
Transaction Time Indexing with Version Compression
David Lomet

Microsoft Research
Redmond, WA

lomet@microsoft.com

Mingsheng Hong*

Cornell University
Ithaca, NY

mshong@cs.cornell.edu

Rimma Nehme*
Purdue University
West Lafayette, IN

rnehme@purdue.edu

Rui Zhang*

University of Melbourne
Melbourne, Australia

rui@csse.unimelb.edu.au

ABSTRACT

Immortal DB is a transaction time database system designed to
enable high performance for temporal applications. It is built into
a commercial database engine, Microsoft SQL Server. This paper
describes how we integrated a temporal indexing technique, the
TSB-tree, into Immortal DB to serve as the core access method.
The TSB-tree provides high performance access and update for
both current and historical data. A main challenge was integrating
TSB-tree functionality while preserving original B+tree
functionality, including concurrency control and recovery. We
discuss the overall architecture, including our unique treatment of
index terms, and practical issues such as uncommitted data and
log management. Performance is a primary concern. To increase
performance, versions are locally delta compressed, exploiting the
commonality between adjacent versions of the same record. This
technique is also applied to index terms in index pages. There is a
tradeoff between query performance and storage space. We
discuss optimizing performance regarding this tradeoff throughout
the paper. The result of our efforts is a high-performance
transaction time database system built into an RDBMS engine,
which has not been achieved before. We include a thorough
experimental study and analysis that confirms the very good
performance that it achieves.

1 INTRODUCTION

1.1 Overview
Transaction time database systems [21, 42] provide access to both
current and historical information, and have many important
applications. Temporal functionality is of increasing interest to
database customers for auditing, legal compliance, trend analysis,
etc. We have built a transaction time database system to provide
access to both current and historical data. Our system, Immortal

DB [26, 27], uses versions to support both "as of" queries to
access data at an arbitrary time in the past and snapshot isolation
[6], which requires access to recent versions. We believe that
poor access performance for historical data has impeded the
adoption of temporal functionality. Layering temporal support on

top of a database system is cumbersome and typically is not
practical [43]. For that reason, we have implemented Immortal
DB inside an RDBMS engine, by modifying the SQL Server
storage engine [40]. Insert/update/delete actions never remove

information. Rather, these actions add new data versions, thus
maintaining a complete, query-able history of database states.

We have extended our Immortal DB prototype [27] to use the
TSB-tree [28] as an integrated index for accessing both current
and historical versions of data. This enables it to provide
logarithmic (in the number of versions) access to all versions of
record. Further, range query performance, after the initial
logarithmic probe, is linear in the size of the range. Our TSB-tree
is derived from SQL Server’s B+tree implementation and uses its
concurrency control and recovery framework. Although based on
SQL Server, our approach is more widely relevant as SQL
Server’s B-tree has a fairly standard architecture.

Other B-tree variants index multiversion data, e.g. the MVBT [5]
and WOB-tree [13]. We use a TSB-tree variant primarily because
it migrates historical data from a current data store to a historical
store during node splitting. This is important. It preserves the
performance of current queries as current data can remain
clustered on high performance media. We can then move
historical data to independent and less expensive slower disks and
even WORM storage. Both MVBT and WOB-tree leave historical
data in place and move current data during node splits.

Our TSB-tree performs both key splits, like a B+tree, and time
splits. Time splits are required to index both by key and by time.
To ensure that the density of records within a range has a good
guaranteed minimum for all “as of” queries, we always time split
[13] before we key split. This will be described in more detail,
along with how we use a utilization threshold to control the choice
between making a pure time split and doing a time split followed
by a key split. This minimum version density guarantees that the
cost for any “as of” range queries is linear in the number of
records within the range [5].

Performance is further enhanced by compressing historical
versions, both of data records and of index terms. We use a form
of delta compression that is derived from the undo log record
structure used in SQL Server. All data is compressed only locally
within a page so that it may be uncompressed by accessing
information only within the same page upon which it resides.

1.2 Immortal DB System
Immortal DB supports databases with multiple versions of data.
When a transaction committing at time Ti inserts a new data
record into the database, Immortal DB creates a version of the
record with a timestamp Ti that indicates the beginning of the
version lifetime. Each subsequent update creates another version
of the data that is inserted into the database, marked with its
timestamp, say Tj (Tj > Ti), indicating its start time. The prior Ti
version of data implicitly then has an end time of Tj. A delete
produces a special new version, called a “delete stub”, that
indicates when the record was deleted, and hence it provides an
end time for the last version of the record. Record versions are

∗ Work done while interning at Microsoft Research

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher,

ACM. VLDB ’08, August 24-30, 2008, Auckland, New Zealand.

Copyright 2008 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

870

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

immutable (are never updated in place). A record version is
linked to its immediate predecessor version via a version chain.
The Immortal DB prototype [26, 27] provides transaction time
functionality via a collection of modest changes to SQL Server.
SQL DDL syntax. A transaction time table is specified via an
“IMMORTAL” attribute in the table create statement. SQL
Server already supports an alter table statement to turn on
snapshot versioning.
Query syntax. An “AS OF” clause added to the transaction
statement specifies queries on historical data. A “SNAPSHOT”
clause already exists in SQL Server to indicate snapshot isolation
queries [6, 40].
Commit processing. Version timestamps are chosen at
transaction commit and are lazily posted to versions after commit.
Timestamps are consistent with serialization order [7, 22, 31].
Page manager. A page is organized as a slotted array of records,
with the most recent record version pointed to directly by an array
entry. Older versions of the record are chained together within a
page in the order of their create time.
Record Format. Each relational tuple has 14 bytes appended at
the end that contains versioning information. This includes a
timestamp, a sequence number, and a version chain pointer.
Recovery manager. New log operations are defined to enable
recovery redo and undo of the “versioned” updates required for
transaction time support.
Storage manager. Growing the number of unique records is
accommodated via key splitting, which is done via modification
of the existing B+tree key splitting already in SQL Server. New
pages are acquired via time splitting to permit the space for
versions to grow.

Earlier, only indexing by key to a current version was supported.
Historical versions were found by searching back a linked list of
versions, across multiple pages if needed [27]. Further, each
version consisted of the entire uncompressed record. This made a
record version very simple, at the expense of storing data from
one version to the next that was unchanged by an update.

1.3 Time Split B+tree
The first focus of this paper is the integrated indexing of historical
and current records, by both key and by time, into Immortal DB
using the Time Split B+tree, or TSB-tree [28]. Given the
performance results reported in [29], we expected performance to
be quite good. We chose to use the WOB-tree splitting strategy
[13] because using it guarantees that the storage utilization for any
version on a page is always greater than a minimum value equal to
half the storage threshold used to determine when to key split a
page [5]. This strategy involves always doing a time split
immediately prior to doing a key split, without intervening
updates.

A time split is a special form of page split. Consider a collection
of versions of records. Record versions span time intervals.
Almost always a split time choice will cross the interval
representing the lifetime of some version. In particular, when we
use the WOB-tree splitting strategy, we always split data pages at
current time. All records alive at current time have their lifetimes
"split" by this strategy. The TSB-tree index partitions key-time
space into rectangles where all versions with records in the key
range that have lived within the time range defined by the page
must be on the page. This can only be accomplished by having
the versions with lifetimes that cross the split time appear in both
the resulting pages.

A TSB-tree time split posts an index term describing the split to
the parent index page. This requires changing the format of
B+tree index pages, as we previously changed the format of
B+tree data pages. It further requires that we time split index
pages as well as key splitting them. Index page splits, though
identical in concept, are subtly different from data page splits.

1.4 Compression
In the past several decades, disk costs have been dropping rapidly.
Nonetheless, disks still constitute a significant portion of database
management cost, not only for the hardware, but also for the
human labor cost of managing it. Further, range query
performance depends upon the density of records (records per
page accessed) for the version of interest. This record density is
reduced compared to non-versioned databases due to the existence
of multiple versions of records in the same page. This is
especially important when the historical versions share a page
with the current versions, as accessing current time data is more
frequent than accessing any given historical time data.
Compressing versions is thus important for both reducing storage
costs and for improving query performance.

1.5 Our Contributions
The contributions of this paper can be summarized as follows:
1. We integrate a temporal index (TSB-tree) into a commercial

database system by adding TSB-tree functionality to the SQL
Server B+tree, while preserving B+tree functionality for
backward compatibility. Importantly, accessing current data
is largely done via existing B+tree code. In this effort, we
deal with technical issues such as concurrency control,
recovery, handling uncommitted data, and log management.

2. We detail our unique designs of version chaining and treating
index terms as versioned records to achieve the TSB-tree
implementation with backward compatibility with B+tree.

3. We describe the tradeoff between query performance and
storage space. We explain how to control this tradeoff
through a parameter and discuss our designs to optimize the
performance regarding the tradeoff throughout the paper.

4. We implement a data compression scheme in the TSB-tree.
Our compression reduces substantially the storage needed for
preserving historical data. For efficiency, all compression
and decompression is local to a page.

5. We present experiments confirming gains that are achieved,
both for storage utilization and range search performance.
Compression improves range search by reducing the number
of data pages that need to be accessed. Our analysis gives a
simple, intuitive picture that explains our results and can
predict performance under different conditions.

1.6 Paper Overview
The rest of this paper is organized as follows. How data pages in
the TSB-tree are organized and split is discussed in Section 2.
Section 3 extends our design to index pages of the TSB-tree and
describes the index page splitting strategy. Section 4 covers the
compression scheme used on data pages and index pages. Once
one can index by both time and key, it is storage utilization that
largely determines any extra cost compared to a non-versioned
database. This is true for both storage cost and for range query
performance, which depends upon how many pages are accessed.
Section 5 describes our analysis and experiments which confirm
that compressing records has an enormous positive impact on both
these costs. We briefly survey related work in Section 6, and
conclude the paper with a short discussion in Section 7.

871

2 DATA PAGES

2.1 Data Page Version Support
Immortal DB bases its data page layout on the now standard
slotted page organization also used by SQL Server. An Immortal
DB page is illustrated in Figure 1. Each entry in the slot array
points to a data record that is the latest version of the record on the
page. Every record version is linked to its immediate predecessor
version to form a version chain. When the page contains current
data, the latest record is either the last committed version of the
record or an uncommitted version from a still executing
transaction. Data manipulation operations do the following.

• Insert: An insert produces a record that is directly referenced
by a slot in the slot array, records with higher keys being
moved up one slot to make room for the insert. The newly
inserted record's back pointer is set to null.

• Update: An update produces a new version for an existing
record. The slot for the version is updated to point to the
new version. The new version's back pointer references the
version that had been current prior to the update.

• Delete: A delete is handled like an update in that a new
version is created and linked into the chain of versions at its
start. But this new version is special and is called a delete

stub. The delete stub is marked as a "ghost", a SQL Server
feature that makes the version invisible to ordinary queries.

Each of the operations here is logged with special log records
signifying “versioned” operations. If a system failure occurs, the
redo operations will ensure that any missing versions are restored,
while the undo operations will remove uncommitted versions, and
update the slots to reference the earlier version.

Version chaining is important for two reasons. (1) It provides
backward compatibility with B+tree. For current time queries, the
existing SQL Server code sees what looks like an unversioned
page, since it only accesses record versions pointed at directly by
the slot array. Thus, the unchanged B+tree access method read
continues to work when versioning is provided. (2) It makes it
easier to find ancestor versions when performing historical
searches, key splits and compression, which are explained later.

We use the deleted record, with a timestamp that is the delete time,
as a delete stub so that the key, which may be multiple fields, can
be easily found when looking for historical records on the page,
without the SQL Server kernel needing to decode fields of the
record. The delete stub is marked as a "ghost" record and ghosts
are ignored during queries. The immediately prior record version
is the full deleted version with version start time as its timestamp,
hence correctly representing the version and its lifetime. When a
data page is time split, which uses current time, we remove delete
stubs from the current page since the records whose ends they are
marking are no longer in the current page.

2.2 Data Page Splitting
The TSB-tree does both key splits, which are similar to key splits
in the B+tree, and time splits. For time splits, versions whose end
times are before the split time are moved to the historical page.
Versions with start times later than the split time are put in the
current page. Because versions have interval time extents,
versions that span the time chosen for the split must be present in
both of the resulting pages. Readers are referred to [28] for details
on these operations. We focus more on performance tradeoffs and
handling uncommitted data in this subsection.

Figure 1: Data page layout with uncompressed versioned data.

One point to stress is that when a page is time split, we create a
new page for the historical data. The original page remains the
current page. This assignment of pages makes it possible to
progressively move historical data to a different medium, e.g. a
different disk [26,32]. This is different from structures such as the
MVBT [5], which makes the new page for the current data.

2.2.1 Splitting Policy Threshold
We control the version density via a key splitting threshold. That
is, we do not split a data page by key until the utilization achieved
by the current data reaches a threshold. There are some subtleties
involved and we need to answer the question of why this
threshold should not be 100% (or indeed too close to 100%).

Whenever a data page fills up, it is split. We need to decide
whether the split is a time split, a key split, or both. Immortal DB
never does an isolated key split. In Immortal DB, if a key split is
needed, we always perform a time split before it, which we call
the WOB-tree split policy [13]. This policy ensures that any
version (as seen by an as-of query) has at least a minimum storage
utilization [5]. So our choice is between a time split by itself and
a time split followed immediately by a key split. This choice is
controlled by the current version utilization in the page being split.

We define single version current utilization for a page (SVCUpage)
as the size of the page's current data divided by the page size (both
in bytes). We specify a threshold value Thresh for this utilization
to control page splits. If, when a page fills completely,
SVCUpage > Thresh then we do a key split after a time split.
Otherwise, we perform only a time split. We control the tradeoff
between the space required to store versions and the storage
utilization seen by as-of queries via Thresh. The higher the value
of Thresh the more pure time splits are done, the lower the value,
the more often key splits are done as well as time splits.

2.2.2 Version Redundancy
We always split at the current time Tcurr. This requires that all
committed versions, current and historical, of the original page be
present in the newly created historical page since they all have
start times earlier than the current time. This new historical page
is then written to a separate storage partition that holds the

dynamic slot array

1 slot = 2 bytes 0 1

page header: 96 bytes including:

contig

free

FREE

USED

Free

space

slot

count

VVeerrssiioonn 11..33

 VVeerrssiioonn 00..44

time

stamp

 VVeerrssiioonn 00..33

 VVeerrssiioonn 00..22

 VVeerrssiioonn 00..11

VVeerrssiioonn 11..22

VVeerrssiioonn 11..11

872

historical data. The original page, continuing as the current page,
is then updated by removing historical versions because their end
times are earlier than the split time. This leaves only the last
committed version of each record along with any uncommitted
versions in the current page.

Thus, current committed versions appear in both the historical
page and the current page, since their lifetimes cross the time
boundary chosen for splitting the page, i.e. the current time. The
more frequently a page is time split, the more redundant versions
are introduced. Thus, if key splitting is delayed excessively,
many record versions might appear redundantly in one, two, or
more data pages as the result of time splitting.

By setting our key splitting threshold below 100%, we permit data
pages to be split at an earlier time. The lower the threshold is, the
fewer the redundant record versions are. However, as we reduce
this splitting threshold, we also reduce the storage utilization of
the current data (SVCU). Thus, there is a trade-off between how
much redundancy is introduced and how large SVCU is.

The original TSB-tree study [29] suggested a threshold of 0.67,
which means that the utilization of any version (versions being
defined by selection of an as-of time) will be at least 0.67 of the
utilization were we not supporting multiple versions. We make
this more precise in Section 5 on storage utilization.

2.2.3 Uncommitted Data
There may be several records on a data page that are being
actively updated and hence have uncommitted versions as their
latest versions at the time when a page becomes full. These
uncommitted records do not have lifetimes that cross the time
boundary used to split a full page. Nonetheless, they will appear
in both resulting pages. Why?

The uncommitted versions must appear in the current page
resulting from the time split since this is the page in which the
version lives if their transaction commits. They appear in the
historical page for a number of practical reasons.

• A simple strategy of (byte) copying the current page to a
newly allocated historical page copies these versions as well.

• Our compression method leaves the most recent version in a
page uncompressed (see Section 4). Uncommitted versions
are the most recent versions. Having them in the history
pages avoids needing to uncompress other versions.

• A historical page is never subsequently updated, so any free
space on the page cannot be put to use in accommodating
new record versions.

Even though uncommitted data is on an historical page, it will be
invisible and never returned as a result of a query.

The issue to be addressed is what role uncommitted data plays in
dealing with our key splitting threshold. Recall that we set the
threshold to less than 100% in order to reduce the frequency of
time splitting and hence of version redundancy. Since
uncommitted versions remain in the current page, they consume
space like committed data. Therefore, we choose to treat
uncommitted data just like the committed data when determining
whether we have reached the key splitting threshold.

3 INDEX PAGES

3.1 TSB-tree Index Requirements
A TSB-tree partitions data by key and time into key-time
rectangles. Each TSB-tree index term that references a data page

includes a description of this key-time rectangle and a pointer to
the page containing data in this rectangle. This is the first
difference between an index term (and its versions) and a data
record version which has a (point) key and a time interval in
which it lives. Figure 2 illustrates the division of key-time space
as might arise in a TSB-tree. Note that key adjacent index terms
for later times can share an historical index term for a page from
an earlier time because they reference pages resulting from a key
split of the earlier page.

A second difference is that index terms are not directly associated
with any transaction. Thus, a new index term, together with an
appropriate key-time rectangle description typically is generated
during the execution of a transaction but will not share the
timestamp of any transaction. Rather, the timestamps are used to
partition the time dimension of the TSB-tree index, and hence we
have some flexibility in how we choose the time.

Finally, index terms referring to current data, i.e. the space that
they describe includes the current time, are not immutable. When
we split a current page, the key-time rectangle is divided into two
spaces. The index term referencing now historical data must point
to the new historical page since we move the historical versions,
not the current versions, to a new page.

The differences between index term and data record mean that we
must manage and split TSB-tree index pages with their
“versioned” index terms somewhat differently from data pages.

3.2 Index Page Version Support
In SQL Server, B+tree index pages are treated much like data
pages, with index terms treated like records. Common formatting
means that code to manage index pages is similar to and in some
cases identical to code used for data pages. Thus, in Immortal DB,
we designed our index page organization to be similar to data
pages described in the previous section. We use the lower left
hand corner of a key-time rectangle to describe the region, i.e.,
<low key, low time>. Full boundaries can be derived from the
descriptions of the adjacent regions.

Index term “historical” versions are maintained in the same way
that record versions are maintained, i.e. in a linked list starting at
the current (or most recent) version. The difference here is that
index terms on the list are not historical versions of the later index
term. Rather they are index terms that reference earlier versions

key

time

K1

DA0.1 DA0.2

K2

DA1.0 DA1.1

DA0.3 DA0.4

Figure 2: Index terms represent key-time areas, not merely key

points with time intervals.

873

of the data indexed by these later index terms. Figure 3 shows
how we represent index terms within an index page for the space
partitioning shown in Figure 2. Note how two adjacent index
terms share an earlier index term in this chain. This
representation shares the data page characteristic that unversioned
read access to a TSB-tree does not require that the reader know
that the data is versioned. It differs from the scheme presented in
[28], where pointers to all index terms are present in the slot array.

3.3 Index Page Splitting
Complications can arise when splitting index pages because index
terms denote regions in key-time space. An index term whose
region crosses a key split boundary must, like the record versions
of data pages that cross a time boundary, be present in both pages
resulting from the split.

3.3.1 Key Split
Two current index terms may share the same historical index term
I. When a data page is first time split and then key split, the key
of one of the current index terms divides the key space of I.
Shared historical index terms are illustrated in Figure 3. How
such shared index terms may be partitioned in a key split is
illustrated in Figure 2, where K2 is used as the splitting key, and
K2 divides the spaces of the index terms denoted by DA0.1 and
DA0.2. When K2 splits an index page, key-time regions of both
DA0.1 and DA0.2 cross the K2 key boundary. Thus, they will
need to appear in both index pages resulting from the key split.

Thus, historical index terms may need to be stored in both
resulting pages of the key split. Because they point to pages that
are part of the historical tree, these pages will never be updated or
split. Thus their index terms will never need to be updated. We
can have such duplicated historical index terms without any
concern about future updating difficulties.

3.3.2 Time Split
Because index terms denote time ranges, like data page records,
an index term will frequently need to be in both pages resulting
from a time split. We use the same technique with them that we
use with historical data versions (and with index terms whose key
range crosses a key split boundary). That is, we simply put the
index term in both pages resulting from the time split.

We are faced, however, with a complication when an index term
that references a current page crosses the time split boundary.
Because current data is updatable, its page can subsequently be
split (by key or time, or both). Thus, the index term for a current
page is itself updatable. When such an index term is in a
“current” index page, this poses no problem. However, if a time
split of an index page cause a current index term to appear in both
historical and current resulting pages, this produces two problems.
(1) We now have a “historical” index page that can be updated. (2)
The page referenced by the current index term now has two
parents that need to be updated should it split. There are three
main ways of dealing with this.

1. Find a time (boundary) for splitting the full index page that
does not cross the time interval of any index term accessing
current data. This is our preferred tactic. We choose it
whenever it permits the page to be effectively time split.
Inevitably, there will be index terms that cross the boundary.
Historical index terms can cross the boundary because they
can be in both resulting pages without complication as they
will never be updated. However, when we cannot avoid a
current index term crossing the boundary, we use the 2nd way.

2. Perform a key split instead of a time split for the index page.
Key splits can always be done so that no index term
accessing current data need be copied. This is a second
choice because it reduces the fan-out of the resulting index
pages for any as-of time slice query, including accessing
current data. However, so long as fan-out is not permitted to
get too low, this is an acceptable strategy as a fallback to 1.

3. As we do for index terms referencing historical data, we can
also duplicate the index term for current data when the key-
time region it references crosses the time split boundary. We
will then need to update this index term when the current
page it references is subsequently time split or key split.

We did not pursue option 3, primarily because of the extra code
complexity, but also because it compromised the invariant that
historical pages are immutable. This is no trivial matter, as
mutable historical pages require latches to prevent concurrent
access during updates. By avoiding option 3, we preserve
immutability of historical pages, and hence avoid the need to latch
them during range searches. However, the risk (which we have
not encountered in our experiments and tests) exists that index
page fan-out will be reduced in some cases.

3.4 Rest of Structure Modification Protocol
The rest of our protocol is derived directly from the SQL Server
protocol. For both reads and updates, we latch couple down the
tree then up the key range to assure deadlock avoidance via
resource ordering. The structure modification process involves a
second traversal of the tree should an update find a page to be full,
with splitting preemptively down the tree. A page, once split and
committed via a system transaction, is not undone even when the
triggering update transaction aborts. This is multi-level
transactions within an ARIES style of recovery.

4 COMPRESSION

4.1 Record Version Compression
The TSB-tree clusters records by key and time, storing in a page
all versions of records within a key range that exist within the
page’s time range. All versions of a given record share at least the
primary key field(s) in common. These versions may share many
fields, with an update frequently changing only a small number of

Dynamic slot array .

1 slot = 2 bytes 0 1

FREE SPACE

USED SPACE

 KK22,,DDAA11..11

 KK11,,DDAA00..44

page header: 96 bytes including:

contig free

space offset
free space

total
slot count time

stamp

 KK11,,DDAA00..33

 KK11,,DDAA00..22

 KK11,,DDAA00..11

 KK22,,DDAA11..00

Figure 3: An Immortal DB index page for the space shown in

Figure 2, with index terms treated like versioned records.

874

fields of a record. Immortal DB compresses record versions using
a backward delta compression scheme that exploits the frequently
large commonality between a record version and its immediate
predecessor version.

 For version compression, we modify the SQL Server update log
record [40]. This log record contains information that identifies
the record. The log record contains, for each change, two byte
fields for a change offset, a length of the data before updating
(delete length) and a length of the data after the update (insert

length) plus the before and after data. This permits recovery to
remove the old value from the record and replace it with the new
value, without knowing about attributes. Rather, it can perform
the update entirely by byte replacement based on this information.

A record identifier is unnecessary in our delta records. Our link
from an earlier uncompressed record version on the page provides
this. We also reduce the size of the delete and insert lengths to
one byte, optimizing for small updates, at the cost of having to
break large updates (greater than 255 bytes) into multiple changes
within our delta record. We only need undo information and so
do not store redo information. Finally, we also squeeze other
parts of the uncompressed record in producing our delta record,
e.g. the timestamp field. Figure 4 illustrates our delta record
format in contrast to the uncompressed original record.

Figure 5 illustrates how deltas are tied into a record's version
chain on the page in the example of Figure 1. The latest version
of a record on a page is uncompressed. This means that current
versions are uncompressed and that current time database
functionality is unaltered by compression. All predecessors are
delta compressed. We expect most updates will be to a single
attribute of a record. With 10 to 20 attributes for a record, a
compressed record might be expected to be around a tenth the size
of an uncompressed one.

4.2 Delete Stub Compression
When we delete a record, we use a delete stub to provide the end
time for the last version of the record. In our initial work, this
delete stub consisted of a complete copy of the prior version, with
a new timestamp and the ghost flag set. The reason for this is that
we need to remember the key value for the record so that we can
place records correctly on the page, i.e. in key order. The SQL
Server storage engine wants to find keys in all records in exactly
the same way, so we leave the entire record, since the key can be
anywhere in the record.

This technique of using the prior record as a delete stub is
logically effective but obviously is expensive, since its sole
purpose is to provide an end time for the preceding record version.
With compression, we have the chance to reclaim the extra space.
The delete stub is still the entire preceding record (the deleted
record), and is thus unchanged from before, continuing to also
provide the key for the record. However, the preceding record
can now itself be replaced with what we call the empty delta
compressed record, since this preceding record is identical to the
record version in the delete stub, except for the timestamps and
the ghost flag. This is illustrated in Figure 6. Note that this
technique continues the “rule” that the latest version of any record
in a page is uncompressed, with compression applied to earlier
versions.

Note that the empty delta record of Figure 6 contains no change
descriptors, just control and timestamp information. So, while we

cannot actually compress the delete stub because we continue to
need its key information, the record for which it is a delete stub
can be reduced to an empty delta record.

dynamic slot array

1 slot = 2 bytes 0 1

page header: 96 bytes includes among other things

contig free

space offset

FREE SPACE

USED SPACE
∆1.2

∆1.1

free space

total
slot

count

VVeerrssiioonn 11..33
VVeerrssiioonn 00..44

∆0.3

∆0.2

∆0.1

time

stamp

1

TagA

2

Change

Offset

1

Delete

Length

1

Insert

Length

2

Delta

Length

2 6 2 D: Disk addr

XTS Timestamp VSN Data

(change)

7 10

Uncompressed

Compressed

2 * # var
colmn

Var offset

array

2

#Var

colmn

#colms/8 

NULL bitmap

2

#colm

n

pminlen -1

Fixed Len

Data

1

TagA

4 8 2 n

XTS Timestam

p
VSN Var

Data

D + (K + 15) ++

14
Only present if there are

variable length columns

Only present if any NULLs

are allowed in the index

column

D + 17

Figure 4: Compressed and uncompressed record formats.

Figure 5: Data page layout showing compressed versions for

the page in Figure 1.

Ghost Record Empty ∆

Slot Array

 Regular ∆ …

1

TagA

2

Delta

Length

2 6 2

XTS Timestamp VSN

Empty Delta

Figure 6: The format of an empty delta, and its position in the

version chain when a record is deleted.

875

4.3 Index Term Compression
We compress index terms on an index page similarly as we
compress record versions on a data page. Index terms can be
compressed very effectively. Recall that an index term space
description is the <low key, low time> corner of the region
referenced by the index term. In addition to the space description,
an index term includes a pointer to the child page that the term
references. The key of an index term is unchanged in a time split,
which is how “historical” index terms are created. Hence, the
index term pointing to the same key range but in an earlier time
period only differs in child page pointer and timestamp.

Two later index terms with different low key values can both
point to the same compressed historical index term in which the
key value is omitted; i.e., an historical index term can be shared
with multiple index terms that precede it on the chain (an index
term preceding another on the chain indexes a later part of the
key-time space). Its omitted key is the lower key value for only
one of the terms resulting from a key split. But the historical
index term will nonetheless point to the correct child page
containing the data for the regions identified by different key
values. Figure 7 illustrates this compression for the index page
shown in Figure 3. In all index terms referring to only historical
data, the key value is omitted. During lookups, the key value
from the index term referring to current data that precedes the
index term on the version list guides the search. In Figure 7, the
historical index term pointing to disk address DA0.2 contains
historical information for both K1 and K2 current regions.

5 STORAGE UTILIZATION
There are two reasons why storage utilization is exceptionally
important in a transaction time database.
1. Disk storage cost can be a significant factor in the hardware

cost of supporting a transaction time database. Disks are
becoming cheaper and indeed that is a reason why
transaction time databases are increasingly important.
However, even for a constant size current database, its
transaction time cousin can continue to grow, consuming
ever more storage. So providing good overall storage
utilization is very important. The quantity we focus on is
multiversion total utilization (MVTU), the size of all versions

(uncompressed) divided by the storage size needed to contain
them.

2. The density of record versions relevant to any single as-of
query determines how many pages need to be accessed to
satisfy an as-of range query. This is single version utilization
(SVU). Because all versions share the same approximate
average utilization, we focus on the single version utilization
provided for the current version (SVCU).

Unfortunately, we cannot simultaneously optimize both SVCU
and MVTU. Both are impacted by the key split threshold
(Thresh), the utilization required to be attained by the current
version within a page before we perform a key split in addition to
the time split that is always done when a page is full. The higher
we set Thresh, the higher will be SVCU, as it is always at least
Thresh*ln(2). However, the higher Thresh is set, the more time
splits are performed. This leads to more redundant versions, since
any version that lives across a time split must be duplicated to be
present in each of the resulting pages. This reduces MVTU as
more duplicate versions require more storage.

In this section, we explore this tradeoff between SVCU and MVTU
and the impact of compression. We chose our experimental
parameters based on [29], which serve to confirm the results that
we report when working with uncompressed data. We provide
also a “back-of-the-envelop” analysis that further confirms our
experiments for a subset of the cases the experiments cover. This
gives an intuition as to how and why the performance is achieved,
and can be used to predict performance under other conditions.
The notation we use for this analysis is given in Table 1.

5.1 Experimental Setup
We used our implementation of the TSB-tree in Immortal DB as
the vehicle for doing experiments. For our experiments, we set
our key splitting threshold at Thresh = 0.67, inserting and
updating a total of 50,000 versions, using uniformly distributed
random keys. We varied the update/insert ratio from 1% updates
to 99% updates (the values used are given in the reported results),
reproducing the experimental parameters reported in [29].

Table 1:

Notation used in our analysis and experiments.

Term Denoting Computation

Psize page size

Rsize record size

Rcur # of current records

C # current pages

Rhist # of history records Without duplicates

H # of history pages

Rcomp Compressed record size

CR Compression ratio Rcomp/Rsize

SVCU Single version current
utilization

Rcur*Rsize/Pcur * Psize

MVTU Multiversion total
utilization

(Rcur+Rhist)*Rsize/(C+H)*Psize

Thresh Utilization threshold

In Insertion ratio (1 – Up)

Up Update ratio (1 – In)

D Uncompressed record
storage

(Rcur + Rhist)*Rsize

dynamic slot array .

1 slot = 2 bytes 0 1

page header: 96 bytes includes among other

things

contig free

space offset

FREE SPACE

USED SPACE

Free space

total
slot count

 KK22,,DDAA11..11

 KK11,,DDAA00..44

time

stamp

 DDAA00..33

 DDAA00..22

 DDAA00..11

 DDAA11..00

Figure 7: Immortal DB index page of Figure 3 with

compressed index terms.

876

We extended the experiments for version compression, repeating
the experiments for different compression ratios CR, which were
controlled by updating a character string field with varying size
strings. We ran four sets of experiments, uncompressed (CR =

1.0), 2:1 compression (CR = 0.515, where the data portion is
compressed at 2:1, but CR includes the storage overhead of
timestamps, etc.), 4:1 (CR = 0.295), and 10:1 (CR = 0.162).

5.2 Single Version Current Utilization
Supplementing the experiments, we did an approximate analysis
of the expected results for values of SVCU at all experimental
points.

The analysis used to produce the average value for SVCU is given
below. This is an “asymptotic” analysis, not a probabilistic one.
SVCUavg is the average utilization seen in current database pages
for the current versions. It is, in fact, also the average utilization
of any “as-of” version.

As a starting point, imagine that a data page has been split at the
prior iteration i’s maximum value SVCUi. We want to iterate on
this until this maximum converges. We can then compute
SVCUavg in the usual way as SVCUi*ln(2).

After a key split, the new page has utilization SVCU(i+1)min =
0.5*SVCUi. We then fill the page with entries divided between
updates and inserts as given by the update ratio. The current
entries when the page next fills are represented by these initial
entries plus the inserts. We need to capture the impact of
compression and hence we want to know how the space is
divided. This results in the following iteration formula. We start
calculating this using Thresh as SVCU0. The value converges
rapidly (five iterations). At iteration i+1, we fill the unused space
(1 -0.5*SVCUi) with insertions in their ratio of insertion space
over the total space for new versions, taking into account that
updates lead to compression of the supplanted version. All
maximum values of SVCUi are “clipped” by threshold Thresh.
Thus:

SVCU0 = Thresh

SVCUi+1=

Max(Thresh,0.5*SVCUi+(1- 0.5*SVCUi)*(In/(In+C*Up)))

These values are SVCUmax, the maximum value reached by SVCU
before the page is key split. For average, we multiply by ln(2).

SVCUavg = SVCUmax * ln(2).

These results closely match our experiments, as indicated in
Figure 8.

Generally, the analysis suggests that Thresh limits SVCUmax at
lower update ratios than found in the experiments, but has less of
an impact at mid-range update ratios before Thresh limits are
strong. The difference between analysis and experiment are
mostly minor, never differing by more than four or five percent,
and usually less.

5.3 Multiversion Total Utilization
We also determined multiversion total utilization MVTU. Since
we compress old versions, one should not be surprised that MVTU
improves as more old versions are created via a higher update
ratio. Indeed, because of compression, the effective MVTU,
which is calculated based on the size of uncompressed data, can
be larger than one, in some cases substantially larger.

Our simple analysis for SVCU provided results for all update
ratios. Our analysis for MVTU is more limited, applying only to
the end points of the update ratio range. Thus we can confirm the
experiments only for some of the cases we considered in the
experiments.

5.3.1 Update Rate near Zero
When the update rate Up=0, we have only inserts. Hence, all
versions are current versions. For this case, Thresh and
compression ratio CR have no impact. We always fill up the page
before splitting the page. And all versions are current, so none are
compressed. Each page is both time split and key split at this
point. This results in two current pages and one historical page.
This binary process, over time, then produces a “binary tree” of
data pages, formed by this “two current pages for each history
page” splitting regime. Given our uniformly distributed
insertions, this results in a balanced tree of pages. The number of
leaf pages (current pages) in a balanced tree is equal to the total
umber of non-leaf pages (historical pages). Hence, because all
versions are current, and they are spread over twice the number of
current pages,

MVTU = 0.5 * SVCUavg = 0.5 * ln(2) = 0.346

This is close to our experimental results reported in Figure 9.

5.3.2 Update Rate near One
We can also confirm the experiments at Up approaching 1.0
(0.99), strongly for the uncompressed case, and suggestively for

percent updates

0

0.5

1

1.5

2

2.5

3

3.5

1% 10% 30% 50% 70% 90% 99%

MVTU

CR = 1.0
CR = .515
CR = .295
CR = .162

Figure 9: Multiversion total Utilization (MVTU)

with a threshold of T = .67.

SVCU

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1% 10% 30% 50% 70% 90% 99%

percent updates

CR = 1.0 (Exp) CR = 1.0 (Anl)

CR = .515 (Exp) CR = .515 (Anl)

CR = .295 (Exp) CR = .295 (Anl)

CR = .162 (Exp) CR = .162 (Anl)

Figure 8: Single Version Current Utilization (SVCU) with

the key split threshold T = 0.67

877

compressed cases. With Up near 1.0, the number of current pages
is very small compared with the number of history pages.
Further, the last (and always uncompressed) versions on any page
are fully redundant with compressed versions of the more recent
historical page. Hence, all non-redundant versions of such a page
exist as “historical versions” on some page. (Only the
uncompressed versions are redundant.) We know that the average
utilization for the uncompressed versions is SVCUavg. So we can
subtract that from 1.0 to determine MVTU for the uncompressed
case. This gives, at Up near one

MVTU = 1 – SVCUavg = 1 - 0.462 = 0.538

Again, this fairly closely matches our experimental results for
uncompressed data closely at Up = 0.99, as shown in Figure 9.

We need a more accurate analysis for compression factors smaller
than one and Up = 0.99. The reason for this is that the relative
number of current pages increases compared to the uncompressed
case. So we take a weighted average of the storage utilization in
the history pages and the current pages. Thus we need to
determine how many pages are history pages H, how many are
current pages C, and then divide the total data space (assuming all
versions are uncompressed) by the total space in all pages.

Current Pages

We can derive the number of current pages C from the SVCUavg
(which involves only current data in current pages) and the
amount of current data. Since we are treating the update percent
of 0.99 case, the amount of current data is 0.01*D, where D
represents the size of all the versions. Thus

SVCUavg = 0.01*D/(C*Psize)

Further, SVCUavg = Thresh*ln(2) = 0.462 at Up near 1.0, so

0.462 = 0.01D/(C * Psize) and

C = 0.0216(D/Psize)

Historical Pages

Our first approximation for MVTU was an approximate
calculation for historical pages only. We will refine that
calculation, and then join it with the current page computation to
produce the final result.

For our experiments, we chose a page size of exactly 35
uncompressed records. When records are uncompressed, each
historical page is completely full. But when records are
compressed, historical pages do not quite fill up. On average, half
an uncompressed record of capacity remains. So, each historical
page can exploit1

[34.5/35–SVCUavg]*Psize=[0.986–Thresh*ln(2)]*Psize =0.524*Psize

Page size Psize is in terms of the number of uncompressed records.
To determine the number of compressed records, we need to
divide that by the compression ratio CR. The amount of historical
data is 0.99*D. Thus

0.524*Psize*(1/CR))*H = 0.99D

Solving for H gives us

H = 0.99D/((0.524/CR)*Psize)= 1.89*CR * (D/Psize)

1 For uncompressed records, we use (1-SVCUavg) = 0.538.

All Pages

Finally, by definition, MVTU = D/(C + H), so

MVTU= D/[{0.0216 *(D/Psize) + (1.89*CR *(D/Psize))}*Psize]

or MVTU = 1/(0.0216 + 1.89*CR)

The analytic results are compared with our experiments in Table
2. The analysis, approximate though it is, produces results that
are quite close to the experimental results. For uncompressed
data, where we did not adjust the page size computation because
exactly 35 records did fill the page, experiment and analysis agree
“exactly”.

Table 2: Comparison of experimental and analytic results.

5.4 Compression to Improve Performance
As we indicated in the introduction, one can use compression not
only to save space but also to improve query performance.
Compressing versions can be used to impact both the total number
of pages required to store versions as well as the utilization that
will be seen by an “as-of” query. This is determined by how we
choose Thresh. If we leave Thresh unchanged when we introduce
compression, we reduce the number of pages required to store our
versions, hence improving MVTU. Alternatively, we can try to
keep the number of pages unchanged by increasing Thresh, which
improves SVCUcurr, and the effective utilization seen by all “as-
of” queries. In this subsection, we show the impact of
compression on the multiversion between SVCUcurr and MVTU.

We ran a set of experiments on compressed data in which we
varied the key splitting threshold Thresh for the compressed cases
until the compressed cases produced the value for MVTU
achieved for the uncompressed case. We found that we were able
to raise Thresh substantially. This translates the compression
benefit into a performance improvement for range queries.

Figure 10 displays the results of our experiments. At low update
ratios, there is a very broad range of thresholds that produce
similar results. This is because Thresh plays a smaller role at low
update ratios Up since pages frequently exceed the threshold at
the point when splitting occurs. At high Up, small changes in
Thresh can produce large changes in the number of pages and
hence in MVTU. This is because many updates can occur at
utilizations just under Thresh, and these might each lead to more
page time splits.

As with our prior results, we perform an approximate analysis that
at least partially explains the nature of the results. This permits us
to compute an approximate value for Thresh analytically.

For update rates near 1.0, we have for the uncompressed case, and
leaving Thresh as an unknown:

MVTU = (0.986 – Thresh*ln(2))/CR

Compression

Ratio CR

MVTU

Analysis

MVTU

Experiment

1.000 0.54 0.54

0.515 1.01 0.99

0.295 1.73 1.63

0.162 3.05 2.86

878

Setting MVTU for the compressed case equal to the uncompressed
value (for Up near 1.0) yields

(0.986 – Thresh*ln(2))/CR = 0.54

Finally, solving for Thresh yields

Thresh = 1.41-0.78*CR

For CR = 0.515, we get a value for Thresh of 1.01. This implies
that one can let pages fill completely for most compression ratios.
This neglects that for probabilistic distributions (as opposed to
this deterministic analysis), extra time splitting makes this an
overly aggressive strategy. But note that Thresh does get close to
1.0 at high update rates in our experiments. At smaller update
rates, our experiments suggest one should be less aggressive, but
setting Thresh = 0.9 (even for our modest “2:1” compression case,
i.e. CR = 0.515), is a sound strategy.

Our experiments and this approximate analysis both indicate that
one can turn compression into a range search performance
improvement, with that performance being within 10% of the
performance of a conventional unversioned database.

6 RELATED WORK
There has been extensive research on temporal and versioned
databases and their applications [11, 35, 41, 42]. Much work,
especially earlier papers, focused on theoretical foundations, not
on practical considerations such as storage efficiency and
indexing versioned data, this paper’s focus. We briefly review
some of the work done in the area. For a good survey we refer the
reader to [35]. Extensive bibliographies have also been compiled
[24, 38, 44].

6.1 Temporal Indexing and Compression
Many indexing structures [2, 5, 9, 14, 16, 23, 25, 39] have been
proposed for versioned and temporal data. A good survey of
temporal indexing has appeared in [37]. Most of these alternative
indexing techniques have drawbacks.

The drawback of the Time Index [14] is the size of the index,
which is quadratic in the number of indexed time ranges. The
Time Index+ [25] improves upon the Time Index, substantially
reducing the storage needed for the index while improving query
performance. However, worst case storage remains quadratic.

The TP-index [39] maps a (one-dimensional) time range to a point
in two-dimensional space (<low time, high time>), and the

querying is reduced to a spatial search problem. It is more space
efficient than the Time Index, but is biased toward some types of
queries. Moreover, it is highly specialized to the mapping, and the
integration into existing RDBMSs is challenging.

The Interval B-tree (IB-tree) [2] has also been developed to
overcome the weaknesses of the Time Index. The original main
interval tree memory model is transformed to an efficient
secondary storage structure while preserving optimal space and
time complexity. The disadvantage of the IB-tree is that the
complex three-fold structure of the interval tree is retained, and a
dedicated structure of its own is used for each level. This
complexity makes the implementation inside a commercial
RDBMS challenging.

The Interval B+-tree (IB+-tree) [9] addresses the problem of
indexing the temporal dimension in valid time databases where
the temporal information of data objects are represented as valid
time intervals. Here, the concept of time splits is introduced as a
successful heuristic to avoid large fruitless scans. However, a
limitation of the proposed structure is that time-splits are applied
only to the leaf level. Moreover, the IB+-tree also requires a
complex nested data structure, which makes it difficult to
integrate into existing DBMSs.

The monotonic B+tree [14], the Append-Only Tree [16], and the
Snapshot Index [45] also aim at indexing time-based data. None
of these indexes, however, employ multiversion compression
which both saves space and improves query performance.

A recent paper [23] studies the problem of efficiently indexing
data with “branched evolution”. The main contributions here are
the extension of temporal index structures to data with branched
evolution and a steady state analysis that estimates the
performance of the different index structures and provides
guidelines for the selection of the most appropriate one.

The multiversion B+tree (MVBT) [5] has fine performance.
However, as discussed early in this paper, the MVBT moves
current data instead of historical data during a time split, and
hence does not progressively move historical data to another
storage medium as the TSB-tree does. Moving historical data to a
new page is essential if one wants historical data on an archival
medium while continuing to access current data on its original
medium. In addition, the MVTB’s root* is not as good a fit with
the SQL Server B+tree implementation as is the TSB-tree.
Finally, the MTBT performs page merges, which we decided to
avoid because it causes complications when we represent index
terms like chains of data record versions. Permitting page merges
would require that an index version chain fork at the merged page,
and hence further complicate index page splitting. This
complication would be on top of the one introduced by the TSB-
tree moving of historical pages in a split.

Related to our version compression technique is the idea of
temporal coalescing [12]. Temporal coalescing merges the
temporal extents of value-equivalent tuples. Our compression
technique, however, stores only the incremental differences
between the values and the timestamps of the versions.

6.2 Version Support
Many database applications require the storage and manipulation
of different versions of data objects. To satisfy the diverse needs

Threshold

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1% 10% 30% 50% 70% 90% 99%
percent updates

Uncompressed
CR = .515
CR = .295
CR = .162

Figure 10: Key split threshold adjustment

879

of these applications, a number of versioning solutions for
database systems have been proposed.

The first system offering transaction time functionality was
Postgres [41]. Postgres had reasonably complete transaction time
functionality, but it depended, in part, on a recovery technique
that exploited stable random access memory for the cache, making
it less than ideal as an evolutionary starting point. Postgres used
R-trees [17] to index historical data, but not current data, for
which a B+tree was used. This was important as R-trees have
difficulty supporting, in a straightforward way, data that is current
and hence does not yet have an end time.

Recently, support for multiple versions of complex data, e.g.,
XML [10], object oriented [8], and spatio-temporal data [18] have
been proposed. In [3], the authors describe a versioning model
that uses signature patterns, a hash table and B+ trees to support
multiple versions. In [1], VQL, a language designed for querying
data stored in multiversion databases is introduced. VQL is based
on a first order calculus and provides users with the ability to
navigate through object versions modeled by the database.

DEC (now Oracle) Rdb [19] provides support for read-only
transactions without impeding update transactions via a transient
versioning technique in which the transient versions are accessed
by being linked to the current data. Transient versioning methods
are also described in [15] for the same reason.

In [36], a time-travel service is implemented for a replication
DBMS. The time-travel semantics is defined using snapshot
isolation in PostgreSQL and allows retrieval of older snapshots in
replication systems.

Multiversion support in data warehouses has been addressed in
[46]. Here the authors maintain a data warehouse under changes
of schemas and contents based on explicit versioning of the whole
data warehouse (i.e. schema and data). The model of a
multiversion data warehouse can maintain real and alternative
versions of the whole data warehouse and allows running queries
that span multiple versions and compare various factors computed
in those versions, as well as to create and manage alternative
virtual business scenarios required for the what-if analysis. The
focus of [46] is on physical sharing of data between several data
warehouse versions which is similar in spirit to our proposed
version compression scheme.

6.3 Industrial Interest
Transaction time functionality has also received some industrial
interest, particularly from Oracle. Oracle 9i included support for
transaction time [34]. Its FlashBack queries allow the application
to access prior transaction time states of their database. Oracle
10g extended FlashBack queries to retrieve all the versions of a
row between two transaction times (a key-transaction time-range
query) and allowed tables and databases to be rolled back to a
previous transaction time, discarding all changes after that time.
This is equivalent to “point in time” recovery and is used to deal
with removing the effects of bad user transactions. The Oracle
10g Workspace Manager includes the time period data type, valid-
time support, transaction time support, support for bitemporal
tables, and support for sequenced primary keys, sequenced
uniqueness, sequenced referential integrity, and sequenced
selection and projection. They do not index historical versions,
however, so historical version queries must go through current
time versions and then search backward “linearly” in time. In

comparison, our work is the first industrial effort to provide
logarithmic time access to historical versions of data.

Other database-related products also begin to provide temporal
support. LogExplorer from Lumigent [33] provides an analysis
tool for Microsoft SQL Server logs, to allow viewing how rows
change over time (a nonsequenced transaction time query) and
then to selectively back out and replay changes, on both relational
data and the schema (it effectively treats the schema as a
transaction-versioned schema). aTempo's Time Navigator [4] is a
data replication tool for DB2, Oracle, Microsoft SQL Server and
Sybase that extracts information from a database to build a slice
repository, thereby enabling image-based restoration of a past
slice; these are transaction time slice queries. IBM's
DataPropagator [20] can use replication of a DB2 log to create
both before and after images of each row modification to create a
transaction time database that can be later queried. These
products, however, are built outside the database engine, and do
not employ any transaction time indexing for storage. Further,
when processing queries, they may incur significant storage and
processing overhead.

7 CONCLUSIONS AND FUTURE WORK

7.1 Summary
Temporal support is becoming increasingly important in the
commercial market as indicated by the FlashBack temporal
functionality provided by Oracle [34]. Oracle has been actively
advocating that the SQL standard be extended in this direction.

It has been an essential goal of Immortal DB to be able to index
historical versions effectively. Thus, we have implemented the
TSB-tree by modifying the SQL Server B+tree implementation.
This was both an added complication, requiring dealing with a
very large code base, but also a great help as the B+tree gave us
an existing framework upon which to build.

Our TSB-tree deals with the full set of implementation issues:
representing and managing index terms, page splitting and
splitting policies, range searches, etc. Our overall goal has been
to provide performance for the TSB-tree that is very close to that
provided by the SQL Server B+tree. Indeed, Immortal DB
executes SQL Server B+tree code for current queries.

Version compression further improves storage efficiency and
range search performance. Our backward delta technique works
very well within the TSB-tree context, where the last version of
any record or index term on a page is uncompressed. Thus,
compression is completely handled within a single page. The
result of compression is to improve, at high compression ratios
dramatically, both storage efficiency and performance. This was
confirmed both by experiments and analysis.

7.2 Future Work
We continue to strive to narrow even further the performance
differences that exist between transaction time database
functionality and current time functionality, both for update and
for range query. So we continue our search for additional
optimization opportunities. We also want to further enhance the
utility of Immortal DB. We have already implemented recovery
from bad user transactions [32]. Using transaction time historical
versions to provide a backup for current data, as previously
suggested [30], remains on our agenda.

880

8 REFERENCES
[1] T. Abdessalem and G. Jomier: VQL: A Query Language for

Multiversion Databases. International Workshop on

Database Programming Languages, 160--179, 1998.

[2] C.-H. Ang and K.-P. Tan: The Interval B+tree. Information

Processing Letters, 53, 2, 85--89, 1995.

[3] G. Arumugam and M. Thangaraj: An efficient multiversion
access control in a Temporal Object Oriented Database.
Journal of Object Technology. 2006.

[4] aTempo: aTempo. http://www.atempo.com/

[5] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P.
Widmayer: An Asymptotically Optimal Multiversion B+tree.
VLDB J. 5, 4, 264--275, 1996.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and
P. O'Neil: A Critique of ANSI SQL Isolation Levels.
SIGMOD, 1--10. 1995.

[7] P. Bernstein, V. Hadzilacos, and N. Goodman: Concurrency

Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[8] A. Björnerstedt and C. Hultén: Version control in an Object-
oriented Architecture. Object-Oriented Concepts, Databases,

and Applications, 451--485, 1989.

[9] T. Bozkaya and M. Ozsoyoglu: Indexing Valid Time
Intervals. DEXA,. 541--550, 1998.

[10] S. Chien, V. Tsotras, C. Zaniolo, and D. Zhang: Efficient
Complex Query Support for Multiversion XML Documents.
EDBT, 161--178, 2002.

[11] J. Clifford, C. Dyreson, T. Isakowitz, C. Jensen, R.
Snodgrass: On the Semantics of "Now" in Databases, ACM

TODS 22, 2, 171--214, 1997.

[12] C. Dyreson: Temporal Coalescing with Now Granularity,
and Incomplete Information. SIGMOD 169-180, 2003.

[13] M. Easton: Key-Sequence Data Sets on Inedible Storage.
IBM J. R & D 30, 3, 230--241, 1986.

[14] R. Elmasri, G. Wun, and V. Kouramajian: The Time Index
and the Monotonic B+ tree. In [42] Chapter 18, 433--456,
1993.

[15] S. Gukal, E. Omiecinski, and U. Ramachandran: An Efficient
Transient Versioning Method. British National Conference

on Databases. 155--171, 1995.

[16] H. Gunadhi and A. Segev: Efficient Indexing Methods for
Temporal Relations, IEEE TKDE 5,3, 496--509, 1993.

[17] A. Guttman: R-trees: a dynamic index structure for spatial
searching, SIGMOD, 47--57, 1984.

[18] M. Hadjieleftheriou, G. Kollios, V. Tsotras, and D.
Gunopulos: Efficient Indexing of Spatiotemporal Objects.
EDBT, 251 -- 268, 2002.

[19] L. Hobbs, K. England. Rdb: A Comprehensive Guide.
Digital Press, 1995.

[20] IBM: IBM Data Propagator.
http://www306.ibm.com/software/data/integration/replication

[21] C. Jensen and R. Snodgrass: Temporal Data Management.
IEEE TKDE, 11, 1, 36--44, 1999.

[22] C. Jensen and D. Lomet: Transaction Timestamping in
(Temporal) Databases. VLDB, 441--450, 2001.

[23] K. Jouini, and G. Jomier: Indexing multiversion databases.
CIKM, 915 -- 918, 2007.

[24] N. Kline: An Update of the Tcmporal Database
Bibliography, SIGMOD Record, 22, 4, 66--80, 1993.

[25] V. Kouramajian et al: The Time Index+: An Incremental
Access Structure for Temporal Databases. CKIM, 296--303,
1994

[26] D. Lomet, R. Barga, M. Mokbel, G. Shegalov, R. Wang, and
Y. Zhu: Immortal DB: Transaction Time Support for Sql
Server. SIGMOD, 939--941, 2005.

[27] D. Lomet, R. Barga, M. Mokbel, G. Shegalov, R. Wang, and
Y. Zhu: Transaction Time Support Inside a Database Engine.
ICDE, 35, 2006.

[28] D. Lomet and B. Salzberg: Access Methods for Multiversion
Data. SIGMOD, 315--324, 1989.

[29] D. Lomet and B. Salzberg: The Performance of a
Multiversion Access Method. SIGMOD, 353--363, 1990.

[30] D. Lomet and B. Salzberg: Exploiting A History Database
for Backup. VLDB, 380--390, 1993.

[31] D. Lomet, R. Snodgrass, and C. Jensen: Using the Lock
Manager to Choose Timestamps. IDEAS, 357--368, 2005.

[32] D. Lomet, Z. Vagena, and R. Barga: Recovery from "Bad"
User Transactions. SIGMOD, 337--346, 2006.

[33] Lumigent: Lumigent Log Explorer.
http://www.ssw.com.au/ssw/LogExplorer/

[34] Oracle: Oracle Flashback Technology.
http//www.oracle.com/technology/deploy/availability/htdocs/
Flasflashback_Overview.htm, 2005

[35] G. Ozsoyoglu and R. Snodgrass: Temporal and Real-Time
Databases: A Survey. IEEE TKDE, 7, 4, 513--532, 1995.

[36] C. Plattner, A. Wapf, and G. Alonso: Searching in Time.
SIGMOD, 754--756, 2006.

[37] B. Salzberg and V. Tsotras: Comparison of access methods
for time-evolving data. ACM Comput. Surv. 31, 2, 158--221,
1999.

[38] M. Sao: Bibliography on Temporal Databases. SIGMOD

Record, 20, 1, 14--23, 1991.

[39] H. Shen, B-C Ooi, and H. Lu: The TP-Index: A Dynamic and
Efficient Indexing Mechanism for Temporal Databases.
ICDE, 274--281, 1994

[40] SQL Server: Inside Microsoft SQL Server 2005: The Storage

Engine, MS Press, 2005.

[41] M. Stonebraker. The Design of the POSTGRES Storage
System. VLDB, 289--300, 1987.

[42] U. Tansel, J. Clifford, S. Gadia, A. Segev, and R. Snodgrass:
Temporal Databases: Theory, Design, and Implementation.
Benjamin/Cummings, 1993.

[43] K. Torp, R. Snodgrass, C. Jensen. Effective Timestamping in
Databases. VLDB J., 8, 4, 267--288, 2000.

[44] V. Tsotras and A. Kumar: Temporal Database Bibliography
Update. SIGMOD Record, 25, 1, 41--51, 1996.

[45] V. Tsotras and N. Kangelaris. The Snapshot Index, An I/0
Optimal Access Method for Timeslice Queries. Information

Systems, 3, 20, pp. 237--260, 1995.

[46] R. Wrembel and T. Morzy: Managing and Querying
Versions of Multiversion Data Warehouse. EDBT, 1121--
1124, 2006.

881

