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P-wave and S-wave decomposition in boundary integral equation
for plane elastodynamic problems

Emmanuel Perrey-Debain, Jon Trevelyan and Peter Bettess

School of Engineering, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE
Great Britain

SUMMARY

The method of plane wave basis functions, a subset of the method of Partition of Unity, has
previously been applied successfully to finite element and boundary element models for the Helmholtz
equation. In this paper we describe the extension of the method to problems of scattering of elastic
waves. This problem is more complicated for two reasons. First, the governing equation is now a vector
equation and second multiple wave speeds are present, for any given frequency. The formulation has
therefore a number of novel features. A full development of the necessary theory is given. Results are
presented for some classical problems in the scattering of elastic waves. They demonstrate the same
features as those previously obtained for the Helmholtz equation, namely that for a given level of
error far fewer degrees of freedom are required in the system matrix. The use of the plane wave basis
promises to yield a considerable increase in efficiency over conventional boundary element formulations
in elastodynamics. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years a number of researchers have used a plane wave basis in conjunction with
conventional element shape functions to develop improved formulations for the modelling of the
Helmholtz equation. These methods fall into the category of Partition of Unity. Conventional
shape functions are enriched by the presence of these plane wave functions. This makes the
formation of the element matrices more complicated. However it has been found in general that
many fewer degrees of freedom are needed for the solution of problems with a given level of
error. One of the first publications to apply plane wave basis shape functions to finite elements
for the Helmholtz equation was by Melenk and Babuška [1]. The first formulation of boundary
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2 EMMANUEL PERREY-DEBAIN ET AL.

elements using this scheme was by de La Bourdonnaye [2]. The authors have recently applied
these methods to the scalar Helmholtz wave equation [3, 4, 5]. In this paper we extend the
technique to elasticity problems. At each node, as well as having a number of plane wave
propagation directions, there are two different types of wave, the dilatation, or Pressure (P),
wave and the distortional or Shear (S) wave.

2. INTEGRAL FORMULATION FOR TIME-HARMONIC PROBLEMS

The propagation of waves in an infinite elastic solid Ω′ with Lamé constants µ, λ and density
ρ in two-dimensional space is governed by the wave equation

µ∇2u + (λ+ µ)∇∇ · u + ω2u = 0 , (1)

where the complex-valued displacement field u is assumed to have a time-dependence e−iωt,
ω denotes the circular frequency and i =

√
−1. The compressional wave number kp and shear

wave number ks associated with the previous equation are

kp = ω

√

ρ

2µ+ λ
and ks = ω

√

ρ

µ
,

and we call κ the ratio between the shear and the longitudinal velocity, κ = kp/ks. In this
paper, we are concerned with the radiation and the scattering of elastic waves by obstacles of
arbitrary shape embedded in the propagative medium Ω′. The mathematical treatment of the
scattering of an incident wave uI by a simply connected bounded obstacle Ω ⊂ Ω′ of boundary
line Γ (see Figure 1) leads to the boundary integral equation [6, 7, 8]

C(x)u(x) +

∫

Γ

T (x,y)u(y) dΓy −
∫

Γ

U (x,y)t(y) dΓy = uI(x) , (2)

where the first integral is taken in the sense of the Cauchy principal value. U and T are Stokes’
displacement and traction tensors, respectively (see Appendix), which describe the fields at y

due to a time-harmonic point force at x at frequency ω. C(x) is a geometric tensor associated
with the location of the point x with respect to the boundary Γ. It has one of the following
form: (i) the identity tensor I for x in Ω′; (ii) the zero tensor for x in Ω and (iii) a real
symmetric tensor whose explicit expression can be found in [9] when x lies on the boundary
Γ.

We are interested in problems where the obstacle Ω is characterized by a suitable prescription
of surface traction t on Γ. Moreover, we consider a smooth boundary with a unique tangent
at x ∈ Γ, i.e. no edges or corners. The boundary value problem can then be written as

1

2
u(x) +

∫

Γ

T (x,y)u(y) dΓy =

∫

Γ

U (x,y)t(y) dΓy + uI(x) , x ∈ Γ. (3)

It is well known that the integral equation (3) has no unique solution at certain discrete
frequencies. These frequencies coincide with the eigenvalues (or natural frequencies) of the
corresponding interior problem. It is physically obvious that no resonance is possible in the
external domain Ω′ and therefore the above difficulty arises from the boundary formulation and
not from the nature of a problem whose solution is unique. Various alternative formulations
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Figure 1. Scattering problem

of this exterior problem have been suggested to obtain an accurate solution at or near the
eigenfrequencies [10]. Among them, the Combined Helmholtz Integral Equation Formulation
(CHIEF) proposed by Schenck [11] has the advantage of being easier to implement and
computationally less expensive than the other alternative methods. This formulation enforces
the condition of zero displacement at points of the internal domain using the integral
representation for those points. Let x0

i=1..N0
be the so-called CHIEF points located in Ω.

The additional constraints reads

∫

Γ

T (x0
i ,y)u(y) dΓy =

∫

Γ

U (x0
i ,y)t(y) dΓy + uI(x0

i ) , x0
i ∈ Ω. (4)

This formulation has the drawback that points falling on any nodal surface of the related
interior problem do not provide linearly independent constraints. However, we shall assume in
the sequel that we are not facing these unfortunate situations, though note that such situations
are normally avoided by using multiple CHIEF points.

3. PRESENTATION OF THE FINITE ELEMENT BASIS

In this section, we shall propose a new finite element basis for the unknown displacement u

in (3). To do so, let us recall that recent works carried out by the authors [3, 4, 5] concerning
the Helmholtz problem showed drastic improvements when considering the unknown scalar
potential as a finite sum of terms like ai(x)exp[ik ξi · x] where the functions ai are compactly
supported on Γ and the vectors ξi describe the unit circle. This plane wave decomposition finds
its justification in geometrical optics [2] and has been shown to be very efficient for sufficiently
high wave numbers (say ka > 50 when the obstacle is a circular cylinder of radius a [4]).
It is intuitively obvious that, under some appropriate modifications, such a representation
should also be applicable to the wave equation (1). This becomes clearer when considering the
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4 EMMANUEL PERREY-DEBAIN ET AL.

Helmholtz decomposition for the displacement field [12], namely

u = ∇ψp + ∇× (ψs · e3) , (5)

where the Lamé potentials ψp (resp. ψs) are the solution of the Helmholtz equation

4ψp + k2
pψp = 0 and 4ψs + k2

sψs = 0. (6)

For sufficiently high frequency, the potential ψp can be fairly approximated by a finite sum of
terms like those introduced above with k = kp and similarly for ψs with k = ks. Introducing
these two plane wave approximations in (5) and keeping the leading order terms leads to the
following representation

u(x) =
∑

i

ap
i (x)p(x, ξi) +

∑

i

as
i (x)s(x, ζi) ,

where functions ap
i and as

i are compactly supported on Γ and vectors ξi, ζi describe the unit
circle. Fields p(x, ξ) and s(x, ζ) stand respectively for the pressure wave (or P-wave) with
direction ξ and the shear wave (or S-wave) with direction ζ, namely

p(x, ξ) = ξexp[ikp ξ · x] , (7)

s(x, ζ) = ζ⊥exp[iks ζ · x]. (8)

In this paper, functions ap
i and as

i have been chosen to be the standard quadratic shape
functions associated with the partition of the boundary

Γ =

N
⋃

n=1

Γn

where Γn is analytic and given by

Γn = {x(η) = (γn
1 (η), γn

2 (η)) : −1 ≤ η ≤ 1}. (9)

On each element, the displacement field is approximated as

u(x(η))|Γn
=

3
∑

e=1

Mp
∑

l=1

a
p
e,l,n(x(η))up

e,l,n +

3
∑

e=1

Ms
∑

l=1

as
e,l,n(x(η))us

e,l,n , (10)

where the finite element basis a
p
e,l,n is the product of the quadratic Lagrangian polynomial Ne

with a P-wave of direction ξl and similarly as
e,l,n is the product of the quadratic polynomial

with a S-wave of direction ζl ,

a
p
e,l,n(x(η)) = Ne(η)p(x, ξl) , (11)

as
e,l,n(x(η)) = Ne(η)s(x, ζl). (12)

The terms up
e,l,n and us

e,l,n no longer represent the value of the displacement, but are instead the
amplitudes of the set of P-waves and S-waves. Though other ‘oscillatory’ basis functions could
be employed such as high order polynomials (Lagrangian, Legendre or B -Spline wavelets)
or trigonometric-like bases (see for instance [13, 14], in the domain of structural dynamic
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P-WAVE AND S-WAVE BOUNDARY ELEMENTS FOR WAVE SCATTERING 5

analysis), the specific feature of (10) is the physical meaning of such a decomposition. This
latter point is discussed at the end of this section.

The continuity of u between two adjacent elements requires that

u(x(+1))|Γn−1
= u(x(−1))|Γn

, n = 1, . . . , N (13)

where the index 0 is assimilated with index N . It is easy to see that the following requirements

up
3,l,n−1 = up

1,l,n and us
3,l,n−1 = us

1,l,n , n = 1, . . . , N (14)

provide a sufficient condition satisfying (13). Now, in order to give a simple representation of
u on the boundary Γ, it is convenient to group the set of indices e, l, n into a single index. To
do this, let gp be a one to one mapping from the set of integers (e, l, n) ∈ [1, 2]× [1,Mp]× [1, N ]
to the single set j ∈ [1, Np

d ] and similarly, gs is a one to one mapping from the set of integers
[1, 2] × [1,Ms] × [1, N ] to [1, N s

d ]. Here, Np
d and Ns

d stand respectively for the number of
degrees of freedom associated with the P-wave decomposition and the S-wave decomposition.
We denote Nd = Np

d +Ns
d the total number of degrees of freedom of our problem. The field u

on Γ can be then formally written as

u(x) =

N
p

d
∑

j=1

q
p
j (x)up

j +

Ns
d

∑

j=1

qs
j(x)us

j (15)

where functions q
p
j and qs

j are defined as follows

q
p
j = a

p
1,l,n + a

p
3,l,n−1 , j = gp(1, l, n)

q
p
j = a

p
2,l,n , j = gp(2, l, n)

qs
j = as

1,l,n + as
3,l,n−1 , j = gs(1, l, n)

qs
j = as

2,l,n , j = gs(2, l, n)

and terms up
e,l,n and us

e,l,n have been respectively replaced by up
j and us

j . Though there is no
restriction concerning the directions ξl and ζl, these are taken to be evenly distributed on the
unit circle,

ξl = (cosαl, sinαl) , αl = 2πl/Mp ,

ζl = (cosαl, sinαl) , αl = 2πl/Ms.

An interesting feature of the approximation (10) is that it can be easily transformed into a
conventional quadratic interpolation. It suffices to set Mp = Ms = 1 and consider the basis

a
p
e,1,n(x(η)) = Ne(η)e1 , (16)

as
e,1,n(x(η)) = Ne(η)e2 , (17)

where e1 and e2 provide the natural orthogonal basis of the plane as illustrated in figure 1.
The approximation (10) then has the following form,

u(x(η))|Γn
=

3
∑

e=1

Ne(η){up
e,1,ne1 + us

e,1,ne2}. (18)
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6 EMMANUEL PERREY-DEBAIN ET AL.

This last expression is a quadratic approximation and for this particular case, coefficients up
e,1,n

and us
e,1,n stand respectively for the horizontal and the vertical component of the displacement

field u associated with node e and element Γn. This feature will allow a fair comparison
between the usual polynomial interpolation and the new wave basis whatever the geometry of
the curve Γ. Let us finish this section by mentioning that another justification for the use of
the new finite element basis can be found in [1]. The approximation (10) is nothing else than
the product of the standard shape functions with functions having good local approximation
properties, i.e. functions that solve the differential equation. Indeed, the P-wave and S-wave
are the only homogeneous plane waves solving (1) and, in a finite element method context,
the representation (10) can be seen as a particular application of the Partition of Unity Finite
Element Method.

4. NUMERICAL PROCEDURE

In very recent papers [3, 4], we found some success in solving the integral equation by using
a direct collocation approach. The same technique will be used here. By considering the
expression (10) and the additional requirements (14), it is straighforward to see that there
are 2(Mp +Ms) number of degrees of freedom per element. Due to the vectorial nature of the
displacement field, the collocation of (3) at a point x on the boundary Γ yields 2 independent
equations. Therefore, the collocation of (3) at Mp+Ms different points located on each element
leads to a square system. In this study, these points have been chosen arbitrarily to be evenly
distributed in the parametric space along each element Γn as

xi=g(e,m,n) = (γn
1 (ηe,m), γn

2 (ηe,m)) , ηe,m = e− 2 + 2(m− 1)/(Mp +Ms) (19)

where g is a one to one mapping from the set of integers (e,m, n) ∈ [1, 2]× [1, (Mp +Ms)/2]×
[1, N ] to the single set i ∈ [1, Nd/2]. Here, we assume that (Mp +Ms) is an even integer. In
other cases (if needed), it only requires a slight modification of the distribution (19). We can
note that the particular case Mp = Ms = 1 corresponds to the natural nodes of the quadratic
interpolation. Now, for sake of clarity, we call b(x) the right hand side function in (3). Using
the general expression (15), the collocation of (3) at a point xi reads as follows

N
p

d
∑

j=1

{

1

2
q

p
j (xi) +

∫

Γ

T (xi,y)qp
j (y) dΓy

}

up
j +

Ns
d

∑

j=1

{

1

2
qs

j(xi) +

∫

Γ

T (xi,y)qs
j(y) dΓy

}

us
j = b(xi) (20)

Now, we define the following matrix coefficients

Wα
2(i−1)+β,j = eβ · qα

j (xi) , (21)

Tα
2(i−1)+β,j = eβ ·

∫

Γ

T (xi,y)qα
j (y) dΓy , (22)

b2(i−1)+β = eβ · b(xi) , (23)
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P-WAVE AND S-WAVE BOUNDARY ELEMENTS FOR WAVE SCATTERING 7

where the superscript α stands for the symbols p and s and β = 1, 2 corresponds to the
horizontal (resp. vertical) component. The system (20) can be written in its matrix form

Au =

(

Ap As

T
p
0 T s

0

) (

up

us

)

= b. (24)

where Aα is the Nd ×Nα
d rectangular matrix,

Aα =
W α

2
+ T α, (25)

and T α
0 is a 2N0 ×Nα

d rectangular matrix. Here again, α stands for the symbols p and s. The
matrix T α

0 corresponds to the additional zero displacement conditions when collocating (4) at
the N0 CHIEF points. We can observe that when returning to the conventional approach (i.e.
Mp = Ms = 1 with the quadratic polynomial basis (16,17)), the system (24) reduces to the well
known ‘H ’ BEM matrix [6]. The only difference here, is that the geometry of the curve Γ is not
discretized with the aid of the quadratic shape functions as is commonly the case in traditional
BEM. In our numerical sheme, the real curve is considered in the computation of the element
matrices. The Cauchy principal value of singular integrals involved in (22) are performed using
the procedure developed by Guiggiani and Casalini [9]. These singular integrals stem from the
off-diagonal terms of the traction tensor and are of the type

I =

∫

Γn

T12(xi,y)qα
j (y) · e2 dΓy

and similarly for T21. Now, let η̄ be the local coordinate of xi. This integral can be transformed
into a non singular integral as

I =

∫ +1

−1

e2

η − η̄
·
{

T12(xi,y(η))qα
j (y(η))Jn(η)(η − η̄) −

qα
j (xi)κ

2

2π

}

dη +
e2 · qα

j (xi)κ
2

2π
R(η̄)

where Jn is the Jacobian of the geometric transformation (9). The coefficient κ2/2π stems
from the asymptotic behaviour of T12 when y approaches xi along the boundary. The function
R(η̄) has the following expression

R(η̄) = ln
|1 − η̄|
|1 + η̄| , |η̄| 6= 1

R(η̄) = −η̄ ln 2 , |η̄| = 1.

The weak singularity contained in the right-hand side of (3) is efficiently handled by using the
cubic Telles’ transformation [15]. All operations are performed with double precision and the
Stokes’ traction tensor terms are evaluated using the routines for Bessel functions of fractional
order from Numerical Recipes [16]. In order to keep a good accuracy when computing these
terms for very small argument (typically ks|x−y| < 10−4), asymptotic formulas derived from
the series expansion given in Abramovitz et al. [17] are used. The overdetermined system then
is solved by a standard Singular Value Decomposition routine. Because the plane wave basis
(10) can give rise to numerical instabilities manifested in highly ill-conditioned matrices, small
singular values below 10−12σ1 (σ1 denotes the biggest singular value) are discarded in order
to avoid round-off errors and to achieve a better accuracy.
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8 EMMANUEL PERREY-DEBAIN ET AL.

5. RESULTS

5.1. Harmonic waves from a circular cavity

Suppose we have an infinite cylindrical cavity of radius a in an elastic medium. On the cavity
surface, we consider a prescribed traction t of the form

t = p0er + σ0eθ , (26)

where (er, eθ) denotes the usual polar basis of the plane. Physically, this can be interpreted as
a uniform harmonically varying pressure p0 and a purely shear stress σ0 acting on the cavity
surface. The analytical solution for the displacement on the boundary is given in [18]:

u =

(

p0a

µ

)

κpH
′
0(κp)

κ2
pH0(κp) + 2κpH ′

0(κp)
· er +

(

σ0a

µ

)

κsH
′
0(κs)

κ2
sH0(κs) + 2κsH ′

0(κs)
· eθ , (27)

where κp (resp. κs) stand for the non-dimensional wavenumber kpa (resp. ksa). H0 denotes the
Hankel function of the first kind of zero order and prime denotes differentiation with respect to
the argument. In the sequel, we simplify the previous expression by taking µ = p0a = σ0a. In all
cases, the compressional and shear wave numbers are chosen accordingly such that ks/kp = 2
which is a common value for a wide range of materials. This is purely for convenience, and is
not a restriction of the method.

The circular cylinder is discretized with N elements given by the regular parametrization

Γn =
{

a(cos θ, sin θ) , θ =
π

N
(2n− 1 + η) , η ∈ [−1,+1]

}

. (28)

In Figure 2 are plotted the radial and tangential displacements obtained numerically by using
Mp = Ms = 32 directions with only 2 elements. Comparison with the analytical formula shows
very good agreement and the ability for this new oscillatory basis to represent a constant profile
with very good accuracy. The discrepancies observed when ksa > 40 simply stems from a lack
of degree of freedom in this frequency range.

5.2. Scattering by a circular cavity

We shall present some results concerning the scattering of an S-wave travelling from the left
to the right along the horizontal direction,

uI(x) = −e2exp[iks e1 · x] (29)

impinging a circular cavity of radius a. Here again, we took ks/kp = 2. This problem has an
analytical solution that has been established by Pao [19].

The discretization of the cavity boundary is strictly the same as the one of the previous
section (equ. (28)) and 10 zero displacement equations are added to alleviate the non-uniquenes
problem. The quality of the solution is controlled by the relative L2 error defined as

E2 =
‖u − ũ‖L2(Γ)×L2(Γ)

‖ũ‖L2(Γ)×L2(Γ)
, (30)
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Figure 2. Displacement curve with respect to the frequency for the configuration: 2 wave elements
with Mp = Ms = 32 directions. Computed values are taken at the mid-node of the first element.

where u and ũ denote the computed and exact solutions respectively. In Figure 3 are plotted
the errors obtained for various configurations in the range of frequencies 0 ≤ ksa ≤ 100. The
total number of variables for all these tests is kept constant with

Nd = 2N(Mp +Ms) = 432 (plane wave basis) and Nd = 4N = 432 (quadratic).

The striking result is that the wave elements can produce errors up to 6 orders of magnitude

smaller than those of the conventional quadratic elements. This figure is also useful in terms
of assessing the frequency range over which the two methods can provide reasonable accuracy
(say 1% of relative error). It is clear that the conventional elements are sufficiently accurate
up to ksa = 20 and this corresponds to about 11 nodes per wavelength (we consider the
smallest wavelength: 2π/ks). However, the new method can extend the useful frequency range
to perhaps four times that value. Comparison between these numerical tests suggests that best
results are obtained when considering large elements with many directions, the same effect was
indeed observed for the Helmholtz equation [5].

In Table I are displayed errors obtained with Mp = Ms = 36 at high frequency. The number
of elements is chosen such that the number of unknowns per wavelength is kept constant (about
3.6). 50 internal equations are considered here to ensure that the quality of the solution is not
affected by the non-uniqueness problem. In this frequency range, the use of the quadratic
interpolation would demand at least 5 times more variables if similar results are sought and
this is above our current computational resources. In Figure 4 is displayed the real part of both
radial and tangential displacements around the upper half of the circular cavity at ksa = 200.
The analytical solution perfectly matches with the computed one, to within the accuracy of
the plot, and is therefore omitted here. Each element corresponds to an angular sector of 36◦.
They contain about twenty oscillations.
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10 EMMANUEL PERREY-DEBAIN ET AL.
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Figure 3. Error analysis for a incident S-wave scattered by a circular cavity of radius a.

ksa E2(%) Wave elements Unknowns
80 0.002 4 576
120 0.02 6 864
160 0.02 8 1152
200 0.045 10 1440

Table I. Relative L2 errors (%) for high-frequency scattering of a S-wave by a circular cavity.
Mp = Ms = 36.

6. CONCLUSIONS

The results clearly demonstrate that the plane wave basis formulation for boundary elements
works as well for elastic wave scattering problems as it did for the Helmholtz equation.
The overall properties of the method are essentially the same for the two types of problem.
That is, for a given frequency, and the same number of degrees of freedom, the plane wave
basis elements have errors which are orders of magnitude smaller than those for conventional
boundary elements. Alternatively, if a given level of error is sought in the results, then far
fewer degrees of freedom can be used. The above conclusions have been drawn from results
from a small range of classical problems, but there is no reason to suppose that these findings
are not quite general. In this regard, the present approach should be extended in order to take
more general boundary conditions into account such as a prescribed velocity while the traction

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–18
Prepared using cnmauth.cls



P-WAVE AND S-WAVE BOUNDARY ELEMENTS FOR WAVE SCATTERING 11

θ

R
ad

ia
ld

is
pl

ac
em

en
t(

re
al

pa
rt

)

0 45 90 135 180
-2

-1

0

1

2

θ

T
an

ge
nt

ia
ld

is
pl

ac
em

en
t(

re
al

pa
rt

)

0 45 90 135 180
-2

-1

0

1

2

Figure 4. Displacement curve around the upper half of the circular cavity due to the scattering of a
S-wave at ksa = 200.

is kept unknown. This deserves further investigation, which is continuing.
Plane wave basis boundary elements have recently been applied to the three dimensional

form of the Helmholtz equation [20], with great success, and so it may be conjectured that they
can be applied to three dimensional problems of elastodynamics. Maxwell’s electromagnetic
equations are vector wave equations, of a similar form to those of elastodynamics. The chief
difference is that all the electromagnetic waves propagate at the same speed, which, if anything,
simplifies the problem. For this reason the authors believe that the methods presented here are
equally applicable to scattering of electromagnetic waves governed by Maxwell’s equations.

The remaining challenges are to make the integrations of the element matrices faster and
more efficient, and to see if the plane wave basis boundary element equations can be solved
using fast iterative methods. One unexplored possibility is the use of these plane wave basis
boundary elements in conjunction with the Fast Multipole Method [21] and other recently
developed rapid methods for short wave scattering [22].
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Appendix

Stokes tensors The Stokes’ displacement tensor components Uij referred to a cartesian basis are
(see [8])

Uij(
� , � ) =

1

2πµ

�
ψ(r) δij − χ(r)

∂r

∂yi

∂r

∂yj � , r = | � − � | (31)

The Stokes’ traction tensor components Tij referred to a cartesian basis are given by

Tij(
� , � ) =

1

2π

�
dψ

dr
−
χ

r � �
δij

∂r

∂n
+

∂r

∂yj

ni �
−

χ

πr

�
∂r

∂yi

nj − 2
∂r

∂yi

∂r

∂yj

∂r

∂n �
−

1

π

dχ

dr

∂r

∂yi

∂r

∂yj

∂r

∂n

+
1

2π

�
k2

s

k2
p

− 2 � �
dψ

dr
−
dχ

dr
−
χ

r � ∂r

∂yi

nj (32)
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where the normal derivative is taken at � and ni are the components of the inward unit normal vector
(see Figure 1). ψ and χ are the two radial functions defined as follows

ψ(r) =
iπ

2 � H0(ksr) +
1

ksr
[−H1(ksr) + κH1(kpr)] � (33)

χ(r) = −
iπ

2 � H2(ksr) − κ2H2(kpr) � (34)

in which Hn is the Hankel function of the first kind and order n.

Asymptotic formulas By using the series expansion for the modified Bessel functions given in
Abramovitz et al. [17] , we arrive at the following asymptotic formulas:

ψ = −
1

2
(ln zs + κ2 ln zp) − γ +

1 − 2γ

4
(κ2 − 1) − ln zsC(zs) +B(zs)

+
1

2
(ln zsD(zs) − κ2 ln zpD(zp)) +

1

4
(κ2A(zp) −A(zs)) (35)

χ = −
1

2
(1 − κ2) + ln zs(D(zs) − C(zs)) − κ2 ln zp(D(zp) − C(zp))

+B(zs) −
A(zs)

2
− κ2

�
B(zp) −

A(zp)

2 � (36)

in which zp = −ikpr/2, zs = −iksr/2 and γ is the Euler constant. These last expressions are only
valid for r → 0 while kp, ks are kept fixed. Functions A,B,C and D stand for the following complex
series:

A(z) =
∞�

n=1

ψ(n+ 1) + ψ(n+ 2)

n!(n + 1)!
z2n (37)

B(z) =
∞�

n=1

ψ(n+ 1)

(n!)2
z2n (38)

C(z) =
∞�

n=1

1

(n!)2
z2n (39)

D(z) =
∞�

n=1

1

n!(n + 1)!
z2n (40)

where ψ is defined by ψ(1) = −γ and

ψ(n) = −γ +

n−1�
k=1

1

k
for n ≥ 2. (41)

Asymptotic expressions for dψ/dr and dχ/dr are obtained by differentiating the corresponding
formulas. In practice, the 4 or 5 first terms in the above infinite series have been found to be sufficient
in our calculation.
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