The Independency tree model:
a new approach for clustering and factorisation

M. Julia Flores and José A. Gdmez
Computing Systems Department / SIMD (i%.A)
University of Castilla-La Mancha
Albacete, 02071, Spain

Serafin Moral
Departamento de Ciencias de la Computacion e 1. A.
Universidad de Granada
Granada, 18071, Spain

Abstract

Taking as an inspiration the so-called Ezplanation Tree for abductive inference in Bayesian
networks, we have developed a new clustering approach. It is based on exploiting the
variable independencies with the aim of building a tree structure such that in each leaf all
the variables are independent. In this work we produce a structure called Independency
tree. 'This structure can be seen as an extended probability tree, introducing a new
and very important element: a list of probabilistic single potentials associated to every
node. In the paper we will show that the model can be used to approximate a joint
probability distribution and, at the same time, as a hierarchical clustering procedure.
The Independency tree can be learned from data and it allows a fast computation of

conditional probabilities.

1 Introduction

In the last years the relevance of unsupervised
classification within data mining processing has
been remarkable. When dealing with large
number of cases in real applications, the iden-
tification of common features that allows the
formation of groups/clusters of cases seems to
be a powerful capability that both simplifies the
data processing and also allows the user to un-
derstand better the trend(s) followed in the reg-
istered cases.

In the data mining community this descrip-
tive task is known as cluster analysis (Ander-
berg, 1973; Duda et al., 2001; Kaufman and
Rousseeuw, 1990; Jain et al., 1999), that is,
getting a decomposition or partition of a data
set into groups in such a way that the objects
in one group are similar to each other but as
different as possible from the objects in other
groups. In fact, as pointed out in (Hand et al.,

2001, pg. 293), we could distinguish two differ-
ent objectives in this descriptive task: (a) seg-
mentation, in which the aim is simply to par-
tition the data in a convenient way, probably
using only a small number of the available vari-
ables; and (b) decomposition, in which the aim
is to see whether the data is composed (or not)
of natural subclasses, i.e., to discover whether
the overall population is heterogeneous. Strictly
speaking cluster analysis is devoted to the sec-
ond goal although, in general, the term is widely
used to describe both segmentation and cluster
analysis problems.

In this work we only deal with categorical or
discrete variables and we are closer to segmen-
tation than (strictly speaking) to cluster anal-
ysis. Our proposal is a method that in our
opinion has several good properties: (1) it pro-
duces a tree-like graphical structure that allows
us to visually describe each cluster by means
of a configuration of the relevant variables for

that segment of the population; (2) it takes ad-
vantage of the identification of contextual inde-
pendencies in order to build a decomposition of
the joint probability distribution; (3) it stores a
joint probability distribution about all the vari-
ables, in a simple way, allowing an efficient com-
putation of conditional probabilities. An exam-
ple of an independence tree is given in figure 1,
which will be thoroughly described in the fol-
lowing sections.

The paper is structured as follows: first, in
Section 2 we give some preliminaries in rela-
tion with our proposed method. Section 3 de-
scribes the kind of model we aim to look for,
while in Section 4 we propose the algorithm we
have designed to discover it from data. Section
5 describes the experiments carried out. Finally,
Section 6 is devoted to the conclusions and to
describe some possible lines in order to continue
our research.

2 Preliminaries

Different types of clustering algorithms can be
found in the literature differing in the type of
approach they follow. Probably the three main
approaches are: partition-based clustering, hi-
erarchical clustering, and probabilistic model-
based clustering. From them, the first two ap-
proaches yield a hard clustering in the sense that
clusters are exclusive, while the third one yields
a soft clustering, that is, an object can belong
to more than one cluster following a probability
distribution. Because our approach is somewhat
related to hierarchical and probabilistic model-
based clustering we briefly comment on these
types of clustering.

Hierarchical clustering (Sneath and Sokal,
1973) returns a tree-like structure called den-
drogram. This structure reflects the way in
which the objects in the data set have been
merged from single points to the whole set
or split from the whole set to single points.
Thus, there are two distinct types of hierar-
chical methods: agglomerative (by merging two
clusters) and divisive (by splitting a cluster).
Although our method does not exactly belong
to hierarchical clustering, it is closer to hierar-

chical divisive methods than to any other clus-
tering approach (known by us). In concrete,
it works as monothetic divisive clustering algo-
rithms (Kaufman and Rousseeuw, 1990), that
split clusters using one variable at a time, but
differs from classical divisive approaches in the
use of a Bayesian score to decide which variable
is chosen at each step, and because branches are
not completely developed.

With respect to probabilistic clustering, al-
though our method produces a hard clustering,
it is somehow related to it because probability
distributions are used to complete the informa-
tion about the discovered model. Probabilistic
model-based clustering is usually modelled as a
mixture of models (see e.g. (Duda et al., 2001)).
Thus, a hidden random variable is added to the
original observed variables and its states corre-
spond with the components of the mixture (the
number of clusters). In this way we move to a
problem of learning from unlabelled data and
usually EM algorithm (Dempster et al., 1977)
is used to carry out the learning task when the
graphical structure is fixed and structural EM
(Friedman, 1998) when the graphical structure
has also to be discovered (Pena et al., 2000).
Iterative approaches have been described in the
literature (Cheeseman and Stutz, 1996) in order
to discover also the number of clusters (compo-
nents of the mixture). Notice that although this
is not the goal of the learning task, the struc-
tures discovered can be used for approximate
inference (Lowd and Domingos, 2005), having
the advantage over general Bayesian networks
(Jensen, 2001) that the learned graphical struc-
ture is, in general, simple (i.e. naive Bayes) and
so inference is extremely fast.

3 Independency tree model

If we have the set of wvariables X =
{X1,...,X;n} regarding a certain domain, an
independent probability tree for this set of vari-
ables is a tree such that (e.g. figure 1):

e Each inner node N is labelled by a vari-
able Var(N), and this node has a child for
each one of the possible values (states) of
Var(N).

When a variable is represented by a node
in the tree it implies that this variable par-
titions the space from now on (from this
point to the farther branches in the tree)
depending on its (nominal) value. So, a
variable cannot appear again (deeper) in
the tree.

e Each node N will have an associated list
of potentials, List(/N), with each of the po-
tentials in the list storing a marginal prob-
ability distribution for one of the variables
in X, including always a potential for the
variable Var(N).

This list appears in Figure 1 framed into a
dashed box.

e For any path from the root to a leaf, each
one of the variables in X appears uniquely
and exactly once in the the lists associated
to the nodes along the path. This poten-
tial will determine the conditional proba-
bility of the variables given the values of
the variables on the path from the root to
the list containing the potential.

A configuration is a subset of variables Y C
{X1,..., X} together with a concrete value
Y; = y; for each one of the variables Y; € Y.
Each node N has an associated configuration
determined for the variables in the path from
the root to node N (excluding Var(N)) with the
values corresponding to the children we have to
follow to reach N. This configuration will be
denoted as Conf(N).

An independent probability tree represents a
joint probability distribution, p, about the vari-
ables in X. If x = (x1,...,2;,), then

p(x) = [Px (@)
i=1

where P, ;) is the potential for variable X; which
is in the path from the root to a leaf determined
by configuration x (following in each inner node
N with variable Var(IN) = X;, the child corre-
sponding to the value of X; € x).

This decomposition is based on a set of inde-
pendencies among variables {X1,..., X, }. As-
sume that VL(IV) is the set of variables of the

potentials in List(/V), and that DVL(N)! is the
union of sets VL(N’), where N’ is a node in
a path from N to a leaf, then the independen-
cies are generated from the following statement:
Each variable X in VL(N) - Var(N) is indepen-
dent of the variables (VL(N) — {X})UDVL(N)
given the configuration Conf(N); i.e. each vari-
able in the list of a node is independent of the
other variables in that list and of the variables
in its descendants, given the configuration asso-
ciated to the node.

An independent probability tree also defines
a partition of the set of possible values of vari-
ables in X. The number of clusters is the num-
ber of leaves. If N is a leaf with associated
configuration Conf(N), then this group is given
by all set of values x that are compatible with
Conf(N) (they have the same value for all the
variables in Conf(NN)). For example, in figure 1
the configuration X = {0,1,0,1,0} would fall
on the second leaf since X7=0 and X,=1. It
is assumed that the probability distribution of
the other variables in the cluster are given by
the potentials in the path defined by the config-
uration, for example, P(X35=0)=1.

In this way, with an independence tree we are
able of accomplishing two goals in one: (1)The
variables are partitioned in a hierarchical way
that gives us at the same time a clustering re-
sult; (2)The probability value of every configu-
ration of the variables.

Fe1 X4:"0"[05] "1" [05]
v | X5:"0"[0.5]"1"[05] |

Figure 1: Illustrative independence tree struc-
ture learned from the exclusive dataset.

D stands for “Descendants”.

Our structure seeks to keep in leaves those
variables that remain independent. At the same
time, if the distribution of one variable is shared
by several leaves, we try to store it in their com-
mon ascendant, to avoid repeating it in all the
leaves. For that reason, when one variable ap-
pears in a list for a node N; it means that this
distribution is common for all levels from here to
a leaf. For example, in figure 1, the binary vari-
able X4 has a uniform (1/2,1/2) distribution for
all leaf cases (also for intermediate ones), since
it is associated to the root node. On the other
hand, we can see how X distribution varies de-
pending on the branch (left or right) we take
from the root, that is, when X; = 0 the be-
haviour of variable X5 is uniform whereas being
1 the value of X, X5 is determined to be 0.

The intuition underlying this model is based
on the idea that inside each cluster the variables
are independent. When we have a set of data,
groups are defined by common values in certain
variables, having the other variables random
variations. Imagine that we have a database
with characteristics of different animals includ-
ing mammals and birds. The presence of these
two groups is based on the existence of depen-
dencies between the variables (two legs is re-
lated with having wings and feathers). Once
these variables are fixed, there can be another
variables (size, colour) that can have random
variations inside each group, but that they do
not define new subcategories.

Of course, there are some other possible al-
ternatives to define clustering. This is based
on the idea that when all the variables are inde-
pendent, then to subdivide the population is not
useful, as we have a simple method to describe
the joint behaviour of the variables. However,
if some of the variables are dependent, then the
values of some basic variables could help to de-
termine the values of the other variables, and
then it can be useful to divide the population
in groups according to the values of these basic
variables.

Another way of seeing it is that having inde-
pendent variables is the simplest model we can
have. So, we determine a set of categories such
that each one is described in a very simple way

(independent variables). This is exploited by
another clustering algorithms as EM-based Au-
toClass clustering algorithm (Cheeseman and
Stutz, 1996).

An important fact of this model is that it is a
generalisation of some usual models in classifi-
cation, the Naive Bayes model (a tree with only
one inner node associated to the class and in
its children all the rest of variables are indepen-
dent), and the classification tree (a tree in which
the list of each inner node only contains one po-
tential and the potential associated to the class
variable always appears in the leaves). This gen-
eralization means that our model is able of rep-
resenting the same conditional probability dis-
tribution of the class variable with respect to the
rest of the variables, taking as basis the same set
of associated independencies.

From this model one may want to apply two
kinds of operations:

e The production of clusters and their charac-
terisation. A simple in-depth from root until ev-
ery leaf node access of the tree will give us the
corresponding clusters, and also the potential
lists associated to the path nodes will indicate
the behaviour of the other variables not in the
path.

e The computation of the probability for a cer-
tain complete configuration with a value for
each variable: x = {z1,29,...,2y}. This al-
gorithm is recursive and works as follows:

getProb(Configuration {z1,z2,...,zm},Node N)

Prob «— 1
1 For all Potential P; € List(N)
1.1. X]' — Var(P]-)
1.2. Prob < Prob - P;(X; = x;)
2 If N is a leaf then return Prob
3 Else
3.1. Xy « Var(N)
3.2. Next Node N’ « Branch child(Xy = zn)
3.3. return Prob-getProb({z1,z2,...,2m},N’)

If we have a certain configuration we should
go through the tree from root until leaves tak-
ing the corresponding branches. Every time we
reach a node, we have to use the single poten-
tials in the associated list to multiply the value
of probability by the values of the potentials
corresponding to this configuration.

It is also possible to compute the probabil-
ity for an interest variable Z conditioned to

a generic configuration (a set of observations):
Y = y. This can be done in two steps: 1)
Transform the independent probability tree into
a probability tree (Salmerén et al., 2000); 2)
Make a marginalisation of the probability tree
by adding in all the variables except in Z as
describe in (Salmerén et al., 2000).

In the following we describe the first step.
It is a recursive procedure that visits all nodes
from root to leaves. Each node can pass to its
children a float, Prob (1 in the root) and a po-
tential P which depends of variable Z (empty
in the root). Each time a node is visited, the
following operations are carried out:

e All the potentials in List(/NV) are examined and
removed. For any potential, depending on its
variable X; we proceed as follows:

- If X; # Z, then if X; =Y}, is in the obser-
vations configuration, Prob is multiplied by the
value of this potential for Y = ys.

-If X; # Z and X, does not appear in the
observations configuration, then the potential is
ignored.

- If X; = Z and Xj is the one associated
to node N, then we transform each one of the
children of Z, but multiplying Prob by the value
of potential in Z = z, before transforming the
child corresponding to this value.

- If X; = Z and X is not the one associated
to node N, then the potential of X is stored in
P.

e After examining the list of potentials, we pro-
ceed:

- If N is not a leaf node, then we transform
its children.

- If N is a leaf node and P = (), we assign the
value Prob to this node.

- If N is a leaf node and P # (), we make N
an inner node with variable Z: For each value
Z = z, build a node N/ which is a leaf node
with a value equal to Prob ® P(z). Make N, a
child of N.

This procedure is fast: it is linear in the the
size of the independent probability tree (consid-
ering the number of values of Z constant). The
marginalisation in the second step has the same
time complexity. In fact, this marginalization
can be done by adding for each value Z = z the

values of the leaves that are compatible with
this value (compatibility means that to follow
this path we do not have to assume Z = 2’ with
z # 2'), which is linear too.

4 Our clustering algorithm

In this section we are going to describe how
an independent probability tree can be learned
from a database D, with values for all the vari-
ables in X = {X1,..., X, }.

The basics of the algorithm are simple. It
tries to determine for each node, the variable
with a strongest degree of dependence with the
rest of remaining variables. This variable will
be assigned to this node, repeating the process
with its children until all the variables are inde-
pendent.

For this, we need a measure of the degree
of dependence of two variables X; and X; in
database D. The measure should be centered
around 0, in such a way that the variables are
considered dependent if and only if the measure
is greater than 0. In this paper, we consider the
K2 score (Cooper and Herskovits, 1992), mea-
suring the degree of dependence as the differ-
ence in the logarithm of the K2 score of X;
conditioned to X; minus the logarithm of K2
score of marginal Xj;, i.e. the difference be-
tween the logarithms of the K2 scores of two
networks with two variables: one in which X
is a parent of X; and other in which the two
variables are not connected. Let us call this
degree of dependence Dep(X;, X;|D). This is
a non-symmetrical measure and should be read
as the influence of X; on X, however in prac-
tice the differences between Dep(X;, X;|D) and
Dep(X;, X;|D) are not important.

In any moment, given a variable X; and a
database D, we can estimate a potential P;(D)
for this variable in the database. This potential
is the estimation of the marginal probability of
X;. Here we assume that this is done by count-
ing the absolute frequencies of each one of the
values in the database.

The algorithm starts with a list of variables
L which is initially equal to {X7,...,X,,} and
a database equal to the original one D, then it

determines the root node N and its children in
a recursive way. For that, for any variable X;
in the list, it computes

Dep(X;|D) = Y Dep(X;, X;|D)
X;el

Then, the variable X} with maximum value
of Dep(X;|D) is considered.

If Dep(Xy|D) > 0, then we assign variable
X} to node N and we add potential Pg(D) to
the list List(N), removing X for L. For all
the remaining variables X; in L, we compute
Dep(XZ,XJ|D) for Xj € L(] 75 Z), and Xj =
Xp.. If all these values are less or equal than
0, then we add potential P;(D) to List(N) and
remove X; from L; i.e. we keep in this node
the variables which are independent of the rest
of variables, including the variable in the node.
Finally, we build a child of N for each one of
the values X = xj. This is done by calling
recursively to the same procedure, but with the
new list of nodes, and changing database D to
D[X} = xi], where D[X} = xj] is the subset
of D given by those cases in which variable X}
takes the value xy,.

If Dep(Xg|D) < 0, then the process is
stopped and this is a leaf node. We build
List(NV), by adding potential P;(D) for any vari-
able X; in L.

In this algorithm, the complexity of each node
computation is limited by O(m?.n) where m is
the number of variables and n is the database
size. The number of leaves is limited by the
database size m multiplied by the maximum
number of cases of a variable, as a leaf with only
one case of the database is never branched. But
usually the number of nodes is much lower.

In the algorithm, we make some approxima-
tions with respect to the independencies repre-
sented by the model. First, we only look at one-
to-one dependencies, and not to joint dependen-
cies. It can be the case that X; is indepen-
dent of X; and X}, and it is not independent of
(Xj, Xi). However, testing these independents
is more costly and we do not have the possibility
of a direct representation of this in the model.
This assumption is made by other Bayesian net-
works learning algorithms such as PC (Spirtes

et al., 1993), where a link between two nodes is
deleted if these nodes are marginally indepen-
dent.

Another approximation is that it is assumed
that all the variables are independent in a leaf
when Dep(Xj|D) < 0, even if some of the terms
we are adding are positive. We have found that
this is a good compromise criterion to limit the
complexity of learned models.

5 Experiments

To make an initial evaluation of the Indepen-
dence Tree (IndepT) model, we decided to com-
pare it with other well known unsupervised
classification techniques that are also based on
Probabilistic Graphical Models: learning of a
Bayesian network (by a standard algorithm as
PC) and also Expectation-Maximisation with
a Naive Bayes structure, which uses cross-
validation to decide the number of clusters. Be-
cause we produce a probabilistic description of
the dataset, we use the log-likelihood (logL) of
the data given the model to score a given clus-
tering. By using the logl. as goodness measure
we can compare our approach with other algo-
rithms for probabilistic model-based unsuper-
vised learning: probabilistic model-based clus-
tering and Bayesian networks. This is a direct
evaluation of the procedures as methods to en-
code a complex joint probability distribution.
At the same time, it is also an evaluation of our
method from the clustering point of view, show-
ing whether the proposed segmentation is useful
for a simple description of the population.

Then, the basic steps we have followed
for the three procedures [IndepT,PC-Learn,EM-
Naive] are:

1. Divide the data cases into a training or data
set (Sp) and a test set (St), using (2/3,1/3).
2. Build the corresponding model for the cases
in Sp.

3. Compute the log-likelyhood of the obtained
model over the data in Syp.

Among the tested cases, apart from easy syn-
thetical data bases created to check the ex-
pected and right clusters, we have looked for
real sets of cases. Some of them have been taken

from the UCI datasets repository (Newman et
al., 1998) and others from real applications re-
lated to our current research environment.

We will indicate the main remarks about all
the evaluated cases:
e Case 1: exclusive: This is a very simple
dataset with five binary variables, from X; to
X5. The three first variables have an exclusive
behaviour, that is, if one of them is 1 the other
two will be 0. On the other hand, X4 and Xj
are independent with the three first ones and
also with each other. This example is interest-
ing not especially for the LoglL comparison, but
mainly to see the interpretation of the tree given
in figure 1.
e Case 2: tic-tac-toe: Taken from UCI reposi-
tory and it encodes the complete set of possible
board configurations at the end of tic-tac-toe
games. It presents 958 cases and 9 attributes
(one per each game square).
e Cases 3: greenhouses: Data cases taken
from real greenhouses located in Almeria
(Spain). There are four distinct sets of
cases, here we indicate them with denotation
(case)={num_cases, num_attributes}: (3A4)=
{1240,8}, (3B)= {1465,17}, (3C)= {1318,33},
(3D)= {1465,6}.
e Cases 4: sheep: Datasets taken from the
work developed in (Flores and Gamez, 2005)
where the historical data of the different ani-
mals were registered and used to analyse their
genetic merit for milk production directed to
Manchego cheese. There are two datasets with
3087 cases, 4A with 24 variables/attributes and
4B, where the attribute breeding value (that
could be interpreted as class attribute) has been
removed.
e Case 5: connect4: Also downloaded from the
UCT repository and it contains all legal 8-play
positions in the game of connect-4 in which
neither player has won yet, and in which the
next move is not forced. There are 67557 cases
and 42 attributes, each corresponding to one
connect-4 square?.

The results of the experiments can be found
in figure 1 and in table 1. Figure 1 presents

2 Actually, only the half of the cases have been used.

case IndepT PC-Learn EM-Naive
1 -61.33 -62.88 -119.67
2| -1073.94 -2947.85 -3535.11
3A | -3016.92 -2644.38 -4297.21
3B | -2100.40 -3584.06 -6266.71
3C | -4956.04 -7630.98 -15145.15
3D | -1340.04 -2770.15 -4223.45
4A | -6853.12 -18074.69 -32213.29
4B | -6802.94 -17357.80 -31244.28
5: | -465790.73 -349631.35 -794415.07
Table 1: Comparison in terms of the log-

likelyhood value for all cases (datasets).

the tree learned in the exclusive case. As it
can be observed, the tree really captures what
is happening in the problem: X, and X5 are
independent and placed in the list of root node
and then one of the other variables is looked up,
if its value is 1, then the values of the other two
variables is completely determined and we stop.
If its value is 0, then another variable has to be
examined.

With respect to the capacity of approximat-
ing the joint probability distribution, we can
see in table 1 that our method always provides
greater values of logl, than EM-Naive in all the
datasets. With respect to PC algorithm, the
independent tree wins in all the situations ex-
cept in two of them (cases 3A and 5). This is
a remarkable result as our model has some lim-
itations in representing sets of independencies
that can be easily represented by a Bayesian
network (for example a Markov chain), however
its behaviour is usually better. We think that
this is due to two main aspects: it can represent
asymmetrical independencies and it is a simple
model (which is always a virtue).

6 Concluding remarks and future
work

In this paper we have proposed a new model for
representing a joint probability distribution in a
compact way, which can be used for fast compu-
tation of conditional probability distributions.
This model is based on a partition of the state
space, in such a way that in each group all the

variables are independent. In this sense, it is at
the same time a clustering algorithm.

In the experiments with real and syntheti-
cal data we have shown its good behaviour as
a method of approximating a joint probability,
providing results that are better (except for two
cases for the PC algorithm) to the factorisa-
tion provided by an standard Bayesian networks
learning algorithm (PC) and by EM clustering
algorithm. In any case, more extensive experi-
ments are necessary in order to compare it with
another clustering and factorisation procedures.

We think that this model can be improved
and exploited in several ways: (1) Some of the
clusters can have very few cases or can be very
similar in the distributions of the variables. We
could devise a procedure to joint these clusters;
(2) we feel that the different number of values of
the variables can have some undesirable effects.
This problem could be solved by considering bi-
nary trees in which the branching is determined
by a partition of the set of possible values of a
variable in two parts. This could allow to extend
the model to continuous variables; (3) we could
determine different stepping branching rules de-
pending of the final objective: to approximate a
joint probability or to provide a simple (though
not necessarily exhaustive) partition of the state
space that could help us to have an idea of how
the variables take their values; (4) to use this
model in classification problems.

Acknowledgments

This work has been supported by Spanish MEC
under project TIN2004-06204-C03-{02,03}.

References

M.R. Anderberg. 1973. Cluster Analysis for Appli-
cations. Academic Press.

P. Cheeseman and J. Stutz. 1996. Bayesian classi-
fication (AUTOCLASS): Theory and results. In
U. M. Fayyad, G. Piatetsky-Shapiro, P Smyth,
and R. Uthurusamy, editors, Advances in Knowl-
edge Discovery and Data Mining, pages 153-180.
AAAIT Press/MIT Press.

G.F. Cooper and E.A. Herskovits. 1992. A Bayesian
method for the induction of probabilistic networks
from data. Machine Learning, 9:309-347.

A. P. Dempster, N. M. Laird, and D.B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical
Society, 1:1-38.

R.O. Duda, P.E. Hart, and D.J. Stork. 2001. Pat-
tern Recognition. Wiley.

M.J. Flores and J. A. Gamez. 2005. Breeding value
classification in manchego sheep: A study of at-
tribute selection and construction. In Kowledge-
Based Intelligent Information and Enginnering
Systems. LNAI volume 3682, pages 1338-1346.
Springer Verlag.

N. Friedman. 1998. The Bayesian structural EM al-
gorithm. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence (UAI-98),
pages 129-138. Morgan Kaufmann.

D. Hand, H. Mannila, and P. Smyth. 2001. Princi-
ples of Data Mining. MIT Press.

A K. Jain, M.M. Murty, and P.J. Flynn. 1999. Data
clustering: a review. ACM Computing Surveys,
31:264-323.

F. V. Jensen. 2001. Bayesian Networks and Deci-
sion Graphs. Springer Verlag.

L. Kaufman and P. Rousseeuw. 1990.
Groups in Data. John Wiley and Sons.

Finding

D. Lowd and P. Domingos. 2005. Naive Bayes mod-
els for probability estimation. In Proceedings of
the 22nd ICML conference, pages 529-536. ACM
Press.

D.J. Newman, S. Hettich, C.L. Blake, and C.J.
Merz. 1998. UCI repository of machine learning
databases.

J.M. Pena, J.A. Lozano, and P. Larranaga. 2000.
An improved Bayesian structural EM algorithm
for learning Bayesian networks for clustering.
Pattern Recognition Letters, 21:779-786.

A. Salmerén, A. Cano, and S. Moral. 2000. Impor-
tance sampling in Bayesian networks using prob-
ability trees. Computational Statistics and Data
Analysis, 34:387-413.

P.H. Sneath and R.R. Sokal. 1973. Numerical Tax-

onomy. Freeman.

P. Spirtes, C. Glymour, and R. Scheines. 1993. Cau-
sation, Prediction and Search. Springer Verlag.

