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Abstract

We present the behavior of a sensitivity measure defined to evaluate the impact of
model inaccuracies over the posterior marginal density of the variable of interest, after the
evidence propagation is executed, for extreme perturbations of parameters in Gaussian
Bayesian networks. This sensitivity measure is based on the Kullback-Leibler divergence
and yields different expressions depending on the type of parameter (mean, variance or
covariance) to be perturbed. This analysis is useful to know the extreme effect of uncer-
tainty about some of the initial parameters of the model in a Gaussian Bayesian network.
These concepts and methods are illustrated with some examples.

Keywords: Gaussian Bayesian Network, Sensitivity analysis, Kullback-Leibler diver-
gence.

1 Introduction

Bayesian network is a graphical probabilistic
model that provides a graphical framework for
complex domains with lots of inter-related vari-
ables. Among other authors, Bayesian networks
have been studied, by Pearl (1988), Lauritzen
(1996), Heckerman (1998) and Jensen (2001).
A sensitivity analysis in a Bayesian network is
necessary to study how sensitive is the network’s
output to inaccuracies or imprecisions in the pa-
rameters of the initial network, and therefore to
evaluate the network robustness.
In recent years, some sensitivity analysis tech-
niques for Bayesian networks have been devel-
oped. In Discrete Bayesian networks Laskey
(1995) presents a sensitivity analysis based on

computing the partial derivative of a posterior
marginal probability with respect to a given pa-
rameter, Coupé, et al. (2002) develop an effi-
cient sensitivity analysis based on inference al-
gorithms and Chan, et al. (2005) introduce a
sensitivity analysis based on a distance measure.
In Gaussian Bayesian networks Castillo, et al.
(2003) present a sensitivity analysis based on
symbolic propagation and Gómez-Villegas, et
al. (2006) develop a sensitivity measure, based
on the Kullback-Leibler divergence, to perform
the sensitivity analysis.
In this paper, we study the behavior of the sensi-
tivity measure presented by Gómez-Villegas, et
al. (2006) for extreme inaccuracies (perturba-
tions) of parameters that describe the Gaussian
Bayesian network. To prove that this is a well-



defined measure we are interested in studying
the sensitivity measure when one of the param-
eters is different from the original value. More-
over, we want to proof that if the value of one
parameter is similar to the real value then the
sensitivity measure is close to zero.
The paper is organized as follows. In Section 2
we briefly introduce definitions of Bayesian net-
works and Gaussian Bayesian networks, review
how propagation in Gaussian Bayesian networks
can be performed, and present our working ex-
ample. In Section 3, we present the sensitiv-
ity measure and develop the sensitivity analysis
proposed. In Section 4, we obtain the limits
of the sensitivity measure for extreme pertur-
bations of the parameters giving the behavior
of the measure in the limit so as their interpre-
tation. In Section 5, we perform the sensitiv-
ity analysis with the working example for some
extreme imprecisions. Finally, the paper ends
with some conclusions.

2 Gaussian Bayesian Networks and
Evidence propagation

Definition 1 (Bayesian network). A Bayesian
network is a pair (G,P) where G is a directed
acyclic graph (DAG), which nodes correspond-
ing to random variables X={X1, ..., Xn} and
edges representing probabilistic dependencies,
and P={p(x1|pa(x1)), ..., p(xn|pa(xn))} is a set
of conditional probability densities (one for each
variable) where pa(xi) is the set of parents of
node Xi in G. The set P defines the associated
joint probability density as

p(x) =
n∏

i=1

p(xi|pa(xi)). (1)

As usual we work with a variable of inter-
est, so the network’s output is the information
about this variable of interest after the evidence
propagation.

Definition 2 (Gaussian Bayesian net-
work). A Gaussian Bayesian network is a
Bayesian network over X={X1, ..., Xn} with
a multivariate normal distribution N(µ,Σ),
then the joint density is given by f(x) =

= (2π)−n/2|Σ|−1/2 exp
{
−1

2
(x− µ)′Σ−1(x− µ)

}

where µ is the n-dimensional mean vector, Σ
n×n the covariance matrix and |Σ| the
determinant of Σ.

The conditional density associated with
Xi for i = 1, ..., n in equation (1), is the
univariate normal distribution, with density

f(xi|pa(xi)) ∼ N


µi +

i−1∑

j=1

βij(xj − µj), νi




where βij is the regression coefficient of Xj

in the regression of Xi on the parents of Xi,
and νi = Σii − ΣiPa(xi)Σ

−1
Pa(xi)Σ

′
iPa(xi)

is the
conditional variance of Xi given its parents.

Different algorithms have been proposed to
propagate the evidence of some nodes in Gaus-
sian Bayesian networks. We present an incre-
mental method, updating one evidential vari-
able at a time (see Castillo, et al. 1997) based
on computing the conditional probability den-
sity of a multivariate normal distribution given
the evidential variable Xe.
For the partition X = (Y, E), with Y the set of
non-evidential variables, where Xi ∈ Y is the
variable of interest, and E is the evidence vari-
able, then, the conditional probability distribu-
tion of Y, given the evidence E = {Xe = e}, is
multivariate normal with parameters

µY|E=e = µY + ΣYEΣ−1
EE(e− µE)

ΣY|E=e = ΣYY − ΣYEΣ−1
EEΣEY

Therefore, the variable of interest Xi ∈ Y after
the evidence propagation is

Xi|E = e ∼ N(µY|E=e
i , σ

Y|E=e
ii ) ≡

≡ N

(
µi +

σie

σee
(e− µe), σii − σ2

ie

σee

)
(2)

where µi and µe are the means of Xi and Xe

respectively before the propagation, σii and
σee the variances of Xi and Xe respectively
before propagating the evidence, and σie the
covariance between Xi and Xe before the
evidence propagation.



Figure 1: DAG of the Gaussian Bayesian net-
work

We illustrate the concept of a Gaussian
Bayesian network and the evidence propagation
method with next example.

Example 1. Assume that we are interested in
how a machine works. This machine is made
up of 5 elements, the variables of the problem,
connected as the network in Figure 1. Let us
consider the time each element is working has
a normal distribution and we are interested in
the last element of the machine (X5).

Being X = {X1, X2, X3, X4, X5} normally dis-
tributed, X ∼ N(µ,Σ), with parameters

µ =




2
3
3
4
5




; Σ =




3 0 6 0 6
0 2 2 0 2
6 2 15 0 15
0 0 0 2 4
6 2 15 4 26




Considering the evidence E = {X2 = 4},
after evidence propagation we obtain that
X5|X2 = 4 ∼ N(6, 24) and the joint distribution
is normal with parameters

µY|X2=4 =




2
4
4
6


 ;

ΣY|X2=4 =




3 6 0 6
6 13 0 13
0 0 2 4
6 13 4 24




3 Sensitivity Analysis and
non-influential parameters

The Sensitivity Analysis proposed is as follows:
Let us suppose the model before propagating
the evidence is N(µ,Σ) with one evidential vari-
able Xe, whose value is known. After propagat-
ing this evidence we obtain the marginal density
of interest f(xi|e). Next, we add a perturbation
δ to one of the parameters in the model before
propagating the evidence (this parameter is sup-
posed to be inaccurate thus δ reflects this inac-
curacy) and perform the evidence propagation,
to get f(xi|e, δ). In some cases, the perturba-
tion δ has some restrictions to get admissible
parameters.
The effect of adding the perturbation is com-
puted by comparing those density functions by
means of the sensitivity measure. That measure
is based on the Kullback-Leibler divergence be-
tween the target marginal density obtained af-
ter evidence propagation, considering the model
with and without the perturbation

Definition 3 (Sensitivity measure). Let (G,P)
be a Gaussian Bayesian network N(µ,Σ). Let
f(xi|e) be the marginal density of interest af-
ter evidence propagation and f(xi|e, δ) the same
density when the perturbation δ is added to one
parameter of the initial model. Then, the sen-
sitivity measure is defined by

Spj (f(xi|e), f(xi|e, δ)) =

=
∫ ∞

−∞
f(xi|e) ln

f(xi|e)
f(xi|e, δ)dxi (3)

where the subscript pj is the inaccurate param-
eter and δ the proposed perturbation, being the
new value of the parameter pδ

j = pj + δ.

For small values of the sensitivity measure
we can conclude our Bayesian network is robust
for that perturbation.

3.1 Mean vector inaccuracy

Three different situations are possible depend-
ing on the element of µ to be perturbed, i.e.,
the perturbation can affect the mean of the
variable of interest Xi ∈ Y, the mean of the



evidence variable Xe ∈ E, or the mean of any
other variable Xj ∈ Y with j 6= i. Developing
the sensitivity measure (3), we obtain next
propositions,

Proposition 1. For the perturbation δ ∈ < in
the mean vector µ, the sensitivity measure is as
follows
• When the perturbation is added to the mean
of the variable of interest, µδ

i = µi + δ, and
Xi|E = e, δ ∼ N(µY|E=e

i + δ, σ
Y|E=e
ii ),

Sµi(f(xi|e), f(xi|e, δ)) =
δ2

2σ
Y|E=e
ii

.

• If the perturbation is added to the mean
of the evidential variable, µδ

e = µe + δ,
the posterior density of the variable
of interest, with the perturbation, is
Xi|E = e, δ ∼ N(µY|E=e

i − σie

σee
δ, σ

Y|E=e
ii ),

then

Sµe(f(xi|e), f(xi|e, δ)) =
δ2

2σ
Y|E=e
ii

(
σie

σee

)2

.

• The perturbation δ added to the mean of any
other non-evidential variable, different from the
variable of interest, has no influence over Xi,
then f(xi|e, δ) = f(xi|e), and the sensitivity
measure is zero.

3.2 Covariance matrix inaccuracy

There are six possible different situations,
depending on the parameter of the covariance
matrix Σ to be changed; three if the pertur-
bation is added to the variances (elements
in the diagonal of Σ) and other three if the
perturbation is added to the covariances of Σ.
When the covariance matrix is perturbed, the
structure of the network can change. Those
changes are presented in the precision matrix
of the perturbed network, that is, the inverse
of the covariance matrix with perturbation δ.
To guarantee the normality of the network it
is necessary ΣY|E=e,δ to be a positive definite
matrix in all cases presented in next proposition

Proposition 2. Adding the perturbation δ ∈ <
to the covariance matrix Σ, the sensitivity
measure obtained is
• If the perturbation is added to the vari-
ance of the variable of interest, being

σδ
ii = σii + δ with δ > −σii +

σ2
ie

σee
, then

Xi|E = e, δ ∼ N(µY|E=e
i , σ

Y|E=e,δ
ii ) where

σ
Y|E=e,δ
ii = σii + δ − σ2

ie

σee
and

Sσii(f(xi|e), f(xi|e, δ)) =

=
1
2

[
ln

(
1 +

δ

σ
Y|E=e
ii

)
− δ

σ
Y|E=e,δ
ii

]
.

• When the perturbation is added to the
variance of the evidential variable, being
σδ

ee = σee + δ and δ > −σee(1− max
Xj∈Y

ρ2
je)

with ρje the corresponding correlation co-
efficient, the posterior density of inter-
est is Xi|E = e, δ ∼ N(µY|E=e,δ

i , σ
Y|E=e,δ
ii )

with µ
Y|E=e,δ
i = µi +

σie

σee + δ
(e− µe) and

σ
Y|E=e,δ
ii = σii − σ2

ie

σee + δ
therefore

Sσee(f(xi|e), f(xi|e, δ)) =
1
2

[
ln

(
σ

Y|E=e,δ
ii

σ
Y|E=e
ii

)
+

+
σ2

ie
σee

(
−δ

σee+δ

) (
1 + (e− µe)2

(
−δ

(σee+δ)σee

))

σ
Y|E=e,δ
ii


 .

• The perturbation δ added to the variance of
any other non-evidential variable Xj ∈ Y with
j 6= i, σδ

jj = σjj + δ, has no influence over Xi,
therefore f(xi|e, δ) = f(xi|e) and the sensitivity
measure is zero.

• When the covariance between the vari-
able of interest Xi and the evidential vari-
able Xe is perturbed, σδ

ie = σie + δ = σδ
ei

and −σie −√σiiσee < δ < −σie +
√

σiiσee,
then Xi|E = e, δ ∼ N(µY|E=e,δ

i , σ
Y|E=e,δ
ii )

with µ
Y|E=e,δ
i = µi +

(σie + δ)
σee

(e− µe) and

σ
Y|E=e,δ
ii = σii − (σie + δ)2

σee
the sensitivity

measure obtained is



Sσie(f(xi|e), f(xi|e, δ)) =

=
1
2

[
ln

(
1− δ2 + 2σieδ

σeeσ
Y|E=e
ii

)
+

+
σ

Y|E=e
ii +

(
δ

σee
(e− µe)

)2

σ
Y|E=e,δ
ii

− 1


 .

• If we add the perturbation to any other
covariance, i.e., between the variable of interest
Xi and any other non-evidential variable Xj or
between the evidence variable Xe and Xj ∈ Y
with j 6= i, the posterior probability density of
the variable of interest Xi is the same as with-
out perturbation and therefore the sensitivity
measure is zero.

4 Extreme behavior of the
Sensitivity Measure

When using the sensitivity measure, that
describes how sensitive is the variable of
interest when a perturbation is added to a
inaccurate parameter, it would be interesting
to know how is the sensitivity measure when
the perturbation δ ∈ < is extreme. Then, we
study the behavior of that measure for extreme
perturbations so as the limit of the sensitivity
measure.
Next propositions present the results about the
limits of the sensitivity measures in all cases
given in Propositions 1 and 2,

Proposition 3. When the perturbation added
to the mean vector is extreme, the sensitivity
measure is as follows,

1. • lim
δ−→±∞

Sµi(f(xi|e), f(xi|e, δ)) = ∞
• lim

δ−→0
Sµi(f(xi|e), f(xi|e, δ)) = 0

2. • lim
δ−→±∞

Sµe(f(xi|e), f(xi|e, δ)) = ∞
• lim

δ−→0
Sµe(f(xi|e), f(xi|e, δ)) = 0.

Proof. It follows directly.

Proposition 4. When the extreme perturbation
is added to the elements of the covariance ma-
trix and the correlation coefficient of Xi and Xe

is 0 < ρ2
ie < 1, the results are,

1. • lim
δ−→∞

Sσii(f(xi|e), f(xi|e, δ)) = ∞ but

Sσii(f(xi|e), f(xi|e, δ)) = o(δ)

• lim
δ−→ Mii

Sσii(f(xi|e), f(xi|e, δ)) = ∞ with

Mii = −σii + σ2
ie

σee
= −σii(1− ρ2

ie)

• lim
δ−→0

Sσii(f(xi|e), f(xi|e, δ)) = 0

2. • lim
δ−→∞

Sσee(f(xi|e), f(xi|e, δ)) =

=
1
2

[
−ln(1− ρ2

ie)− ρ2
ie

(
1− (e− µe)2

σee

)]

• lim
δ−→ Mee

Sσee(f(xi|e), f(xi|e, δ)) =

=
1
2

[
ln

(
M∗

ee − ρ2
ie

M∗
ee(1− ρ2

ie)

)
+

ρ2
ie(1−M∗

ee)
M∗

ee − ρ2
ie(

1 +
(e− µe)2

σee

(
1−M∗

ee

M∗
ee

))]

where Mee = −σee(1 − M∗
ee) being

M∗
ee = maxXj ρ2

je

• lim
δ−→0

Sσee(f(xi|e), f(xi|e, δ)) = 0

3. • lim
δ−→M1

ie

Sσie(f(xi|e), f(xi|e, δ)) = ∞

• lim
δ−→M2

ie

Sσie(f(xi|e), f(xi|e, δ)) = ∞
with M1

ie = −σie − √
σiiσee and

M2
ie = −σie +

√
σiiσee

• lim
δ−→0

Sσie(f(xi|e), f(xi|e, δ)) = 0.

Proof. 1. • It follows directly.

• When σδ
ii = σii + δ the new variance of

Xi is σ
Y|E=e,δ
ii = σ

Y|E=e
ii + δ.

Being σ
Y|E=e,δ
ii > 0 then δ > −σ

Y|E=e
ii .

Naming Mii = −σ
Y|E=e
ii and considering

x = σ
Y|E=e
ii + δ we have



lim
δ−→ Mii

Sσii(f(xi|e), f(xi|e, δ)) =

= lim
x−→0

1
2x

[
x ln(x)− x ln(σY|E=e

ii )− x+

+σ
Y|E=e
ii

]
= ∞.

• It follows directly.

2. • lim
δ−→∞

Sσee(f(xi|e), f(xi|e, δ)) =

=
1
2


ln

(
σii

σ
Y|E=e
ii

)
+

−σ2
ie

σee

(
1− (e−µe)2

σee

)

σii




with σ
Y|E=e
ii = σii(1− ρ2

ie) and

ρ2
ie =

σ2
ie

σiiσee
the limit is

=
1
2

[
−ln(1− ρ2

ie)− ρ2
ie

(
1− (e− µe)2

σee

)]
.

• When σδ
ee = σee + δ, the new conditional

variance for all non evidential variables is

σ
Y|E=e,δ
jj = σjj −

σ2
je

σee + δ
for all Xj ∈ Y.

If we impose σ
Y|E=e,δ
jj > 0 for all Xj ∈ Y

then δ must satisfy next condition
δ > −σee(1− max

Xj∈Y
ρ2

je).

Naming M∗
ee = maxXj ρ2

je and
Mee = −σee(1−M∗

ee) then we have
lim

δ−→ Mee

Sσee(f(xi|e), f(xi|e, δ)) =

= lim
δ−→ Mee

1
2


ln


σii − σ2

ie
σee+δ

σii − σ2
ie

σee


 +

σ2
ie

σee

(
−δ

σee+δ

) (
1 + (e− µe)2

(
−δ

(σee+δ)σee

))

σii − σ2
ie

σee+δ




with ρ2
ie = σ2

ie
σiiσee

=
1
2

[
ln

(
σiiσeeM

∗
ee − σ2

ie

M∗
ee(σiiσee − σ2

ie)

)
+

+
σ2

ie
σee

(
1−M∗

ee
M∗

ee

) (
1 + (e−µe)2

σee

(
1−M∗

ee
M∗

ee

))

M∗
ee − ρ2

ie


 =

=
1
2

[
ln

(
M∗

ee − ρ2
ie

M∗
ee(1− ρ2

ie)

)
+

ρ2
ie(1−M∗

ee)
M∗

ee − ρ2
ie(

1 +
(e− µe)2

σee

(
1−M∗

ee

M∗
ee

))]
.

• It follows directly.

3. • If we make σδ
ie = σie + δ, the new

conditional variance is

σ
Y|E=e,δ
ii = σ

Y|E=e
ii − δ2 + 2δσie

σee
.

Then, if we impose σ
Y|E=e,δ
ii > 0, δ must

satisfy the next condition
−σie −√σiiσee < δ < −σie +

√
σiiσee.

First, naming
M2

ie = −σie +
√

σiiσee, we calculate
lim

δ−→M2
ie

Sσie (f (xi | e) , f (xi | e, δ)).
But δ → M2

ie is equivalent to(
δ2 + 2δσie

) → σeeσ
Y|E=e
ii and given

that
Sσie (f (xi | e) , f (xi | e, δ)) =

=
1
2

[
ln

(
σeeσ

Y|E=e
ii − (

δ2 + 2δσie
)

σeeσ
Y|E=e
ii

)
+

+
σeeσ

Y|E=e
ii +

(
δ

σee
(e− µe)

)2

σeeσ
Y|E=e
ii − (δ2 + 2δσie)

− 1




and as lim
x−→0

[
lnx +

k

x

]
= ∞

for every k, then we get
lim

δ−→M2
ie

Sσie (f (xi | e) , f (xi | e, δ)) = ∞.

• Analogously, the other limit is also
lim

δ−→M1
ie

Sσie (f (xi | e) , f (xi | e, δ)) = ∞.

• It follows directly.

The behavior of the sensitivity measure is the
expected one, except when the extreme pertur-
bation is added to the evidential variance, be-
cause with known evidence, the posterior den-
sity of interest with the perturbation in the
model f(xi|e, δ) is not so different of the pos-
terior density of interest without the perturba-
tion f(xi|e), therefore although an extreme per-
turbation added to the evidential variance can
exist, the sensitivity measure tends to a finite
value.



5 Experimental results

Example 2. Consider the Gaussian Bayesian
network given in Example 1. Experts disagree
with definition of the variable of interest X5,
then the mean could be µδ1

5 = 2 = µ5 + δ1 (with
δ1 = −3), the variance could be σδ2

55 = 24 with
δ2 = −2 and the covariances between X5 and
evidential variable X2 could be σδ3

52 = 3 with
δ3 = 1 (the same to σ25); with the variance
of the evidential variable being σδ4

22 = 4 with
δ4 = 2 and between X5 and other non-evidential
variable X3 that could be σδ5

53 = 13 with δ5 = −2
(the same to σ35); moreover, there are different
opinions about X3, because they suppose that
µ3 could be µδ6

3 = 7 with δ6 = 4, that σ33 could
be σδ7

33 = 17 with δ7 = 2, and that σ32 could be
σδ8

32 = 1 with δ8 = −1 (the same to σ23).

The sensitivity measure for those inaccuracy
parameters yields
Sµ5(f(x5|X2 = 4), f(x5|X2 = 4, δ1)) = 0.1875
Sσ55(f(x5|X2 = 4), f(x5|X2 = 4, δ2)) = 0.00195
Sσ52(f(x5|X2 = 4), f(x5|X2 = 4, δ3)) = 0.00895
Sσ22(f(x5|X2 = 4), f(x5|X2 = 4, δ4)) = 0.00541
Sσ53(f(x5|X2 = 4), f(x5|X2 = 4, δ5)) = 0
Sµ3(f(x5|X2 = 4), f(x5|X2 = 4, δ6)) = 0
Sσ33(f(x5|X2 = 4), f(x5|X2 = 4, δ7)) = 0
Sσ32(f(x5|X2 = 4), f(x5|X2 = 4, δ8)) = 0
As these values of the sensitivity measures are
small we can conclude that the perturbations
presented do not affect the variable of interest
and therefore the network can be considered
robust. Also, the inaccuracies about the
non-evidential variable X3 do not disturb the
posterior marginal density of interest, being
the sensitivity measure zero in all cases. If
experts think that the sensitivity measure
obtained for the mean of the variable of interest
is large enough then they should review the
information about this variable.
Moreover, we have implemented an algorithm
(see Appendix 1) to compute all the sensitivity
measures that can influence over the variable
of interest Xi; this algorithm compare those
sensitivity measures computed with a threshold
s fixed by experts. Then, if the sensitivity
measure is larger than the threshold, the
parameter should be reviewed.

Figure 2: Sensitivity measures obtained in the
example for any perturbation value

The extreme behavior of the sensitivity measure
for some particular cases, is given as follows
When δ1 = 20, the sensitivity measure is
Sµ5(f(x5|X2 = 4), f(x5|X2 = 4, δ1)) = 8.33
and with the perturbation δ1 = −25,
Sµ5(f(x5|X2 = 4), f(x5|X2 = 4, δ1)) = 13.02.
If the perturbation δ2 = 1000,
Sσ55(f(x5|X2 = 4), f(x5|X2 = 4, δ2)) = 1.39
therefore as the perturbation in-
creases to infinity the sensitivity
measure grows very slowly, in fact
Sσ55(f(x5|X2 = 4), f(x5|X2 = 4, δ2)) = o(δ)
as stated before. However if δ2 =
−23, the sensitivity measure is
Sσ55(f(x5|X2 = 4), f(x5|X2 = 4, δ2)) = 9.91.
We do not present the sensitivity measure when
δ3 is extreme because δ3 must be in (−√2,

√
2)

to keep the covariance matrix of the network
with the perturbation δ3 positive definite.
Finally, when δ4 = 100, the sensitivity measure
is Sσ22(f(x5|X2 = 4), f(x5|X2 = 4, δ4)) = 0.02
(where the limit of Sσ22 when δ tends to
infinity is 0.0208) and with δ4 = −1.73,
Sσ22(f(x5|X2 = 4), f(x5|X2 = 4, δ4)) = 2.026
(being the limit when δ tends to Mee 2.1212).
In Figure 2, we observed the sensitivity mea-
sures, considered as a function of δ; the graph
shows the behavior of the measure when δ ∈ <.



6 Conclusions

In this paper we study the behavior of the sensi-
tivity measure, that compares the marginal den-
sity of interest when the model of the Gaussian
Bayesian network is described with and without
a perturbation δ ∈ <, when the perturbation is
extreme. Considering a large perturbation the
sensitivity measure is large too except when the
extreme perturbation is added to the evidence
variance. Therefore, although the evidence vari-
ance were large and different from the variance
in the original model, the sensitivity measure
would be limited by a finite value, that is be-
cause the evidence about this variable explains
the behavior of the variable of interest regard-
less its inaccurate variance.
Moreover, in all possible cases of the sensitivity
measure, if the perturbation added to a parame-
ter tends to zero, the sensitivity measure is zero
too.
The study of the behavior of the sensitivity
measure is useful to prove that this is a well-
defined measure to develop a sensitivity analy-
sis in Gaussian Bayesian networks even if the
proposed perturbation is extreme.
The posterior research is focused on perturbing
more than one parameter simultaneously so as
with more than one variable of interest.
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Appendix 1

The algorithm that computes the sensitivity
measures and determines the parameters in the
network is available at the URL:
http://www.ucm.es/info/eue/pagina/
/APOYO/RosarioSusiGarcia/S algorithm.pdf
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