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ABSTRACT 

Immortal DB is a transaction time database system designed to 
enable high performance for temporal applications. It is built into 
a commercial database engine, Microsoft SQL Server.  This paper 
describes how we integrated a temporal indexing technique, the 
TSB-tree, into Immortal DB to serve as the core access method. 
The TSB-tree provides high performance access and update for 
both current and historical data.  A main challenge was integrating 
TSB-tree functionality while preserving original B+tree 
functionality, including concurrency control and recovery. We 
discuss the overall architecture, including our unique treatment of 
index terms, and practical issues such as uncommitted data and 
log management. Performance is a primary concern. To increase 
performance, versions are locally delta compressed, exploiting the 
commonality between adjacent versions of the same record.  This 
technique is also applied to index terms in index pages. There is a 
tradeoff between query performance and storage space.  We 
discuss optimizing performance regarding this tradeoff throughout 
the paper. The result of our efforts is a high-performance 
transaction time database system built into an RDBMS engine, 
which has not been achieved before. We include a thorough 
experimental study and analysis that confirms the very good 
performance that it achieves. 

1 INTRODUCTION 

1.1 Overview 
Transaction time database systems [21, 42] provide access to both 
current and historical information, and have many important 
applications. Temporal functionality is of increasing interest to 
database customers for auditing, legal compliance, trend analysis, 
etc. We have built a transaction time database system to provide 
access to both current and historical data.  Our system, Immortal 

DB [26, 27], uses versions to support both "as of" queries to 
access data at an arbitrary time in the past and snapshot isolation 
[6], which requires access to recent versions.  We believe that 
poor access performance for historical data has impeded the 
adoption of temporal functionality.  Layering temporal support on 

top of a database system is cumbersome and typically is not 
practical [43].  For that reason, we have implemented Immortal 
DB inside an RDBMS engine, by modifying the SQL Server 
storage engine [40].   Insert/update/delete actions never remove 

information.  Rather, these actions add new data versions, thus 
maintaining a complete, query-able history of database states. 

We have extended our Immortal DB prototype [27] to use the 
TSB-tree [28] as an integrated index for accessing both current 
and historical versions of data.  This enables it to provide 
logarithmic (in the number of versions) access to all versions of 
record.  Further, range query performance, after the initial 
logarithmic probe, is linear in the size of the range.  Our TSB-tree 
is derived from SQL Server’s B+tree implementation and uses its 
concurrency control and recovery framework.   Although based on 
SQL Server, our approach is more widely relevant as SQL 
Server’s B-tree has a fairly standard architecture.  

Other B-tree variants index multiversion data, e.g. the MVBT [5] 
and WOB-tree [13]. We use a TSB-tree variant primarily because 
it migrates historical data from a current data store to a historical 
store during node splitting.  This is important.  It preserves the 
performance of current queries as current data can remain 
clustered on high performance media.  We can then move 
historical data to independent and less expensive slower disks and 
even WORM storage. Both MVBT and WOB-tree leave historical 
data in place and move current data during node splits.  

Our TSB-tree performs both key splits, like a B+tree, and time 
splits.  Time splits are required to index both by key and by time.  
To ensure that the density of records within a range has a good 
guaranteed minimum for all “as of” queries, we always time split 
[13] before we key split.  This will be described in more detail, 
along with how we use a utilization threshold to control the choice 
between making a pure time split and doing a time split followed 
by a key split.  This minimum version density guarantees that the 
cost for any “as of” range queries is linear in the number of 
records within the range [5].  

Performance is further enhanced by compressing historical 
versions, both of data records and of index terms.  We use a form 
of delta compression that is derived from the undo log record 
structure used in SQL Server.  All data is compressed only locally 
within a page so that it may be uncompressed by accessing 
information only within the same page upon which it resides.  

1.2 Immortal DB System 
Immortal DB supports databases with multiple versions of data.  
When a transaction committing at time Ti inserts a new data 
record into the database, Immortal DB creates a version of the 
record with a timestamp Ti that indicates the beginning of the 
version lifetime.  Each subsequent update creates another version 
of the data that is inserted into the database, marked with its 
timestamp, say Tj (Tj > Ti), indicating its start time. The prior Ti 
version of data implicitly then has an end time of Tj.  A delete 
produces a special new version, called a “delete stub”, that 
indicates when the record was deleted, and hence it provides an 
end time for the last version of the record. Record versions are 
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immutable (are never updated in place).  A record version is 
linked to its immediate predecessor version via a version chain. 
The Immortal DB prototype [26, 27] provides transaction time 
functionality via a collection of modest changes to SQL Server.  
SQL DDL syntax. A transaction time table is specified via an 
“IMMORTAL” attribute in the table create statement.   SQL 
Server already supports an alter table statement to turn on 
snapshot versioning. 
Query syntax. An “AS OF” clause added to the transaction 
statement specifies queries on historical data.  A “SNAPSHOT” 
clause already exists in SQL Server to indicate snapshot isolation 
queries [6, 40].  
Commit processing. Version timestamps are chosen at 
transaction commit and are lazily posted to versions after commit.  
Timestamps are consistent with serialization order [7, 22, 31].  
Page manager. A page is organized as a slotted array of records, 
with the most recent record version pointed to directly by an array 
entry.  Older versions of the record are chained together within a 
page in the order of their create time.  
Record Format. Each relational tuple has 14 bytes appended at 
the end that contains versioning information.  This includes a 
timestamp, a sequence number, and a version chain pointer.   
Recovery manager. New log operations are defined to enable 
recovery redo and undo of the “versioned” updates required for 
transaction time support. 
Storage manager. Growing the number of unique records is 
accommodated via key splitting, which is done via modification 
of the existing B+tree key splitting already in SQL Server.  New 
pages are acquired via time splitting to permit the space for 
versions to grow.  
 

Earlier, only indexing by key to a current version was supported.  
Historical versions were found by searching back a linked list of 
versions, across multiple pages if needed [27].  Further, each 
version consisted of the entire uncompressed record.  This made a 
record version very simple, at the expense of storing data from 
one version to the next that was unchanged by an update.  

1.3 Time Split B+tree 
The first focus of this paper is the integrated indexing of historical 
and current records, by both key and by time, into Immortal DB  
using the Time Split B+tree, or TSB-tree [28].  Given the 
performance results reported in [29], we expected performance to 
be quite good.  We chose to use the WOB-tree splitting strategy 
[13] because using it guarantees that the storage utilization for any 
version on a page is always greater than a minimum value equal to 
half the storage threshold used to determine when to key split a 
page [5].  This strategy involves always doing a time split 
immediately prior to doing a key split, without intervening 
updates. 

A time split is a special form of page split.  Consider a collection 
of versions of records.  Record versions span time intervals.  
Almost always  a split time choice will cross the interval 
representing the lifetime of some version.  In particular, when we 
use the WOB-tree splitting strategy, we always split data pages at 
current time.  All records alive at current time have their lifetimes 
"split" by this strategy. The TSB-tree index partitions key-time 
space into rectangles where all versions with records in the key 
range that have lived within the time range defined by the page 
must be on the page.  This can only be accomplished by having 
the versions with lifetimes that cross the split time appear in both 
the resulting pages.   

A TSB-tree time split posts an index term describing the split to 
the parent index page.  This requires changing the format of 
B+tree index pages, as we previously changed the format of 
B+tree data pages.  It further requires that we time split index 
pages as well as key splitting them.  Index page splits, though 
identical in concept, are subtly different from data page splits.    

1.4 Compression 
In the past several decades, disk costs have been dropping rapidly.  
Nonetheless, disks still constitute a significant portion of database 
management cost, not only for the hardware, but also for the 
human labor cost of managing it.  Further, range query 
performance depends upon the density of records (records per 
page accessed) for the version of interest.  This record density is 
reduced compared to non-versioned databases due to the existence 
of multiple versions of records in the same page.  This is 
especially important when the historical versions share a page 
with the current versions, as accessing current time data is more 
frequent than accessing any given historical time data.  
Compressing versions is thus important for both reducing storage 
costs and for improving query performance.  

1.5 Our Contributions 
The contributions of this paper can be summarized as follows: 
1. We integrate a temporal index (TSB-tree) into a commercial 

database system by adding TSB-tree functionality to the SQL 
Server B+tree, while preserving B+tree functionality for 
backward compatibility.  Importantly, accessing current data 
is largely done via existing B+tree code.  In this effort, we 
deal with technical issues such as concurrency control, 
recovery, handling uncommitted data, and log management. 

2. We detail our unique designs of version chaining and treating 
index terms as versioned records to achieve the TSB-tree 
implementation with backward compatibility with B+tree. 

3. We describe the tradeoff between query performance and 
storage space. We explain how to control this tradeoff 
through a parameter and discuss our designs to optimize the 
performance regarding the tradeoff throughout the paper. 

4. We implement a data compression scheme in the TSB-tree.  
Our compression reduces substantially the storage needed for 
preserving historical data.  For efficiency, all compression 
and decompression is local to a page. 

5. We present experiments confirming gains that are achieved, 
both for storage utilization and range search performance. 
Compression improves range search by reducing the number 
of data pages that need to be accessed.  Our analysis gives a 
simple, intuitive picture that explains our results and can 
predict performance under different conditions.   

1.6 Paper Overview 
The rest of this paper is organized as follows.  How data pages in 
the TSB-tree are organized and split is discussed in Section 2.  
Section 3 extends our design to index pages of the TSB-tree and 
describes the index page splitting strategy.  Section 4 covers the 
compression scheme used on data pages and index pages. Once 
one can index by both time and key, it is storage utilization that 
largely determines any extra cost compared to a non-versioned 
database. This is true for both storage cost and for range query 
performance, which depends upon how many pages are accessed.  
Section 5 describes our analysis and experiments which confirm 
that compressing records has an enormous positive impact on both 
these costs.  We briefly survey related work in Section 6, and 
conclude the paper with a short discussion in Section 7.  
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2 DATA PAGES  

2.1 Data Page Version Support 
Immortal DB bases its data page layout on the now standard 
slotted page organization also used by SQL Server.  An Immortal 
DB page is illustrated in Figure 1.  Each entry in the slot array 
points to a data record that is the latest version of the record on the 
page.  Every record version is linked to its immediate predecessor 
version to form a version chain. When the page contains current 
data, the latest record is either the last committed version of the 
record or an uncommitted version from a still executing 
transaction.  Data manipulation operations do the following. 

• Insert: An insert produces a record that is directly referenced 
by a slot in the slot array, records with higher keys being 
moved up one slot to make room for the insert.  The newly 
inserted record's back pointer is set to null.   

• Update: An update produces a new version for an existing 
record.  The slot for the version is updated to point to the 
new version.  The new version's back pointer references the 
version that had been current prior to the update. 

• Delete: A delete is handled like an update in that a new 
version is created and linked into the chain of versions at its 
start.  But this new version is special and is called a delete 

stub.  The delete stub is marked as a "ghost", a SQL Server 
feature that makes the version invisible to ordinary queries. 

Each of the operations here is logged with special log records 
signifying “versioned” operations.  If a system failure occurs, the 
redo operations will ensure that any missing versions are restored, 
while the undo operations will remove uncommitted versions, and 
update the slots to reference the earlier version. 

Version chaining is important for two reasons.  (1) It provides 
backward compatibility with B+tree.  For current time queries, the 
existing SQL Server code sees what looks like an unversioned 
page, since it only accesses record versions pointed at directly by 
the slot array.  Thus, the unchanged B+tree access method read 
continues to work when versioning is provided.  (2) It makes it 
easier to find ancestor versions when performing historical 
searches, key splits and compression, which are explained later. 

We use the deleted record, with a timestamp that is the delete time, 
as a delete stub so that the key, which may be multiple fields, can 
be easily found when looking for historical records on the page, 
without the SQL Server kernel needing to decode fields of the 
record.  The delete stub is marked as a "ghost" record and ghosts 
are ignored during queries.  The immediately prior record version 
is the full deleted version with version start time as its timestamp, 
hence correctly representing the version and its lifetime.  When a 
data page is time split, which uses current time, we remove delete 
stubs from the current page since the records whose ends they are 
marking are no longer in the current page.   

2.2 Data Page Splitting 
The TSB-tree does both key splits, which are similar to key splits 
in the B+tree, and time splits. For time splits, versions whose end 
times are before the split time are moved to the historical page.  
Versions with start times later than the split time are put in the 
current page. Because versions have interval time extents, 
versions that span the time chosen for the split must be present in 
both of the resulting pages. Readers are referred to [28] for details 
on these operations. We focus more on performance tradeoffs and 
handling uncommitted data in this subsection.  

 

Figure 1: Data page layout with uncompressed versioned data. 

One point to stress is that when a page is time split, we create a 
new page for the historical data.  The original page remains the 
current page.  This assignment of pages makes it possible to 
progressively move historical data to a different medium, e.g. a 
different disk [26,32].  This is different from structures such as the 
MVBT [5], which makes the new page for the current data. 

2.2.1 Splitting Policy Threshold 
We control the version density via a key splitting threshold.  That 
is, we do not split a data page by key until the utilization achieved 
by the current data reaches a threshold.  There are some subtleties 
involved and we need to answer the question of why this 
threshold should not be 100% (or indeed too close to 100%). 

Whenever a data page fills up, it is split.  We need to decide 
whether the split is a time split, a key split, or both.  Immortal DB 
never does an isolated key split.  In Immortal DB, if a key split is 
needed, we always perform a time split before it, which we call 
the WOB-tree split policy [13].  This policy ensures that any 
version (as seen by an as-of query) has at least a minimum storage 
utilization [5].  So our choice is between a time split by itself and 
a time split followed immediately by a key split.  This choice is 
controlled by the current version utilization in the page being split. 

We define single version current utilization for a page (SVCUpage) 
as the size of the page's current data divided by the page size (both 
in bytes).  We specify a threshold value Thresh for this utilization 
to control page splits.  If, when a page fills completely, 
SVCUpage > Thresh then we do a key split after a time split.  
Otherwise, we perform only a time split.  We control the tradeoff 
between the space required to store versions and the storage 
utilization seen by as-of queries via Thresh. The higher the value 
of Thresh the more pure time splits are done, the lower the value, 
the more often key splits are done as well as time splits. 

2.2.2 Version Redundancy 
We always split at the current time Tcurr.  This requires that all 
committed versions, current and historical, of the original page be 
present in the newly created historical page since they all have 
start times earlier than the current time.  This new historical page 
is then written to a separate storage partition that holds the 

dynamic slot array  

1 slot = 2 bytes  0 1 

page header: 96 bytes including: 
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historical data.  The original page, continuing as the current page, 
is then updated by removing historical versions because their end 
times are earlier than the split time. This leaves only the last 
committed version of each record along with any uncommitted 
versions in the current page.   

Thus, current committed versions appear in both the historical 
page and the current page, since their lifetimes cross the time 
boundary chosen for splitting the page, i.e. the current time.  The 
more frequently a page is time split, the more redundant versions 
are introduced.  Thus, if key splitting is delayed excessively, 
many record versions might appear redundantly in one, two, or 
more data pages as the result of time splitting. 

By setting our key splitting threshold below 100%, we permit data 
pages to be split at an earlier time.  The lower the threshold is, the 
fewer the redundant record versions are.  However, as we reduce 
this splitting threshold, we also reduce the storage utilization of 
the current data (SVCU).  Thus, there is a trade-off between how 
much redundancy is introduced and how large SVCU is. 

The original TSB-tree study [29] suggested a threshold of 0.67, 
which means that the utilization of any version (versions being 
defined by selection of an as-of time) will be at least 0.67 of the 
utilization were we not supporting multiple versions.  We make 
this more precise in Section 5 on storage utilization. 

2.2.3 Uncommitted Data 
There may be several records on a data page that are being 
actively updated and hence have uncommitted versions as their 
latest versions at the time when a page becomes full.  These 
uncommitted records do not have lifetimes that cross the time 
boundary used to split a full page.  Nonetheless, they will appear 
in both resulting pages.  Why? 

The uncommitted versions must appear in the current page 
resulting from the time split since this is the page in which the 
version lives if their transaction commits.  They appear in the 
historical page for a number of practical reasons. 

• A simple strategy of (byte) copying the current page to a 
newly allocated historical page copies these versions as well. 

• Our compression method leaves the most recent version in a 
page uncompressed (see Section 4).  Uncommitted versions 
are the most recent versions. Having them in the history 
pages avoids needing to uncompress other versions. 

• A historical page is never subsequently updated, so any free 
space on the page cannot be put to use in accommodating 
new record versions. 

Even though uncommitted data is on an historical page, it will be 
invisible and never returned as a result of a query. 

The issue to be addressed is what role uncommitted data plays in 
dealing with our key splitting threshold.  Recall that we set the 
threshold to less than 100% in order to reduce the frequency of 
time splitting and hence of version redundancy.  Since 
uncommitted versions remain in the current page, they consume 
space like committed data. Therefore, we choose to treat 
uncommitted data just like the committed data when determining 
whether we have reached the key splitting threshold. 

3 INDEX PAGES 

3.1 TSB-tree Index Requirements 
A TSB-tree partitions data by key and time into key-time 
rectangles.  Each TSB-tree index term that references a data page  

 

 

 

 

 

 

 

 

 

 

 

 

includes a description of this key-time rectangle and a pointer to 
the page containing data in this rectangle.  This is the first 
difference between an index term (and its versions) and a data 
record version which has a (point) key and a time interval in 
which it lives.  Figure 2 illustrates the division of key-time space 
as might arise in a TSB-tree.  Note that key adjacent index terms 
for later times can share an historical index term for a page from 
an earlier time because they reference pages resulting from a key 
split of the earlier page.  

A second difference is that index terms are not directly associated 
with any transaction.  Thus, a new index term, together with an 
appropriate key-time rectangle description typically is generated 
during the execution of a transaction but will not share the 
timestamp of any transaction.  Rather, the timestamps are used to 
partition the time dimension of the TSB-tree index, and hence we 
have some flexibility in how we choose the time. 

Finally, index terms referring to current data, i.e. the space that 
they describe includes the current time, are not immutable.  When 
we split a current page, the key-time rectangle is divided into two 
spaces.  The index term referencing now historical data must point 
to the new historical page since we move the historical versions, 
not the current versions, to a new page.  

The differences between index term and data record mean that we 
must manage and split TSB-tree index pages with their 
“versioned”  index terms somewhat differently from data pages.  

3.2 Index Page Version Support 
In SQL Server, B+tree index pages are treated much like data 
pages, with index terms treated like records.  Common formatting 
means that code to manage index pages is similar to and in some 
cases identical to code used for data pages.  Thus, in Immortal DB, 
we designed our index page organization to be similar to data 
pages described in the previous section.  We use the lower left 
hand corner of a key-time rectangle to describe the region, i.e., 
<low key, low time>.   Full boundaries can be derived from the 
descriptions of the adjacent regions.   

Index term “historical” versions are maintained in the same way 
that record versions are maintained, i.e. in a linked list starting at 
the current (or most recent) version.  The difference here is that 
index terms on the list are not historical versions of the later index 
term.  Rather they are index terms that reference earlier versions  

 
key 

time 

K1 

DA0.1 DA0.2 

K2 

DA1.0 DA1.1 

DA0.3 DA0.4 

Figure 2: Index terms represent key-time areas, not merely key 

points with time intervals. 
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of the data indexed by these later index terms.  Figure 3 shows 
how we represent index terms within an index page for the space 
partitioning shown in Figure 2.  Note how two adjacent index 
terms share an earlier index term in this chain.  This 
representation shares the data page characteristic that unversioned 
read access to a TSB-tree does not require that the reader know 
that the data is versioned. It differs from the scheme presented in 
[28], where pointers to all index terms are present in the slot array. 

3.3 Index Page Splitting 
Complications can arise when splitting index pages because index 
terms denote regions in key-time space.  An index term whose 
region crosses a key split boundary must, like the record versions 
of data pages that cross a time boundary, be present in both pages 
resulting from the split.  

3.3.1 Key Split 
Two current index terms may share the same historical index term 
I.  When a data page is first time split and then key split, the key 
of one of the current index terms divides the key space of I.  
Shared historical index terms are illustrated in Figure 3.  How 
such shared index terms may be partitioned in a key split is 
illustrated in Figure 2, where K2 is used as the splitting key, and 
K2 divides the spaces of the index terms denoted by DA0.1 and 
DA0.2.  When K2 splits an index page, key-time regions of both 
DA0.1 and DA0.2 cross the K2 key boundary. Thus, they will 
need to appear in both index pages resulting from the key split.    

Thus, historical index terms may need to be stored in both 
resulting pages of the key split.  Because they point to pages that 
are part of the historical tree, these pages will never be updated or 
split.  Thus their index terms will never need to be updated.  We 
can have such duplicated historical index terms without any 
concern about future updating difficulties.    

3.3.2 Time Split 
Because index terms denote time ranges, like data page records, 
an index term will frequently need to be in both pages resulting 
from a time split.  We use the same technique with them that we 
use with historical data versions (and with index terms whose key 
range crosses a key split boundary).  That is, we simply put the 
index term in both pages resulting from the time split. 

We are faced, however, with a complication when an index term 
that references a current page crosses the time split boundary.   
Because current data is updatable, its page can subsequently be 
split (by key or time, or both).  Thus, the index term for a current 
page is itself updatable.   When such an index term is in a 
“current” index page, this poses no problem.  However, if a time 
split of an index page cause a current index term to appear in both 
historical and current resulting pages, this produces two problems. 
(1) We now have a “historical” index page that can be updated.  (2) 
The page referenced by the current index term now has two 
parents that need to be updated should it split.  There are three 
main ways of dealing with this. 

1. Find a time (boundary) for splitting the full index page that 
does not cross the time interval of any index term accessing 
current data.  This is our preferred tactic.  We choose it 
whenever it permits the page to be effectively time split. 
Inevitably, there will be index terms that cross the boundary.  
Historical index terms can cross the boundary because they 
can be in both resulting pages without complication as they 
will never be updated.  However, when we cannot avoid a 
current index term crossing the boundary, we use the 2nd way. 

2. Perform a key split instead of a time split for the index page.  
Key splits can always be done so that no index term 
accessing current data need be copied.  This is a second 
choice because it reduces the fan-out of the resulting index 
pages for any as-of time slice query, including accessing 
current data.  However, so long as fan-out is not permitted to 
get too low, this is an acceptable strategy as a fallback to 1. 

3. As we do for index terms referencing historical data, we can 
also duplicate the index term for current data when the key-
time region it references crosses the time split boundary.  We 
will then need to update this index term when the current 
page it references is subsequently time split or key split.   

We did not pursue option 3, primarily because of the extra code 
complexity, but also because it compromised the invariant that 
historical pages are immutable.  This is no trivial matter, as 
mutable historical pages require latches to prevent concurrent 
access during updates.  By avoiding option 3, we preserve 
immutability of historical pages, and hence avoid the need to latch 
them during range searches.  However, the risk (which we have 
not encountered in our experiments and tests) exists that index 
page fan-out will be reduced in some cases. 

3.4 Rest of Structure Modification Protocol 
The rest of our protocol is derived directly from the SQL Server 
protocol.  For both reads and updates, we latch couple down the 
tree then up the key range to assure deadlock avoidance via 
resource ordering.  The structure modification process involves a 
second traversal of the tree should an update find a page to be full, 
with splitting preemptively down the tree.  A page, once split and 
committed via a system transaction, is not undone even when the 
triggering update transaction aborts. This is multi-level 
transactions within an ARIES style of recovery.  

4 COMPRESSION 

4.1 Record Version Compression  
The TSB-tree clusters records by key and time, storing in a page 
all versions of records within a key range that exist within the 
page’s time range.  All versions of a given record share at least the 
primary key field(s) in common.  These versions may share many 
fields, with an update frequently changing only a small number of 

Dynamic slot array          .                                               
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fields of a record.  Immortal DB compresses record versions using 
a backward delta compression scheme that exploits the frequently 
large commonality between a record version and its immediate 
predecessor version.  

 For version compression, we modify the SQL Server update log 
record [40].  This log record contains information that identifies 
the record.  The log record contains, for each change, two byte 
fields for a change offset, a length of the data before updating 
(delete length) and a length of the data after the update (insert 

length) plus the before and after data.  This permits recovery to 
remove the old value from the record and replace it with the new 
value, without knowing about attributes.  Rather, it can perform 
the update entirely by byte replacement based on this information.  

A record identifier is unnecessary in our delta records.  Our link 
from an earlier uncompressed record version on the page provides 
this.  We also reduce the size of the delete and insert lengths to 
one byte, optimizing for small updates, at the cost of having to 
break large updates (greater than 255 bytes) into multiple changes 
within our delta record.  We only need undo information and so 
do not store redo information.  Finally, we also squeeze other 
parts of the uncompressed record in producing our delta record, 
e.g. the timestamp field. Figure 4 illustrates our delta record 
format in contrast to the uncompressed original record.  

Figure 5 illustrates how deltas are tied into a record's version 
chain on the page in the example of Figure 1.  The latest version 
of a record on a page is uncompressed.  This means that current 
versions are uncompressed and that current time database 
functionality is unaltered by compression.  All predecessors are 
delta compressed.  We expect most updates will be to a single 
attribute of a record.  With 10 to 20 attributes for a record, a 
compressed record might be expected to be around a tenth the size 
of an uncompressed one.   

4.2 Delete Stub Compression 
When we delete a record, we use a delete stub to provide the end 
time for the last version of the record.  In our initial work, this 
delete stub consisted of a complete copy of the prior version, with 
a new timestamp and the ghost flag set.  The reason for this is that 
we need to remember the key value for the record so that we can 
place records correctly on the page, i.e. in key order.  The SQL 
Server storage engine wants to find keys in all records in exactly 
the same way, so we leave the entire record, since the key can be 
anywhere in the record.   

This technique of using the prior record as a delete stub is 
logically effective but obviously is expensive, since its sole 
purpose is to provide an end time for the preceding record version.  
With compression, we have the chance to reclaim the extra space.  
The delete stub is still the entire preceding record (the deleted 
record), and is thus unchanged from before, continuing to also 
provide the key for the record.  However, the preceding record 
can now itself be replaced with what we call the empty delta 
compressed record, since this preceding record is identical to the 
record version in the delete stub, except for the timestamps and 
the ghost flag.  This is illustrated in Figure 6.  Note that this 
technique continues the “rule” that the latest version of any record 
in a page is uncompressed, with compression applied to earlier 
versions. 

Note that the empty delta record of Figure 6 contains no change 
descriptors, just control and timestamp information.  So, while we 

cannot actually compress the delete stub because we continue to 
need its key information, the record for which it is a delete stub 
can be reduced to an empty delta record. 
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4.3 Index Term Compression 
We compress index terms on an index page similarly as we 
compress record versions on a data page.  Index terms can be 
compressed very effectively.  Recall that an index term space 
description is the <low key, low time> corner of the region 
referenced by the index term. In addition to the space description, 
an index term includes a pointer to the child page that the term 
references.   The key of an index term is unchanged in a time split, 
which is how “historical” index terms are created.   Hence, the 
index term pointing to the same key range but in an earlier time 
period only differs in child page pointer and timestamp.  

Two later index terms with different low key values can both 
point to the same compressed historical index term in which the 
key value is omitted; i.e., an historical index term can be shared 
with multiple index terms that precede it on the chain (an index 
term preceding another on the chain indexes a later part of the 
key-time space).  Its omitted key is the lower key value for only 
one of the terms resulting from a key split.  But the historical 
index term will nonetheless point to the correct child page 
containing the data for the regions identified by different key 
values.  Figure 7 illustrates this compression for the index page 
shown in Figure 3.  In all index terms referring to only historical 
data, the key value is omitted.  During lookups, the key value 
from the index term referring to current data that precedes the 
index term on the version list guides the search.  In Figure 7, the 
historical index term pointing to disk address DA0.2 contains 
historical information for both K1 and K2 current regions. 

5 STORAGE UTILIZATION 
There are two reasons why storage utilization is exceptionally 
important in a transaction time database. 
1. Disk storage cost can be a significant factor in the hardware 

cost of supporting a transaction time database.  Disks are 
becoming cheaper and indeed that is a reason why 
transaction time databases are increasingly important.  
However, even for a constant size current database, its 
transaction time cousin can continue to grow, consuming 
ever more storage.  So providing good overall storage 
utilization is very important.  The quantity we focus on is 
multiversion total utilization (MVTU), the size of all versions 

(uncompressed) divided by the storage size needed to contain 
them. 

2. The density of record versions relevant to any single as-of 
query determines how many pages need to be accessed to 
satisfy an as-of range query.  This is single version utilization 
(SVU).  Because all versions share the same approximate 
average utilization, we focus on the single version utilization 
provided for the current version (SVCU).   

Unfortunately, we cannot simultaneously optimize both SVCU 
and MVTU.   Both are impacted by the key split threshold 
(Thresh), the utilization required to be attained by the current 
version within a page before we perform a key split in addition to 
the time split that is always done when a page is full.  The higher 
we set Thresh, the higher will be SVCU, as it is always at least 
Thresh*ln(2).  However, the higher Thresh is set, the more time 
splits are performed.  This leads to more redundant versions, since 
any version that lives across a time split must be duplicated to be 
present in each of the resulting pages.   This reduces MVTU as 
more duplicate versions require more storage.   

In this section, we explore this tradeoff between SVCU and MVTU 
and the impact of compression.  We chose our experimental 
parameters based on [29], which serve to confirm the results that 
we report when working with uncompressed data.  We provide 
also a “back-of-the-envelop” analysis that further confirms our 
experiments for a subset of the cases the experiments cover.   This 
gives an intuition as to how and why the performance is achieved, 
and can be used to predict performance under other conditions.   
The notation we use for this analysis is given in Table 1. 

5.1 Experimental Setup 
We used our implementation of the TSB-tree in Immortal DB as 
the vehicle for doing experiments.  For our experiments, we set 
our key splitting threshold at Thresh = 0.67, inserting and 
updating a total of 50,000 versions, using uniformly distributed 
random keys. We varied the update/insert ratio from 1% updates 
to 99% updates (the values used are given in the reported results), 
reproducing the experimental parameters reported in [29].   

Table 1: 

Notation used in our analysis and experiments. 

Term Denoting Computation 

Psize   page size     

Rsize record size  

Rcur # of current records  

C   # current pages   

Rhist # of history records Without duplicates 

H   # of history pages  

Rcomp Compressed record size  

CR Compression ratio Rcomp/Rsize 

SVCU Single version current 
utilization 

Rcur*Rsize/Pcur * Psize     

MVTU Multiversion total 
utilization 

(Rcur+Rhist)*Rsize/(C+H)*Psize 

Thresh    Utilization threshold  

In Insertion ratio                   (1 – Up) 

Up Update ratio (1 – In) 

D   Uncompressed record 
storage 

(Rcur + Rhist)*Rsize 
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We extended the experiments for version compression, repeating 
the experiments for different compression ratios CR, which were 
controlled by updating a character string field with varying size 
strings.  We ran four sets of experiments, uncompressed (CR = 

1.0), 2:1 compression (CR = 0.515, where the data portion is 
compressed at 2:1, but CR includes the storage overhead of 
timestamps, etc.), 4:1 (CR = 0.295), and 10:1 (CR = 0.162). 

5.2 Single Version Current Utilization 
Supplementing the experiments, we did an approximate analysis 
of the expected results for values of SVCU at all experimental 
points.   

The analysis used to produce the average value for SVCU is given 
below.  This is an “asymptotic” analysis, not a probabilistic one.  
SVCUavg is the average utilization seen in current database pages 
for the current versions.  It is, in fact, also the average utilization 
of any “as-of” version.  

As a starting point, imagine that a data page has been split at the 
prior iteration i’s maximum value SVCUi. We want to iterate on 
this until this maximum converges.  We can then compute 
SVCUavg in the usual way as SVCUi*ln(2). 

After a key split, the new page has utilization SVCU(i+1)min = 
0.5*SVCUi.   We then fill the page with entries divided between 
updates and inserts as given by the update ratio.  The current 
entries when the page next fills are represented by these initial 
entries plus the inserts.  We need to capture the impact of 
compression and hence we want to know how the space is 
divided.  This results in the following iteration formula.  We start 
calculating this using Thresh as SVCU0.  The value converges 
rapidly (five iterations).  At iteration i+1, we fill the unused space 
(1 -0.5*SVCUi) with insertions in their ratio of insertion space 
over the total space for new versions, taking into account that 
updates lead to compression of the supplanted version.  All 
maximum values of SVCUi are “clipped” by threshold Thresh.  
Thus: 

SVCU0 = Thresh   

SVCUi+1= 

Max(Thresh,0.5*SVCUi+(1- 0.5*SVCUi)*(In/(In+C*Up))) 

These values are SVCUmax, the maximum value reached by SVCU 
before the page is key split.  For average, we multiply by ln(2). 

SVCUavg = SVCUmax * ln(2). 

These results closely match our experiments, as indicated in 
Figure 8.   

Generally, the analysis suggests that Thresh limits SVCUmax at 
lower update ratios than found in the experiments, but has less of 
an impact at mid-range update ratios before Thresh limits are 
strong.  The difference between analysis and experiment are 
mostly minor, never differing by more than four or five percent, 
and usually less. 

5.3 Multiversion Total Utilization 
We also determined multiversion total utilization MVTU.  Since 
we compress old versions, one should not be surprised that MVTU 
improves as more old versions are created via a higher update 
ratio.  Indeed, because of compression, the effective MVTU, 
which is calculated based on the size of uncompressed data, can 
be larger than one, in some cases substantially larger. 

Our simple analysis for SVCU provided results for all update 
ratios. Our analysis for MVTU is more limited, applying only to 
the end points of the update ratio range.  Thus we can confirm the 
experiments only for some of the cases we considered in the 
experiments. 

5.3.1 Update Rate near Zero 
When the update rate Up=0, we have only inserts.  Hence, all 
versions are current versions.  For this case, Thresh and 
compression ratio CR have no impact.  We always fill up the page 
before splitting the page.  And all versions are current, so none are 
compressed.  Each page is both time split and key split at this 
point.  This results in two current pages and one historical page.  
This binary process, over time, then produces a “binary tree” of 
data pages, formed by this “two current pages for each history 
page” splitting regime.  Given our uniformly distributed 
insertions, this results in a balanced tree of pages.  The number of 
leaf pages (current pages) in a balanced tree is equal to the total 
umber of non-leaf pages (historical pages).  Hence, because all 
versions are current, and they are spread over twice the number of 
current pages,  

MVTU = 0.5 * SVCUavg = 0.5 * ln(2) = 0.346 

This is close to our experimental results reported in Figure 9.  
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We can also confirm the experiments at Up approaching 1.0 
(0.99), strongly for the uncompressed case, and suggestively for 

percent updates

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

1% 10% 30% 50% 70% 90% 99% 

MVTU 

CR = 1.0 
CR = .515 
CR = .295 
CR = .162 

Figure 9: Multiversion total Utilization (MVTU) 

with a threshold of T = .67. 

SVCU

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1% 10% 30% 50% 70% 90% 99%

percent updates

CR = 1.0 (Exp) CR = 1.0 (Anl)

CR = .515 (Exp) CR = .515 (Anl)

CR = .295 (Exp) CR = .295 (Anl)

CR = .162 (Exp) CR = .162 (Anl)

Figure 8: Single Version Current Utilization (SVCU) with 

the key split threshold T = 0.67 

 

877



compressed cases.  With Up near 1.0, the number of current pages 
is very small compared with the number of history pages.  
Further, the last (and always uncompressed) versions on any page 
are fully redundant with compressed versions of the more recent 
historical page.  Hence, all non-redundant versions of such a page 
exist as “historical versions” on some page.  (Only the 
uncompressed versions are redundant.)  We know that the average 
utilization for the uncompressed versions is SVCUavg.  So we can 
subtract that from 1.0 to determine MVTU for the uncompressed 
case. This gives, at Up near one  

MVTU = 1 – SVCUavg = 1 - 0.462 = 0.538 

Again, this fairly closely matches our experimental results for 
uncompressed data closely at Up = 0.99, as shown in Figure 9. 

We need a more accurate analysis for compression factors smaller 
than one and Up = 0.99.  The reason for this is that the relative 
number of current pages increases compared to the uncompressed 
case.  So we take a weighted average of the storage utilization in 
the history pages and the current pages.  Thus we need to 
determine how many pages are history pages H, how many are 
current pages C, and then divide the total data space (assuming all 
versions are uncompressed) by the total space in all pages.   

Current Pages 

We can derive the number of current pages C from the SVCUavg 
(which involves only current data in current pages) and the 
amount of current data.  Since we are treating the update percent 
of 0.99 case, the amount of current data is 0.01*D, where D 
represents the size of all the versions.  Thus 

SVCUavg = 0.01*D/(C*Psize) 

Further, SVCUavg = Thresh*ln(2) = 0.462 at Up near 1.0, so  

0.462 = 0.01D/(C * Psize) and  

C = 0.0216(D/Psize) 

Historical Pages 

Our first approximation for MVTU was an approximate 
calculation for historical pages only.  We will refine that 
calculation, and then join it with the current page computation to 
produce the final result. 

For our experiments, we chose a page size of exactly 35 
uncompressed records.  When records are uncompressed, each 
historical page is completely full.  But when records are 
compressed, historical pages do not quite fill up. On average, half 
an uncompressed record of capacity remains.  So, each historical 
page can exploit1 

[34.5/35–SVCUavg]*Psize=[0.986–Thresh*ln(2)]*Psize =0.524*Psize  

Page size Psize is in terms of the number of uncompressed records.   
To determine the number of compressed records, we need to 
divide that by the compression ratio CR.  The amount of historical 
data is 0.99*D.  Thus 

0.524*Psize*(1/CR))*H = 0.99D 

Solving for H gives us 

H = 0.99D/((0.524/CR)*Psize)= 1.89*CR * (D/Psize) 

                                                                 
1 For uncompressed records, we use (1-SVCUavg) = 0.538. 

All Pages 

Finally, by definition, MVTU = D/(C + H), so 

MVTU= D/[{0.0216 *(D/Psize) + (1.89*CR *(D/Psize))}*Psize]  

or MVTU = 1/(0.0216 + 1.89*CR) 

The analytic results are compared with our experiments in Table 
2.  The analysis, approximate though it is, produces results that 
are quite close to the experimental results.  For uncompressed 
data, where we did not adjust the page size computation because 
exactly 35 records did fill the page, experiment and analysis agree 
“exactly”. 

Table 2: Comparison of experimental and analytic results. 

 

5.4 Compression to Improve Performance 
As we indicated in the introduction, one can use compression not 
only to save space but also to improve query performance.  
Compressing versions can be used to impact both the total number 
of pages required to store versions as well as the utilization that 
will be seen by an “as-of” query.   This is determined by how we 
choose Thresh.  If we leave Thresh unchanged when we introduce 
compression, we reduce the number of pages required to store our 
versions, hence improving MVTU.  Alternatively, we can try to 
keep the number of pages unchanged by increasing Thresh, which 
improves SVCUcurr, and the effective utilization seen by all “as-
of” queries.  In this subsection, we show the impact of 
compression on the multiversion between SVCUcurr and MVTU. 

We ran a set of experiments on compressed data in which we 
varied the key splitting threshold Thresh for the compressed cases 
until the compressed cases produced the value for MVTU 
achieved for the uncompressed case.  We found that we were able 
to raise Thresh substantially.  This translates the compression 
benefit into a performance improvement for range queries.  

Figure 10 displays the results of our experiments.  At low update 
ratios, there is a very broad range of thresholds that produce 
similar results.  This is because Thresh plays a smaller role at low 
update ratios Up since pages frequently exceed the threshold at 
the point when splitting occurs.  At high Up, small changes in 
Thresh can produce large changes in the number of pages and 
hence in MVTU.   This is because many updates can occur at 
utilizations just under Thresh, and these might each lead to more 
page time splits. 

As with our prior results, we perform an approximate analysis that 
at least partially explains the nature of the results.  This permits us 
to compute an approximate value for Thresh analytically. 

For update rates near 1.0, we have for the uncompressed case, and 
leaving Thresh as an unknown:  

MVTU = (0.986 – Thresh*ln(2))/CR    

Compression 

Ratio CR 

MVTU 

Analysis 

MVTU 

Experiment 

1.000 0.54 0.54 

0.515 1.01 0.99 

0.295 1.73 1.63 

0.162 3.05 2.86 
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Setting MVTU for the compressed case equal to the uncompressed 
value (for Up near 1.0) yields 

(0.986 – Thresh*ln(2))/CR = 0.54 

Finally, solving for Thresh yields 

Thresh = 1.41-0.78*CR 

For CR = 0.515, we get a value for Thresh of 1.01. This implies 
that one can let pages fill completely for most compression ratios.  
This neglects that for probabilistic distributions (as opposed to 
this deterministic analysis), extra time splitting makes this an 
overly aggressive strategy. But note that Thresh does get close to 
1.0 at high update rates in our experiments.  At smaller update 
rates, our experiments suggest one should be less aggressive, but 
setting Thresh = 0.9 (even for our modest “2:1” compression case, 
i.e. CR = 0.515), is a sound strategy. 

Our experiments and this approximate analysis both indicate that 
one can turn compression into a range search performance 
improvement, with that performance being within 10% of the 
performance of a conventional unversioned database. 

 

6 RELATED WORK 
There has been extensive research on temporal and versioned 
databases and their applications [11, 35, 41, 42]. Much work, 
especially earlier papers, focused on theoretical foundations, not 
on practical considerations such as storage efficiency and 
indexing versioned data, this paper’s focus.  We briefly review 
some of the work done in the area.  For a good survey we refer the 
reader to [35].  Extensive bibliographies have also been compiled 
[24, 38, 44]. 

6.1 Temporal Indexing and Compression 
Many indexing structures [2, 5, 9, 14, 16, 23, 25, 39] have been 
proposed for versioned and temporal data.   A good survey of 
temporal indexing has appeared in [37]. Most of these alternative 
indexing techniques have drawbacks.  

The drawback of the Time Index [14] is the size of the index, 
which is quadratic in the number of indexed time ranges. The 
Time Index+ [25] improves upon the Time Index, substantially 
reducing the storage needed for the index while improving query 
performance. However, worst case storage remains quadratic.  

The TP-index [39] maps a (one-dimensional) time range to a point 
in two-dimensional space (<low time, high time>), and the 

querying is reduced to a spatial search problem. It is more space 
efficient than the Time Index, but is biased toward some types of 
queries. Moreover, it is highly specialized to the mapping, and the 
integration into existing RDBMSs is challenging. 
 
The Interval B-tree (IB-tree) [2] has also been developed to 
overcome the weaknesses of the Time Index. The original main 
interval tree memory model is transformed to an efficient 
secondary storage structure while preserving optimal space and 
time complexity. The disadvantage of the IB-tree is that the 
complex three-fold structure of the interval tree is retained, and a 
dedicated structure of its own is used for each level.  This 
complexity makes the implementation inside a commercial 
RDBMS challenging. 
 
The Interval B+-tree (IB+-tree) [9] addresses the problem of 
indexing the temporal dimension in valid time databases where 
the temporal information of data objects are represented as valid 
time intervals. Here, the concept of time splits is introduced as a 
successful heuristic to avoid large fruitless scans. However, a 
limitation of the proposed structure is that time-splits are applied 
only to the leaf level. Moreover, the IB+-tree also requires a 
complex nested data structure, which makes it difficult to 
integrate into existing DBMSs. 
 
The monotonic B+tree [14], the Append-Only Tree [16], and the 
Snapshot Index [45] also aim at indexing time-based data. None 
of these indexes, however, employ multiversion compression 
which both saves space and improves query performance. 

A recent paper [23] studies the problem of efficiently indexing 
data with “branched evolution”. The main contributions here are 
the extension of temporal index structures to data with branched 
evolution and a steady state analysis that estimates the 
performance of the different index structures and provides 
guidelines for the selection of the most appropriate one. 

The multiversion B+tree (MVBT) [5] has fine performance.  
However, as discussed early in this paper, the MVBT moves 
current data instead of historical data during a time split, and 
hence does not progressively move historical data to another 
storage medium as the TSB-tree does. Moving historical data to a 
new page is essential if one wants historical data on an archival 
medium while continuing to access current data on its original 
medium.  In addition, the MVTB’s root* is not as good a fit with 
the SQL Server B+tree implementation as is the TSB-tree.   
Finally, the MTBT performs page merges, which we decided to 
avoid because it causes complications when we represent index 
terms like chains of data record versions.  Permitting page merges 
would require that an index version chain fork at the merged page, 
and hence further complicate index page splitting.  This 
complication would be on top of the one introduced by the TSB-
tree moving of historical pages in a split.  

Related to our version compression technique is the idea of 
temporal coalescing [12]. Temporal coalescing merges the 
temporal extents of value-equivalent tuples. Our compression 
technique, however, stores only the incremental differences 
between the values and the timestamps of the versions. 

6.2 Version Support 
Many database applications require the storage and manipulation 
of different versions of data objects. To satisfy the diverse needs 
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of these applications, a number of versioning solutions for 
database systems have been proposed. 

The first system offering transaction time functionality was 
Postgres [41].  Postgres had reasonably complete transaction time 
functionality, but it depended, in part, on a recovery technique 
that exploited stable random access memory for the cache, making 
it less than ideal as an evolutionary starting point.  Postgres used 
R-trees [17] to index historical data, but not current data, for 
which a B+tree was used.   This was important as R-trees have 
difficulty supporting, in a straightforward way, data that is current 
and hence does not yet have an end time. 

Recently, support for multiple versions of complex data, e.g., 
XML [10], object oriented [8], and spatio-temporal data [18] have 
been proposed.  In [3], the authors describe a versioning model 
that uses signature patterns, a hash table and B+ trees to support 
multiple versions. In [1], VQL, a language designed for querying 
data stored in multiversion databases is introduced. VQL is based 
on a first order calculus and provides users with the ability to 
navigate through object versions modeled by the  database.  

DEC (now Oracle) Rdb [19] provides support for read-only 
transactions without impeding update transactions via a transient 
versioning technique in which the transient versions are accessed 
by being linked to the current data.  Transient versioning methods 
are also described in [15] for the same reason.  

In [36], a time-travel service is implemented for a replication 
DBMS. The time-travel semantics is defined using snapshot 
isolation in PostgreSQL and allows retrieval of older snapshots in 
replication systems.  

Multiversion support in data warehouses has been addressed in 
[46]. Here the authors maintain a data warehouse under changes 
of schemas and contents based on explicit versioning of the whole 
data warehouse (i.e. schema and data). The model of a 
multiversion data warehouse can maintain real and alternative 
versions of the whole data warehouse and allows running queries 
that span multiple versions and compare various factors computed 
in those versions, as well as to create and manage alternative 
virtual business scenarios required for the what-if analysis. The 
focus of [46] is on physical sharing of data between several data 
warehouse versions which is similar in spirit to our proposed 
version compression scheme. 

6.3 Industrial Interest 
Transaction time functionality has also received some industrial 
interest, particularly from Oracle.  Oracle 9i included support for 
transaction time [34]. Its FlashBack queries allow the application 
to access prior transaction time states of their database. Oracle 
10g extended FlashBack queries to retrieve all the versions of a 
row between two transaction times (a key-transaction time-range 
query) and allowed tables and databases to be rolled back to a 
previous transaction time, discarding all changes after that time.  
This is equivalent to “point in time” recovery and is used to deal 
with removing the effects of bad user transactions.  The Oracle 
10g Workspace Manager includes the time period data type, valid-
time support, transaction time support, support for bitemporal 
tables, and support for sequenced primary keys, sequenced 
uniqueness, sequenced referential integrity, and sequenced 
selection and projection.  They do not index historical versions, 
however, so historical version queries must go through current 
time versions and then search backward “linearly” in time.  In 

comparison, our work is the first industrial effort to provide 
logarithmic time access to historical versions of data. 

Other database-related products also begin to provide temporal 
support.  LogExplorer from Lumigent [33] provides an analysis 
tool for Microsoft SQL Server logs, to allow viewing how rows 
change over time (a nonsequenced transaction time query) and 
then to selectively back out and replay changes, on both relational 
data and the schema (it effectively treats the schema as a 
transaction-versioned schema).  aTempo's Time Navigator [4] is a 
data replication tool for DB2, Oracle, Microsoft SQL Server and 
Sybase that extracts information from a database to build a slice 
repository, thereby enabling image-based restoration of a past 
slice; these are transaction time slice queries.  IBM's 
DataPropagator [20] can use replication of a DB2 log to create 
both before and after images of each row modification to create a 
transaction time database that can be later queried.  These 
products, however, are built outside the database engine, and do 
not employ any transaction time indexing for storage.  Further, 
when processing queries, they may incur significant storage and 
processing overhead. 

7 CONCLUSIONS AND FUTURE WORK 

7.1 Summary 
Temporal support is becoming increasingly important in the 
commercial market as indicated by the FlashBack temporal 
functionality provided by Oracle [34].  Oracle has been actively 
advocating that the SQL standard be extended in this direction. 

It has been an essential goal of Immortal DB to be able to index 
historical versions effectively.  Thus, we have implemented the 
TSB-tree by modifying the SQL Server B+tree implementation.  
This was both an added complication, requiring dealing with a 
very large code base, but also a great help as the B+tree gave us 
an existing framework upon which to build. 

Our TSB-tree deals with the full set of implementation issues:  
representing and managing index terms, page splitting and 
splitting policies, range searches, etc.  Our overall goal has been 
to provide performance for the TSB-tree that is very close to that 
provided by the SQL Server B+tree.  Indeed, Immortal DB 
executes SQL Server B+tree code for current queries. 

Version compression further improves storage efficiency and 
range search performance.  Our backward delta technique works 
very well within the TSB-tree context, where the last version of 
any record or index term on a page is uncompressed.  Thus, 
compression is completely handled within a single page.  The 
result of compression is to improve, at high compression ratios 
dramatically, both storage efficiency and performance.  This was 
confirmed both by experiments and analysis. 

7.2 Future Work 
We continue to strive to narrow even further the performance 
differences that exist between transaction time database 
functionality and current time functionality, both for update and 
for range query.  So we continue our search for additional 
optimization opportunities.  We also want to further enhance the 
utility of Immortal DB.  We have already implemented recovery 
from bad user transactions [32].   Using transaction time historical 
versions to provide a backup for current data, as previously 
suggested [30], remains on our agenda.  
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