

Debugging knowledge by means of a spatial metaphor

Gonzalo A. Aranda-Corral gonzalo.aranda@dti.uhu.es

Bio

- Professor at the Department of Information Technology.
 - School of Engineering
 - University of Huelva. Spain
 - Head of Master of Economy, Finance and Computation.
- PhD in Computer Science and Artificial Intelligence.
 - University of Sevilla Spain
 - Bachelor in Physics University Complutense Madrid
- My research interests include knowledge management, formal verification, logic, formal concept analysis, ontologies, multiagent systems, etc...
- Current projects include design and build cognitive tools to manage knowledge, extract information to transform into knowledge.

Aim of this talk

- The aim of this talk is to present a tool with 3 main goals:
 - Debug knowledge, preserving consistency and reasoning, using a graphical interface
 - Non-expert users should be able to use it.
 - Transformation applied to KB must be formally verified.

What means Debugging?

PAELLA Framework

Jesús Valeo Fernández

Universidad de Huelva

Cargando módulo DUMMY...

What is Paella?

- Its a...
 - FrameWork
 - It is designed to manage different kind of knowledge bases... and can be extended!
 - Visual editor for knowledge bases
 - Based on relations about concepts (not on concepts)

G. A. Aranda-Corral, J. Borrego-Díaz and A. M. Chávez-González, "Repairing conceptual relations in ontologies by means of an interactive visual reasoning: Cognitive and design principles," 2012 IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom), Kosice, Slovakia, 2012, pp. 739-744, doi: 10.1109/CogInfoCom.2012.6421949.

Who is Paella?

- Researchers:
 - Joaquín Borrego-Díaz (US)
 - Antonia M. Chávez-González (US)
 - Gonzalo A. Aranda Corral (UHU)*
- Developers:
 - Jesús Valeo Fernández (Student UHU)
 - Álvaro Martín Boza (Student UHU)
 - Gonzalo A. Aranda-Corral (UHU)*

How can we modify this "alignment"?

• We call the Paella's cycle...

How: Complete cycle

Where can be executed?

Initially was born to be a Protégé plugin.

• In order to manage different kinds of Kb, evolves to Standalone

 Now, after a BIG restructure, we are considering to port some piece to Protégé, and be combined both versions.

Formal background

Cognitive Principles

First Cognitive Principle (CP1): The concepts of a conceptualization associate to a clear ontology can be topologically represented by means of regular non-empty regions.

 For this, we use RCC (Region Connection Calculus) is a mereotopological approach to QSR (Qualitative Spatial Reasoning)

- In RCC, the spatial entities are non-empty regular sets.
- The ground relation is the connection, C(x,y),
 - with intended meaning:
 "the topological closures of x and y intersect".

- The basic properties that C(x,y) must holds are
 - Reflexive $\forall x[C(x,x)]$
 - Symmetric $\forall x, y[C(x, y) \rightarrow C(y, x)]$

RCC Theory

First Cognitive Principle (CP1): The concepts of a conceptualization associate to a clear ontology can be topologically represented by means of regular non-empty regions.

Theorem 3. [10] The following conditions are equivalent:

- 1. $C_{\Sigma}(C_1, C_2)$
- 2. There is a spatial interpretation I of Σ such that $I \models C(C_1, C_2)$.

Based on this definition, we can

```
\begin{array}{c} DC(x,y) \leftrightarrow \neg C(x,y) \\ P(x,y) \leftrightarrow \forall z [C(z,x) \rightarrow C(z,y)] \\ PP(x,y) \leftrightarrow P(x,y) \wedge \neg P(y,x) \\ EQ(x,y) \leftrightarrow P(x,y) \wedge P(y,x) \\ O(x,y) \leftrightarrow \exists z [P(z,x) \wedge P(z,y)] \\ DR(x,y) \leftrightarrow \neg O(x,y) \\ PO(x,y) \leftrightarrow O(x,y) \wedge \neg P(x,y) \wedge \neg P(y,x) \\ EC(x,y) \leftrightarrow C(x,y) \wedge \neg O(x,y) \\ TPP(x,y) \leftrightarrow PP(x,y) \wedge \exists z [EC(z,x) \wedge EC(z,y) \\ NTPP(x,y) \leftrightarrow PP(x,y) \wedge \neg \exists z [EC(z,x) \wedge EC(z,y) \\ \end{array}
```


• Graphically:

• RCC5 PP(A,B) PPi(A,B) EQ(A,B) PO(A,B) DR(A,B) • RCC8 Α В В TPP(A,B) NTPP(A,B) DC(A,B) PO(A,B) EQ(A,B) В В В EC(A,B) TPPi(A,B) NTPPi(A,B)

• It is not about CONCEPTS...

It is about RELATIONS BETWEEN CONCEPTS

We are not working with the definition of the concepts, just with their

relations.

RCC (algorithm)

• Movements & neighbor's graph

- Extension to "points"
 - We consider Individuals as "small" regions: Area>0, but cannot contain elements (only itself)
 - Then, we can reduce the expressions:

- To transform a Kb into a RCC representation, we have to calculate ALL pairs of relations:
 - #relations = HUGE NUMBER!!
- Optimize: Removing redundant relations.

R(a,b)	DR	РО	PP	PPi	EQ
DR	*	*	*	DR	DR
PO	*	*	*	*	DR
PP	DR	*	PP	*	PP
PPi	*	*	*	PPi	PPi
EQ	DR	PO	PP	PPi	EQ

- Transform RCC relations into a CSP problem.
- Areas are rectangles (mereotopology)
- Variables:

- Domains: Screen width and height (640*480)
- Constraints:
 - Area > 0: X2 #> X1 AND Y2 #> Y1
 - ALL related to RCC-relations

- Constraint
 Ex: DR(A,B)
 Constraint: Y2A #< Y1B OR X1B #> X2A. ... OR
- Translate ALL relations... but 1!! (JEPD)

• With this... we obtain the coordinates to represent the relations.

Definition 2. A spatial interpretation I of Σ is a interpretation in the language of Σ , such that I: $concepts(\Sigma) \cup indiv(\Sigma) \rightarrow \Omega$, where Ω is a T_3 connected topological space such that $I \models \Sigma$ and for each $C \in concepts(\Sigma), I(C)$ is an open regular set in Ω and for each $a \in indiv(\Sigma), I(a)$ is a point.

A spatial model of Σ is a spatial interpretation which is a model of Σ .

Theorem 2. [10] The CSP associate to Σ is spatially consistent if Σ is consistent.

Moreover, it is possible to obtain a spatial model on the plane formed by polygonal regions [25].

CSP is solved by an existing library... called CHOCO©


```
@article{Prud'homme2022, doi =
{10.21105/joss.04708}, url =
{https://doi.org/10.21105/joss.04708}, year
= {2022}, publisher = {The Open Journal},
volume = {7}, number = {78}, pages = {4708},
author = {Charles Prud'homme and Jean-
Guillaume Fages}, title = {Choco-solver: A
Java library for constraint programming},
journal = {Journal of Open Source Software}
}
```

User Interface

Movements

DRAG (left button)

 $PO(C3,C4) \rightarrow DR(C3,C4)$

REDIM (right button)

 $DR(C2,C4) \rightarrow PP(C2,C4)$

Movements

Visual Editor

From UI to RCC (we call: RCC⁻¹)

Transformation from coordinates to RCC-relations

• Similar algorithm (same questions) with totally different

implementation

Applying changes

- This is the most difficult section.
- Depends a lot on what type of Kb we are working on.
 - Extensives: changes are only creation of new individuals or classes.
 Inconsistences cannot exists (Our diagram is a model)
 - Intensives: (as Ontologies) Changes mean introduce (or remove) individuals, concepts AND AXIOMS!
 - Sometimes, we need to add, pj ex, ALL_DISJOINT axiom, or remove it.
 - THIS CAN INTRODUCE INCONSISTENCES. (because the draw is a model of that part of the ontology, but not all the ontology)

Applying Movements

- A change can be seen as a path of basic steps in the graph.
 - This is a first approach for an automated repairing system.

Applying changes (example)

$$\varSigma = \begin{cases} \text{Omnivorous} \sqsubseteq \text{Carnivorous} \sqcap \text{Herbivorous} \\ \text{Carnivorous} \sqsubseteq \text{Animal}, & \text{Herbivorous} \sqsubseteq \text{Animal} \\ \text{Omnivorous}(\text{Bear}) \end{cases}$$

We deduce that $PO_{\Sigma}(Carnivorous, Herbivorous) \wedge EQ_{\Sigma}^{\sigma}(Carnivorous, Herbivorous)$.

Applying changes (example)

```
\varSigma' = \begin{cases} \text{Omnivorous} \sqsubseteq \text{Carnivorous} \sqcap \text{Herbivorous} \\ \text{Carnivorous} \sqsubseteq \text{Animal} \sqcap \neg \{b_2\}, \quad \text{Herbivorous} \sqsubseteq \text{Animal} \sqcap \neg \{b_1\} \\ \text{Herbivorous}(b_2), \quad \text{Carnivorous}(b_1), \quad \text{Omnivorous}(\text{Bear}) \end{cases}
Omnivorous \sqsubseteq Carnivorous \sqcap Herbivorous
Herbivorous
                                                                                                                                                  Carnivorous
                Herbivorous
                Carnivorous
                                                                             PO(Carnivorous, Herbivorous)
                                                                          Paella Framework
                                                                           Archivo
                                                                                         Edición
            EQ(Carnivorous, Herbivorous)
```

Cycle done!

TinyPaella

Situaciones RCC5 y movimientos

Initial knowledge base

Contexto y retículo inicial

DR(C2,C3) -> PO(C2,C3)

- DR means they are not related: no individuals in common.
- PO means that:
 - ,at least, 1 common object
 - ,at least, 1 object that only holds C2
 - and, at least, 1 object that only holds C3

DR(C2,C3) -> PO(C2,C3)

DR(C2,C3) -> PO(C2,C3)

- Automatic repairing:
 - Insert a new "object" which holds all the attributes of both concepts.
 - Optional: we can suggest a new tag, only for this object.
 - Disadvatages: BIG POPULATION of individuals

Conclusions

- We have a framework to DEBUG knowledge
 - Extendable
- It is intended for **non-expert** users.
 - Spatial reasoning
 - Visual interface
- It is (somehow) formal
- It is a first step to automatic repairing theories.

Debugging knowledge by means of a spatial metaphor

Gonzalo A. Aranda-Corral gonzalo.aranda@dti.uhu.es

