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ABSTRACT
Uncertainty pervades many domains in our lives. Current
real-life applications, e.g., location tracking using GPS de-
vices or cell phones, multimedia feature extraction, and sen-
sor data management, deal with different kinds of uncer-
tainty. Finding the nearest neighbor objects to a given query
point is an important query type in these applications.

In this paper, we study the problem of finding objects
with the highest marginal probability of being the nearest
neighbors to a query object. We adopt a general uncertainty
model allowing for data and query uncertainty. Under this
model, we define new query semantics, and provide several
efficient evaluation algorithms. We analyze the cost factors
involved in query evaluation, and present novel techniques to
address the trade-offs among these factors. We give multiple
extensions to our techniques including handling dependen-
cies among data objects, and answering threshold queries.
We conduct an extensive experimental study to evaluate our
techniques on both real and synthetic data.

1. INTRODUCTION
Nearest neighbor (NN) queries are widely used in many

applications including geographical information systems
[11], and similarity search [30]. The problem can be de-
fined as follows: ‘given a number of objects, find the nearest
object(s) to a given query point, based on a distance met-
ric.’ A large body of research studies NN queries for precise
(certain) data, e.g., [14, 25]. Many of these works focus on
using index structures for efficient computation.

Applications in domains that involve uncertainty such as
location tracking [9] and sensor data management [21] have
motivated the need to support new query types [27], un-
certainty models [26], and query processing techniques [24].
Queries that involve ranking objects under uncertainty
based on a scoring criterion, e.g., top-k and NN queries,
are important to a wide range of these applications, as illus-
trated by the next examples.
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Figure 1: Using Cell Towers to Locate Mobile Users

Example 1.1. Cell towers are used to locate mobile users
using techniques similar to [31]. In Figure 1, the signals
communicated between a mobile user and the three nearest
towers define contour lines of user’s possible locations. Each
contour line gives a uniform distribution of user’s location.
Hence, a user is more likely to be located at the intersection
of contour lines (the shaded areas in Figure 1).

In Example 1.1, assume the query point is an accident
location, where the data objects are the mobile users. Each
data object has an uncertain location attribute. In these
settings, finding the most probable nearest witnesses/police
cars to accident location is an important query. The next
examples give other variations of the same problem.

Example 1.2. In location-based services, a user may re-
quest the locations of the nearest gas stations. To protect
user’s privacy, an area that encloses user’s actual location
may be used as the query object. Gas stations (the data
objects) have deterministic locations and thus they can be
modeled as deterministic points.

Example 1.3. In face recognition systems, e.g., [19], a
person is identified by computing the similarity between a
query object (description of person’s face), and data objects
(descriptions of faces stored in a database). Each descrip-
tion is a vector of features such as the relative locations of
face elements, and their sizes. Due to imprecision of feature
extraction, such vectors usually involve uncertainty. Each
feature is thus modeled as a probability distribution on pos-
sible values. Finding persons that are most similar to the
person in question involves a nearest neighbor search with
uncertainty in both data and query objects.

A related issue to the previous examples is the uncertainty
of the existence of data objects. For example, mobile users
can continuously appear and disappear in an area of interest.
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Figure 2: Expectation-based NN Queries (a) Uniform

Distributions (b) Non-uniform Distributions

Hence, each user belongs to the database with less than
absolute confidence.

Integrating the above sources of uncertainty with the con-
ventional distance-based criterion of NN queries raises new
challenges regarding query semantics and evaluation.

1.1 Motivation and Challenges
A large body of research addresses NN queries where both

data and query objects are deterministic points. Classical
algorithms include the HS algorithm [14] and the RKV algo-
rithm [25]. Recent proposals address NN queries under un-
certainty with different query semantics. We describe some
of these proposals in the following.

In [20], the problem is reduced to a conventional NN
query, where the NNs are computed based on their expected
distance to the query point. This method can give different
answers from the alternative approach that reports objects
with the highest marginal NN probabilities, and hence ex-
ploits data uncertainty rather than reducing the problem to
a deterministic version. To illustrate, Figure 2 (a) depicts
two moving objects O1 and O2 whose possible locations are
uniformly distributed in the shown solid ovals with means
µ1 and µ2, respectively. For the query point q, O1 is the
NN based on its expected distance to q. Assume that the
probability of O1 being inside the dotted circle, centered at
q, is 0.4. Hence, O2 is the NN based on marginal probabili-
ties since the probability of O1 being the NN is at most 0.4
(the probability of O1 being inside the dotted circle). Non-
uniform distributions may also exhibit the same discrepancy.
For example, in Figure 2(b) objects have non-uniform dis-
tributions. O1 is the NN based on expected distance to q,
while O2 is the NN based on marginal probabilities, since
the probability of O2 being the NN is at least 0.6 (the prob-
ability of O2 being inside the shaded area).

Approximating marginal NN probabilities using sampling
techniques, e.g., [16], suffers from an inherent slow diminish-
ing of approximation error when increasing sample size. For
example, in Monte-Carlo sampling, quadrupling the number
of samples only halves the error [18].

Threshold-based probabilistic NN queries are addressed
in [6], where objects with marginal NN probabilities above a
given threshold are reported. Threshold-based queries have
inherent problems in selecting a suitable threshold. Setting
the threshold too high may lead to empty results, and hence
the query needs to be restarted with a lower threshold. Al-
ternatively, setting the threshold too low may produce too
many results and increase query response time.

Current proposals are lacking with regard to two points:

• Most proposals assume limited uncertainty models
that do not support all possible uncertainty sources.
For example, in [7], data objects have uncertain at-
tributes, while their existence in the database is cer-
tain. In [8], data objects have deterministic attributes,
and uncertain existence in the database. In [16], data
and query objects are uncertain, while their existence
in database is certain. To the best of our knowledge,
integrating all uncertainty sources within the same
processing framework has not been addressed before.

• Current proposals separate the I/O operations (i.e.,
object retrieval) and CPU operations (i.e., probability
computation) of probabilistic NN queries into two iso-
lated stages, as in [7, 6]. No current work addresses
interleaving these operations during query processing,
or integrating their costs into a unified cost model.

Integrating all uncertainty sources in the same model adds
further complexity to the problem. For example, if all ob-
jects have deterministic existence in the database, a large
number of objects can be pruned using spatial properties [7,
6]. Specifically, an object cannot be the NN if its minimum
distance to the query point is larger than the maximum
distance of another object. Such pruning criterion is not
directly applicable when objects’ existence is uncertain.

Interleaving I/O and CPU operations, based on a cost
model, allows for addressing the trade-offs among the cost
factors of NN queries. This is particularly important if a
small number of answers, e.g., the top-k answers, is required.

1.2 Contributions
We summarize our contributions as follows:

• We introduce Topk-PNN query, a novel formulation
of NN queries combining both data/query uncertainty
and distance-based criteria (Section 2).

• We study object retrieval orders of Topk-PNN queries,
and give new results regarding the I/O optimality of
different orders. We further analyze the cost factors of
Topk-PNN queries, and construct a unified cost model
and efficient query evaluation techniques (Section 3).

• We address Topk-PNN queries with uncertain query
objects and both uncertain (Section 4) and determin-
istic (Section 5) data objects.

• We give multiple extensions to our techniques in-
cluding handling dependencies among data objects,
answering top-k queries over uncertain data (Ap-
pendix A), and supporting threshold queries (Sec-
tion 6).

2. PROBLEM DEFINITION
We next describe the uncertainty model we adopt in this

paper followed by our formal problem definition.

Uncertainty Model. We assume a database of objects
O = {O1, . . . , On} such that the existence (membership)
of objects in O is uncertain, i.e., Pr(Oi ∈ O) ≤ 1. We
denote with Pr(Oi), and Pr(¬Oi) = 1−Pr(Oi) the existence
and absence probabilities of Oi, respectively. Each object
Oi ∈ O has a probabilistic attribute, defined as follows:
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Definition 2.1. Probabilistic Attribute. A proba-
bilistic attribute A in object Oi is a random variable drawn
from a distribution with density function fA

i . 2

We assume fA
i has a bounding uncertainty region RA

i so
that ∀x 6∈ RA

i , fA
i (x) = 0 and

∫
RA

i
fA

i (x) dx = 1. If fA
i

is an unbounded probability density function (PDF), e.g.,
Gaussian PDF, we truncate PDF tails with negligible prob-
abilities and normalize the resulting PDF. This procedure is
also used in other related works (e.g., [6, 5]), and in other
contexts such as such as econometrics (e.g., [12]). We show
in our experiments (Section 6.8) the effect of PDF trun-
cation on the accuracy of the results. For a probabilistic
attribute A whose domain is an n-dimensional space, we as-
sume RA

i is an n-dimensional hyper-rectangle. For example,
the location attribute of an object moving in 2D plane, has
a rectangular uncertainty region with 2D PDF. We restrict
our discussions to 2D space for clarity. However, our tech-
niques are applicable to n-dimensional spaces.

The query object q is an uncertain object with uncertainty
region Rq, and a PDF fq. The existence of query object is
always certain, i.e., Pr(q) = 1. We assume that our queries
involve a single probabilistic attribute, e.g., location, and
hence we use the object Oi to directly refer to its queried
attribute Oi.A. We omit the superscript A for brevity.

Topk-PNN Queries. Let d be a distance metric, e.g.,
Euclidian distance. Since Oi has different possible values,
there is a range of possible distances between Oi and the
query object q. Let Si be an interval enclosing all possible
distances between Oi and q. We denote with Pnn(Oi, q) the
marginal probability of Oi to be the NN to q. The value
of Pnn(Oi, q) is found by summing all probabilities where
d(Oi, q) is the least among all other objects.

Pnn(Oi, q) =

∫
Si

Pr(Oi ∧ d(Oi, q) = s

∧ ∀j 6= i(¬Oj ∨ d(Oj , q) > s) ds
(1)

Equation 1 integrates the probabilities of all settings
where Oi is the NN to q.

We describe how to compute Pnn(Oi, q) when all objects
are independent. Given a point x, let Fj(x, dist) be the
probability that Oj does not exist or d(Oj , x) > dist. This
probability is formulated as follows:

Fj(x, dist) = Pr(¬Oj ∨ d(x, Oj) > dist)

= Pr(¬Oj) + Pr(Oj) ·
∫

y∈Rj :d(x,y)>dist
fj(y)dy

(2)

Based on Equation 2, we formulate Pnn(Oi, q) under in-
dependence as follows:

Pnn(Oi, q) = Pr(Oi)

∫
Rq

∫
Ri

fq(x) · fi(y) ·
∏
j 6=i

Fj(x, d(x, y)) dy dx

(3)

Note that
∑

Oi
Pnn(Oi, q) ≤ 1. The value (1 −∑

Oi
Pnn(Oi, q)) corresponds to the probability of the con-

figuration in which no object exists. The probability of such
configuration is equal to

∏
Oi

Pr(¬Oi).

We assume that Pnn(Oi, q) values are distinct across ob-
jects in O using a deterministic tie-breaker (a typical as-
sumption in top-k algorithms, e.g., [10]). We next give our
query definition.

Definition 2.2. Top-k Probable NN (Topk-PNN)
Query. Given a database O and a query object q, a Topk-
PNN query returns a vector V =< O(1) . . . O(k) > ⊆ O such
that: Pnn(O(1), q) > · · · > Pnn(O(k), q) , and @Oi ∈ (O−V )
where Pnn(Oi, q) > Pnn(O(k), q). 2

In general, Topk-PNN queries incur two cost factors:

1. I/O cost incurred by object retrieval, which can be
the cost of reading objects from disk or transferring
objects’ details, e.g., a PDF histograms, over the net-
work if objects are obtained from remote sources.

2. CPU cost incurred by computing a complex nested
integral to evaluate the Pnn values of different objects.

Our techniques are based on optimizing the two above cost
factors by exploiting general properties in top-k queries: (1)
most database objects are not part of the query answer,
and hence many I/O operations can be avoided; and (2) the
scores of retrieved objects can be bounded, i.e., not fully
computed, while still being able to rank query answers at
reduced computational costs. We focus on the case of in-
dependent objects and discuss extensions to handle object
dependencies in Appendix A.

3. QUERY EVALUATION
In this section, we describe our techniques to compute

Topk-PNN queries with uncertain data objects and a single
(deterministic) query point q. We discuss handling uncer-
tain query objects in Sections 4 and 5.

Based on Equation 3, when q is a single point, Pnn(Oi, q)
is computed as follows:

Pnn(Oi, q) = Pr(Oi)

∫
Ri

fi(x)
∏
j 6=i

Fj(q, d(q, x)) dx (4)

We discuss in Section 3.1 optimizing the number of I/O
operations. We show in Section 3.2 how to perform compu-
tation lazily to optimize the CPU cost. Further, we describe
in Section 3.3 techniques to optimize the combined cost of
I/O and CPU.

3.1 Optimizing Object Retrieval
Let d(Oi, q) and d(Oi, q) denote the minimum and maxi-

mum distances between Oi and q, respectively. Figure 3(a)
shows such distances. Further, let min-dist order denote the
ascending order of objects based on d(., q).

Incremental Access Assumption. The main assump-
tion we make on the class of algorithms we consider in this
section is that objects are incrementally retrieved from the
database with no prior information on the PDFs of non-
retrieved objects. This assumption applies particularly to
the case of retrieving objects from remote sources.

Incremental access of objects in the order of an arbi-
trary measure defined on objects boundaries, e.g., d(Oi, q)
or d(Oi, q), can be made using an index over objects un-
certainty regions (e.g., an R-tree). Building and traversing
such index does not require knowledge about objects PDFs.

We propose IO-Centric, an algorithm to compute Topk-
PNN queries with optimality guarantees on the number of
I/O’s. The idea is to incrementally retrieve objects from
the database, while bounding Pnn(Oi, q), for each retrieved
object Oi, using an interval [lo(Oi), up(Oi)]. In addition,
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Algorithm 1 IO-Centric (O:database, q: query point)

1: up(φ) ← 1.0 {upper bound of Pnn value of non-retrieved
objects}

2: Create an empty candidate set C
{start growing phase}

3: while (O not exhausted AND @Oj ∈ C with lo(Oj) > up(φ))
do

4: Oi ← next object in O based on min-dist to q
5: Add Oi to C
6: Compute lo(Oi) {Equ. 5}
7: up(φ)← up(φ)− lo(Oi)
8: end while
9: For each Oj ∈ C, compute up(Oj) {Equ. 6}
{start shrinking phase}

10: while (O not exhausted AND
@O∗ ∈ C with lo(O∗) > max(up(φ), up(Or)) for any
other object Or ∈ C) do

11: Retrieve the next object based on min-dist to q
12: For each Oj ∈ C, update lo(Oj), up(Oj) {Equ. 5 and 6}
13: For each Oj 6∈ C, update lo(Oj) {Equ. 5}
14: Update up(φ) as 1−

∑
lo(.) of all retrieved objects

15: Remove from C any object Oj with up(Oj) < lo(Or) for
some other object Or ∈ C

16: end while
17: return the object O∗ with max up(.) in C

Pnn(φ, q), where φ represents any non-retrieved object, is
upper-bounded with a function up(φ). Query answer is re-
ported by reasoning about probability bounds to guarantee
result correctness.

Algorithm 1 gives the details of IO-Centric. For illustra-
tion, we assume a Topk-PNN query with k = 1. We show at
the end of this section how to compute queries with k > 1.
The algorithm goes through two consecutive phases: (1) a
growing phase, where a set of candidates grows by retriev-
ing objects in min-dist order and updating their lo(.) values
until some object Oi satisfies lo(Oi) > up(φ) and hence any
yet non-retrieved object cannot be the query answer; and
(2) a shrinking phase, where candidates are pruned by re-
trieving new objects, and using these objects to update the
bounds of candidates. The algorithm terminates when a
candidate object O∗, retrieved in the growing phase, satis-
fies (lo(O∗) > max(up(φ), up(Or)), for any other candidate
Or. At this point, IO-Centric guarantees that O∗ is the
most probable NN to q. If the database is exhausted before
entering the shrinking phase, the algorithm directly reports
the candidate with the highest up(.), since in this case up(.)
is the exact Pnn value, as discussed below.

We note that the behavior of IO-Centric is similar to
the adaptation of the NRA algorithm in [22].

Bound Computation. Let Ó ⊆ O be the current set of
retrieved objects, and Ol ∈ Ó be the last retrieved object in
min-dist order. The value of lo(Oi) is given by Equation 4
by pessimistically estimating Pnn(Oi, q) by assuming a non-
retrieved object φ as a deterministic point (with probability
1) located at d(Ol, q). This setting maximizes the possible
Pnn value of φ, and consequently minimizes the possible Pnn

values of all retrieved objects (since the summation of Pnn

values is ≤ 1). Formally, lo(Oi) is computed as follows:

lo(Oi) = Pr(Oi)·∫
x∈Ri:d(q,x)<d(q,Ol)

fi(x) ·
∏

Oj∈Ó∧j 6=i

Fj(q, d(q, x)) dx

(5)
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Figure 3: Computing Probability Bounds

For example, Figure 3 (a) shows how to compute lo(Oi)
by integrating the shaded areas where Ol is O3.

Similarly, the value of up(Oi) is given by Equation 4 by
optimistically estimating Pnn(Oi, q) by assuming that the
minimum distance between any non-retrieved object and q is
greater than d(Oi, q), and hence it does not affect Pnn(Oi, q).
Formally, up(Oi) is computed as follows:

up(Oi) = Pr(Oi)

∫
Ri

fi(x)
∏

Oj∈Ó∧j 6=i

Fj(q, d(q, x)) dx (6)

Since the summation of Pnn values of all database objects
is ≤ 1, we have up(φ) = 1 −

∑
Oi∈Ó lo(Oi), which is the

maximum Pnn value a non-retrieved object could obtain,
while lo(φ) is always zero.

Algorithm Analysis. We justify the way we compute
lo(Oi) and up(Oi) by showing that they are the tightest
bounds on Pnn(Oi, q) under the Incremental Access As-
sumption. Then, we analyze the growing and shrinking
phases of IO-Centric.

Lemma 3.1. Let Ó be a subset of objects retrieved in min-
dist order under the Incremental Access Assumption. For
Oi ∈ Ó, lo(Oi) and up(Oi) are the tightest lower and upper

bounds of Pnn(Oi, q) based on Ó, respectively. 2

We include the proof of Lemma 3.1 in Appendix B. It fol-
lows from Lemma 3.1 that any Topk-PNN algorithm work-
ing under the Incremental Access Assumption, and retriev-
ing objects in min-dist order cannot terminate while retriev-
ing less objects than IO-Centric.

Growing Phase. Our main result, represented in Theo-
rem 3.2, is that Algorithm IO-Centric is I/O-optimal in
the growing phase among the class of algorithms that work
under Incremental Access Assumption, and use arbitrary re-
trieval orders (not necessarily min-dist). We include the
proof of Theorem 3.2 in Appendix B.

Theorem 3.2. Under the Incremental Access Assump-
tion, any Topk-PNN algorithm A must retrieve all objects
retrieved by Algorithm IO-Centric in the growing phase. 2

Shrinking Phase. Based on Equation 5, lo(Oi) can only
increase by retrieving the next object in min-dist order and
adding this object to the set Ó. This is because for any
other non-retrieved object Ó, we have d(q, Ó) ≥ d(q, Ol),

and hence Ó does not change the value of the integral in
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Equation 5. On the other hand, based on Equation 6, re-
trieving any new object Ó can be used to decrease up(Oi)
since Equation 6 does not restrict the values of x ∈ Ri. We
hence make the following observations: (1) Arbitrary object
retrieval order can result in decreasing up(Oi), and (2) Only
min-dist retrieval order can result in increasing lo(Oi), and
hence decreasing up(φ).

Since the shrinking phase starts when lo(Oi) > up(φ) is
satisfied for some object Oi, any retrieved object in the
shrinking phase is not a query answer. Retrieved objects
in the shrinking phase tighten the probability bounds of
candidate objects by either increasing the lo(.) values and
decreasing the up(.) values of different candidates (which is
only possible under min-dist retrieval), or by only decreasing
the up(.) values (which is possible using arbitrary retrieval
order). Hence, the question is whether we can find an op-
timal retrieval order that leads to query termination with
the least number of retrieved objects. Theorem 3.3 gives a
negative result on the existence of such optimal order. We
include the proof in Appendix B.

Theorem 3.3. There exist two database instances D1

and D2 where, in the shrinking phase and under the Incre-
mental Access Assumption, min-dist is the optimal retrieval
order in D1 but not the optimal retrieval order in D2. 2

Retrieval orders in the shrinking phase lead to query ter-
mination based on different factors including the overlap
of uncertainty regions of different objects, and how objects’
PDFs interact to decide their Pnn values. The effect of these
factors cannot be known under our Incremental Access As-
sumption without actually retrieving the objects. We thus
resort to heuristics to choose the object retrieval order in the
shrinking phase. Since only min-dist order has the property
of changing all lo(.) and up(.) values, as well as up(φ), we
adopt min-dist retrieval in the shrinking phase.

Throughout the remainder of this paper, min-dist order
is used in incremental object retrieval.

Topk-PNN Queries with k > 1. Algorithm IO-Centric

is extended to answer Topk-PNN queries with k > 1 by
changing the condition that ends the growing phase to:
∃O′ ⊆ C, |O′| = k such that ∀O′ ∈ O′(lo(O′) > up(φ)),
and continuing the shrinking phase until the condition in
Definition 2.2 is satisfied.

3.2 Lazy Computation of Bounds
The bounds lo(Oi) and up(Oi) use nested integration on

Ri. While these bounds are tight (Lemma 3.1), they involve
high computation cost in return of optimal I/O cost. We
note that using looser bounds and extra object retrievals
may yield better overall query evaluation cost.

We propose a lazy bound-refinement technique that starts
with the coarse granularity of the whole uncertainty region
Ri, and lazily tightens the bounds by considering the finer
granularity of subregions in Ri. Consider Equation 4. Start-
ing with the granularity of Ri, we upper-bound Fj(q, d(q, x))
by replacing d(q, x) with its smallest possible value d(q, Oi),
resulting in Fj(q, d(q, Oi)) which is independent of x. Hence,
Pnn(Oi, q) is upper-bounded as follows:

Pnn(Oi, q) = Pr(Oi) ·
∏
j 6=i

Fj(q, d(Oi, q)) ·
∫

Ri

fi(x) dx

= Pr(Oi) ·
∏
j 6=i

Fj(q, d(Oi, q))
(7)

Similarly, Pnn(Oi, q) is lower-bounded as follows:

Pnn(Oi, q) = Pr(Oi) ·
∏
j 6=i

Fj(q, d(Oi, q)) (8)

Our bound-refinement procedure has the insight that par-
titioning Ri into smaller subregions gives tighter bounds on
Pnn(Oi, q), since we exploit further information in fi. We
prove this fact in Theorem 3.6. We start our description of
the refinement procedure by defining partitions.

Definition 3.4. Object Partition. A partition Pi for
object Oi is a set of disjoint subregions {Ri1 . . . Rin} of Ri,
such that Pi totally covers Ri. 2

For example, in Figure 3(b), {R31, R32} is a possible par-
tition of O3. Let Pr(Rij) =

∫
Rij

fi(x)dx. It follows that∑
Rij∈Pi

Pr(Rij) =
∫

Ri
fi(x)dx = 1. We use min-dist order

to create initial object partitions, where a newly retrieved
object Ol splits the partitions of already retrieved objects
based on d(Ol, q), as shown in Figure 3(b).

Let d(Rij , q) and d(Rij , q) be the minimum and maxi-
mum distances between subregion Rij and q, respectively.
These distances are shown in Figure 3(b). A lower-bound of
Pnn(Oi, q), given Pi, is computed as follows:

Pnn(Oi, q|Pi) = Pr(Oi) ·
∑

Rij∈Pi

Pr(Rij) ·
∏
k 6=i

Fk(q, d(q, Rij)) (9)

Similarly, an upper-bound of Pnn(Oi, q), given Pi, is com-
puted as follows:

Pnn(Oi, q|Pi)
∗ = Pr(Oi) ·

∑
Rij∈Pi

Pr(Rij) ·
∏
k 6=i

Fk(q, d(q, Rij))

(10)

Since
∑

Oi
Pnn(Oi, q) ≤ 1, another valid upper-bound for

Pnn(Oi, q) is 1 −
∑

j 6=i Pnn(Oj , q|Pj). The overall upper-
bound is thus computed as follows:

Pnn(Oi, q|Pi) = min(Pnn(Oi, q|Pi)
∗, 1−

∑
j 6=i

Pnn(Oj , q|Pj))

(11)

The above bounds provide multiple optimization oppor-
tunities of CPU cost. Bound computation cost is mainly
dominated by the cost of computing Fk(.), which can be ef-
ficiently done using a PDF index, e.g., [15]. Furthermore, it
is possible to cache Fk(q, dist) at different dist values to be
used with multiple bound computation.

While the above bounds assume all database objects are
retrieved, they can still be used with partial retrieval of
database objects, and hence supporting our incremental re-
trieval strategy. We discuss how this can be done by first
distinguishing two types of object’s subregions.

Definition 3.5. Inner and Outer Subregions. Let
Ol be the last retrieved object in min-dist order. A subregion
Rij is an inner subregion if d(Rij , q) ≤ d(Ol, q), otherwise
Rij is an outer subregion. 2

For example, R11, R12 and R13 in Figure 3(b) are inner
subregions, given that the last retrieved object is O4. On
the other hand, R14 is an outer subregion.

Equations 9 and 10 can be adopted with partial retrieval of
database objects, based on min-dist order, using the virtual
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object φ which represents any non-retrieved object. Specif-
ically, to compute Pnn(.), the object φ is assumed to be lo-
cated at the nearest possible distance to q, i.e., at d(Ol, q),
with probability 1. In Equation 9, Pr(Rij), for an outer sub-
region Rij , would thus be multiplied by Fφ(q, d(q, Rij)) = 0,
while Pr(Rij), for an inner subregion, would be multiplied
by Fφ(q, d(q, Rij)) = 1. Hence, only inner subregions con-
tribute to Pnn(.). On the other hand, in Equation 10, in

order to compute Pnn(.), the object φ is assumed to be lo-
cated at the maximum possible distance from q (i.e., posi-
tive infinity), or equivalently, no more objects are available.
Hence, Fφ(q, d(q, Rij)) = 1 for any subregion Rij , and thus
all object’s subregions contribute to Pnn(.).

Partition Refinement. A partition P1
i is refined by par-

titioning one of its subregions into two smaller subregions
to create a finer partition P2

i . For example, in Figure 3(b),
P1

3 = {R3} is refined by splitting R3 to R31 and R32, result-
ing in P2

3 = {R31, R32}. Theorem 3.6 shows that partition
refinement leads to tightening the bounds of Pnn(Oi, q). We
include the proof in Appendix B.

Theorem 3.6. If partition P2
i is finer than partition

P1
i , then (1) Pnn(Oi, q|P2

i ) ≥ Pnn(Oi, q|P1
i ); and (2)

Pnn(Oi, q|P2
i ) ≤ Pnn(Oi, q|P1

i ). 2

A partition Pi is refined by splitting either an inner or
an outer subregion. Selecting which subregion to split is
controlled by the cost model in Section 3.3. Let Ol be the
last retrieved object in min-dist order, we consider two cases:
(1) Splitting inner subregions. Finding the optimal split
location, i.e., the location that would result in the largest
bound tightening at the least cost, is by itself an optimiza-
tion problem. The cost of such optimization may outweigh
the benefit of finding the optimal refinement, since an op-
timization algorithm would effectively try many candidate
split locations (we discuss splitting cost and benefit in Sec-
tion 3.3). We thus adopt a heuristic to split an inner sub-
region at its middle distance to q. Our heuristic allows the
bounds to converge to the exact Pnn value at a rate compara-
ble to the optimal splitting method as shown in Appendix C.
(2) Splitting outer subregions. Split location is set at
d(Ol+1, q), i.e., by retrieving the next object Ol+1. This
results in two smaller subregions; an inner and an outer
subregion. Note that Ol+1 initially has one outer subregion
covering its entire uncertainty region.

Splitting subregions to the finest level, i.e., each subregion
has the minimal width supported by numerical precision,
reduces Equations 9 and 10 to the integral in Equation 4,
which is the exact Pnn value, under the same precision.

3.3 Optimizing Total Cost
In this section, we show how to compute Topk-PNN

queries while optimizing the combined I/O and CPU cost.
We adopt a benefit-cost approach, where a benefit is ob-
tained by refining the bounds of Pnn(Oi, q), since such re-
finement leads to query termination, while a cost is incurred
in bound computation and object retrieval. We thus view
bound refinement as an expensive predicate with a cost and a
benefit. Finding the optimal predicate evaluation order, i.e.,
the order that results in query termination at the least cost,
is equivalent to the optimal scheduling problem [4], which
is NP-hard. We propose a technique to rank bound refine-
ment operations based on estimated benefit and cost, and
iteratively apply the refinement with the highest rank.

Let ORij be the set of objects overlapping with Rij based
on distance to q. For example, in Figure 3(b), OR13 =
{O2, O3}. The cost of using Rij in bound refinement is
estimated as follows. For Ok ∈ ORij , let Ck be the cost of
integrating the density function fk over the subregion in Ok

that overlaps with Rij based on distance to q. For example,
to use R13 in bound refinement, we need to integrate the
density functions f2 and f3 over the subregions R22 and R31,
respectively. We use PDF indexing (e.g., aggregate R-tree
[17]) to speed up the computation of integrals. Estimating
the cost Ck depends on the type of PDF index. For example,
when using an aggregate R-tree (aR-Tree) to index objects’
PDFs, the number of visited index nodes is used to reflect
the cost [29].

On the other hand, the benefit of a subregion Rij is esti-
mated as the difference between Rij ’s contributions to up-
per and lower bounds of Pnn(Oi, q). The intuition is that
subregions with large differences are expected to tighten
Pnn(Oi, q) bounds considerably when refined.

Definition 3.7. Refining Cost and Benefit. Let CIO

be object retrieval cost. Then,

• cost(Rij) =


∑

Ok∈ORij
Ck if Rij is inner

CIO +
∑

Ok∈ORij
Ck if Rij is outer

• benefit(Rij) = Pr(Rij) ·( ∏
k 6=i Fk(q, d(Rij , q))−

∏
k 6=i Fk(q, d(Rij , q))

)
2

The rank of Rij is defined as follows:

rank(Rij) =
benefit(Rij)

cost(Rij)
(12)

Search Algorithm. Since
∑

Oi
Pnn(Oi, q) ≤ 1, tightening

the bounds of one object affects the bounds of other objects.
We are unaware of how much an object Oi affects other ob-
jects before actually tightening the bounds of Pnn(Oi, q).
We cannot thus ideally order objects for processing in a de-
terministic way (similar to selective predicates with depen-
dencies [23]). Consequently, we choose to process objects in
Pnn(Oi, q) order, following the upper-bound principle, which
is widely-used in optimal top-k algorithms [10].

We now formulate Find-Topk-PNN, a search algorithm to
find Topk-PNN query answer, while optimizing the total
cost based on Definition 3.7. The details are given in Algo-
rithm 2. The algorithm maintains an object priority queue
Q based on Pnn(Oi, q). The queue is initialized with the
virtual object φ. At each step, the algorithm removes Q’s
top object Ot (line 5). If the top object happens to be φ,
a new object Ol is retrieved in min-dist order, its bounds
are computed, and it is inserted in Q (lines 7-9). If Ot 6= φ,
we identify the subregion Rti with the highest-rank in Ot

(line 11). If Rti is an outer subregion, a new object is re-
trieved to split Rti (lines 12-14). Alternatively, if Rti is
an inner subregion, Rti is split as discussed in Section 3.2
(line 15). New bounds of Pnn(Ot, q) are computed and Ot

is re-inserted in Q (line 17). An object O∗ is reported once
Pnn(O∗, q) is greater than upper-bounds of all other objects
in Q including φ (lines 18-21). The algorithm terminates
upon reporting k objects.

Figure 4 illustrates Algorithm Find-Topk-PNN using an
example. In Figure 4(a), O1, the first object in min-dist
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Algorithm 2 Find-Topk-PNN (O:database, q: query
point, k:answer size)

1: Create a priority queue Q based on Pnn(Oi, q)
2: Add φ to Q, with bounds [0,1]
3: reported← 0
4: while (reported < k) do
5: Ot ← remove top object in Q
6: if (Ot is φ AND not all objects are retrieved) then
7: Ol ← next object in O based on min-dist to q
8: bounds(Ol)← use Equations 7 and 8
9: Add Ol to Q
10: else
11: Rti ← highest-rank subregion in Pt (Section 3.3)
12: if (Rti is an outer subregion AND not all objects are

retrieved) then
13: Retrieve next object Ol, compute its bounds and add

to Q
14: end if
15: Split Rti into two subregions (Section 3.2)
16: end if
17: Update bounds of Ot, re-insert Ot into Q
18: O∗ ← peek at top object in Q
19: if (∀Oi ∈ Q, Oi 6= O∗ : Pnn(O∗, q) > Pnn(Oi, q)) then
20: Report O∗, and remove it from Q
21: reported← reported + 1
22: end if
23: end while

O1

O2

R11R12

R2

(a) (b)
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R11

R14

R22

R13

R21
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O2

R11

R14

R22

R13

R21qq

O3

Figure 4: Find-Topk-PNN Processing Steps

order, is partitioned based on min-dist between the next
object O2 and q. Assume that O1 has the highest Pnn(Oi, q),
and that R12 is its highest-rank subregion, we thus need
to partition R12. In Figure 4(b), partitioning R12 involves
retrieving another object O3, which splits R12 into R13 and
R14, and O2 into R21 and R22. In Figure 4(c), assume that
the next object to be processed is O1 again and that R13 has
the highest rank. Now, we further partition R13 without
retrieving a new object. The algorithm continues to find
query answer.

4. UNCERTAIN QUERY, UNCERTAIN
DATA

We discuss how to extend our techniques to allow uncer-
tainty in both the query and data objects.

4.1 Computing Probability Bounds
We extend our lazy bound refinement procedure (Sec-

tion 3.2) to consider uncertain query object. We start by
describing object partitioning.

For a data object Oi and a query object q, let partition Pi

denote a set of subregion-pairs (Rij , Rqs), where Rij ⊆ Ri

and Rqs ⊆ Rq, such that the distinct Rij ’s in pairs in Pi

are disjoint and totally cover Ri, and similarly the distinct
Rqs’s in pairs in Pi are disjoint and totally cover Rq. That
is, Pi is the cross-product of individual partitions of Oi and
q. The subregions in each pair are defined as rectangles. For

O1

R11

R12 R13

R14q
D

Rq1Rq2

Rq3 Rq4

q

q4

O2

Figure 5: Partitioning Subregion Pairs
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example in Figure 5, (R11, Rq1) is a pair of subregions in P1

(shown as shaded rectangles). In the same figure, P1 con-
tains a total of 16 pairs. The partition of q may be different
with different data objects. For example in Figure 5, O1 may
use the partition {Rq1, . . . , Rq4}, while O2 uses the partition
{Rq}. We thus have (R11, Rq1) ∈ P1 and (R2, Rq) ∈ P2. We
show how to lazily construct these partitions in Section 4.2.

The justification of the above partitioning method is that
when q is uncertain, rectangular subregions facilitate com-
puting the minimum and maximum distances among ob-
jects, as widely-used in classical NN techniques, e.g., [14].

Given the above partitioning scheme, we extend our
bound computation procedure as follows:

Pnn(Oi, q|Pi) =

Pr(Oi) ·
∑

(Rij ,Rqs)∈Pi

Pr(Rij).Pr(Rqs).
∏
k 6=i

Fk(Rqs, d(Rqs, Rij))

(13)

where Fk(Rqs, dist) is computed as follows:

Fk(Rqs, dist) = Pr(d(Ok, Rqs) > dist ∨ ¬Ok)
= Pr(Ok) · Pr(d(Ok, Rqs) > dist) + Pr(¬Ok)

(14)

The lower-bound in Equation 13 is correct due to the fol-
lowing inequality:

∀x ∈ Rij , y ∈ Rqs :

Fk(y, d(x, y)) ≥ Fk(Rqs, d(x, y)) ≥ Fk(Rqs, d(Rqs, Rij))

(15)

We use Minkowski sum [3] to limit the integration area in
Fk(Rqs, dist). The Minkowski sum of two areas results from
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summing every point in the first area with every point in
the second. That is, Minkowski sum(A, B) = {x + y|x ∈
A, y ∈ B}. Let M be a Minkowski sum defined over Rqs

and a circle centered at (0,0) with radius dist. For ex-
ample, in Figure 6(a), we show the Minkowski sum for
subregion-pair (R11, Rq1), where dist = d(R11, Rq1). For
any point x outside M , we have d(x, Rqs) > dist. Thus,
we find the value of Fk(Rqs, dist) by integrating the den-
sity function fk outside M . For example, in Figure 6 (a),
F2(Rq1, d(Rq1, R11)) = Pr(O2) ·

∫
A2

f2(x) dx + Pr(¬O2).

Similar to the case of deterministic query point, we define
an upper-bound of Pnn(Oi, q) as follows:

Pnn(Oi, q|Pi) = Min(1−
∑
j 6=i

Pnn(Oj , q|Pj), Pnn
∗
(Oi, q|Pi))

(16)

where Pnn
∗
(Oi, q|Pi) is computed as follows:

Pnn
∗
(Oi, q|Pi) =

Pr(Oi) ·
∑

(Rij ,Rqs)∈Pi

Pr(Rij) · Pr(Rqs) ·
∏
k 6=i

Fk(Rqs, d(Rqs, Rij))

(17)

where Fk(Rqs, dist) is computed as follows:

Fk(Rqs, dist) = Pr(d(Ok, Rqs) > dist ∨ ¬Ok)

= Pr(Ok) · Pr(d(Ok, Rqs) > dist) + Pr(¬Ok)
(18)

The correctness of the upper-bound given by Equation 17
can be proved similar to the correctness of lower-bound. We
compute Fk(Rqs, dist) by integrating the density function fk

outside S, where S is defined using four arcs with radii equal
to dist, and the center of each arc is the furthest opposite
corner of Rqs. For example, Figure 6(b) shows the four
arcs drawn from the corners of Rq1 with radii dist. For any
point x outside S, we have d(x, Rqs) > dist. For example, in
Figure 6(b), we compute the value of F2(Rq1, d(Rq1, R11))
as Pr(O2) ·

∫
A2

f2(x) dx + Pr(¬O2).

4.2 Refining Objects’ Partitions
Refining a partition Pi has to take into consideration

query uncertainty. We extend our definition of inner/outer
subregions as follows. Let Ol be the last retrieved object.
We call a subregion-pair (Rij , Rqs) inner if d(Rij , Rqs) ≤
d(Ol, q), otherwise we call it an outer subregion-pair. Defi-
nition of inner and outer subregions in this case allows us-
ing retrieved objects for bound computation in Equations 13
and 16 based on the same discussion in Section 3.2.

Splitting an outer subregion-pair. Splitting an outer
subregion-pair (Rij , Rqs) is performed upon retrieving a new
object Ol+1 based on min-dist order. To generate a smaller
inner subregion-pair (Ŕij , Ŕqs) from this split, we need to

select the split location such that d(Ŕij , Ŕqs) ≤ d(Ol+1, q).
Any circle with diameter less than or equal to d(Ol+1, q)
intersecting with both Rij and Rqs can be used for such

splitting. Such circle would enclose the new subregions Ŕij

and Ŕqs (e.g., the dotted circle in Figure 5. There is po-
tentially an infinite number of circles that satisfy these two
requirements. Our strategy is to find a split that maximizes
the probability of the resulting inner subregions in order to
maximize their effect on the bounds (Section 3.2).

We heuristically obtain such split by locating two points
along the line that connects the farthest points of Rij and

O1 O21 2

A1 A2

A3A4

Q
O3

O4

Figure 7: Voronoi Diagram for Uncertain Query

Rqs such that the distance between each point and the line’s
midpoint is equal to d(Ol+1, q)/2. The obtained points rep-
resent the two ends of a diameter for the circle used for
splitting. For example, Figure 5 shows how to split (R1,Rq)
based on object O2. We obtain one inner subregion-pair
(R11, Rq1), and 15 outer subregion-pairs which are the com-
binations of other subregions in R1 and Rq.

Splitting an inner subregion-pair. Splitting an inner
subregion-pair (Rij , Rqs), is performed by extending our
middle distance method (Section 3.2). Specifically, we se-
lect the subregion (either Rij or Rqs) that has the larger
density, and split it at the middle of its largest dimension.
The intuition is to decrease the difference between the min-
imum and maximum distances between Rij and Rqs, and
thus allow for obtaining tighter bounds.

5. UNCERTAIN QUERY, CERTAIN DATA
In this section, we discuss answering Topk-PNN queries

when data objects have deterministic attributes and certain
membership (i.e., Pr(Oi) = 1,∀Oi ∈ O), while the query ob-
ject is uncertain. For example, in Figure 7, the data objects
are represented by points in the space, while the query ob-
ject is bounded by the uncertainty region Rq which is shown
as a solid rectangle. Based on this setting, Pnn(Oi, q) is com-
puted as follows:

Pnn(Oi, q) =

∫
Rq

fq(x) ·
∏
j 6=i

Fj(x, d(x, Oi)) dx (19)

where Fj(x, dist) = 1 if d(x, Oj) > dist, and 0 otherwise.
To compute Pnn(Oi, q), we propose an efficient algorithm

based on Voronoi diagram [2], which is widely-used in (re-
verse) nearest neighbors queries. A Voronoi diagram divides
the space into disjoint cells, each of which is associated with
one object Oi such that Oi is the NN to any point in this
cell. For example, each one of the four objects shown in
Figure 7 exists in a separate subregion of the space.

Therefore, the NN to q would be Oi whenever q resides in
the area Ai, which is the intersection of Rq and the Voronoi
cell of Oi. Hence, Pnn(Oi, q) = Pr(q ∈ Ai) =

∫
Ai

fq(x)dx.

Voronoi diagram can be constructed off-line for stationary
data objects [2]. We show how to answer Topk-PNN queries
under these settings. We limit the number of retrieved ob-
jects by using an index over data objects (e.g., R-tree) to
prune any object whose minimum distance to q is greater
than the maximum distance between q and some other ob-
ject. We compute Pnn(Oi, q) for retrieved objects by sim-
ple integration of fq(.) over each subregion Ai of Rq. We
maintain a virtual object, φ, that represents non-retrieved
objects, where Pnn(φ, q) = 1 −

∑
i Pnn(Oi, q). We update
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Pnn(φ, q) when an object is retrieved. An object O∗ is re-
ported if Pnn(O∗, q) is greater than all other Pnn(.) values as
well as Pnn(φ, q). The algorithm terminates when k objects
are reported.

6. EXPERIMENTS
In addition to Algorithms Find-Topk-PNN and

IO-Centric, we implemented the following algorithms
for performance comparison:

• CPU-Centric: A variant of Find-Topk-PNN that opti-
mizes CPU cost only by loading all objects that survive
spatial pruning (Section 1) into memory, and tighten-
ing their bounds lazily until query answer is reported.

• Baseline [7]: An algorithm that filters objects using
spatial pruning, computes the exact Pnn(.) values for
all objects, and returns the top-k objects. The com-
putation of Pnn(.) values is improved by restricting
integration to the overlapping areas of objects.

• Probabilistic Verifiers [6]: A threshold-based
probabilistic NN algorithm. The algorithm filters ob-
jects using spatial pruning, then partitions objects into
subregions that are used to bound objects’ Pnn(.) val-
ues. If computed bounds do not allow termination,
nested integration is used per each subregion to com-
pute exact probabilities.

• Find-Threshold-PNN: A threshold based version of Al-
gorithm Find-Topk-PNN that reports all objects whose
Pnn(.) values are above a given threshold τ . We extend
Algorithm 2 as follows. The stopping criterion (line 4)
is modified so that the algorithm terminates when the
object Ot on the top of the queue has Pnn(Ot, q) below
τ , since in this case no other object can have Pnn(.)
value above τ . The answer reporting criterion (line
19) is modified such that an object O∗ is reported,
and removed from Q, if Pnn(O∗, q) is above τ .

We compare our techniques to Algorithms CPU-Centric

and Baseline. We additionally compare between Al-
gorithms Find-Threshold-PNN and Probabilistic

Verifiers. We use real and synthetic data in our
comparisons. Our performance metrics are query response
time, and the number of retrieved objects.

6.1 Experimental Setup
All experiments are conducted on a SunFire X4100 server

with 2.2GHz processor, and 2GB of RAM. We used an open
source R*-tree implementation [13] to index the bounding
rectangles of objects. Objects are retrieved in min-dist order
using best-first tree traversal. An object PDF is represented
as a histogram of 300 bins indexed using an aggregate R-
tree [17] which allows efficient density aggregation.

We used ‘Los Angeles’ dataset, a real dataset available
in [1], with 60K geographical objects described by ranges
of longitudes and latitudes. We used Uniform and Nor-
mal distributions as the objects’ PDFs. For Synthetic data,
we generated data objects in a 2-dimensional grid of size
1000× 1000. The PDFs fi’s can be either uniform, normal
or skewed, where skewed PDFs are generated by shifting the
mean of a normal distribution based on a skewness param-
eter ∈ [−1, 1], and normalizing the resulting distribution.

Positive skewness means that PDF is biased towards q, while
negative skewness means that PDF is biased away from q.
We additionally truncate unbounded PDFs (i.e., normal and
skewed) such that the probability of the truncated region is
less than 0.003. The truncated PDFs are then normalized.
Our problem parameters are the following:

• Number of Objects: The number of objects ranges
from 100,000 to 300,000 (default is 100,000).

• Size of Objects: The size of each object ranges from
10× 10 to 100× 100 (default is 100× 100).

• Data Distribution: We experimented with uniform,
normal, positively skewed and negatively skewed ob-
jects’ PDFs (default is normal).

• Source of Uncertainty: We experimented with (1) cer-
tain query object and uncertain objects with certain
membership (CQ,UO), (2) certain query and uncer-
tain objects with uncertain membership (CQ,UEO),
and (3) uncertain query and uncertain objects with
certain membership (UQ,UO) (default is (CQ,UO)).

• k: The value of k changes from 1 to 10 (default is 1).

In each experiment, we change the value of one parameter,
while setting all other parameters at their default values.

6.2 Algorithms General Behavior
In general, IO-Centric retrieves the least number of

objects among all algorithms, followed by Find-Topk-PNN.
However, IO-Centric has slower running time than
Find-Topk-PNN in most cases since IO-Centric only min-
imizes the I/O cost. If the number of retrieved objects is
significantly small, e.g., PDFs with positive skewness as
in Figure 11, IO-Centric incurs almost the same cost as
Find-Topk-PNN, since both algorithms process a few objects.

CPU-Centric is more efficient when most data objects
need to be retrieved, e.g., (UQ,UO) in Figure 12 and
Skewed(-1) distribution in Figure 11, since in this case
CPU-Centric benefits from ignoring the overhead of schedul-
ing object retrievals. Find-Topk-PNN has the best running
time in almost all experiments, since it takes into consider-
ation the combined cost of CPU and I/O.
Baseline is typically an order of magnitude slower

than Find-Topk-PNN. For example, for 100,000 objects
in Figure 10, Baseline terminates in 2063 seconds, while
Find-Topk-PNN terminates in 141 seconds. The main rea-
son is the significant computational overhead incurred in the
full integral evaluation.

Figure 10 shows that increasing the number of ob-
jects does not severely degrade the performance of
Find-Topk-PNN. For example, tripling the number of ob-
jects from 100,000 to 300,000 results in less than one order
of magnitude increase in the running time (from 141 to 885
seconds). Increasing the total number of objects has less
impact on the number of retrieved objects (went from 616
to 1750 objects in the same example).

6.3 Real vs. Synthetic Data
The running times of our techniques with real data (Fig-

ure 8(a)) is significantly smaller than the time with synthetic
data (Figure 9 (a)). The reason is that the majority of ob-
jects in the real data are scattered and hardly overlapping
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(each object covers less than 0.001% of the space), while
in the synthetic data, objects are heavily overlapping (each
object covers 10% of the space in default configuration).
Similarly, our techniques retrieve a larger number of objects
with synthetic data (Figure 10 (b)) since a large number of
objects are candidate answers. The inverse relationship be-
tween objects’ overlapping and query response time is also
illustrated in Figure 9, where the degree of overlapping is
controlled by varying object size in synthetic data.

6.4 Effect of Data Distribution
Figure 11 shows that the number of retrieved objects

is relatively small when objects’ distribution is positively
skewed (2 object retrieved by Find-Topk-PNN compared to
616 objects in the default configuration). This is due to
the fact that positively skewed PDFs increase Pnn(.) values
rapidly with a small number of retrievals. Consequently,
a rapid decrease in Pnn(φ, q) occurs, and both IO-Centric

and Find-Topk-PNN quickly terminate. CPU-Centric and
Baseline do not gain much from positive skewness since
they initially retrieve all candidate answers. Negatively
skewed PDFs result in relatively larger number of retrievals
for the opposite reason. For example, Find-Topk-PNN re-
trieves the same number of objects as Baseline in this case.

6.5 Effect of Uncertainty Source

Figure 12 (a) shows that the uncertainty of objects ex-
istence leads to increasing the running times. The reason
is that pruning objects based on spatial properties is not
applicable unless a retrieved object has a membership prob-
ability of 1, which results in a large number of retrievals as
shown in Figure 12 (b). This leads to significant increase
in the running times of Baseline and CPU-Centric since
they mainly depend on spatial pruning. For example, the
number of retrievals in these algorithms is 11299 objects
(11% of all objects) at (CQ,UEO), compared to 680 (0.6%)
at (CQ,UO). The running time significantly increases when
the query object is uncertain (UQ,UO). The reason is that
query uncertainty results in looser Pnn(.) bounds compared
to the deterministic query point, and hence, additional com-
putation is needed.

6.6 Scalability with k
Figure 13 shows the performance with different k val-

ues. The running times of Find-Topk-PNN, CPU-Centric,
and IO-Centric slightly increase with k, e.g., from 141 sec-
onds for k=1 to 309 seconds for k=10 in Find-Topk-PNN.
Baseline has the same running time for all k values since it
always computes the exact Pnn(.) values of all objects. The
number of retrieved objects in CPU-Centric and Baseline

are the same for all k values since they both avoid object
retrievals based only on spatial pruning.
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6.7 Comparison with Other Approaches
We compare Find-Threshold-PNN, our threshold-based

extension with Probabilistic Verifiers. Probabilistic

Verifiers resorts to expensive integration when objects
cannot be judged to be in query result based on their ini-
tial bounds. This approach shows longer running times
when compared to Find-Threshold-PNN in both synthetic
data (one order of magnitude difference in Figure 14(a))
and real data (Figure 14(b)). The difference in running
time is smaller (less than one second) with real data since
objects are hardly overlapping, and thus integration cost
is small. The running times of both algorithms decrease
when the threshold approaches 1, since high threshold val-
ues allow pruning large number of objects using their ini-
tial bounds, i.e., without performing expensive refinement.
Find-Threshold-PNN slightly outperforms Probabilistic

Verifiers w.r.t number of retrieved objects.
We also evaluate Find-Threshold-PNN with threshold

queries that allow a small error in the output as pro-
posed in [6]. That is, we also report any object Oi with
Pnn(Oi, q)−Pnn(Oi, q) < ∆ and Pnn(Oi, q) > τ . The value
of parameter ∆ represents the amout of error tolerance. We
show in Figure 15 the effect of varying ∆ on the performance
while we fix the probability threshold at 0.1. We note that
the running time of Algorithm Find-Threshold-PNN has im-
proved 35% when increasing ∆ from 0 to 0.25. On the other
hand, the Probabilistic Verifiers approach experienced
5% improvement for the same change in ∆. This observation
suggests that Algorithm Find-Threshold-PNN exploits error
tolerance more efficiently to decrease the running time. Our
explanation is that Algorithm Find-Threshold-PNN per-
forms lazy tightening of bounds only when stopping criteria
is not met and thus avoids unnecessary computations.

6.8 PDF Truncation Error
In this experiment, we study the effect of truncating the

objects’ PDFs (fi’s) on the accuracy of query results and
on the performance of our algorithms. We denote by ε the
value of the integral of fi over the truncated region. We vary
ε in the range [0.00005, 0.01]. All other problem parameters
are set to their default values, while k is set to 10.

To measure the accuracy, we compare the vector V of
ranked answers, computed at some ε ∈ [0.00005, 0.01], and

the vector V́ of ranked answers, computed at the mini-
mum ε = 0.00005, using two metrics: (1) Footrule(V, V́ ) =∑

Oi∈V |Rank(Oi in V ) − Rank(Oi in V́ )|, and (2)

FalsePositives(V, V́ ) = |{Oi : Oi ∈ V and Oi /∈ V́ }|.

(a) (b)

1100

1 3 5

Footrule Distance
False Positives

110

1

Find-Topk-PNN CPU -Centric
IO-Centric Baseline

0

50

100

150

200

250

0.00001 0.0001 0.001 0.01
ε

Ti
m

e 
(S

ec
)

0
2
4
6
8

10
12

0.00001 0.0001 0.001 0.01ε

N
um

be
r 

 o
f  

Er
ro

rs

Figure 16: Effect of PDF Truncation (a) Running Time

(b) Error

Figure 16 shows our results for different ε values. As ε
increases, the running time improves for all algorithms due
to the shrinkage of uncertainty regions, which leads to less
overlapping between objects. On the other hand, larger val-
ues of ε produce errors in results as we ignore larger regions
of PDFs. For example, going from ε = 0.00005 to 0.0005
reduces the running time of Algorithm Find-Topk-PNN from
91 seconds to 62 seconds and the number of retrieved objects
from 286 to 155, while introducing a single error.

7. RELATED WORK
Probabilistic NN queries have gained recent attention due

to emerging applications that involve uncertainty. In [7],
a probabilistic data model was proposed to capture ob-
jects with uncertain locations and certain membership. NN
queries are defined so that all objects with non-zero prob-
abilities of being the NN are reported, which is different
from Topk-PNN queries. Furthermore, the proposed spatial
pruning does not apply to the case of uncertain membership.

In [16], answering probabilistic NN queries using sampling
methods is studied. Both query and data objects can be
uncertain in this approach. The proposed algorithm also
detects the cases that can be solved based only on the spatial
properties of objects.

A recent approach has been introduced in [6] to solve the
problem of probabilistic NN by reporting all objects with
probabilities above a specific threshold, with a given er-
ror tolerance. The proposed algorithm goes through three
stages to determine whether an object is part of the query
answer or not. The first stage prunes objects based on their
spatial properties (similar to [7]). In the second stage, space
is divided into subregions based on the minimum and maxi-
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mum distances between objects and the query point. Lower
and upper bounds of Pnn(.) values are then computed using
coarse grained CDFs corresponding to the space partition-
ing to avoid performing nested integration. If the computed
bounds are not enough to terminate, nested integration is
incrementally performed over each subregion to compute its
exact contribution to the object’s Pnn(.) value. We contrast
and compare our algorithms to this approach in Section 6.

Another technique to answer probabilistic NN queries has
been proposed in [8], where objects are represented as de-
terministic points associated with membership probabilities.
However, the proposed model does not support uncertainty
in objects’ attributes.

Our formulation is similar to [24], where probabilistic top-
k queries are addressed using Monte-Carlo multi-simulation.
We refine probability bounds guided by a cost model, while
[24] adopts randomized refinement. Additionally, our prob-
lem involves correlations among Pnn(.) bounds of different
objects, while the bounds computed in [24] are independent.

A related problem is answering probabilistic range queries
[5]. The proposed model allows uncertain query and data
objects. Addressing NN queries under the same model raises
different challenges, as it involves not only the interaction
between each data object and the query object, but also the
interaction among objects.

PDF indexing methods (e.g., [28, 15]) can lower the cost
of integrating PDFs by storing PDF synopses to allow fast
pruning of objects that do not satisfy the query criteria. Al-
though these techniques are proven to be efficient in range
queries, they alone cannot provide efficient processing of
Topk-PNN queries. The reason is that the execution of
Topk-PNN queries is mainly influenced by the interaction
among objects’ PDFs. PDF indexing cannot directly be
used to resolve object overlapping, where nested integration
is needed (Section 2).

8. CONCLUSION
In this paper, we proposed a novel approach to efficiently

compute NN queries in probabilistic databases where data
and query objects are uncertain. We studied the I/O opti-
mality of different retrieval orders. We introduced a unified
cost model combining the I/O and CPU factors. We de-
signed efficient query processing algorithms to minimize the
total incurred cost. We also introduced extensions to our
methods to handle dependent objects and threshold queries.
Our experimental results show orders of magnitude perfor-
mance gain, compared to current methods.
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APPENDIX
A. EXTENSIONS
Handling Dependencies. Our previous discussion as-
sume independent objects. However, in some scenarios we
might have object dependencies. For example, in Exam-
ple 1.1, the locations of two cell phones could be correlated
such that their distance cannot exceed some value.

We show how to handle object dependencies in the follow-
ing setting. Assume a setting where objects are partitioned
into groups Gi’s, where objects in the same Gi are mutu-
ally exclusive such that Pr(Gm) =

∑
Oi∈Gm

Pr(Oi) ≤ 1,

Pr(¬Gm) = 1−Pr(Gm), and each object belongs to exactly
one group. This type of dependency can arise in scenar-
ios that involve uncertainty on objects’ identities due to the
unreliability of the sources of extracted information, e.g.,
low-quality images. For example, two isolated objects may
be suspected to be the same entity, such that only one of
them could be true, while the other is noisy data.

Let G−i be the set of groups excluding the group that con-
tains Oi. We next show how to compute bounds on Pnn(.)
values in this case.

Pnn(Oi, q|Pi) = Pr(Oi) ·
∑

Rij∈Pi

Pr(Rij)
∏

Gm∈G−i

FGm (q, d(q, Rij))

(20)

Pnn(Oi, q|Pi) = Min(1−
∑
j 6=i

Pnn(Oj , q|Pj) ,

Pr(Oi) ·
∑

Rij∈Pi

Pr(Rij)
∏

Gm∈G−i

FGm (q, d(q, Rij)))

(21)
where FGm (q, dist) = Pr(¬Gm) +

∑
Ok∈Gm

Pr(Ok) ·
Pr(d(q, Ok) > dist).

The above formulation takes into account exclusiveness
among objects by summing up the probabilities of group
members using the FGm(.) terms, and multiplying the prob-
abilities of different groups together, since there are no inter-
group dependencies.

Our incremental retrieval model applies to the above for-
mulation, since we can compute the bounds based on the
current set of retrieved objects only. As mentioned in Sec-
tion 3.2, we only include inner subregions when computing
lower bounds, and we include both inner and outer subre-
gions when we compute upper bounds.

Top-k Queries with Probabilistic Scores. The formu-
lations and techniques presented in this paper are in the
context of NN queries. However, our techniques can be
extended to solve other related problems. Specifically, we
consider top-k queries, where data objects have continuous
score distributions. The query semantics we support is to re-
port the k most probable top-1 answers. Such top-k queries
can be mapped to probabilistic NN queries by modeling ob-
ject’s score as 1-dimensional uncertainty region, enclosing
the possible score values, associated with the score density.
The query point for such NN query is a point located in
1-dimension at the maximum possible score.

B. PROOFS

B.1 Proof of Lemma 3.1
Let Ol ∈ Ó be the last retrieved object in Ó. For any Oi ∈

Ó, let lo(Oi) be as given in Equation 5. Assume that another
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lower-bound ĺo(Oi) > lo(Oi) exists. Assume that the next
non-retrieved object has a probability of 1 at d(Ol, q). In

this case, Pnn(Oi, q) = lo(Oi). Hence, ĺo(Oi) is an incorrect
bound.

Similarly, assume another upper-bound úp(Oi) < up(Oi),

where up(Oi) is given by Equation 6, for an object Oi ∈ Ó.
Assume that all non-retrieved objects have their minimum
distance to q greater than d(Oi, q). Hence, Pnn(Oi, q) =
up(Oi). Hence, úp(Oi) is an incorrect bound.

B.2 Proof of Theorem 3.2
Assume that A and IO-Centric have both retrieved

the same objects up to some object Ol. Assume that
IO-Centric has next retrieved the object Ol+1, while A has
next retrieved an object different from Ol+1. Since A can-
not rule out the possibility that Ol+1 might be a determin-
istic point with probability 1 located at distance d(Ol, q)
from q, A cannot increase the lower-bounds of Pnn values
computed at the point Ol is retrieved, otherwise incorrect
bounds would be assumed. Consequently, A cannot also
change the upper-bound on the Pnn value of φ computed at
the point Ol is retrieved. Hence, A cannot terminate before
retrieving Ol+1.

B.3 Proof of Theorem 3.3
Let D1 be a database instance where, after ending the

growing phase, the first non-retrieved object in min-dist or-
der, Ol, is a deterministic point with probability 1. Hence,
retrieving Ol leads to direct query termination, since all can-
didates would have exact Pnn values based on Equations 5
and 6. Any other retrieval order in D1 leads to query termi-
nation using at least one object, while min-dist order leads
to termination using exactly one object Ol.

The database instance D2 can be constructed by adjust-
ing the PDFs of non-retrieved objects such that retrieving
an object out of min-dist order leads to direct termination
of the query by sufficiently shrinking the up(.) values of can-
didates, while retrieving the next object in min-dist order
has a negligible effect on the candidates Pnn bounds, and
hence is not enough for query termination.

We illustrate the proof of Theorem 3.3 using the follow-
ing example. Consider a database instance D1, shown in
Figure 17 where objects have 1-dimensional uncertain at-
tributes. Assume that we break ties by favoring objects
with smaller identifiers. The growing phase ends after re-
trieving O1 and O2 (Pnn(O1, q) ∈ [0.4, 0.4], Pnn(O2, q) ∈
[0.24, 0.6]). In D1, the first non-retrieved object in min-
dist order, O3, is a deterministic point with probability 1.
Retrieving O3 leads to direct query termination, since all
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candidates would have exact Pnn values (i.e., Pnn(O1, q) ∈
[0.4, 0.4], Pnn(O2, q) = [0.24, 0.24]). Any other retrieval
order in D1, i.e. retrieving O4, does not lead to im-
mediate terminating (Pnn(O1, q) = [0.4, 0.4], Pnn(O2, q) ∈
[0.24, 0.564]). On the other hand, consider the database
instance D2 as shown in Figure 18. Similar to D1, the
growing phase ends after retrieving O1 and O2. Re-
trieving an object in min-dist order, i.e. O3, does not
lead to termination (Pnn(O1, q) = [0.4, 0.4], Pnn(O2, q) ∈
[0.24, 0.564]). However, retrieval of O4 leads to direct ter-
mination (Pnn(O1, q) = [0.4, 0.4], Pnn(O2, q) = [0.24, 0.24]).

B.4 Proof of Theorem 3.6
Assume that P2

i is obtained by replacing Rij ∈ P1
i with

{Rij.l; l = 1 . . . m}. It follows that d(Rij , q) ≥ d(Rij.l, q).
Therefore, Fk(q, d(q, Rij)) ≤ Fk(q, d(q, Rij.l)) for any object
Ok 6= Oi. Based on Equation 9 and since

∑
Rij.l

Pr(Rij.l) =

Pr(Rij), It follows that (1) is true.
Similarly, d(Rij , q) ≤ d(Rij.l, q). Therefore,

Fk(q, d(q, Rij)) ≥ Fk(q, d(q, Rij.l)) for any object
Ok 6= Oi. Based on Equation 10, it follows that∑

Rij∈P2
i

Pnn(Rij , q) ≤
∑

Rij∈P1
i

Pnn(Rij , q). In ad-

dition, the value of 1 −
∑

j 6=i Pnn(Oj , q|Pj)) does not
change when object Oi is partitioned. Therefore, based on
Equation 11, (2) is true.

C. EVALUATING REFINING HEURISTICS
Our lazy bound refinement procedure refines object’s par-

tition by selecting the subregion with the highest rank and
splitting it at its middle distance to q. We show here that
the convergence rate of this heuristic to the exact integral
value is comparable to the optimal refinement method. The
optimal split location is found by conducting an exhaustive
search over all possible split locations, and picking the loca-
tion that results in tightening Pnn(.) bounds the most. We
additionally compare to a randomized strategy that splits a
subregion at a random point.

Figure 19 shows the convergence of the three methods to
the exact integral value with different data configurations.
We plot the average width of the intervals that represent the
Pnn(.) bounds of all objects against the number of refine-
ment steps. We use CPU-Centric to study the convergence,
since we focus only on the efficiency of computation. The
convergence rates of all methods are noticeably close. The
convergence rate of our middle-distance heuristic is better
than the randomized heuristic. Optimal refinement leads to
the smallest number of steps where each step is much expen-
sive than both heuristics. Thus, the overall cost of the opti-

mal refinement is actually much higher, which makes using
the optimal refinement unjustifiable as other heuristics pro-
vide close convergence rate at a significantly smaller cost.
For example, with Normal distributions, middle-distance
heuristic terminates in 367 seconds, while the optimal re-
finement terminates in 3092 seconds.
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