest type of dialogue manager can be specified as a finite state machine in which
all the dialogue call-flows are pre-determined and represented in the form of a graph. This
type of dialogue control usually implies a system-directed dialogue in which the system
retains initiative in the dialogue and the user is constrained to responding minimally to care-
fully designed system prompts (McTear 2004). A slightly more complex control strategy
allows the user to respond with more than one item of information at a time—for example,
in VoiceXML mixed-initiative applications where the information elicited from the user is
recorded in a form and the Form Interpretation Algorithm (FIA) allows these data to be
input in any order and in different combinations (Pieraccini and Huerta 2005). Finally more
advanced architectures permit relatively unrestricted input from the user and the control of
the dialogue is determined opportunistically on a turn-by-turn basis rather than as a result of
a dialogue script (Allen et al. 2001).

Even with simple dialogue management techniques such as finite-state control the range
of potential call-flows can quickly grow to unmanageable proportions due to the large number
of possible system states and the even larger number of possible state transitions. To take a
simple example: for a system that is required to elicit 5 items of information from the user,
where each item can have one of the values {unknown, to_ be_ confirmed, confirmed), the
number of dialogue states would be 33, i.e. 243. Indeed, as Aust and Oerder (1995) pointed
out with reference to the Philips train timetable information system, there were about 1,000
system questions to which the user could respond in a variety of different ways, each requir-
ing different system responses, so that a graph representing all possible call-flows would
require tens of thousands of transitions.

In the case of advanced dialogue systems, the possible paths through the dialogue state
space are not known in advance and specification of all possible transitions is not possible.
In reinforcement learning this issue has been addressed by constraining the state space to a
manageable size and by focusing on task-oriented systems in which the goal is to elicit a finite
(generally fairly small) set of values from the user to fill the slots in a form. Currently there
do not appear to be methods for exhaustively searching the complete state space of a more
advanced dialogue system in which the state space is emergent rather than pre-determined.

One possible way to address some of these issues is to collect and analyze vast amounts
of data covering different ways that users interact with a system and the different choices
that can be applied in dialogue management. However, controlling all these factors with real
users in actual interactions would be a daunting, if not impossible task. A more efficient
method for collecting data under controlled conditions would be to simulate interactions in
which the various user and system factors can be systematically manipulated.

In this paper a system for testing the performance of spoken dialogue systems using a sim-
ulated user is presented and evaluated under a number of different conditions. The remainder
of the paper is organised as follows. Section 2 presents a survey of previous studies related
to simulated users that includes the purposes, implementation approaches and evaluation
of dialogue simulations. Section 3 presents a brief description of the Saplen system used
in the experiments, addressing the dialogue corpus employed to design it and the kind of
dialogue management implemented. Section 4 discusses briefly the simulated user that we
developed in a previous study, which is the basis for the technique proposed in this paper.

@ Springer

294 R. Lépez-Cézar et al.

Section 5 describes the proposed technique addressing differences and similarities with other
simulated users, and focusing on the simulation of different types of user. Next the section
focuses on the implementation of the technique, addressing the generation of responses for
explicit and implicit system confirmations, the management of scenario goals, the generation
of responses to provide missing data, the selection of utterances from the corpus and the
preparation for the next interaction. The section concludes with a sample dialogue between
the Saplen system and the simulated user behaving as a cooperative user. Section 6 focuses
on the experimental results. It first discusses the evaluation measures and then describes the
utterances corpus, the two kinds of language model employed for speech recognition, and
the set of scenarios used for the automatic generation of dialogues. The section concludes
by presenting and discussing the results obtained. Section 7 discusses limitations of the pro-
posed technique and finally Section 8 presents some conclusions and some proposals for
future work.

2 Previous related work

The design of dialogue systems is a complex task that generally requires the use of expert
knowledge acquired in the development of previous systems, including tests taken with users
interacting with the system. The development of these systems mainly involves an iterative
process in which different prototypes are released and tested with real users. From these
tests, objective and subjective measures can be obtained concerning the appropriateness of
several aspects of the system (Moller 2004). The tests provide a basis for refinements of the
prototype systems until eventually a system is obtained which is as perfect as possible in
terms of correct functioning and user satisfaction. However, using user studies to support the
development process is very expensive and time consuming. The employment of techniques
like Wizard of Oz (Dow et al. 2005; Carbini et al. 2006) for system design reduces the costs
by avoiding the need for a functional prototype for testing purposes, but unfortunately it does
not avoid the need for constant human intervention to obtain useful results. For these reasons,
during the last decade many research groups have been attempting to find a way to automate
these processes, leading to the appearance of the first simulated users in the late 90s. These are
automatic systems able to simulate user behaviour when interacting with a dialogue system.

2.1 Purposes of simulated users

The main purpose of a simulated user is to improve the usability of a spoken dialogue system
through the generation of corpora of interactions between the system and simulated users
(Moller et al. 2006). Collecting large samples of interactions with real users is an expensive
process in terms of time and effort. Moreover, each time changes are made to the system it
is necessary to collect more data in order to evaluate the changes. Thus the availability of
large corpora of simulated data should contribute positively to the development of dialogue
systems (Chung 2004).

Simulated data can be used to evaluate different aspects of a dialogue system, particularly
at the earlier stages of development, or to determine the effects of changes to the system’s
functionalities. For example, in order to evaluate the consequences of the choice of a par-
ticular confirmation strategy on transaction duration or user satisfaction, simulations can be
done using different strategies and the resulting data can be analysed and comparisons made
between the strategies employed. Another example would be the introduction of errors or
unpredicted answers in order to evaluate the capacity of the dialogue manager to react to
unexpected situations.

@ Springer

Testing the performance of spoken dialogue systems 295

A second usage is to support the automatic learning of optimal dialogue strategies using
reinforcement learning. Large amounts of data are required for a systematic exploration of the
dialogue state space and corpora of simulated data are extremely valuable for this purpose,
given the costs of collecting data from real users. In any case, it is possible that the optimal
strategy may not be present in a corpus of dialogues gathered from real users, so additional
simulated data may enable additional alternative choices in the state space to be explored
(Schatzmann et al. 2005a).

The most common usage for a simulated user is to take the place of real users and to
engage in an interaction with a dialogue system by generating responses to system prompts.
The user utterances may be generated from an existing corpus of dialogue data in conjunction
with a set of dialogue scenarios requiring particular types of input from the user in response
to system prompts (see, for example, Lopez-Cézar et al. 2003). In some cases the simulated
input will model user errors. At the simplest level these may include failure to respond as
well as errors of vocabulary and grammar. More complex user errors have been modelled
by Moller et al. (2006). These include: state errors, where the user provides input that is
invalid in the current dialogue state but would be valid in some other dialogue state; capa-
bility errors, where the user issues a command or asks for information that is not supported
by the system; and modelling errors, where the input is invalid in respect of how the world is
represented in the system. These error types are incorporated along with correct user inputs
in an executable user interaction model that generates user input using a probabilistic finite
state automaton.

Another use of simulation is to model both the user and the system. Cuayahuitl et al.
(2005) describe a simulation method in which a training set of real dialogues is used to
acquire knowledge and train the system and user models. The system model is a probabilistic
dialogue model manager that controls the dialogue flow while the user model is a probabilis-
tic model that simulates user responses. Both models interact in order to generate simulated
dialogues and the dialogues that are generated are compared to a set of real dialogues in order
to determine the realism of the simulated dialogues.

2.2 Approaches to the implementation of simulated users

We can distinguish two main approaches to the creation of simulated users: rule based and
data or corpus based. In a rule-based simulated user the investigator can create different rules
that determine the behaviour of the system (Chung 2004; Lin and Lee 2001; Lépez-Cozar
et al. 2003). This approach is particularly useful when the purpose of the investigation is to
evaluate the effects of different dialogue management strategies. For example: the system
can be set up to react to simulated user errors in a number of different ways and comparisons
between the effects of these different strategies can be made. In this way the investigator has
complete control over the design of the evaluation study.

An alternative approach—often described as corpus-based or data-based—uses probabi-
listic methods to generate the user input, with the advantage that this uncertainty can better
reflect the unexpected behaviours of users interacting with the system (Eckert et al. 1997;
Scheffler and Young 2000; Georgila et al. 2005; Moller et al. 2006). Earlier studies have
involved the use of the ‘bigram’ model of dialogue in which the simulated user input is
dependent only on the previous system utterance (Eckert et al. 1997). The advantage of
this approach lies in its simplicity and in that it is totally domain independent. The main
disadvantage, however, is that it may be too limited to give a realistic simulated behaviour
because, although user actions are dependent on the previous system action, they should also
be consistent throughout the dialogue as a whole.

@ Springer

296 R. Lépez-Cézar et al.

The simulated user input can be represented in a number of ways. One of the most com-
mon ways is in the form of user intentions (or dialogue acts). This type of input is useful
especially where the focus of the investigation is on the optimisation of dialogue strategies
and also where issues of data sparseness would make the use of strings of words or segments
of speech inapplicable, particularly for applications involving learning (Eckert et al. 1997,
Levin et al. 2000; Scheffler and Young 2000, 2001). Alternatively strings of words or spoken
input can be used, especially if the focus of the investigation is on the performance of the
system’s language understanding and recognition components. Chung (2004) makes use of
simulated input at word and speech levels in order to train the understanding and recognition
components, whereas these levels of input are used by Lopez-Cézar et al. (2003) to evaluate
the performance of the speech recogniser and the use of different language models, and also
to investigate different confirmation strategies. Simulated speech input can be generated by
passing word strings through the TTS component or, as in the Lopez-Cézar et al. (2003)
study, by retrieving recorded samples of user utterances from a corpus of dialogues involving
real users interacting with the system.

Scheffler and Young (2000, 2001) proposed a goal directed model in which a goal is
defined as a specification of the dialogue transaction that the user wants to accomplish and
implemented as a structure of attribute-value pairs where each attribute has a status tag rep-
resenting the state of each goal from the user’s point of view (pending, specified, urgent or
not applicable). An advantage of this approach is that it models several error types, where
an error is viewed in terms of the difference between the original user intention and the
interpretation captured by the system.

Cuaydhuitl et al. (2005) combine the goal oriented approach with the bigram model using
Hidden Markov Models (HMMs) to predict not only the user intentions but also the system
ones. Additionally, Pietquin and Dutoit (2006a, b) modify the Scheffler model by relating the
user’s goal to the user’s behaviour during the dialogue. Finally, Georgila et al. (2005) have
extended these techniques using n-grams models instead of bigrams in order to represent the
complete dialogue history.

2.3 Evaluation of simulated users

The evaluation of simulated users is a complex issue (Schatzmann et al. 2005a). Evaluation
has usually addressed one or more of the following issues: ease of use, whether the dialogues
produced are valid in comparison with dialogues produced by real users, and whether the
generated corpus is useful (Moller et al. 2006). Cuaydhuitl et al. (2005) employ three metrics
to compare simulated and real dialogues: dialogue length (average number of turns), dialogue
similarity (normalized distance of HMMs between two dialogue sets) and precision-recall
(how well the model predicts the test and training data). In several systems evaluations have
attempted to reflect user satisfaction by employing the two measures: dialogue duration and
task completion (Scheffler and Young 2001; Schatzmann et al. 2005b; Pietquin and Dutoit
2006b). Some authors have employed more fine-grained measures relating the quality of
the obtained dialogue—for example, how much information is transmitted in each turn or
how active or cooperative the users are (Schatzmann et al. 2005b). Moreover, as argued by
Schatzmann et al. (2005b), in addition to measuring validity in terms of whether the model
generates outputs similar to a human’s response, the simulation should also aim to reproduce
sufficient variety in human behaviour to represent the whole user population and not only an
average user.

While the simulated users described here are concerned with spoken dialogue systems,
there is an increasing number of systems being developed that include additional modalities

@ Springer

Testing the performance of spoken dialogue systems 297

in combination with speech. In these cases more complex simulations are likely to be required
to model the actions of users as well as their utterances (Okamoto et al. 2005).

3 The Saplen dialogue system

This section briefly describes the Saplen dialogue system used in the experiments. Saplen
was originally implemented to answer Spanish telephone-based orders and queries by clients
of fast food restaurants (Lopez-Cozar et al. 1997). Figure 1 shows the relationship between
this system and the simulated user used as the basis for this study, which is described in more
detail in Sect. 4. The speech synthesiser of the system is not shown as it is not used in the
experiments presented in this paper.

The system employs an HTK-based speech recogniser (Hain et al. 1999; Young et al. 2000)
that generates as output an N-best list of recognition hypotheses (N =10). A confidence score
C(w) in the range 0.0-1.0 is assigned to each word w in the hypothesis according to the
following expression:

D iel, €Xp(—sci)

Cw) =
) Zj-v:l exp(—sc;)

where sc; represents the score (log probability) of the jth hypothesis in the N-best list, 7,
represents the set of indices of hypotheses that contain the word w (I, C {1, ..., N}), and
sc; represents the score of the ith hypothesis that contains w. For example: for the food order
“I would like to have three green salads” the recognition hypothesis may be “I (0.7590)
would (0.6982) like (0.9268) to (0.4285) have (0.6929) six (0.3974) green (0.7059)
salads (0.8182)”, which is incorrect as the word “three” is substituted by the word “six”. The
system employs two confidence thresholds (T; = 0.3 and T>» = 0.5) to decide whether to
discard or confirm either explicitly or implicitly each word w in the recognition hypothesis.
The word w is discarded if C(w) < Ty, is confirmed explicitly if T < C(w) < T, and is
confirmed implicitly if T» < C(w).

Information storage

Information storage
Frame(s)

Prompt of the system H

Utterance
(voice samples file)

Response generator
Dialogue manager
Response generator [

Dialogue manager
Speech recogniser

Semantic analyser

Scenario
corpus

Dialogue
corpus

’ Database manager I

Acoustic and
language models
[_Dictonary |

Fig. 1 Relationship between the simulated user and the Saplen system

Utterance
corpus

S —

@ Springer

298 R. Lépez-Cézar et al.

3.1 Dialogue corpus

To develop the system we compiled a dialogue corpus in a fast food restaurant that contains
about 800 recorded dialogues in Spanish involving conversations between clients and restau-
rant assistants (L6pez-Cézar et al. 1998). These dialogues contain product orders, telephone
numbers, postal codes, addresses, queries, confirmations, greetings and other types of utter-
ances. The dialogues were transcribed, labelled and analysed to include tags regarding the
speakers (clients and restaurant assistants), utterance types, semantic information about the
utterances, and other kinds of information. The corpus contains around 5,500 utterances and
about 2,000 words which were used for previous studies (Lopez-Cézar et al. 2000, 2002,
2003; Lopez-Cézar and Milone 2001; Lopez-Cézar and Callejas 2005). The semantic infor-
mation associated with each utterance is represented as a frame (Allen 1995) as explained in
Section 4.1.

3.2 Dialogue management

The dialogue management in the Saplen system is as follows: after an initial welcome mes-
sage the system prompts the user to enter product orders or queries, explaining that orders
and queries must be entered one by one. When a product order has been made the system
prompts for the telephone number of the user and confirms the recognised number. The sys-
tem checks whether the number is in a database of known clients. If it is, it then prompts the
user to confirm the stored data, otherwise it prompts for the user’s postal code and confirms
it. The system then prompts for the user’s address and confirms the data obtained. If the user
confirms them, they are stored in the users database together with the telephone number. If
the data are not confirmed the system tries to get the correct data by asking for just one item
of address data at a time, i.e. address type, address name, building number, building floor and
apartment letter.! At the end of the dialogue the system confirms the products ordered, states
the total price to be paid and prompts the user to accept it. It also gives the estimated delivery
time and prompts the user to accept it. The dialogue ends with the system thanking the user
for the call. All the confirmation prompts generated by the system are “yes/no” questions,
as for example: “Let’s see. | think you ordered a ham sandwich, a Spanish omelette
sandwich, two salads and two large beers. Is this correct? Please say yes or no”.

4 Previous version of our simulated user

This section briefly describes the simulated user that we developed in a previous study
(Lopez-Cozar et al. 2003) which is the basis for the work presented in this paper. The pur-
pose of this simulated user is to interact automatically with the Saplen system in a spoken
conversation, and to obtain a dialogue corpus suitable for testing the performance of the
system. As can be observed in Fig. 1, the simulated user receives the current prompt gener-
ated by the system as well as the frame(s) obtained by the system from the analysis of its
previous response. This response is an utterance (voice samples file) recorded by a client
of the fast food restaurant, which is taken from the dialogue corpus discussed in Sect. 3.1.

! These are the data typically used in Spain for the postal address, such as “Avenida de Andalucia, nimero 24,
portal 4, tercero E”, but there are also addresses that only include address type (e.g. “street”), address name
(e.g. “Elm”) and building number (e.g. “13”). In the scenarios used to test the proposed technique, described
in Sect. 6.4, all the addresses considered include all the data items, to obtain experimental results in the hardest
case.

@ Springer

Testing the performance of spoken dialogue systems

299

the user wants to order a ham sandwich

(<AMOUNT> ="1",
<FOOD> ="SANDWICH”,
<INGREDIENTS> = "HAM”)

the user wants a vegetable and turkey salad

(<AMOUNT> ="1",
<FOOD> ="SALAD”,
<INGREDIENTS> = "VEGETABLE TURKEY”)

the user wants to order a cheese sandwich # the user telephone number
(<AMOUNT> ="1",

<FOOD> = "SANDWICH”,
<INGREDIENTS> = "CHEESE")

(<TELEPHONE_NUMBER> = "958275360")

the postal code of the user

the user wants to order a large beer (<POSTAL_CODE> = "18001")
(<AMOUNT> ="1",

<DRINK> ="BEER’,
<SIZE> ="LARGE")

the user address

(<ADDR_TYPE> = "STREET",
<ADDR_NAME> = "ANDALUCIA”,
<ADDR_NUMBER> = "58",
<ADDR_FLOOR> ="FIRST",
<ADDR_LETTER> ="E")

the user wants to order a chocolate milkshake

(<AMOUNT> ="1",
<DRINK> = "MILKSHAKE”,
<TASTE> = "CHOCOLATE”)

Fig. 2 A sample scenario for the simulated user

Therefore, the frame(s) can be affected by speech recognition errors just as if the analysed
response had been uttered by a real user.

To interact with the system the simulated user employs a set of scenarios that indicate
the goals it must try to achieve during the dialogue. For example, the scenario shown in
Fig. 2 indicates that the simulated user must order “one ham sandwich”, “one cheese
sandwich”, “one large beer”, “one chocolate milkshake” and “one vegetable and turkey
salad”. Hence, when the system prompts the simulated user to make product orders and enter
the telephone number, postal code and address of the user, the simulated user must use (i.e.
utter) the product orders, telephone number, postal code and address in the scenario. As will
be explained in Sect. 6.4, these scenarios are created by selecting utterances in a test utterance
corpus.

To answer a system prompt, after the simulated user has selected the appropriate scenario
goal, e.g. (<POSTAL_CODE> =“18001"), it selects at random an utterance in the corpus,
e.g. “uhm my postal code is 18001”, for which the associated reference frame matches
the selected goal, as will be explained in Sect. 5.3. This utterance is the input for the speech
recogniser of the system. An example of an interaction between the simulated user and the
Saplen system (translated from Spanish into English) is shown in Dialogue 1. In this dialogue
the simulated user behaved as a very cooperative user (discussed in Sect. 5.2) and the system
employed the prompt-dependent language models (PDLMs) to be discussed in Sect. 6.3.

(1) Saplen: Good evening, welcome to our restaurant. This is our automatic tele-
phone service system. The minimum price for the home delivery service is six
euros. Please speak after the tone. What would you like to have?

(2) Simulated user: Three ham sandwiches [Recognition hypothesis: six (0.3285)
ham (0.5956) sandwiches (0.8510)]

(8) Saplen: | have to confirm your order. Did you say six ham sandwiches? Please
say yes or no.

(4) Simulated user: No [Recognition hypothesis: no (0.6734)]

(5) Saplen: OK. How many sandwiches did you say?

@ Springer

300 R. Lépez-Cézar et al.

(6) Simulated user: Three [Recognition hypothesis: three (0.7624)]

(7) Saplen: OK. So that’s three ham sandwiches. Please say your telephone num-
ber.

(8) Simulated user: 95827 5 3 6 0 [Recognition hypothesis: nine (0.6851) five
(0.6985) eight (0.7659) two (0.7565) seven (0.8967) five (0.8642) three (0.4986)
six (0.7521) zero (0.8634)]

(9) Saplen: | need to confirm your telephone number. Did you say 9, 5, 8, 2, 7, 5,
3, 6, 0?7 Please answer yes or no.

(10) Simulated user: Yes [Recognition hypothesis: yes (0.5834)]

(11) Saplen: OK. Telephone number 9, 5, 8, 2, 7, 5, 3, 6, 0. Please say your postal
code.

(12) Simulated user: 1 8 0 0 1 [Recognition hypothesis: 1 (0.8561) 8 (0.7637)
0 (0.5367) 0 (0.5756) 1 (0.8985)]

(13) Saplen: OK. Postal code 1, 8, 0, 0, 1. Please say your address, for example
Elm street, number 13, second floor, apartment letter e.

(14) Simulated user: Andalucia street number 58 first floor letter e [Recognition
hypothesis: andalucia (0.8659) street (0.76395) number (0.5963) fifty-eight
(0.9683) first (0.9465) floor (0.8029) letter (0.7869) e (0.4361)]

(15) Saplen: 1 need to confirm your address. Did you say Andalucia street, number
58, first floor letter e? Please answer yes or no.

(16) Simulated user: Yes [Recognition hypothesis: yes (0.5639)]

(17) Saplen: OK. Address Andalucia street, number 58, first floor letter e. Would you
like to drink something?

(18) Simulated user: A large beer [Recognition hypothesis: a (0.5698) large (0.2631)
beer (0.9764)]

(19) Saplen: OK. One beer. Which size would you like?

(20) Simulated user: Large [Recognition hypothesis: large (0.5969)]

(21) Saplen: OK. So that’s one large beer. Would you like anything else?

(22) Simulated user: No [Recognition hypothesis: no (0.5972)]

(23) Saplen: | need to confirm your order. | think you ordered three ham sandwiches
and one large beer. Is this correct? Please answer yes or no.

(24) Simulated user: Yes [Recognition hypothesis: yes (0.6384)]

(25) Saplen: OK. The price is 12 euros and ten cents. Is this OK for you? Please
answer yes or no.

(26) Simulated user: Yes [Recognition hypothesis: yes (0.5821)]

(27) Saplen: OK. The delivery service will take 30 minutes approximately to get to
your address. Is this OK for you? Please answer yes or no.

(28) Simulated user: Yes [Recognition hypothesis: yes (0.5690)]

(29) Saplen: OK. Thank you very much for using our telephone service automatic
system. Good night.

Dialogue 1. Dialogue with a very cooperative user.

This sample dialogue shows that the simulated user always behaved as expected, answering
each system prompt with the required type of utterance, which is the modelled behaviour
for the very cooperative users. Dialogue turns (4), (10), (16), (24), (26) and (28) show that
the simulated user answered the explicit confirmation prompts generated by the system with
“yes/no” responses. Dialogue turn (2) was used to enter a product order in response to turn

@ Springer

Testing the performance of spoken dialogue systems 301

(1), turn (8) was used to enter a telephone number is response to turn (7), turn (12) was used
to enter a postal code in response to turn (11), and turn (14) was employed to enter the address
in response to turn (13). The system employed turns (7), (11), (13) and (17) to make implicit
confirmations of data previously obtained. These were taken as confirmed by the simulated
user as it did not make any correction.

4.1 Frames used

The semantic analyser of the Saplen system creates one (or more) frames from each recog-
nition hypothesis provided by the speech recogniser. The frames generated by the semantic
analyser of the system have a variable number of slots, depending on the utterance types from
which they are created. For example, those created from confirmations, telephone numbers
and postal codes contain only one slot, while those created from food orders contain up to
five, and those created from drink orders and addresses contain up to six slots. We consider
that some frame slots are “obligatory” as they must be filled in with a value (e.g. the amount
in a food order), while others are “optional” and can be left empty (e.g. the temperature
in a drinks order). The frames impose restrictions concerning valid values for the slots; for
example, a frame used to store a telephone number contains just one slot that has a valid
value if it contains nine digits.

Two types of frames are distinguished in this paper: reference frames and obtained frames.
The first type corresponds to frames created beforehand and associated with the utterances
in the dialogue corpus (discussed in Sect. 3.1). For example: (<PHONE_NUMBER> =
“958123456”) is a reference frame associated with the utterance “My telephone number
is958123456”. The obtained frames are created by the semantic analyser of the Saplen
system as it processes the recognition hypotheses, and thus they can be affected by speech
recognition errors. The semantic analyser assigns a confidence score to each frame slot taking
into account the confidence scores of the words in the slot (discussed in Sect. 3). If the slot
only contains one word, the confidence score of the slot is that of the word. If the slot contains
several words (e.g. a telephone number), its confidence score is the lowest confidence score
of the words in the set of words. By employing this policy the dialogue system confirms the
content of the slot if there is low confidence in the recognition of at least one word in the
slot. These scores are used by the dialogue manager of the system to either accept the data
in the slots or to generate confirmation prompts. If an obtained frame is exactly the same
as the reference frame associated with the analysed utterance, the obtained frame is said to
be correct; otherwise we say it is incorrect. All the reference frames are correct since they
were created from the orthographic transcriptions of the utterances in the corpus, which are
obviously not affected by speech recognition errors.

5 The proposed technique

The technique proposed in this paper for artificially simulating the behaviour of different
types of user is an improvement on the system discussed in the previous section, which only
allows simulation of the behaviour of users who always answer the system prompts with the
required types of utterance (as observed in Dialogue 1). The proposed technique overcomes
this limitation by enabling the simulation of three different degrees of user cooperativeness:
very cooperative, cooperative and not very cooperative. Therefore this is useful for more
exhaustive testing of the performance of a dialogue system in order to identify possible
design or performance problems.

@ Springer

302 R. Lépez-Cézar et al.

5.1 Differences and similarities with other simulated users

The simulated user we propose has several similarities with previous studies of user sim-
ulation with dialogue systems. It is related to the work presented by Scheffler and Young
(2000, 2001) in which the intentions of the user being simulated are represented as goals.
Our proposal also uses goals to represent user intentions, as can be observed in Fig. 2. A
difference between both approaches is that for Scheffer and Young (2000, 2001) each goal
represents a specification of the dialogue transaction that the user wants to accomplish, while
in our approach each goal represents the semantic content of at least one utterance in the
corpus.

The proposed simulated user is also related to that presented by Moller et. al (2006),
which is able to provide input that is invalid in the current dialogue state but that would be
valid in some other dialogue state. In our approach the dialogue state is directly related to
the current prompt generated by the dialogue system. As will be explained in Sect. 5.2, when
our simulated user models the behaviour of not very cooperative users, it can provide invalid
input data for the current system prompt, e.g. an address when the system prompted for a
product order. A difference between the two approaches is that our simulated user cannot
issue commands or ask for information that is not supported by the dialogue system, which
is a functionality supported by the system of Moller et al. (2006). However, this behaviour
could be easily implemented, provided that there are recordings in the corpus of the utterances
representing those commands.

Another feature of the proposed simulated user is that it is not aimed at modelling the
behaviour of both users and dialogue systems, which is the case of the system presented by
Cuayahuitl et al. (2005), among others. These authors compare the automatically generated
dialogues with real dialogues in order to determine the realism of the simulated dialogues. On
the contrary, our proposal is aimed at just modelling the behaviour of users and the generated
dialogues are not compared with real ones, but are used to find out problems in the design or
performance of particular components of the dialogue system. In the experiments presented
in Section 6 the simulated user was used to test the performance of the speech recogniser,
semantic analyser and dialogue manager of the Saplen system.

5.2 Simulation of different types of user

As commented above, the proposed simulated user models the behaviour of three kinds of
user, which in this paper are called very cooperative, cooperative and not very cooperative. To
simulate the behaviour of the very cooperative users the system always generates as response
the kind of utterance requested by the dialogue system, as can be observed in Dialogue 1.
The advantage of this kind of simulation is that it makes it possible to have an estimate of
the system performance interacting with “optimal” users who are able to provide exactly the
data requested by the system in each interaction.

To simulate the behaviour of cooperative users the simulated user does not always respond
with the kind of utterance requested by the dialogue system, but always generates responses
that are appropriate for the system prompts. For example, it can respond “Three” for turn
(3) in Dialogue 1. This can be useful to model experienced users who know how to make
the interaction go faster by providing in advance the data that the system will require in
subsequent prompts, e.g. uttering directly “Three” instead of “NO” in turn (3) of Dialogue 1.
Simulating this kind of user makes it possible to evaluate the ability and “intelligence” of
the system to deal appropriately with responses that do not match every system prompt
exactly.

@ Springer

Testing the performance of spoken dialogue systems

303

Table 1 Strategy to generate responses for the not very cooperative users

System
prompt type

Response type
to be generated

User action (or user type)

Product order?
Product order?
Product order?
Product order?
Telephone number?
Telephone number?
Telephone number?
Telephone number?
Postal code?

Postal code?

Postal code?

Postal code?
Address?

Address?

Address?

Address?

Product order
Telephone number
Postal code

User address
Product order
Telephone number
Postal code

User address
Product order
Telephone number
Postal code

User address
Product order
Telephone number
Postal code

User address

Providing the requested data

Deliberately uncooperative, inexperienced or nervous
Deliberately uncooperative, inexperienced or nervous
Deliberately uncooperative, inexperienced or nervous
Correcting system misunderstanding

Providing the requested data

Deliberately uncooperative, inexperienced or nervous
Deliberately uncooperative, inexperienced or nervous
Deliberately uncooperative, inexperienced or nervous
Correcting system misunderstanding

Providing the requested data

Deliberately uncooperative, inexperienced or nervous
Deliberately uncooperative, inexperienced or nervous
Deliberately uncooperative, inexperienced or nervous
Correcting system misunderstanding

Providing the requested data

To simulate the behaviour of not very cooperative users the simulated user generates
appropriate responses for some system prompts, but for others generates responses that are
completely inappropriate. For example, it can generate an address when the system prompted
for a food order. The advantage of this kind of simulation is that it makes it possible to model
the behaviour of users that perhaps call the system just to try to make it fail, and also of users
who because of inexperience or being nervous may answer some prompts with unexpected
utterances. Therefore, this type of simulation allows us to test the robustness of the speech
recogniser and semantic analyser to deal with these utterances. Also, it can be useful to test
the ability of the dialogue manager to appropriately handle data items that are not expected.
For example, if the address was provided unexpectedly in advance, the dialogue manager
should not prompt for these data later as they were already provided. For modelling the not
very cooperative users in our application domain we considered the four types of utterance
in the scenarios (product orders, telephone numbers, postal codes and addresses) and made
the simulated user generate randomly any of these kinds of utterance in response to the
system prompts to enter product orders, telephone number, postal code and address. This
strategy of generating a random response is shown in Table 1. The procedure to generate
responses for the prompt types not shown in the table is the same as that for the cooperative
users.

The table shows that not very cooperative users can sometimes behave “cooperatively”
by answering the system prompts with the expected utterance types, and also by correcting
system misunderstandings when necessary. These users can also respond with utterances that
are not expected to try to make the system fail deliberately, or because of inexperience or
nervousness when using the system.

@ Springer

304 R. Lépez-Cézar et al.

5.3 Implementation of the simulated user

The proposed simulated user is a rule-based automaton (Sect. 2.2) that receives as input the
current prompt generated by the dialogue system and the semantic representation that the sys-
tem obtained (SRop¢) from the analysis of the previous simulated user response. The output
is a voice sample file which is the next simulated user response, representing a response
uttered by a real user. This response is the next input for the dialogue system. For purposes
of illustration Fig. 3 shows algorithmically part of the simulated user employed to test the
Saplen system used in the experiments.

The algorithm uses the SR variable to store the semantic representation associated with
the voice signal file to be used in the simulated user’s next response. The value for this
variable is decided in parts 1-4 of the algorithm and is stored in the SR, variable, which
represents the correct semantic representation associated with the simulated user response.
The remainder of this section explains how the algorithm generates responses for implicit
and explicit system confirmation prompts, handles scenario goals, deals with system prompts
to get missing data, selects utterances from the corpus and makes some preparations for the
next interaction.

5.4 Generation of responses for system implicit confirmations

The first part of the algorithm deals with the generation of responses to answer implicit con-
firmation prompts generated by the system such as “OK. So that’s three ham sandwiches.
Please say your telephone number”. For this kind of prompt the simulated user provides
the requested data if it does not detect a misunderstanding of its previous response. Otherwise
it generates a response to let the system know that there was a mistake (e.g. “It is incorrect”).
This kind of response for mistakes, noted as ERROR_INDICATION in the algorithm, is
generated if the following two conditions are satisfied:

(1) The obtained semantic representation (SRopy) is different from the correct seman-
tic representation (SR¢o). For example, this happens if the previous response was
“Three ham sandwiches” but the system understood “Six ham sandwiches”. The
correction is necessary since otherwise the system would consider a misunderstood
order as being implicitly confirmed by the simulated user.

(i) The obtained semantic representation is not a subset of the correct semantic represen-
tation used as a reference. For example, it is a subset if the simulated user responded
“Three ham sandwiches” but the system understood “Ham sandwiches”. In this
case the simulated user does not make a correction since the dialogue system will try
to get missing data, e.g. generating the prompt: “OK. So that’s ham sandwiches.
How many do you want?”.

5.5 Generation of responses for system explicit confirmations

The second part of the algorithm is concerned with the generation of responses for explicit
confirmations generated by the dialogue system such as “I have to confirm your order.
Did you say you want six ham sandwiches? Please say yes or no”. For this kind of
prompt the simulated user generates a “yes/no” response if it is modelling a very cooperative
user. If it is simulating a cooperative or a not very cooperative user it generates a response
containing the data item that the system is trying to confirm (e.g. “Three”). For reasons of
space, Fig. 3 only shows two such prompt types but our complete implementation contains
similar actions for the 30 explicit confirmation prompts that the Saplen system can generate.

@ Springer

Testing the performance of spoken dialogue systems 305

simulated_user_response_generation (Inputs: prompt, SR,,;; Output: voice_signal_file)
cooperativeness = 1 /* ‘1’ is for very cooperative users. Other possible values are ‘2’ or ‘3” */
/* SR initialization */
SR=*”
/* Part 1: implicit confirmations */
if ((prompt is not an explicit confirmation) and (not first simulator response)) then {
if ((SRopt != SR¢or) and (SR, not included in SR ;)) then SR = ERROR_INDICATION }
/* Part 2: explicit confirmations */
if SR="") {
if (prompt = TELEPHONE_OK?) then {
if (SRyp = SR¢,,) then { if (cooperativeness = 1) then SR = AFFIRMAT_CONF
else SR = TELEPHONE_NUMBER }
else { if (cooperativeness = 1) then SR = NEGAT_CONF
else SR = TELEPHONE_NUMBER }
else

if (prompt = ORDERS_OK?) then {check_ordered_products()
if (ok) then SR = AFFIRMAT_CONF
else SR = NEGAT_CONF }
1
/* Part 3: management of scenario goals */
if (SR =) {

if (prompt = SOMETHING_TO_EAT?) then {

if ((cooperativeness = 1) or (cooperativeness = 2)) then search_scenario_for_food_order(goal)
else search_scenario_for_goal(goal)

SR = goal
mark_as_used(goal)
create_data_items(goal) }

else

if (prompt = TELEPHONE_NUMBER?) then {
if ((cooperativeness = 1) or (cooperativeness = 2)) then

search_scenario_for_telephone_number(goal)
else search_scenario_for_goal(goal)

SR = goal
mark_as_used(goal)
create_data_items(goal) }

}

/* Part 4: management of missing data items */

if (SR =) {
if (prompt = AMOUNT?) then SR = AMOUNT_ITEM
else

if (prompt = TASTE?) then SR = TASTE_ITEM

}

/* Part 5: response generation */
look_for_file(SR, ortographic_transcription.txt, voice_signal.wav)
include_in_log_file(prompt, ortographic_transcription.txt)
voice_signal_file = voice_signal.wav

/* Part 6: dialogue history storage */
store_in_information_storage_of_simulated_user(SRo,)

/* Part 7: setting correct semantic representation as the desired semantic representation */
SR = SR

End

Fig. 3 Procedure to generate a response from the simulated user

@ Springer

306 R. Lépez-Cézar et al.

The first prompt shown is concerned with the confirmation of the telephone number, and
the processing is analogous for the confirmation of postal code, address and product orders.
This kind of processing could be easily adapted to implement a simulated user for a different
application domain by simply changing the prompt names. The second prompt is concerned
with the confirmation of the set of product orders understood. This is an example of domain-
dependent processing which uses a specific function to compare the set of product orders
understood by the system with that in the scenario employed. This function may not be useful
for simulated users interacting with dialogue systems designed for other application domains.
Hence the system designers should implement the necessary functions in their domains, e.g.
to decide whether the dialogue system correctly understood the details of a flight booking.

5.6 Management of scenario goals

The third part of the algorithm is concerned with the management of scenario goals. Its
objective is to find the semantic representation (SR variable) associated with each goal in the
scenario employed. To save space Fig. 3 just shows the processing for two system prompts
but our complete implementation includes the processing of the 53 different prompts that
the Saplen system can generate. Each scenario employed (see Fig. 2) contains five product
orders, one telephone number, one postal code and one address. Therefore when the system
prompts for food orders (e.g. “Would you like to have anything to eat?”) the algorithm
searches for the semantic representation of a food order in the scenario that has not been used
already. This representation is the next goal to be achieved by the system. The algorithm also
creates the sub-goals corresponding to the goal (amount, type, ingredients, etc.), which are
necessary to recover from possible speech recognition deletion errors (Rabiner and Juang,
1993; Huang et al. 2001), as will be discussed in the following section. For example, the two
sub-goals for the “ham sandwich” order in the sample scenario shown in Fig. 2 would be
(<AMOUNT> = “1”) and (<INGREDIENTS> =“HAM”).

5.7 Generation of responses to provide missing data

The fourth part of the algorithm deals with the management of system prompts to get missing
data. For example, in our application domain data can be missing if the user did not pro-
vide all the data required to make a product order or query (e.g. “l want ... uhm ... ham
sandwiches”), or did not provide all the necessary details in his address. Data can also be
missing because of speech recognition errors that delete words which are necessary to obtain
the correct semantic representation, e.g. taste in a drink order, ingredients in a food order or
street name in an address. In the interaction with the proposed simulated user data can only
be missing because of speech recognition errors, given that all the utterances in the utterance
corpus employed to generate responses contain all the data items required.

If after the analysis of a user response the Saplen system detects that data is missing then
it generates prompts to obtain these data from the user, as for example “How many ham
sandwiches do you want?” To generate responses for these kinds of prompt the simulated
user employs the sub-goals created when the current goal was selected from the scenario, as
discussed in the previous section. To save space Fig. 3 shows only the processing for two
such prompts but our complete implementation includes the processing for the 12 prompt
types that the Saplen system can generate to get missing data. The objective is to assign the
appropriate value to the SR variable, which represents the semantic representation of the
simulated user’s next response. For instance, if the system prompts to get the amount of a

@ Springer

Testing the performance of spoken dialogue systems 307

product order, the algorithm assigns to the SR variable the amount sub-goal of the current
goal, e.g. (<AMOUNT> =“1").

5.8 Selection of utterances from the corpus

At this point the algorithm has already decided the kind of utterance to be generated as the
simulated user’s next response, which is represented as a semantic representation stored in
the SR variable. In part 5 it simply looks? for an utterance in the corpus (wav file in our imple-
mentation) which has an associated semantic representation that matches the SR. This file
is the output of the algorithm and the next input for the dialogue system. The current prompt
of the dialogue system and the orthographic transcription of this utterance are included in a
log file created for posterior evaluation purposes.

5.9 Preparation for the next interaction

Part 6 stores the last semantic representation obtained by the system (SRop) into the Infor-
mation Storage module of the simulated user, just as a human being “stores” in his memory
what he thinks the other partner in the conversation has understood. This is necessary because
the simulated user’s responses for some system prompts depend on the dialogue history. For
example, in our application domain the simulated user needs to know all the product orders
understood by the system up to a particular moment of the conversation, which enables it to
generate the appropriate “yes/no” response for the prompt “OK, would you like to order
anything else?” If all the product orders in the employed scenario have been understood by
the system, the simulated user generates a negative response and otherwise it generates an
affirmative response.

Finally part 7 of the algorithm sets the correct semantic representation (SR¢;) to be the
desired semantic representation (SR). This is necessary to compare this representation in
the next interaction against that obtained by the dialogue system (SRgp) and to generate
appropriately the next simulated user response.

5.10 Example of a dialogue with a not very cooperative user

This section shows a sample generated dialogue (translated from Spanish into English) with
the simulated user modelling the behaviour of a not very cooperative user and the system
employing the PILM (prompt-independent language model).

(1) Saplen: Good evening, welcome to our restaurant. This is our automatic tele-
phone service system. The minimum price for the home delivery service is six
euros. Please speak after the tone. What would you like to have?

(2) Simulated user: Acera de Canasteros street, number one, third floor, apartment
letter e [Recognition hypothesis: cherry (1.0000) make (0.5997) an (0.0718)
order (0.718) of (0.6070) elm (0.4084)]

(3) Saplen: 'm sorry, | didn’t understand. You must enter product orders one by
one. For example, if you want to order a sandwich and a beer, order first the
sandwich and then the beer. What would you like to have?

(4) Simulated user: One large orange fanta [Recognition hypothesis: one (0.7991)
large (1.0000) orange (1.0000) fanta (0.5997)]

2 To employ all the utterances available in the corpus the search procedure first selects utterances that have
not been used before. When all utterances have been used it selects those least used, which helps to employ
all the possible utterances approximately the same number of times.

@ Springer

308 R. Lépez-Cézar et al.

(5) Saplen: OK. So that's one large orange fanta. Please say your telephone
number.

(6) Simulated user: One large cola [Recognition hypothesis: one (0.5044) large
(0.8999) cola (0.7001)]

(7) Saplen: OK. So that’s one large cola. Please say your telephone number.

(8) Simulated user: 1800 1[Recognition hypothesis: one (1.00000) eight (1.0000)
zero (1.0000) zero (1.0000) one (0.7998)]

(9) Saplen: OK. Telephone number 1, 8, 0, 0, 1. Please say your postal code.

(10) Simulated user: It is wrong [Recognition hypothesis: it (0.7032) is (0.6996)
wrong (1.0000)]

1) Saplen: Do you want to change the telephone number? Please say yes or no.

2) Simulated user: Yes [Recognition hypothesis: yes (0.7032)]

3) Saplen: OK. Please say your telephone number again.

4) Simulated user: One ham sandwich [Recognition hypothesis: | (0.3098) want
(0.4023) a (0.5021) ham (0.8987) sandwich (0.6572)]

(15) Saplen: OK. So that’'s one ham sandwich. Please say your telephone number

again.
(16) Simulated user: 95 8 1 2 2 3 4 5 [Recognition hypothesis: nine (0.8986) five
(0.5621) eight (0.9703) one (0.5499) two (0.5890) two (0.7861) three (0.4581)
four (0.6548) five (0.3860)]

(17) Saplen: 1 need to confirm your telephone number. Did you say 9, 5, 8, 1, 2, 2,
3, 4, 57 Please answer yes or no.

(18) Simulated user: 95 8 1 2 2 3 4 5 [Recognition hypothesis: nine (0.9676) five
(0.8510) eight (0.8701) one (0.6021) two (0.6719) two (0.6123) six (0.5081)
four (0.8439) five (0.6219)]

(19) Saplen: OK. Telephone number 9, 5, 8, 1, 2, 2, 6, 4, 5. Please say your postal

code
(20) Simulated user: You are wrong [Recognition hypothesis: you (0.4048) are
(0.6992) wrong (1.00000)]
1) Saplen: Do you want to change the telephone number? Please say yes or no.
2) Simulated user: Yes [Recognition hypothesis: yes (0.5223)]
3) Saplen: OK. Please say your telephone number again.
4) Simulated user: 958 1 2 2 3 4 5 [Recognition hypothesis: nine (0.9439) five
(0.9437) eight (0.6491) one (0.7320) two (0.7328) two (0.7412) three (0.4981)
four (0.7429) five (0.9812)]
(25) Saplen: 1 have to confirm your telephone number again. Did you say 9, 5, 8, 1,
2,2, 3,4, 57 Please answer yes or no.

(26) Simulated user: 958 1 2 2 3 4 5 [Recognition hypothesis: nine (0.6742) five
(0.8361) eight (0.8531) one (0.5832) two (0.9531) two (0.9671) six (0.9651)
four (0.8540) five (0.8512)]

(27) Saplen: OK. Telephone number 9, 5, 8, 1, 2, 2, 3, 4, 5. Please say your postal

code.
(28) Simulated user: 1 8 0 0 1 [Recognition hypothesis: one (0.7984) eight (0.7941)
zero (1.0000) zero (1.0000) one (0.5048)]

(29) Saplen: OK. Postal code number 1, 8, 0, 0, 1. Please say your address, as for
example, EIm street, number 13, first floor, letter e

(80) Simulated user: Acera de Canasteros street, number one, third floor, apartment
letter e [Recognition hypothesis: acera-de-canasteros (1.0000) street (1.000)
zero (0.9046) zero (0.9046) twelve (1.0000) beer (0.2862)]

@ Springer

Testing the performance of spoken dialogue systems 309

***INTERACTION LIMIT (30) REACHED, DIALOGUE CANCELLED BY SIMULATED
USER ***

Dialogue 2. Dialogue with a not very cooperative user.

If we compare this dialogue with Dialogue 1 we can observe the different behaviour of
the simulated user as well as the difficulties for the system to obtain the necessary data and
to correct understanding errors. Dialogue turns (2), (4), (6), (8) and (14) show the random
selection of utterances to answer system prompts to enter product orders, telephone numbers,
postal codes and addresses (discussed in Sect. 5.2). Turns (18) and (26) show that the dia-
logue system repeated the data being confirmed by the system (telephone number) instead of
uttering the “yes/no” requested response, which is the modelled behaviour for cooperative
and not very cooperative users. Given the difficulties in interacting with the system, the sim-
ulated user cancelled the dialogue as the interaction limit set to 30 turns in total was reached,
as will be discussed in Section 6.1.

6 Experiments

The goal of the experiments was to employ the proposed technique to test the performance
of the Saplen system and improve it by identifying problems in the performance of its speech
recogniser, semantic analyser or dialogue manager. By fixing these problems the system
could be more robust to deal with a variety of users in a variety of interaction modes.

6.1 Evaluation measures

The evaluation was carried out in terms of word accuracy (WA), sentence understanding
(SU) and task completion (TC). WA is the proportion of correctly recognised words. It was
computed as WA= (wy — w; — wg — Wq) x 100/w;, where W is the total number of words
in the analysed utterances, and W;, Wy and Wy are the number of words inserted, substituted
and deleted by the speech recogniser, respectively.

SU is the proportion of utterances correctly understood by the system when it interacts
with the simulated user. This was computed as SU = S, x 100/S;, where Sy, is the number
of analysed utterances for which the semantic representations (frames) obtained were correct
(i.e. SRopt = SR¢or) and Sy is the total number of analysed utterances. If an utterance was
partially understood, for example the order “one large orange fanta” was understood as
“one large fanta” we did not consider it to be SU, as there was not an exact match between
the obtained and the correct semantic representation.

TC is the proportion of successful dialogues, i.e. the percentage of dialogues that
ended with all the scenario goals achieved by the simulated user. This was computed as
TC = D. x 100/D¢, where D is the number of successful dialogues and Dy is the total
number of dialogues. In order to avoid excessively long dialogues between the system and
the simulated user, which would not be accepted by real users, we made the latter cancel the
interaction with the system if the total number of interactions (i.e. of system plus simulated
user turns) exceeded a threshold that we set to 30 interactions. The reason for using this max-
imum limit is that, taking into account the structure of the scenarios® as well as the dialogue
management strategy of the Saplen system, a dialogue without any error correction requires

3 All the scenarios employed in the experiments included five product orders, a telephone number, a postal
code and an address.

@ Springer

310 R. Lépez-Cézar et al.

Table 2 Utterances used for training and test

Utterance type No. training utterances No. testing utterances
Product order 250 250
Telephone number 250 250
Postal code 250 250
Address 250 250
Query 125 125
Confirmation 125 125
Amount 125 125
Food name 125 125
Ingredient 125 125
Drink name 125 125
Size 125 125
Taste 125 125
Temperature 125 125
Street name 125 125
Building number 125 125
Building floor 125 125
Apartment letter 125 125
Error indication 125 125
Total 2,750 2,750

20 turns in total to make the orders, provide the user data (postal code, telephone number,
and address) and answer the confirmation prompts generated by the system. Considering 30
as an interaction limit means that we permitted 30 — 20 = 10 correction turns per dialogue,
which we consider an ample margin for the simulated user to correct possible errors. In
other words, the three kinds of modelled user (very cooperative, cooperative and not very
cooperative) were supposed to be patient enough to accept employing 10 dialogue turns to
correct system errors before hanging up. Cancelled dialogues were not considered successful
and thus decreased the TC rate.

6.2 Utterance corpus

To carry out the experiments we employed two utterance corpora, one for training and the
other for testing, that we have used in previous studies (Lépez-Cézar et al. 2003; Lopez-Cézar
and Callejas 2005). We ensured that no training utterances were included in the testing cor-
pus. Both corpora were created employing the dialogue corpus discussed in Sect. 3.1, in
which we selected 5,500 client utterances at random among the 18 utterance types shown in
Table 2.

Both corpora include the orthographic transcriptions of the utterances as well as their
corresponding reference frames. One half of the utterances that the simulated user employed
to correct system errors and to confirm data were used for training and the other half were
used for testing. These utterances were not used as scenario goals given that they are sce-
nario-independent.

@ Springer

Testing the performance of spoken dialogue systems 311

6.3 Language modelling for speech recognition

The Saplen system was configured to use two different kinds of language model for speech
recognition: one based on 17 prompt-dependent language models (PDLMs), in the form
of word bigrams (Rabiner and Juang 1993), whilst the other was based on one prompt-
independent language model (PILM), also a word bigram. Both kinds of language model
have been used in previous studies (Lopez-Cézar et al. 2003; Lopez-Cézar and Callejas
2005). Our goal was to test the performance of the Saplen system interacting with the three
kinds of modelled users employing both kinds of language model for each kind of user.

As shown in (L6pez-Cézar et al. 2003) the PDLMs provide good results if the users answer
each system prompt with the expected kind of utterance (e.g. a telephone number when the
system prompted for a telephone number). This happens because each utterance is analysed
using a bigram trained with utterances of the same type as the utterance being analysed.
To create this language model we compiled a specific word bigram from the orthographic
transcriptions of the training utterances of each type shown in Table 2 excluding the error
indications®*, which amounts to 17 bigrams in total. The 125 error indication utterances used
for training were included in each utterance set to compile the 17 bigrams, which allows
the recognition of error indications whenever the speech recogniser employs any of these
bigrams. The problem with the PDLMs is that these provide very poor results if the users
respond to system prompts with a type of utterance that does not match the active grammar
(e.g. an address when the system prompted for a telephone number). This happens because
the utterances are analysed employing a grammar compiled from utterances of a different
type. Therefore, this language model is not appropriate if we want to provide users with a
natural interaction that enables them to answer any system prompt with any kind of utterance
within the application domain, which is something that they would probably do when inter-
acting with a real operator. Contrary to what happens with the PDLMs, the PILM permits
the recognition of any kind of utterance within the domain, which helps to provide users
with a natural interaction. However, the accuracy is in general lower than with the PDLMs
given that the vocabulary is much larger and there are many more types of utterance to be
considered in the analysis of each utterance.

6.4 Scenarios

To automatically generate dialogues between the Saplen system and the proposed simu-
lated user we designed 50 scenarios similar to the one shown in Fig. 2. The scenario
goals (frames) were selected by choosing utterances at random in the test utterance corpus
(discussed in Sect. 6.2) corresponding to product orders, telephone numbers, postal codes
and addresses. We ensured that for each scenario goal there was at least one utterance in
the test corpus associated with the frame, since otherwise it would be impossible for the
simulated user to generate a response to some system prompts. For example, the scenario
goal: (<PHONE_NUMBER> =“958275360") lets the simulated user answer the prompt:
“Please say your telephone number”. Thus at least one utterance with this reference
frame was necessary in the test corpus. We also ensured that at least one utterance asso-
ciated with each scenario sub-goal was in the test corpus to allow the simulated user to
answer error-correction prompts generated by the system. For example, the scenario shown
in Fig. 2 would require utterances in the test corpus which are associated with the following

4 These utterances (e.g. “You made a mistake”, “It is incorrect”) are uttered by the user to correct errors made
by the system. When one of these is uttered the system prompts the user to confirm the change of the data
obtained from the last user interaction.

@ Springer

312 R. Lépez-Cézar et al.

Table 3 Saplen system average performance (in %)

PDLMs PILM
WA SU TC WA SU TC
Very cooperative users 90.05 85.18 70.56 75.4 57.86 11.67
Cooperative users 70.56 70.76 21.67 76.6 55.71 5.56
Not very cooperative users 43.69 56.82 11.13 77.87 53.28 4.47

reference frames: (<AMOUNT>=“1"), (<INGREDIENTS>=“HAM”), (<INGREDI-
ENTS>="“CHEESFE”), (<SIZE>=“LARGE”), (<TASTE>=“CHOCOLATE”) and
(<ADDR_NAME > =“ANDALUCIA"), among others. These frames would allow the sim-
ulated user to answer e.g. the error-correction prompts: “How many cheese sandwiches
did you say?” and “Please say again the name of the street”.

6.5 Results and discussion

Using the proposed technique we generated 20 dialogues per scenario according to the kind of
language model (PDLMs and PILM) and user type modelled (very cooperative, cooperative
and not very cooperative). This makes a total of 20 x 50 x 2 x 3 = 6,000 dialogues between
the Saplen system and the simulated user. Table 3 shows the average results obtained in terms
of WA, SU and TC.

The table shows that the best performance was achieved for the very cooperative users
regardless of the language model employed. The differences in the performance are more
clearly observed when the PDLMs were employed. The reason is that when the simulated
user modelled the behaviour of the very cooperative users it always provided responses that
matched the current system prompt. Therefore using the PDLMs each utterance was analysed
employing the appropriate recognition grammar. The scores decrease for the cooperative and
the not very cooperative users, given that when the simulated user modelled these kinds of
user, it sometimes provided utterances that did not match the current system prompt. For the
cooperative users this happened only for the confirmations but for the not very cooperative
users it happened also for prompts to enter product orders, telephone numbers, postal codes
and addresses. Therefore in both cases there were utterances that were analysed employing
inappropriate recognition grammars, especially in the case of the not very cooperative users.
According to these results it can be said that the system should only employ the PDLMs if
the real users were very cooperative, since otherwise the performance would be very poor.

When the PILM was employed the values for the evaluation measures were very similar for
the three kinds of user. The reason is that regardless of user type, the simulated user responses
always matched the recognition grammar, as it was compiled from training utterances per-
mitted for all the system prompts. It is interesting to note that, contrary to what happened
with the PDLMs, the WA score achieved for the not very cooperative users (77.87%) was
slightly higher than that obtained for the very cooperative users (75.4%). However the trend
is different for the SU: the rate achieved for the very cooperative users (57.86%) was slightly
higher than that obtained for the not very cooperative users (53.28%). The reason for this
apparent contradiction is that when the simulated user modelled the behaviour of the very
cooperative users, the answers to confirmation prompts were “yes/no” responses, whereas
in the case of cooperative and not very cooperative users these were repetitions of the data

@ Springer

Testing the performance of spoken dialogue systems 313

being confirmed by the system. Hence, when the data was a postal code or a telephone
number the simulated user repeated the five (postal code) or nine (telephone number) digits.
We observed that, especially for telephone numbers, at least one digit of the sequence was
in some cases misrecognised or recognised with low confidence, but the remaining digits
were correctly recognised. Therefore, given that each digit is considered as a word for the
WA computation, employing telephone numbers for the confirmation of telephone numbers
increased the overall proportion of correctly recognised words. This effect was more appar-
ent for not very cooperative users than for the cooperative users (WA values 77.87% vs.
76.6%) because for the former the random selection of responses caused more telephone
numbers and postal codes to be generated as responses, thus increasing to a greater extent
the proportion of correctly recognised words. Nevertheless what is really important to have
as a measure of acceptable system performance is a high rate of SU. When the PILM was
employed the SU was very low for the three kinds of user (lower than 60%) which made the
system performance totally unacceptable given that TC was too low in the three cases (only
11.67% in the best case).

As discussed at the beginning of Sect. 6, a goal of the experiments was to identify problems
with the speech recogniser, semantic analyser and dialogue manager of the Saplen system,
to fix those and thus increase the system’s robustness to deal with a variety of users. To do
this we focused on the generated dialogues with very low values for the evaluation measures
and analysed these to find the reasons for the low system performance. The remainder of this
section discusses the information obtained from the analysis.

6.6 Performance with the very cooperative users

When the PDLMs were employed the utterances that the simulated user generated as responses
always matched the active speech recognition grammars, which caused WA to be quite high
(90.05%). The 10% word error rate was caused by three factors. One is that some “yes/no”
answers to confirmation prompts were misrecognised, e.g. the word “si” (yes) was sometimes
substituted by the word “te”. Another reason is that there were problems recognising some
addresses for which not all data items were recognised. The third reason is that there were
many recognition errors if the speakers had strong southern Spanish accents, as they usually
do not pronounce the final ‘s’ of plural words. For example, when they uttered the words “bo-
cadillos” (sandwiches) and “grandes” (large) the recognition hypotheses were “bocadillo”
(sandwich) and “grande” (large). Given that these errors in the number correspondence do
not affect the semantics of the utterances, most of the product orders were correctly under-
stood even though some words were incorrectly recognised. The average TC employing the
PDLMs was 70.56% which suggests that the system performance can be considered more
or less acceptable for real users who may behave similarly to the very cooperative users
modelled in this study.

When the PILM was employed there were also many speech recognition errors in the
responses to system confirmation prompts, especially if these were uttered by speakers with
strong southern Spanish accents. Given that these users omit the final ‘s’ of plural words, as
discussed above, because of acoustic similarity the word “no” was often substituted by the
word “dos” (two), “Uno” (one) or “error”, while the word “si” (yes) was often substituted by
the word “seis” (six). Moreover in many cases the words “yes” and “no” were discarded by
the semantic analyser of the system as their confidence scores (discussed in Sect. 3) were
smaller than the lower confidence threshold employed (set to 0.3). Because of these problems
there were many repetitive confirmation turns to get data confirmed, which lengthened the
dialogues and caused some of these to be cancelled as the interaction limit (30 turns) was

@ Springer

314 R. Lépez-Cézar et al.

reached before all the scenario goals were achieved. These problems are illustrated in the
following sample dialogue.

(1) Saplen: Please say your telephone number.

(2) Simulated user: 95812 3 4 5 6 [Recognition hypothesis: nine (0.8463) five
(0.8353) eight (0.7438) one (0.6279) two (0.9583) six (0.4982) four (0.6378)
five (0.7391) six (0.8537)]

(3) Saplen: | have to confirm your telephone number. Did you say 9, 5, 8, 1, 2, 6,
4, 5, 67 Please say yes or no.

(4) Simulated user: No [Recognition hypothesis: no (0.1206)]

(5) Saplen: I'm sorry, | didn’t understand. | have to confirm your telephone number
again. Didyousay 9, 5, 8, 1, 2, 6, 4, 5, 67 Please say yes or no.

(6) Simulated user: No [Recognition hypothesis: error (0.5216)]

(7) Saplen: Do you want to change the telephone number? Please say yes or no.

(8) Simulated user: Yes [Recognition hypothesis: yes (0.5928)]

(9) Saplen: OK. Please say your telephone number again.

0) Simulated user: 958 12 3 4 5 6 [Recognition hypothesis: nine (0.8632) five

(0.6458) eight (0.5367) one (0.2581) two (0.8632) six (0.2365) four (0.3625)

five (0.6548) six (0.4862)]

(11) Saplen: OK. | have to confirm your telephone number again. Did you say 9, 5,

8,1,2,6,4,5, 67 Please say yes or no.

(12) Simulated user: No [Recognition hypothesis: two (0.5642)]

(13) Saplen: | have to confirm your telephone number again. Did you say 2? Please

say yes or no.

(14) Simulated user: No [Recognition hypothesis: two (0.4642)]

(15) Saplen: | have to confirm your telephone number again. Did you say 2? Please

say yes or no.

(16) Simulated user: No [Recognition hypothesis: one (0.3624)]

(17) Saplen: | have to confirm your telephone number again. Did you say 1? Please

say yes or no.

Dialogue 3. Problems in the confirmation strategy for the very cooperative users
employing the PILM.

We also found out from the analysis of the dialogues that there were problems in the
understanding of some addresses, given that some data items were correctly recognised (e.g.
street name) while others were incorrectly recognised or missing (e.g. building number).
Because of these problems the system needed to initiate repair sub-dialogues to prompt for
the missing data and confirm the obtained data if recognised with low confidence. Again, these
additional turns increased the total number of dialogue turns, and thus some dialogues had
to be cancelled as the interaction limit was reached. As a consequence of all these problems
the average TC employing the PILM was 11.67%, which is too low to consider the system
performance acceptable for real users who may behave similarly to the very cooperative users
modelled in this study.

6.7 Performance with the cooperative users
When the PDMLs were employed the WA for cooperative users was lower than for the

not very cooperative users (70.56%). The reason is that in addition to facing the problems
discussed in the previous section, in this case the system had to face the problem that the

@ Springer

Testing the performance of spoken dialogue systems 315

utterances used to answer confirmation prompts were not permitted by the active grammars.
As discussed in Sect. 5.2, the cooperative users answer confirmation prompts by repeating the
data that the system is trying to confirm, although it always prompts for a “yes/no” response.
This behaviour is illustrated in the following sample dialogue.

(1) Saplen: Please say your telephone number.

(2) Simulated user:95 8122 34 5 [Recognition hypothesis: seven (0.4025) eight
(0.3976) one (0.7002) two (0.6916) seven (0.4698) five (0.7284)]

(3) Saplen: | have to confirm your telephone number. Did you say 7, 8, 1, 2, 7, 57
Please say yes or no.

(4) Simulated user: 958 12 2 3 4 5 [Recognition hypothesis: no (1.0000) was
(1.0000) a (1.0000) mistake (1.0000) a (1.0000) mistake (1.0000) wrong
(1.0000)]

) Saplen: Do you want to change the telephone number? Please say yes or no.

) Simulated user: Yes [Recognition hypothesis: yes (0.8567)]

) Saplen: OK. Please say your telephone number again.

) Simulated user: 95 8 12 2 3 4 5 [Recognition hypothesis: nine (0.4025) five
(0.7482) eight (0.3976) one (0.7002) two (0.6916) two (0.7202) three (0.7597)
four (0.8263) five (0.9529)]

(9) Saplen: | have to confirm your telephone number. Did you say 9, 5, 8, 1, 2, 2,
3, 4, 57. Please say yes or no.

(10) Simulated user: 9 5 8 1 2 2 3 4 5 [Recognition hypothesis: you (1.0000)
went (0.6008) error (0.6008) yes (0.6007) you (1.0000) went (1.0000) wrong
(1.0000)]

) Saplen: Do you want to change the telephone number? Please say yes or no.

) Simulated user: Yes [Recognition hypothesis: yes (0.6562)]

) Saplen: OK. Please say your telephone number again.

) Simulated user: 958 12 2 3 4 5 [Recognition hypothesis: nine (0.7038) five
(0.9361) eight (0.8474) one (0.6923) two (0.8931) two (0.8849) three (0.4951)
four (0.7935) five (0.9686)]

(15) Saplen: OK, telephone number 9, 5, 8, 1, 2, 2, 3, 4, 5. Please enter your postal

code.

(11
(12
(13
(14

Dialogue 4. Problems in the confirmation strategy for the cooperative users employ-
ing the PDLMSs.

The problem identified in the analysis is that the grammar employed to recognise responses
to confirmation prompts was initially created considering only users who would utter either
a confirmation, a negation or an error indication (i.e. very cooperative users). Because of
this, the system confirmation strategy employing the PDLMs failed when it interacted with
the modelled cooperative users as their responses were not permitted by the grammar. This
problem is easily observed in the recognition hypotheses, which only contain permitted
words as shown in turns (4) and (10) of Dialogue 4. On the contrary, product orders, tele-
phone numbers, postal codes and addresses were more or less well understood, although the
errors in gender/number correspondences and those for some addresses discussed above also
occurred in these dialogues. As a consequence of all the problems the average TC employing
the PDLMs was 21.67%, which is obviously too low to consider the system performance
acceptable for real users who may behave similarly to the cooperative users modelled in this
study.

@ Springer

316 R. Lépez-Cézar et al.

When the PILM was employed the WA was 76.6%, which is very similar to that obtained
for the not very cooperative users (77.87%) employing the same language model. The reason
for this low rate is the large amount of errors in the recognition of responses to confir-
mation prompts (e.g. “N0O” substituted by “dos”, and “si” substituted by “seis”), and also
in gender/number correspondences (e.g. “Uno” substituted by “una”, and “verdes” (green)
substituted by “verde”). As commented above, these errors happened especially when the
words were uttered by speakers with strong southern Spanish accents. Analysing the dia-
logues we observed that, as discussed in Sect. 6.5.1, the affirmative and negative responses
were sometimes discarded by the semantic analyser of the system as their confidence scores
were smaller than the lower confidence threshold (set to 0.3), provoking the same repetitive
confirmation turns. Also the same problems detected for the very cooperative users with the
recognition of some addresses were found for the cooperative users, which meant that the
system needed to employ extra turns to get and confirm all the data items in the addresses.

In addition we observed a problem in the confirmation strategy that was not observed
with the very cooperative users and that was particularly noticeable in the confirmation of
telephone numbers. The cooperative simulated user confirms this data by repeating the tele-
phone number instead of generating the “yes/no” response requested by the system. To have
a telephone number correctly understood, the Saplen system requires on the one hand that all
its digits are recognised with confidence scores greater than the higher confidence threshold
(set to 0.5 as discussed in Sect. 3). On the other hand, the system requires an implicit con-
firmation from the user when it includes the recognised number if the prompt is to get the
postal code, as can be observed in turn (7) of Dialogue 5. According to the method employed
to assign confidence scores to frame slots as discussed in Sect. 4.1, the confidence score
of a slot that contains a telephone number is the lowest confidence score of the digits. For
example, the confidence score for the recognition hypothesis “nine (0.5684) five (0.9652)
eight (0.5647) one (0.5894) two (0.6954) three (0.9654) three (0.4362) four (0.6584)
five (0.5898)” would be 0.4362. Because of all these factors, the system had problems con-
firming some telephone numbers, especially when these were uttered by speakers with strong
southern Spanish accents. The reason is that employing a telephone number to confirm a tele-
phone number tends to require another confirmation, given that it is likely that at least one
digit is misrecognised or recognised with low confidence. This problem provoked in-cascade
dialogue turns that lengthened the dialogues, as can be observed in Dialogue 5, causing some
of these to be cancelled as the interaction limit was reached.

(1) Saplen: Please say your telephone number.

(2) Simulated user: 95812 3 4 5 6 [Recognition hypothesis: nine (0.6025) five
(0.7002) eight (0.6698) one (0.6954) two (0.9532) three (0.4235) four (0.6328)
five (0.8654) six (0.6321)]

(3) Saplen: | have to confirm your telephone number. Did you say 9, 5, 8, 1, 2, 3,
4,5, 67. Please say yes or no.

(4) Simulated user: 958 1 2 3 4 5 6 [Recognition hypothesis: nine (0.9632) five
(0.6532) eight (0.6581) one (0.6954) two (0.9564) three (0.6521) four (0.9653)
five (0.8524) three (0.4362)]

(5) Saplen: | have to confirm your telephone number again. Did you say 9, 5, 8, 1,
2,3, 4,5, 37. Please say yes or no.

(6) Simulated user: 958 12 3 4 5 6 [Recognition hypothesis: nine (0.6598) five
(0.8632) eight (0.8026) one (0.6354) two (0.7236] three (0.5621) four (0.7635)
five (0.9023) six (0.7268)]

@ Springer

Testing the performance of spoken dialogue systems 317

(7) Saplen: OK. Telephone number 9, 5, 8, 1, 2, 3, 4, 5, 6. Please say your postal
code.

Dialogue 5. Inadequate system strategy to confirm telephone numbers.

Because of all these problems the average TC employing the PILM was 5.56%, which
is obviously too low to consider the system performance acceptable for real users who may
behave similarly to the cooperative users modelled in this study.

6.8 Performance with the not very cooperative users

When the PDLMs were employed the WA was very low (43.69%). One reason for this is the
high number of errors in the confirmation turns given that, as discussed in Sect. 5.2, these
users do not answer confirmation prompts with “yes/no” responses but repeating the data the
system is trying to confirm. Therefore the responses could not be recognised as the utterances
permitted by the grammar were only affirmative/negative responses as well as utterances to
correct system errors. Another reason is that for these users the simulated user selected at
random the kind of utterance to answer system prompts to enter product orders, telephone
numbers, postal codes or addresses. For example it could respond with a prompt to enter a
telephone number, as can be observed in Dialogue 6. In this sample dialogue the recognition
grammar employed was that to recognise telephone numbers, and thus it was not possible to
recognise the product order.

(1) Saplen: Please say your telephone number.

(2) User: one large cola [Recognition hypothesis: one (0.8698) four (0.7698) two
(0.2092) four (0.7024) one (0.1219]

) Saplen: OK. Telephone number 1, 4, 2, 4, 1. Please say your postal code.

) User: Itis wrong [Recognition hypothesis: it (0.5563) is (0.5982) wrong (0.7945)]

) Saplen: Do you want to change the telephone number? Please say yes or no.

) User: Yes [Recognition hypothesis: yes (0.8526)]

) Saplen: OK. Please say your telephone number again.

) User:9581 2234 5[Recognition hypothesis: nine (0.6025) five (0.7002) eight
(0.6698) one (0.6954) two (0.9532) two (0.4235) three (0.7941) four (0.6328)
five (0.8654)]

(9) Saplen: OK. Telephone number 9, 5, 8, 1, 2, 2, 3, 4, 5. Please say your postal

code.

Dialogue 6. Utterance misrecognition employing PDLMs.

Because of these problems the average TC employing the PDLMs was 11.13%, which
is obviously too low to consider the system performance acceptable for real users who may
behave similarly to the not very cooperative users modelled in this study.

‘When the PILM was employed the value of WA (77.87%) was very similar to that obtained
for the other two kinds of modelled user (75.4% and 76.6%) given that in the three cases the
same kind of language modelling was employed throughout the whole dialogue regardless of
the system prompt. Consequently the SU rate (53.28%) was also similar to that for the other
kinds of modelled user (57.97% and 55.71%). As discussed in Sect. 5.2, the behaviour of
the not very cooperative users modelled is very similar to that of the cooperative users, with
the difference that the former features a random selection of utterances to answer system
prompts to enter product orders, telephone numbers, postal codes and addresses. Because
of this difference, the interaction with the not very cooperative users revealed a problem

@ Springer

318 R. Lépez-Cézar et al.

in the speech understanding module of the Saplen system which was not observed for the
other two user types: in some cases telephone numbers were correctly recognised but were
understood as postal codes, while postal codes were correctly recognised but understood as
telephone numbers. The reason is that the system employs its current prompt to differentiate
between both kinds of utterance. Therefore when it prompts to get a telephone number, it
considers that the recognised sequence of digits is a telephone number. Similarly, when it
prompts for a postal code, it assumes that the sequence is a postal code, and when it prompts
for a building number, it considers that the digit sequence is a building number. This simple
understanding method works well if the user is very cooperative or cooperative and produces
the expected kind of utterance. However the not very cooperative users may answer prompts
to enter a telephone number with a product order, telephone number, postal code or address,
which causes the possible confusion if the postal code is randomly selected. The problem is
illustrated in the following dialogue where the postal code “18001” is initially understood as
a telephone number.

(1) Saplen: Please say your telephone number.

(2) User: 1 8 0 0 1 [Recognition hypothesis: one (0.8967) eight (0.7631) zero

(0.6328) zero (0.9657) one (0.8567)]

Saplen: OK. Telephone number 1, 8, 0, 0, 1. Please say your postal code.

User: Itis wrong [Recognition hypothesis: it (0.5563) is (0.5982) wrong (0.7945)]

Saplen: Do you want to change the telephone number? Please say yes or no.

User: Yes [Recognition hypothesis: yes (0.8526)]

Saplen: OK. Please say your telephone number again.

User: 95812234 5[Recognition hypothesis: nine (0.6025) five (0.7002) eight

(0.6698) one (0.6954) two (0.9532) two (0.4235) three (0.7941) four (0.6328)

five (0.8654)]

(9) Saplen: OK. Telephone number 9, 5, 8, 1, 2, 2, 3, 4, 5. Please say your postal

code.

(10) User: 1 8 0 0 1 [Recognition hypothesis: one (0.7569) eight (0.6523) zero
(0.5367) zero (0.8231) one (0.5314)]

(11) Saplen: OK. Postal code 1, 8, 0, 0, 1. Please say your address.

Dialogue 7. Problems to get the telephone number.

Because of the confusion the simulated user needed to employ turns (4)—(8) to repair the
error. In principle it might not be very likely that a real user utters a telephone number when
he is prompted to enter a postal code (unless he tries to make the system fail, or he is confused
or nervous during the interaction). However, it is likely that when he is prompted to enter
a postal code he utters a telephone number precisely to correct the misunderstanding of the
telephone number that he previously uttered, as can be observed in the following interaction:

Saplen: Please say your telephone number.

User:958122345

Saplen: OK. Telephone number 9, 5, 8, 1, 2, 2, 6, 3, 4, 5. Please say your postal
code.

User:1said958122345,n0t9581226345.

Analogously, it is likely that he utters a postal code to correct an error when the system
is prompting to enter the address. Therefore the proposed technique has been useful to let us
know that the semantic rules designed to deal with telephone numbers and postal codes must

@ Springer

Testing the performance of spoken dialogue systems 319

be improved to enable correct understanding even when uttered for another prompt. Because
of all the problems discussed above, the average TC employing the PILM was 4.47%, which
is obviously too low to consider the system performance acceptable for real users who may
behave similarly to the not very cooperative users modelled in this study.

7 Limitations of the proposed technique

It is very difficult to completely and truly simulate the behaviour of a real user interact-
ing with a dialogue system as many kinds of information and personal circumstances are
involved, such as previous experience of using this technology or a priori disposition to talk
to machines. Therefore the technique proposed in this paper makes the simulation in a sim-
plified manner by means of providing responses that, depending on the type of modelled
user, are more or less “adequate” in relation to the system prompts. The dialogues that can
be generated are simple but useful to check very important issues to be considered in the
design of spoken dialogue systems. One is whether the systems are able to recognise and
understand the utterances produced by the user. Another is whether dialogue systems are able
to communicate with the user via a spoken interaction as efficiently as possible, repairing
possible understanding errors and providing the service required in an acceptable time. As
has been shown in the previous section the proposed technique is useful for checking these
issues.

However, in despite of the advantages, the technique still has several drawbacks. One is
that it is only possible to simulate the behaviour of users carrying out simple and well-defined
tasks. Hence its application to more sophisticated application domains which may require
some kind of system-user negotiation may not be straightforward. Another limitation is that
it does not take into account possible changes of mind of the user. In the current set up the
simulated user tries to achieve scenario goals and is able to engage in dialogue with the
Saplen system to do it. However, it has not been taken into account for example that a real
user may consider the total price of the ordered products too expensive, or may not accept the
estimated delivery time. For these situations a real user may try to initiate a negotiation, e.g.
to remove or change some product orders. Eventually he may change his mind and abandon
the conversation for several reasons. The proposed technique, in the current set up, cannot
deal with these kinds of user behaviour.

Another drawback is that the implementation may not be directly portable to other applica-
tion domains. Some parts of it may be re-used more or less easily (e.g. answering confirmation
prompts and the management of scenario goals) but others should be implemented taking
into account the specific task performed by the dialogue system. For example, at the point
where the Saplen system generates a prompt to confirm the set of product orders understood
and to let the proposed simulated user generate the appropriate response, we implemented a
function that analyses the dialogue history and finds all the product orders understood by the
system. Comparing the understood products with those in the employed scenario, the sim-
ulated user generates an affirmative or negative confirmation. This function, among others,
may not be directly portable to other application types.

The proposed simulated user requires that the system developers have available a corpus
of utterances related to the task to be performed by the dialogue system. Each utterance
must have associated with it an orthographic transcription and a semantic representation
(e.g. a frame), and it must be ensured that the corpus contains at least one utterance to answer
each possible system prompt. The semantic representation must be simple enough to allow
the extraction of individual data items from it to allow the answering of system prompts to get

@ Springer

320 R. Lépez-Cézar et al.

missing data and confirm data. For example, in our application domain we employed frames
which allowed us to extract data items such as amount, size, taste, ingredients or temperature
from product orders, as well as street name, building number or floor from addresses. As this
corpus was created for previous studies we did not need to employ time to prepare it. However
collecting and preparing such a corpus right from the start would be a time-consuming task
which would imply an additional effort to implement the technique.

8 Conclusions and future work

In this paper we have presented a new technique to test the performance of spoken dialogue
systems by artificially simulating the behaviour of three types of user (very cooperative, coop-
erative and not very cooperative) interacting with a system by means of spoken dialogues.
Experiments have been carried out to test the performance of the Saplen system interacting
with these kinds of user employing two kinds of language model for speech recognition:
one based on 17 PDLMs and the other based on one PILM. Employing the technique 6,000
dialogues were automatically generated using 50 different scenarios. The evaluation results
obtained from the analysis of these dialogues, set out in Table 3, show that when the PDLMs
were employed the best performance was achieved for the very cooperative users. Therefore
this language model should only be used for these users as otherwise the system performance
would be very poor. When the PILM was employed the values for the evaluation measures
were very similar for the different kinds of user. SU was very low (< 60%) which caused
TC to be very low too (11.67% in the best case) and thus the system performance was totally
unacceptable. A second goal of the experiments was to analyse the generated dialogues to
find problems in the speech recogniser, semantic analyser or dialogue manager of the system,
which should be sorted out in future work to increase the system robustness. To find these
problems we analysed the dialogues with very low values for the evaluation measures.

The main problem found with the speech recogniser was the difficulty it had to correctly
decode some words uttered by speakers with strong southern Spanish accents. As an attempt
to solve this problem we could re-train the acoustic models used by the speech recogniser
with sample utterances produced by these speakers. Another possibility would be to set up
a technique to replace some incorrect recognition hypotheses taking into account contextual
information. This might be interesting as we observed that when the PILM was employed
and the simulated user answered system confirmation prompts, the word “si” (yes) was often
substituted by the word “seis” (six), while the word “no” was often substituted by the word
“dos” (two). Therefore it could be useful to implement a dialogue management strategy that,
given the recognition hypothesis “seis” or “dos” with the system prompting for a “yes/no”
response, makes the system generate a prompt such as "Did you say yes?”. If the recogni-
tion hypothesis for this prompt was “yes” the system could assume that the simulated user
generated an affirmative confirmation in the previous turn, whereas if the hypothesis was
“no” the system could assume that the simulated user generated a negative confirmation. In
both cases the system could proceed by carrying out the specific actions for the affirmative
or negative confirmation.

The main problem found with the semantic analyser was the incorrect understanding of
telephone numbers and postal codes when the system interacted with the not very cooper-
ative users, given that correctly recognised telephone numbers were understood as postal
codes and vice versa. To solve this problem it could be possible to include knowledge in
the semantic rules about the different format of telephone numbers (nine digits) and postal
codes (five digits). This way the semantic analyser could guess whether the utterance is a

@ Springer

Testing the performance of spoken dialogue systems 321

telephone number or a postal code regardless of the prompt, and the system could ask the
user to confirm the guess if the utterance type does not match the current prompt.

The main problem found with the dialogue manager was the repetitive confirmation turns
due to an inefficient system confirmation strategy. This happened especially when the sys-
tem interacted with the cooperative and the not very cooperative users. These confirmation
turns would probably not be accepted by real users as they might think the system has many
problems understanding them and is very inefficient because it requires a lot of attempts to
get data confirmed. To solve this problem it could be possible to implement an improved
confirmation strategy that changes the prompt automatically if the system needs to repeat
the confirmation turns. For example, instead of generating the prompt “| have to confirm
your telephone number. Did you say 9, 5, 8, 1, 2, 2, 6, 4, 5? Please say yes or no”
time after time until the user response is understood, the system could start by saying I
have to confirm your telephone number. Did you say 9, 5, 8, 1, 2, 2, 6, 4, 57”. If
the response is not understood it could then generate the prompt “I have to confirm your
telephone number again. Did you say 9, 5, 8, 1, 2, 2, 6, 4, 5? Please say yes or no”.
If the response is again not understood the system could generate the prompt “Please say
again your telephone number”, and if the number obtained for this last prompt matches
the previously obtained number then it could assume that the telephone number has been
confirmed. By implementing this range of different ways to confirm data the system would
encourage the user to produce different utterance types, hence making it easier for the system
to understand.

Future work to improve the proposed technique includes studying alternative methods
to simulate more precisely the behaviour of real users. One possibility would be to set the
type of user cooperativeness dynamically as the dialogue evolves. In the current set up this
selection is made beforehand to model the behaviour of any of the three kinds of user and the
setting remains fixed throughout all the dialogue. A different strategy would be to consider
that a real user may change his behaviour depending on the success of the interaction. To do
this the cooperativeness of the simulated user could be set to “not very cooperative” at the
beginning of the dialogue and it could be changed to “cooperative” or “very cooperative”
dynamically as long as the system restricts the interaction freedom as an attempt to recover
from understanding problems, for example by imposing on the user a particular utterance
type to confirm data (e.g. “Please say yes or no”).

Other future work is concerned with enabling the simulated user’s ability to model changes
of mind by the user. In our application domain these changes may be related to modifications
in the ordered products, which will be useful to test the system functionality that handles
the product orders. Implementing this new behaviour for the simulated user will require the
inclusion of utterances in the corpus expressing changes of mind as, for example, “uhm ...
sorry ... instead of a large cola I'd rather prefer a small beer please”. The correspond-
ing orthographic transcriptions and semantic representations should also be included in the
corpus. New scenarios should be created including as scenario goals semantic representations
of this new utterance type. The implementation of the proposed simulated user should be
slightly adjusted to handle this new goal type by simply including a small piece of code in
part 3 of the algorithm shown in Fig. 3.

Finally, a third possibility for future work would be to generate a multimodal corpus that
can be employed to enhance the user simulation. In this corpus each utterance would have
associated with it the recording of the user’s face when producing the utterance. A ‘multi-
modal’ simulated user could be implemented to provide both the utterance and the associated
face recording to the Saplen system. This would require the conversion of the Saplen system
into a multimodal system able to analyse face images and to integrate the obtained visual

@ Springer

322 R. Lépez-Cézar et al.

information with the speech recognition hypotheses. We believe that this experimental set-
ting would be very useful to better replicate human-to-human communication, which is a
multimodal process when both conversation partners speak and see each other’s faces at the
same time.

Acknowledgemnts The authors would like to thank the reviewers for their comments, suggestions and
corrections that significantly improved the quality of this paper.

References

Allen J (1995) Natural language understanding. The Benjamin/Cummings Publishing Company Inc

Allen J, Byron D, Dzikovska M, Ferguson G, Galescu L, Stent A (2001) Towards conversational human—
computer interaction. Al Mag 22(4):27-38

Aust H, Oerder M (1995) Dialogue control in automatic inquiry systems. In: ESCA workshop on spoken
dialogue systems, Vigso, Denmark, June pp 121-124

Carbini S, Delphin-Poulat L, Perron L, Viallet JE (2006) From a Wizard of Oz experiments to a real time
speech and gesture multimodal interface. Signal Processing 86(12):3559-3577

Chung G (2004) Developing a flexible spoken dialog system using simulation. In Proceedings of ACL,
Barcelona, Spain, pp 63-70

Cuayéhuitl H, Renals S, Lemon O, Shimodaira H (2005) Human-computer dialogue simulation using Hidden
Markov models. In: Proc. of 2005 IEEE automatic speech recognition and understanding workshop
(ASRU), San Juan, Puerto Rico, 28 November—1 December 2005, pp 290-295

Dow S, Maclntyre B, Lee J, Oezbek C, Bolter JD, Gandy M (2005) Wizard of Oz support throughout an
interative design process. IEEE Pervasive Comput 4(8):18-26

Eckert W, Levin E, Pieraccini R (1997) User modelling for spoken dialogue system evaluation. In: Proceed-
ings of 1997 IEEE automatic speech recognition and understanding workshop (ASRU), Santa Barbara,
California, 14-17 December 1997, pp 80-87

Georgila K, Henderson J, Lemon O (2005) Learning user simulations for information state update dialogue
systems. In: Proceedings of Interspeech-eurospeech, Lisbon, Portugal, 4-8 September 2005, pp 893-896

Hain T, Woodland PC, Niesler TR, Whittaker EWD (1999) The 1998 HTK system for transcription of con-
versational telephone speech. In: Proceedings of the 1999 international conference on acoustics, speech
and signal processing, pp 57-60

Huang X, Acero A, Hon H (2001) Spoken language processing: a guide to theory, Algorithm and System
Development, Prentice-Hall

Levin E, Pieraccini R, Eckert W (2000) A stochastic model of human—machine interaction for learning dialog
strategies. IEEE Trans Speech Audio Process 8(1):11-23

Litman D, Pan S (2002) Designing and evaluating an adaptive spoken dialogue system. User Model User-adapt
Interact 12(2/3):111-137

Lin BS, Lee LS (2001) Computer aided analysis and design for spoken dialogue systems based on quantitative
simulations. IEEE Trans Speech Audio Process 9(5):534-548

Lépez-Cézar R, Araki M (2005) Spoken, multilingual and multimodal dialogue systems. Development and
Assessment, John Wiley & Sons Publishers

Lépez-Cozar R, Callejas Z (2005) Combining language models in the input interface of a spoken dialogue
system. Comput Speech Lang 20:420-440

Lépez-Cézar R, Milone DH (2001) A new technique based on augmented language models to improve the
performance of spoken dialogue systems. Proceedings of Eurospeech, pp 741-744

Lépez-Cozar R, Garcia P, Diaz J, Rubio AJ (1997) A voice activated dialogue system for fast-food restaurant
applications. Proceedings of Eurospeech, pp 1783-1786

Loépez-Cézar R, Rubio AJ, Garcia P, Segura JC (1998) A spoken dialogue system based on a dialogue corpus
analysis. Proceedings of LREC, pp 55-58

Lépez-Cozar R, Rubio AJ, Diaz Verdejo JE, De la Torre A (2000) Evaluation of a dialogue system based on a
generic model that combines robust speech understanding and mixed-initiative control. Proceedings of
LREC, pp 743-748

Lopez-Cézar R, De la Torre A, Segura JC, Rubio AJ, Lépez-Soler JM (2002) A new method for testing
dialogue systems based on simulations of real-world conditions. Proceedings of ICSLP, pp 305-308

Lépez-Cozar R, De la Torre A, Segura JC, Rubio AJ, Sdnchez V (2003) Assessment of dialogue systems by
means of a new simulation technique. Speech Communi 40(3):387-407

@ Springer

Testing the performance of spoken dialogue systems 323

McTear M (2004) Spoken dialogue technology: toward the conversational user interface. Springer, London

Moller S (2004) Quality of telephone-based spoken dialogue systems, Springer

Moller S, Englert R, Engelbrecht K, Hafner V, Jameson A, Oulasvirta A, Raake A, Reithinger N (2006)
MeMo: towards automatic usability evaluation of spoken dialogue services by user error simulations.
Proceedings of Interspeech, pp 1786-1789

Okamoto M, Cho K, Okamoto Y, Yamasaki T, Hattori M (2005) User-model-based adaptability evaluation for
context-aware systems. In: Proceedings of the international conference of pervasive services, Santorini,
Greece, 11-14 July 2005, pp 470473

Pieraccini R, Huerta J (2005) Where do we go from here? Research and commercial spoken dialog systems.
In: Proceedings of 6th SIGdial workshop on dialogue and discourse, Lisbon, Portugal, 2-3 September
2005, pp 1-10

Pietquin O, Dutoit T (2006a) A probabilistic framework for dialog simulation and optimal strategy learning.
IEEE Trans Audio Speech Lang Process 14(2):589-599

Pietquin O, Dutoit T (2006b) Dynamic Bayesian networks for NLU simulation with applications to dialog
optimal strategy learning. In: Proceedings of the 2006 IEEE international conference on acoustics, speech
and signal processing (ICASSP), Toulouse, France, 15-19 May 2005, pp 49-52

Rabiner L, Juang BH (1993) Fundamentals of speech recognition, Prentice-Hall

Schatzmann J, Georgila K, Young S (2005a) Quantitative evaluation of user simulation techniques for spoken
dialogue systems. In: Proceedings of the 6th SIGdial workshop on discourse and dialogue, Lisbon

Schatzmann J, Stuttle MN, Weilhammer K, Young S (2005b) Effects of the user model on simulation-based
learning of dialogue strategies. In Proceedings of IEEE automatic speech recognition and understanding
workshop (ASRU), San Juan, Puerto Rico 2005, pp 220-225

Scheffler K, Young S (2000) Probabilistic simulation of human-machine dialogues. In: Proceedings of the
IEEE international conference on acoustics, speech and signal processing (ICASSP), Istanbul, Turkey,
pp 1217-1220

Scheffler, K, Young S (2001) Corpus-based dialogue simulation for automatic strategy learning and evaluation.
In: Proceedings of the NAACL workshop on adaptation in dialogue systems, Pittsburgh, pp 64-70

Singh S, Litman D, Kearns M, Walker M (2002) Optimizing dialogue managment with reinforcement learning:
experiments with the NJFun system. J Artif Intell Res 16:105-133

Walker M (2000) An application of reinforcement learning to dialogue strategy selection in a spoken dialogue
system for email. J Artif Intell Res JAIR 12:387-416

Walker M, Litman D, Kamm C, Abella A (1997) PARADISE: a framework for evaluating spoken dialogue
agents. In: Proceedings of the 35th annual meeting of the association for computational linguistics
(ACL-97), pp 271-280

Young S (2002) Talking to machines (Statistically Speaking) In: Proceedings of ICSLP’2002, 7th international
conference on spoken language processing, Denver, Colorado

Young S, Kershaw D, Odell J, Ollason D, Valtchev V, Woodland P (2000) The HTK book (for HTK Version
3.0). Microsoft Corporation

@ Springer

	Testing the performance of spoken dialogue systems by means of an artificially simulated user
	Abstract
	Introduction
	Previous related work
	Purposes of simulated users
	Approaches to the implementation of simulated users
	Evaluation of simulated users
	The Saplen dialogue system
	Dialogue corpus
	Dialogue management
	Previous version of our simulated user
	Frames used
	The proposed technique
	Differences and similarities with other simulated users
	Simulation of different types of user
	Implementation of the simulated user
	Generation of responses for system implicit confirmations
	Generation of responses for system explicit confirmations
	Management of scenario goals
	Generation of responses to provide missing data
	Selection of utterances from the corpus
	Preparation for the next interaction
	Example of a dialogue with a not very cooperative user
	Experiments
	Evaluation measures
	Utterance corpus
	Language modelling for speech recognition
	Scenarios
	Results and discussion
	Performance with the very cooperative users
	Performance with the cooperative users
	Performance with the not very cooperative users
	Limitations of the proposed technique
	Conclusions and future work
	Acknowledgemnts
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

