
Efficient Skyline Querying with Variable User Preferences
on Nominal Attributes

Raymond Chi-Wing Wong1, Ada Wai-Chee Fu2, Jian Pei3,

Yip Sing Ho2, Tai Wong2, Yubao Liu4

1 Computer Science and Engineering 2 Computer Science and Engineering
The Hong Kong University of Science and Technology The Chinese University of Hong Kong

raywong@cse.ust.hk adafu@cse.cuhk.edu.hk
3 School of Computer Science 4Department of Computer Science

Simon Fraser University Sun Yat-Sen University
jpei@cs.sfu.ca liuyubao@mail.sysu.edu.cn

ABSTRACT
Current skyline evaluation techniques assume a fixed or-
dering on the attributes. However, dynamic preferences on
nominal attributes are more realistic in known applications.
In order to generate online response for any such prefer-
ence issued by a user, one obvious solution is to enumerate
all possible preferences and materialize all results of these
preferences. However, the pre-processing and storage re-
quirements of a full materialization are typically prohibitive.
Instead, we propose a semi-materialization method called
the IPO-tree Search which stores partial useful results only.
With these partial results, the result of each possible prefer-
ence can be returned efficiently. We have also conducted ex-
periments to show the efficiency of our proposed algorithm.

1. INTRODUCTION
The skyline operator has emerged as an important sum-

marization technique for multi-dimensional datasets. Given
a set of m-dimensional data points, the skyline S is the set
of all points p such that there is no other point q which
dominates p. q is said to dominate p if q is better than p
in at least one dimension and not worse than p in all other
dimensions. Skyline queries have been studied since 1960s
in the theory field where skyline points are known as Pareto
sets and admissible points [13] or maximal vectors [12]. The
problem of skyline queries is introduced in the database con-
text in [1], and earlier algorithms such as [12, 11] are found
to be unscalable for large databases.

Most of the existing studies consider numeric attributes or
dimensions. In this paper, we use the terms “attribute” and
“dimension” interchangeably. Some representative methods
for finding skylines include the block nested loop (BNL) al-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

gorithm [1], the sort first skyline (SFS) algorithm [7], the
bitmap method [24], the nearest neighbor (NN) algorithm
in [9] and the branch and bound skylines (BBS) method
[19, 20]. It is easy to see that a naive method requires n2

pairwise comparisons of the data, where n is the number of
data points. Most of the known algorithms without index-
ing are shown to have a worst-case complexity of O(kn2),
where k is the number of dimensions, and an average-case
complexity at least linear in n [16]. It is shown in [10]
that the skyline problem requires at least dlog n!e compar-
isons. Recently, an efficient algorithm over datasets with
low-cardinality domains was proposed by [18]. Besides, sub-
space skyline querying are also studied [27, 22, 26, 23, 21].

Suppose we look for a vacation package as shown in Ta-
ble 1. We know that attribute Price and attribute Hotel-
class are numeric attributes where a cheaper package is more
preferable and a package with higher hotel-class is more
preferable. However, attribute Hotel-group as shown in Ta-
ble 1 is a categorical attribute. There can be partial ordering
on categorical attributes. [2, 3, 4, 6, 5, 15, 14, 25] con-
sider partially-ordered categorical attributes. In [2, 3], each
partially-ordered attribute is transformed into two-integer
attributes so that conventional skyline algorithms can be
applied. [4] studies the cost estimation of the skyline oper-
ator involving the partially ordered attributes.

Known existing works on categorical attributes assume
that each attribute has only one order: either a total or a
partial order. In real life, it is not often that categorical at-
tributes have a fixed predefined order. For example, differ-
ent customers may prefer different realty locations, different
car models, or different airlines. We call such a categori-
cal attribute which does not come with a predefined order a
nominal attribute. It is easy to name important applications
with nominal attributes, such as realties (where type of re-
alty, regions and style are examples of nominal attributes)
and flight booking (where airline and transition airport are
examples of nominal attributes). In this paper, we consider
the scenarios where different users may have different pref-
erences on nominal attributes. That is, more than one order
need to be considered in nominal attributes.

Furthermore, typically, for a nominal attribute, there may
be many different values, and a user would not specify an or-

1032

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Package Price Hotel-class Hotel-group
a 1600 4 T (Tulips)
b 2400 1 T (Tulips)
c 3000 5 H (Horizon)
d 3600 4 H (Horizon)
e 2400 2 M (Mozilla)
f 3000 3 M (Mozilla)

Table 1: Vacation packages

Customer Preference Skyline
Alice T ≺M ≺ ∗ { a, c }
Bob No special preference { a, c, e, f }
Chris H ≺M ≺ ∗ { a, c, e }
David H ≺M ≺ T { a, c, e }
Emily H ≺ T ≺ ∗ { a, c }
Fred M ≺ ∗ { a, c, e, f }

Table 2: Customer preferences

der on all the values, but would only list a few of the most fa-
vorite choices. Table 2 shows different customer preferences
on Hotel-group. The preference of Alice is “T ≺ M ≺ ∗”
which means that she prefers Tulips to Mozilla and prefers
these two to other hotel groups (i.e., Horizon). We call
such preferences implicit preferences. Note that different
preferences yield different skylines. As shown in Table 2,
the skyline is {a, c} for Alice’s preference but {a, c, e, f} for
Fred’s preference. The numerous skylines make the prob-
lem highly challenging. Note that e and f are in the skyline
with respect to Bob’s preference because both e and f are
not dominated by any other packages.

[6, 5] study the problem of preference changes, whereupon
the query results can be incrementally refined. In [15], a user
or a customer can specify some values in nominal attributes
as an equivalence class to denote the same “importance”
for those values. [14] is an extension of [15]. In [14], when-
ever a user finds that there are a lot of irrelevant results for a
query, s/he can modify the query by adding more conditions
so that the result set is smaller to suit her/his need. These
works focus either on the effects of the query changes on the
result size, or the reuse of skyline results when a query is
refined in a progressive manner, and not on efficient query
evaluation. Here, we consider that different users may have
different preferences and so the preferences are not undergo-
ing refinement but can be different or conflicting from one
query to another. Also, we focus on the issue of efficient
query answering.

Nominal attributes are first considered in [25] but the
study is about finding a set of partial orders with respect
to which a given point is in the skyline. The problem stud-
ied in [25] is a reverse problem of this paper. Here, we study
how to find a set of skyline points given an implicit prefer-
ence. In [20], dynamic skyline is considered which is only
for numeric data (implying a natural ordering in each di-
mension), and the “dynamic function” considered is based
on distance from a user location. Here, we consider nomi-
nal attributes, and the “dynamic function” is any mapping
between the nominal values and the rankings where each
nominal value is assigned with a ranking value. Hence the
BBS method does not work in our case.

To support online skyline queries with nominal attributes,
a straightforward solution is to materialize the skylines of
all possible implicit preferences. Let m′ be the number of
nominal attributes and c be the maximum cardinality of
a nominal attribute. The number of all possible implicit
preferences is given by

(

c−1
X

i=0

Pi(c))
m′

= O((c · c!)m′

)

where Pi(c) is the number of permutations of ordering i ele-
ments from c elements. In Table 1, suppose there are three
nominal attributes each of which has 40 possible values. The
total number of implicit preferences is equal to 4.1 × 109.
With such a large number of possibilities, it is typically in-
feasible to materialize all results with all preferences.

Another method is to try to adopt an existing algorithm
on skyline querying. We show how the SFS algorithm [7] can
be extended to an adaptive SFS algorithm which computes
the results given an implicit preference on-the-fly. However,
the performance is still not scalable.

To adequately solve this problem, we propose a semi-
materialization method which stores some useful partial re-
sults corresponding to certain implicit preferences. Given
any implicit preference, we can derive the answer based on
the stored information. In order to make the derivation effi-
ciently, we propose a tree structure called IPO-Tree (implicit
preference order tree) to store the partial results. We will
show that the total number of nodes stored in the IPO-tree
is

m′
X

i=0

(c + 1)i = O(cm′

).

In the above example, it means 70,644 nodes, which is sig-
nificantly smaller than 4.1× 109. With the IPO-Tree, query

evaluation requires O(xm′′

) set operations where m′′ is the
number of nominal dimensions on which some preferences
are specified by the user, x is the maximum number of val-
ues a user specifies for a dimension. Note that both x and
m′′ are often small numbers [9, 20]. For example, if the
user specifies two preferences for each of the three nominal

attributes that s/he is interested in, xm′′

becomes 23 = 8
only.

The rest of the paper is organized as follows. We formulate
the problem in Section 2. In Section 3, we extend the SFS
algorithm to handle any implicit preference on-the-fly. In
Section 4, a semi-materialization approach is proposed. An
empirical study is reported in Section 5, and the paper is
concluded in Section 6.

2. PROBLEM DEFINITION
A skyline analysis involves multiple attributes. A user’s

preference on the values in an attribute can be modeled
by a partial order on the attribute. A partial order � is
a reflexive, asymmetric and transitive relation. A partial
order is also a total order if, for any two values u and v
in the domain, either u � v or v � u. We write u ≺ v if
u � v and u 6= v. A partial order also can be written as
R = {(u, v)|u � v}. u � v also can be written as (u, v) ∈ R.
We call this model the partial order model.

1033

By default, we consider points in an m-dimensional space
S = D1 × · · · × Dm. For each dimension Di, we assume
that there is a partial or total order Ri on the values in Di.
For a point p, p.Di is the projection on dimension Di. If
(p.Di, q.Di) ∈ Ri, we also write p.Di � q.Di.

For points p and q, p dominates q, denoted by p ≺ q, if, for
any dimension Di ∈ S, p �Di

q, and there exists a dimension
Di0 ∈ S such that p ≺Di0

q. If p dominates q, then p is more
preferable than q according to the preference orders. The
dominance relation R can be viewed as the integration of
the preference partial orders on all dimensions. Thus, we
can write R = (R1, . . . , Rm). It is easy to see that the
dominance relation is a strict partial order.

Given a data set D containing data points in space S,
a point p ∈ D is in the skyline of D (i.e., a skyline point
in D) if p is not dominated by any points in D. Given a
preference R, the skyline of D, denoted by SKY (R), is the
set of skyline points in D.

In many applications, there often exist some orders on
some of the dimensions that hold for all users. In our ex-
ample in Table 1, a lower price and a higher hotel-class are
always more preferred by customers. Even for nominal at-
tributes, there may exist some universal partial orders. For
example, in a realty market, detached houses are often more
preferred than semi-detached houses. Hence, we assume
that we are given a template, which contains a partial order
for every dimension. The partial orders in the template are
applicable to all users. Each user can then express his/her
specific preference by refining the template. The contain-
ment relation of orders captures the refinement.

For partial orders R and R′, R′ is a refinement of R,
denoted by R ⊆ R′, if for any (u, v) ∈ R, (u, v) ∈ R′.
Moreover, if R ⊆ R′ and R 6= R′, R′ is said to be stronger
than R. Let R = {(T, M)} and R′ = {(T, M), (H,M)}.
Then, R ⊆ R′. That is, R′ is a refinement of R by adding a
preference H ≺M . As R 6= R′, R′ is stronger than R.

Property 1. For orders R = (R1, . . . , Rm) and R′ =
(R′

1, . . ., R′
m), R ⊆ R′ if and only if Ri ⊆ R′

i for 1 ≤ i ≤ m.

Theorem 1 (Monotonicity). ([25]) Given a data set
D and a template R, if p is not in the skyline with respect to
R, then p is not in the skyline with respect to any refinement
R′ of R.

Theorem 1 indicates that, when the orders on the dimen-
sions are strengthened, some skyline points may be disqual-
ified. However, a non-skyline point never gains the skyline
membership due to a stronger order. This monotonic prop-
erty greatly helps in analyzing skylines with respect to vari-
ous orders. For instance, suppose R = ∅ and R′ = {(T, M)}.
Since b is not a skyline point with respect to R (because a
dominates b), b is also not a skyline point with respect to a
refinement R′ of R.

Definition 1 (Conflict-free). ([25]) Let R and R′

be two partial orders. R and R′ are conflict-free if there
exist no values u and v such that u 6= v, (u, v) ∈ R, and
(v, u) ∈ R′.

In a skyline query, for a nominal attribute, users typically
would not explicitly order all values, but may specify a few
of their favorite choices and also give them an ordering. For

example, a user may specify that the first choice is v and the
second choice is v′. The implicit meaning is that v and v′

are better than all the other choices, say v1, v2, ..., vk. This
can be described by the partial order model, by including
v ≺ v′, v ≺ v1, v ≺ v2, ..., v ≺ vk and v′ ≺ v1, v′ ≺ v2, ...,
v′ ≺ vk. This preference is denoted by

“v ≺ v′ ≺ ∗”
where ∗ means all choices other than v and v′ (in this case,
∗ corresponds to {v1, v2, ..., vk}). We call this special kind
of partial order an implicit preference and assume that it
is represented in such a form. For example, the implicit
preference “H ≺ M ≺ ∗” corresponds to a set of binary
orders {(H, M), (H,T), (M, T)} in the partial order model.

Definition 2 (Implicit Preferences). Let
v1, v2, ...vk be all values in a nominal attribute Di.

An implicit preference eRi on Di is given by

v1 ≺ v2 ≺ ...vx ≺ ∗.
where x ≤ k. It is equivalent to the partial order given by

{(vi, vj)|i < j ∧ i ∈ [1, x] ∧ j ∈ [1, k]}.

In the above definition, eRi is said to be an x-th or-

der implicit preference. Also, the order of eRi, denoted by

order(eRi), is defined to be x and the order of eR is defined

to be maxi{order(eRi)}. A value vj is said to be in eRi if
vj ∈ {v1, v2, ..., vx}. Also, vj is said to be the j-th en-

try in eRi. P(eRi) is defined to be {(vi, vj)|i < j and i ∈
[1, x] and j ∈ [1, k]}. Let eR = (eR1, eR2, ..., eRm). P(eR) is

defined to be
Sm

i=1 P(eRi).

In this paper, we adopt the convention that eR denotes
an implicit preference and R denotes a partial order (which
may or may not be an implicit preference). Also we denote

SKY (P(eR)) by SKY (eR).

Definition 3 (Problem). Given a dataset D and an

implicit preference eR, find the skyline SKY (eR) in D.

We also say that we want to find a set of skyline points

with respect to eR in D. In many applications, online re-
sponse is required. We aim to find an efficient solution.

The problem of dynamic implicit preferences have some
similar flavor as subspace skylines since materialization of
the possible skylines seems to be a solution. However, as
noted in [20], most applications involve up to five attributes,
the dimensionality m′ of a typical skyline problem is not
high, and the number of subspaces which is equal to

m′
X

i=1

Ci(m
′) = 2m′ − 1

(where Ci(m
′) is the number of ways of choosing i elements

from m′ elements) is limited, materialization of the skylines
is quite feasible and has been investigated in recent works
such as [27, 26, 23, 21]. For dynamic implicit preferences,
the number of combinations is given by

(

c−1
X

i=0

Pi(c))
m′

= O((c · c!)m′

)

(where Pi(c) is the number of permutations of ordering i
elements from c elements), which is exponential not only

1034

Package Price Hotel-class Hotel group Airline
a 1600 4 T (Tulips) G (Gonna)
b 2400 1 T (Tulips) G (Gonna)
c 3000 5 H (Horizon) G (Gonna)
d 3600 4 H (Horizon) R (Redish)
e 2400 2 M (Mozilla) R (Redish)
f 3000 3 M (Mozilla) W (Wings)

Table 3: A table with two nominal attributes.

in the dimensionality but also in the cardinalities c of the
attributes. Materialization of all subspace skylines becomes
infeasible in most cases.

3. ADAPTIVE SFS
First we may consider to extend an existing algorithm

which handles the skyline query with respect to fixed pref-
erence orders to handle any implicit preference on-the-fly.
We choose the SFS algorithm [7] for such an extension be-
cause adapting other methods such as BBS, bitmap and NN
methods is costly, and they need index rebuilt for different
implicit preferences. The resulting algorithm is called Adap-
tive SFS and does not require a complete reprocessing of the
data for each different user preference.

3.1 Overview of SFS
First, we will briefly describe the method of Sort-First

Skyline (SFS), which is for totally-ordered numerical at-
tributes. With SFS, the data points are sorted according
to their scores obtained by a preference function f , which
can be the sum of all the numeric values in different dimen-
sions of a data point. That is, the score of a point p is

f(p) =
m

X

i=1

p.Di.

The criterion for the function is that if p ≺ q, then f(p) <
f(q). The data points are then examined in ascending order
of their scores. A skyline list L is initially empty. If a point
is not dominated by any point in L, then it is inserted into
L. The sorting takes O(n log n) time while the scanning of
the sorted list to generate the skyline points takes O(N · n)
time, where n is the number of data points in the data set
and N is the size of the skyline.

3.2 Adaptive SFS for Implicit Preferences
Next, we develop an adaptive SFS method for query pro-

cessing in the data set with implicit preferences on nominal

attributes, given the skyline set SKY (eR) for a template or-

der eR which is implicit. Let eR′ be an implicit refinement

over eR. From Theorem 1, any skyline point p for eR′ will

also be a skyline point for eR. Hence, in order to look for the

skyline for eR′, we only need to search SKY (eR).
The idea is the following. We adopt the basic presorting

step on SKY (eR) resulting in a sorted list L(eR). When a

query with a refinement eR′ arrives, we first try to re-sort

the list L(eR) and obtain a new sorted list L(eR′). The sky-

line generation step is then applied on L(eR′). The key to the
efficiency is that the resorting step complexity is O(l log N),
where l is the number of data points affected by the refine-

ment eR′ and is typically much smaller than N . Next, we
give more detailed description of the algorithm.

Each value v in a dimension Di is associated with a rank
denoted by r(v). In a totally-ordered attribute Di, we define

r(v) = v

for each v in Di. Without loss of generality, we assume that
a smaller value in a dimension Di is more preferable than
a larger value in the same dimension. For each value v in
a nominal attribute Di, we assign r(v) as follows. Let ci

be the cardinality of nominal dimension Di. By default, for
each value v for dimension Di, r(v) = ci. For example, if
there are 10 different values in dimension Di, then by default
r(v) = 10 for each v in Di. Given an implicit partial order
eR′

i, we can determine a ranking for the values that appear in
eR′

i so that r(v) < r(v′) if and only if v ≺ v′ can be derived

from eR′
i. If eR′

i is “v1 ≺ v2 ≺ ... ≺ vx ≺ ∗”, then we set
r(v1) = 1, r(v2) = 2, ..., r(vx) = x. We define

f(p) =
m

X

i=1

r(p.Di).

Let l be the number of data points that contain some

values in eR′. The processing time of the sorting list is
O(l log N). Algorithms 1 and 2 show the steps for prepro-
cessing the data points and query processing, respectively.

Algorithm 1 Preprocessing

1: Compute the skyline set SKY (eR) for the given template
eR

2: Determine the ranking r based on SKY (eR) and f

3: Apply the presorting step of SFS based on r on SKY (eR)

Algorithm 2 Query Processing

Input: skyline query, with implicit preference eR′

1: Determine the ranking for the values in eR′

2: Find the data points in SKY (eR) that contain values in
eR′. Alter the rankings for such data points if necessary

3: Delete the points with altered rankings from the sorted
list

4: Re-insert the points just deleted using the new ranking
5: Apply the skyline extraction step of SFS on the resulting

sorted list

Example 1 (Adaptive SFS). Consider Table 1. To
illustrate, we transform Table 1 to Table 4 by subtracting the
hotel-class value from 5 such that for each numeric attribute,

a smaller value is more preferable. Suppose eR = ∅ and the
cardinality of attribute Hotel-group is 3.

For pre-processing, firstly, we compute the skyline set

SKY (eR) = {a, c, e, f}. This step can be completed by
some existing skyline algorithms. Then, for each package

∈ SKY (eR), we compute its score as shown in Table 5. For
example, attribute Price and attribute Reverse Hotel-class
of package a are 1600 and 1, respectively. Consider attribute

Hotel-group. Since eR = ∅, r(T) = r(H) = r(M) = 3. Thus,
the score of package a is equal to 1600+1+3 = 1604. After
that, we sort them in ascending order of the score values.
The ordering becomes < a, e, c, f >.

1035

Package Price Reverse Hotel-class Hotel-group
a 1600 1 T (Tulips)
b 2400 4 T (Tulips)
c 3000 0 H (Horizon)
d 3600 1 H (Horizon)
e 2400 3 M (Mozilla)
f 3000 2 M (Mozilla)

Table 4: Vacation packages

Package Score
a 1604
c 3003
e 2406
f 3005

Table 5: Score of each
package during pre-
processing

Package Score
a 1603
c 3001
e 2406
f 3005

Table 6: Score of each
package when the query
is “H ≺ T ≺ ∗”

After we pre-process the data, when there is a skyline
query, we will perform the following steps. Suppose the
query is “H ≺ T ≺ ∗”. Then, we update the scores of all
packages with Hotel-group equal to H or T where r(H) = 1
and r(T) = 2. In other words, we just update packages a and
c as shown in Table 6. We remove a and c from < a, e, c, f >
and re-insert them according to their updated score values.
We obtain the same ordering < a, e, c, f > . Now, we apply
the skyline extraction step of SFS on this ordering. Initially,
a variable L is set to ∅. We process packages according to the
ordering < a, e, c, f >. Since L = ∅, we can insert a into L
directly. The next processed package is e. We check whether
e is dominated by any point in L. Since e is dominated by
a, we proceed to process the next package c. We find that
no points in L dominate c and thus insert c into L. Finally,
we process f which is found to be dominated by a. Thus,
the skyline for this query is L = {a, c}.

In Step 2 in Algorithm 2, in order to find data points in

SKY (eR) that contain values in eR′, one possible way is to
have an index for each nominal dimension. The index can
be a simple sorted list or a more sophisticated tree index.
An index lookup can quickly return the points that contain

a particular value in eR′. Such data points are collected in a
set. Then, for each point p in the set, the value of f(p) based

on eR allows us to quickly locate the point in the sorted list.
The point is deleted from the list and re-inserted with a new

value for f(p) based on the refinement eR′.
For the last step of the query processing, there is no need

to follow the SFS from scratch. Instead, we reinsert the
points in the ascending order of the new f(p) values. When
a point p is re-inserted, we need only check if it may be

dominated by the eR′ skyline points sorted before it. If so,
p is not added; otherwise, we then check if it may dom-

inate any SKY (eR) skyline point that are sorted after it.
The points that it dominates will be removed. Let N ′ =

|SKY (eR′)|, N = |SKY (eR)|, and l be the number of points

in SKY (eR) containing values in eR′. The time complexity
of this step will become O(l log l + N ′ · l + min(N ′, l) · N).
Since the resorting step takes O(l log N) time, the total time
is O(l log N + min(N ′, l) ·N).

Lemma 1. In the adaptive SFS algorithm, given the

sorted list L(eR) from the preprocessing step, and a skyline

query with an implicit preference eR′, the query processing
time complexity is O(l log N + min(N ′, l) ·N).

Though the query processing time is improved from the
original SFS complexity, O(n log n + N · n), to O(l log N +
min(N ′, l) · N) it may still be unscalable when the skyline
sets are large.

4. PARTIAL MATERIALIZATION: IPO-
TREE SEARCH

In order to support online response, a naive approach is
to materialize the skylines for all possible preferences. How-
ever, as noted in Section 2, this approach is very costly in
storage and preprocessing. Our idea is therefore to materi-
alize some useful partial results so that these partial results
can be combined efficiently to form the query results. In
particular, we propose to materialize the results with re-
spect to the first-order implicit preference on each nominal
attribute only. Since results for the second or higher order
preferences are not stored, the number of combinations is
significantly reduced. It is not obvious that this is feasible.
For the skyline problem with fixed orders for all dimensions,
it is well-known that the skyline of a set D of dimensions
cannot be computed from the skylines of the subsets of D,
say X and Y . This is because the union of the skylines of
dimension subsets X and Y may not contain the skyline of
X ∪Y . In the following, we describe an important property
called the merging property which allows us to derive results
of all possible implicit preferences of any order by simple op-
erations on top of the first-order information maintained.

Theorem 2 (Merging Property). Let two implicit

preferences eR′ and eR′′ differ only at the i-th dimension, i.e.,
eR′

j = eR′′
j for all j 6= i. Furthermore, eR′

i =“v1 ≺ ... ≺ vx−1 ≺
∗” and eR′′

i =“vx ≺ ∗”. Let PSKY (eR′) be the set of points

in SKY (eR′) with Di values in {v1, ...vx−1}. Let R′′′ be an
implicit preference which differs from R′ and R′′ only at the

i-th dimension where eR′′′
i =“v1 ≺ ... ≺ vx−1 ≺ vx ≺ ∗”.

The skyline with respect to eR′′′ is

(SKY (eR′) ∩ SKY (eR′′)) ∪ PSKY (eR′).

Proof : We need to show that a point p is in SKY (eR′′′) if

and only if it is in (SKY (eR′) ∩ SKY (eR′′)) ∪ PSKY (eR′).
For each direction, we prove by contradiction.

[A] Firstly, assume p is in SKY (eR′′′), and suppose that

p is not in (SKY (eR′)∩ SKY (eR′′))∪ PSKY (eR′). Then, by

Theorem 1, since p ∈ SKY (eR′′′) and eR′′′ is a refinement of
eR′, we deduce that

p ∈ SKY (eR′).

Thus, p must satisfy the following:

• Condition 1: p.Di 6∈ {v1, ...vx−1} and

• Condition 2: p 6∈ SKY (eR′′).

1036

Consider Condition 2. Since p 6∈ SKY (eR′′), there exists

a data point q dominating p w.r.t eR′′. In other words, with

respect to eR′′, q.Dk � p.Dk for all k and in at least one
dimension Dj , q.Dj ≺ p.Dj . Let J be the set of dimensions

Dj where q.Dj ≺ p.Dj w.r.t eR′′. Besides, for all dimensions

Dk other than Di, the partial orders of eR′′ and eR′′′ are the

same. Hence, w.r.t. eR′′′, q.Dk � p.Dk for all k(6= i). There
are two subcases: Case (i): Di 6∈ J and Case (ii): Di ∈ J .

Case (i): Di 6∈ J . For all Dj ∈ J , since q.Dj ≺ p.Dj

w.r.t eR′′ and the partial orders in eR′′
j are those in eR′′′

j , we
have

q.Dj ≺ p.Dj

w.r.t. eR′′′. Also, w.r.t. eR′′′, q.Dk � p.Dk for all k 6= i.
Hence, since i 6∈ J , for dimension Di, it must be the case

that p.Di ≺ q.Di w.r.t eR′′′. Otherwise, p is dominated by q

w.r.t eR′′′, and p cannot be in SKY (eR′′′). Since p.Di ≺ q.Di

w.r.t eR′′′, we have

p.Di 6= q.Di.

Since q.Dk � p.Dk w.r.t. eR′′ for all k, and p.Di 6= q.Di, we

have q.Di ≺ p.Di w.r.t eR′′. Since the implicit preference in
eR′′ is “vx ≺ ∗”, we conclude that p.Di cannot be vx. Since
eR′′′ is “v1 ≺ ... ≺ vx ≺ ∗” and p.Di ≺ q.Di w.r.t eR′′′, p.Di

must be in {v1, ...vx−1}. However, this violates Condition 1
discussed above. Hence, we arrive at a contradiction.

Case (ii): Di ∈ J . We obtain q.Di ≺ p.Di w.r.t. eR′′.

Besides, since the implicit preference in eR′′ is “vx ≺ ∗”,
q.Di must be equal to vx and p.Di cannot be equal to vx.

Since p ∈ SKY (eR′′′), there is no other point including q

dominating p w.r.t. eR′′′. Note that, w.r.t. eR′′′, q.Dk � p.Dk

for all k(6= i). We obtain

p.Di � q.Di

w.r.t. eR′′′. (Otherwise, q.Di ≺ p.Di w.r.t eR′′′ and p is

dominated by q w.r.t. eR′′′, which leads to a contradic-

tion.) Besides, since q.Di = vx, p.Di 6= vx and eR′′′ is
“v1 ≺ ... ≺ vx ≺ ∗”, p.Di must be in {v1, ...vx−1}. However,
this violates Condition 1. Hence, we arrive at a contradic-
tion.

[B] Conversely, consider a point p in (SKY (eR′) ∩
SKY (eR′′)) ∪ PSKY (eR′). Suppose that p is not in

SKY (eR′′′). Thus, p is dominated by some point q w.r.t.
eR′′′. That is, w.r.t eR′′′, q.Dk � p.Dk for all k and
q.Dj ≺ p.Dj for at least one dimension Dj .

Since p ∈ (SKY (eR′)∩SKY (eR′′))∪PSKY (eR′), we know
that at least one of the following two conditions holds.

• Condition 3: p.Di ∈ {v1, ...vx−1} and p ∈ SKY (eR′),
or

• Condition 4: p ∈ SKY (eR′) and p ∈ SKY (eR′′).

Consider Condition 3. Since p ∈ SKY (eR′) and p 6∈
SKY (eR′′′) where eR′′′

i is a refinement of eR′
i, and eR′′′

k = eR′
k

for all k 6= i, we deduce that q.Di ≺ p.Di exists in par-

tial orders of eR′′′ but not in partial orders of eR′. Since

q.Di ≺ p.Di w.r.t. eR′′′, p.Di ∈ {v1, ..., vx−1} and eR′′′ is

R': M<*

SKY = {a, c, e, f}1

R'': H<*

SKY = {a, c, e}2

R''': M<H<*

SKY = {a, c, e, f}3

SKY = (SKY SKY) PSKY3 1 2 1U

U

PSKY = {e, f}1

Figure 1: Illustration of the merging property

“v1 ≺ ... ≺ vx ≺ ∗”, we deduce

q.Di ∈ {v1, ...vx−2}.

For each possible binary order q.Di ≺ p.Di w.r.t. eR′′′ where
p.Di ∈ {v1, ..., vx−1} and q.Di ∈ {v1, ...vx−2}, we also con-

clude that q.Di ≺ p.Di exists in the partial orders of eR′,
which leads to a contradiction.

Consider Condition 4. Since eR′, eR′′ and eR′′′ differ only
at dimension Di, we only need to check their implicit pref-
erences to see that, whenever q.Di � p.Di (or q.Di ≺ p.Di)

w.r.t. eR′′′, it is also true w.r.t. eR′ or eR′′. Therefore, q also

dominates p w.r.t. eR′ or eR′′. That is, p 6∈ SKY (eR′) or

p 6∈ SKY (eR′′), which leads to a contradiction.

For example, in Figure 1, let eR′ be “M ≺ ∗” and eR′′ be

“H ≺ ∗”. From Table 1, the skyline with respect to eR′

is SKY1 = {a, c, e, f} and the skyline with respect to eR′′

is SKY2 = {a, c, e}. PSKY1 = {e, f} is the set of skyline

points with values in {M}. Let eR′′′ be “M ≺ H ≺ ∗”. By

Theorem 2, the skyline SKY3 with respect to eR′′′ is obtained
as follows.

SKY3 = (SKY1 ∩ SKY2) ∪ PSKY1

= ({a, c, e, f} ∩ {a, c, e}) ∪ {e, f}
= {a, c, e} ∪ {e, f}
= {a, c, e, f}

The derivation can be explained as follows. P(eR′) and

P(eR′′) are not conflict-free because their union contains
both (M, H) and (H,M). Or, the only difference between

P(eR′) ∪ P(eR′′) and P(eR′′′) is that P(eR′) ∪ P(eR′′) contains
one more binary entry, namely (H,M), which may disqual-
ify some data points (in this example, f). In order to re-
move the disqualifying effect, we augment the intersection
SKY1 ∩ SKY2 by a union with PSKY1 where PSKY1 con-
tains the points disqualified by (H,M) in SKY1.

From Theorem 2, we can derive a powerful tool for the
computation of the skyline with respect to any implicit pref-
erence of any order by building increasingly higher order re-

finement (eR′′′ in the theorem) skyline from lower order (eR′

and eR′′) ones, starting with the first-order. In the follow-
ing two subsections, we introduce the IPO-tree for storing
the first-order preference skylines and the query evaluation
based on the IPO-tree.

4.1 Tree Construction
An IPO-tree (implicit preference order tree) stores results

for combinations of first-order preferences. In this tree, each

1037

S={a, c, d, e, f}root

A={}T<* A={}H<* A={}M<* A={}f

A={d,e,f}

G<*

A={}

R<*

A={}

W<*

A={}

f

A={d,f}

G<*

A={}

R<*

A={}

W<*

A={}

f

A={d}

G<*

A={}

R<*

A={}

W<*

A={}

f

A={d}

G<*

A={}

R<*

A={}

W<*

A={}

f

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2: Illustration of an implicit preference order tree (IPO-tree)

Q :

G<R<*
1 f

Q :

G<*
11 f Q :

R<*
12 f

Processed
at Node 18

Processed
at Node 19

Processed
at Node 5

Figure 3: Query evaluation with an IPO-tree where
query Q = “G ≺ R ≺ ∗”

Q: M<H<*
G<R<*

Q : M<*

G<R<*
1 Q : H<*

G<R<*
2

Q : M<*

G<*
11 Q : M<*

R<*
12 Q : H<*

G<*
21 Q : H<*

R<*
22

Processed
at Node 1

Processed
at Node 4

Processed
at Node 14

Processed
at Node 15

Processed
at Node 10

Processed
at Node 11

Processed
at Node 3

Figure 4: Query evaluation with an IPO-tree where
query Q = “M ≺ H ≺ ∗, G ≺ R ≺ ∗”

node is labeled with a first-order implicit preference, namely
“v ≺ ∗”, where v ∈ Di and Di is a nominal dimension. The
tree is of depth m′ + 1, where m′ is the number of nomi-
nal attributes. The root node stores the skyline SKY (R)
with respect to template R in D. The second level con-
tains all nodes corresponding to first-order implicit prefer-
ences on nominal attribute D1. In general, the children of
an i-th level node correspond to all the first-order implicit
preferences on nominal attribute Di. A special child node
is labeled φ corresponding to no preference. Each non-root
node has a label associated with a first-order implicit pref-
erence on a single nominal attribute, and maintains results
that corresponds to the labels along the path to the root
node. Figure 2 shows an IPO-tree from the data in Table 3,
where the template R is set to ∅. Node 6 corresponds to

implicit preferences “T ≺ ∗, G ≺ ∗”.
Furthermore, a root node is associated with a set S =

SKY (R). But, each non-root node is associated with a set
A of points where S − A is the skyline for the correspond-
ing implicit preference. Therefore, A contains the points in
SKY (R) that are disqualified from the skyline at the node
because of the preference refinement. For example, since,
in the IPO-tree shown in Figure 2, Node 6 corresponds to
an implicit preference “T ≺ ∗, G ≺ ∗”, which disqualifies
points d, e, f in S as skyline points, A of node 6 is equal to
{d, e, f}. The purpose of A is to allow us to find the skyline
for the node given the skylines of the ancestors. It is also
possible to store the exact skyline at each node instead.

4.1.1 Tree Size
Let m′ be the number of nominal attributes and c be the

maximum cardinality of a nominal attribute. The height of
the IPO-tree is m′ + 1. It is easy to verify the following.

Lemma 2. The size of the tree in the number of nodes is
given by

m′
X

i=0

(c + 1)i = O(cm′

).

As claimed in [9] and quoted in [20], most applications
involve up to five attributes, and hence m′ is typically very
small. Note that the IPO-tree size is significantly smaller
than the number of all possible implicit preferences which is
given by

(

c−1
X

i=0

Pi(c))
m′

= O((c · c!)m′

)

where Pi(c) is the number of permutations of ordering i
elements from c elements. For example, when m′ = 3 and
c = 40, the size of the tree in the number of nodes is 70,644
only but the number of all possible implicit preferences is
4.1× 109, which is 58,089.64 times larger than the tree size.

The tree size can be further controlled if we know the
query pattern (e.g., from a history of user queries). Typ-
ically, there are popular and unpopular values. For values
which are seldom or never chosen in implicit preferences, the
corresponding tree nodes in the IPO-tree are not needed. It
is possible to restrict the IPO-tree to say the 10 most popu-
lar values for each nominal attribute. For instance, suppose
m′ = 3 and c = 40, the tree size is then reduced from 70,644
to 1,464. If a query containing unpopular values arrives, the
adaptive SFS algorithm in Section 3 can be used instead.

1038

4.1.2 Implementation
In order to find the set A for each non-root node N , one

can apply a skyline algorithm (e.g., adaptive SFS in Sec-
tion 3). However, in our implementation, we make use of
the minimal disqualifying conditions introduced in [25]. For
a skyline point p and a template order R, a partial order
R′ is called a minimal disqualifying condition (or MDC for
short) if

1. R′ ∩R = ∅,
2. R′ and R are conflict-free,

3. p is not a skyline point with respect to R ∪ R′, and

4. there exists no R′′ such that R′′ ⊂ R′ and p is not a
skyline point with respect to R ∪R′′.

The set of minimal disqualifying conditions for p is denoted
by MDC(p). The first step here is to find all MDCs of each
skyline point in SKY (R). One of the algorithms in [25] can

be used for this step. Then, given the implicit preference eR′

corresponding to a node N , we check each point in SKY (R),

if any of the MDCs is a subset of P(eR′), then the point is
disqualified and is inserted into A.

4.2 Query Evaluation
IPO-tree has a simple structure and a well-controlled tree

size. It can efficiently facilitate implicit preference querying
based on the merging property (Theorem 2). Algorithm 3
shows the evaluation of a query with an implicit preference
eR′.

It is noted that the IPO-tree is built according to a certain
(arbitrary) ordering of the nominal attributes. For exam-
ple, the IPO-tree in Figure 2 is built according to attribute
Hotel-group first and then attribute Airline. Thus, the chil-
dren of the first level node correspond to attribute Hotel-
group and the children of the second level node correspond
to attribute Airline. It is trivial that the IPO-tree returns
the skylines efficiently when the user issues the implicit pref-
erence only on the first attribute, Hotel-group. However,
similar efficiency is guaranteed when the user issues the im-
plicit preference only on the second attribute, Airline. At
each node, there is a special child labeled φ representing no
preference on a certain attribute. For the query described
above, there is no need to traverse all nodes corresponding
to attribute Hotel-group. Instead, the node labeled with φ
(i.e., node 5) is traversed to reach the descendant nodes cor-
responding to attribute Airline. Thus the ordering of the
attributes in the IPO-tree has no impact on the query eval-
uation complexity.

Example 2 (Query Evaluation). We use the IPO-
tree in Figure 2 for the illustration of the detailed steps
in implicit preference query evaluation. Let us consider six
different queries for illustration, namely QA : “M ≺ ∗”, QB :
“M ≺ ∗, G ≺ ∗”, QC : “G ≺ ∗”, QD : “M ≺ H ≺ ∗, G ≺ ∗”,
QE : “M ≺ H ≺ ∗, G ≺ R ≺ ∗” and QF : “G ≺ R ≺ ∗”.

Consider QA containing a first-order implicit preference
on attribute Hotel-group. We first visit Node 1 and X is
set to be S of Node 1 (i.e., {a, c, d, e, f}). Node 4 is then
visited where A is ∅, and X is still {a, c, d, e, f}, which is
the skyline for QA.

QB is a query containing a first-order implicit preference
on attribute Hotel-group and a first-order implicit prefer-
ence on attribute Airline. After visiting Node 1, X =

Algorithm 3 query(d, eR′, N , S)

Input: dimension d, implicit preference eR′, tree node N ,
set of potential skyline points S
Local variable: Q - a queue containing sets of points

1: X ← S
2: if d 6= m′ then
3: if R′

d contains no preferences then
4: Nc ← the child node of N labeled φ

5: X ←query(d + 1, eR′, Nc, S)
6: else
7: Q ← ∅
8: for i := 1 to order(eR′

d) do

9: v ←the i-th entry in eR′
d

10: Nc ← child node of N labeled “v ≺ ∗”
11: A ← the disqualifying set of Nc

12: Y ←query(d + 1, eR′, Nc, S −A)
13: enqueue Y to Q
14: end for
15: X ← merge(d + 1, Q, eR′) (See Algorithm 4)
16: end if
17: end if
18: return X

Algorithm 4 merge(d, Q, eR′)

Input: dimension d, Q storing sets of points, preference eR′

1: dequeue Q and obtain the dequeued element Y
2: X ← Y
3: for i := 2 to order(eR′

d) do
4: dequeue Q and obtain the dequeued element Y
5: let R be the set of the first to the (i− 1)-th entries in

eR′
d

6: Z ← a set of points p in X with p.Dd ∈ R
7: X ← (X ∩ Y) ∪ Z
8: end for

{a, c, d, e, f}. Next, Node 4 and Node 14 are visited. The
skyline is

X = {a, c, d, e, f} − {d}
= {a, c, e, f}

Different from QA, QC contains a first-order implicit pref-
erence on attribute Airline, instead of attribute Hotel-group.
In this case, we visit Node 5 labeled φ representing no pref-
erence on attribute Hotel-group. Then, from Node 5, we
visit Node 18. Thus, the skyline is

X = {a, c, d, e, f} − {d}
= {a, c, e, f}

For QD with a second-order implicit preference on at-
tribute Hotel-group and a first-order implicit preference
on attribute Airline, we split the query into subqueries
“M ≺ ∗, G ≺ ∗” and “H ≺ ∗, G ≺ ∗”, with respective
skylines of {a, c, e, f} and {a, c, e}. The subset PSKY1 of
SKY1 with Hotel-group value M is {e, f}. By Theorem 2,
the resulting skyline is

X = ({a, c, e, f} ∩ {a, c, e}) ∪ {e, f}
= {a, c, e, f}

Consider QE containing a second-order implicit preference

1039

on attribute Hotel-group and a second-order implicit pref-
erence on attribute Airline. As illustrated in Figure 4, we
follow the breakdown and obtain the skyline with respect to
QE equal to {a, c, e, f}.

Similar to QC , since QF contains a second-order implicit
preference on attribute Airline, instead of attribute Hotel-
group, we visit Node 5 labeled φ representing no preference
on attribute Hotel-group. Then, from Node 5, we follow the
breakdown as shown in Figure 3 and obtain the skyline with
respect to QF = {a, c, e, f}.

Theorem 3. With Algorithm 3, query(1, eR′, Root,

SKY(R)) returns SKY (eR′), given a template R for a
dataset D and the corresponding IPO-tree with a root node
of Root.

The number of leaf nodes in a query evaluation tree di-
agram as the one shown in Figure 4 gives a bound on the
number of set operations. Furthermore, if m′′ is the number
of dimensions on which the user has specified any refinement,
then the number of set operations is further bounded by the
number of leaf nodes of a subtree containing only nodes φ
or a preference in one of the m′′ dimensions specified.

Lemma 3. Given a user query with x-th order implicit
preferences on m′′ nominal attributes. The number of set
operations required for an x-th order implicit preference is

O(xm′′

).

Since x and m′′ depends on the query size and are ex-
pected to be very small, this number is also small. Note
that the complexity is independent on the ordering of the
dimensions in the tree.

Implementation: We have implemented the algorithm by
accumulating the set of disqualified points. By Theorem 2,

if A(eR′) and A(eR′′) are the sets of disqualified points for eR′

and eR′′, respectively, let B be the set of points in A(eR′′) with
Di values in {v1, .., vx−1}, the accumulated set of disqualified

points for eR′′′ is given by

A(eR′) ∪ (A(eR′′)− B).

5. EMPIRICAL STUDY
Extensive experiments have been conducted on a Pentium

IV 3.2GHz PC with 2GB memory, on a Linux platform.
The algorithms were implemented in C/C++. In the exper-
iments, we adopted the data set generator released by the
authors of [25], which contains both numeric attributes and
nominal attributes, where the nominal attributes are gener-
ated according to a Zipfian distribution. The default values
of the experimental parameters are shown in Table 7. In

the experiment, if the order of the implicit preference eR′ is

set to x, it means that the order of eR′
i for each nominal at-

tribute Di is x. Note that the total number of dimensions is
equal to the number of numeric dimensions plus the number
of nominal dimensions. By default, we adopted a template
where the most frequent value in a nominal dimension has
a higher preference than all other values. This corresponds
to a more difficult setting as the skyline tends to be bigger.
In the following, we use the default settings unless specified
otherwise.

We denote our proposed partial materialization methods
(IPO Tree Search) by IPO Tree and IPO Tree-10 where

Parameter Default value
No. of tuples 500K
No. of numeric dimensions 3
No. of nominal dimensions 2
No. of values in a nominal dimension 20
Zipfian parameter θ 1
order of implicit preference 3

Table 7: Default values

IPO Tree is constructed based on all possible nominal values
and IPO Tree-10 is constructed based on only the 10 most
frequent values for each nominal attribute. We denote the
Adaptive SFS algorithm by SFS-A. We also compare our
proposed methods with a baseline algorithm called SFS-D,

which is the original SFS algorithm [7] returning SKY (eR′)

with respect to implicit preference eR′ for dataset D.
We evaluate the performance of the algorithms in terms

of

• (1) pre-processing time,

• (2) the query time of an implicit preference and

• (3) memory requirement.

We also report

• (4) the proportion of the skyline points with respect

to the template eR (i.e., |SKY (R)|/|D|),
• (5) the proportion of skyline points af-

fected in SKY (eR) with respect to eR′ (i.e.,
|AFFECT (R)|/|SKY (R)|), where AFFECT (R)

is the set of skyline points in SKY (eR) with values in
eR′, and

• (6) the proportion of skyline points with respect to eR′

in SKY (eR) (i.e., |SKY (R′)|/|SKY (R)|).
For pre-processing, both IPO Tree and IPO Tree-10 com-

pute SKY (eR) and build the correspondence IPO trees, and

SFS-A computes SKY (eR) and pre-sort the data according
to the preference function f . Note that SFS-D does not re-
quire any preprocessing. The storage of IPO Tree or IPO
Tree-10 corresponds to the IPO tree stored. SFS-A stores

the sorted data in SKY (eR), and SFS-D does not use extra
storage but reads the data directly from the dataset.

For measurements (1) and (3), each experiment was con-
ducted 100 times and the average of the results was reported.
For measurements (2), (4), (5) and (6), in each experiment,
we randomly generated 100 implicit preferences, and the av-
erage query time is reported. We will study the effects of
varying (1) database size, (2) dimensionality, (3) cardinality
of nominal attribute and (4) order of implicit preference.

5.1 Synthetic Data Set
Three types of data sets are generated as described in [1]:

(1) independent data sets, (2) correlated data sets and (3)
anti-correlated data sets. The detailed description of these
data sets can be found in [1]. For interest of space, we
only show the experimental results for the anti-correlated
data sets. The results for the independent data sets and
the correlated data sets are similar in the trend but their
execution times are much shorter.

1040

 100

 1000

 10000

 100000

 250 500 750 1000

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

No. of points (in thousands)

IPO Tree
IPO Tree-10

SFS-A

 0.1

 1

 10

 100

 1000

 10000

 100000

 250 500 750 1000

Q
u

e
ry

 t
im

e
 (

s)

No. of points (in thousands)

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0

 20

 40

 60

 80

 100

 250 500 750 1000

S
to

ra
g

e
 (

M
B

)

No. of points (in thousands)

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0

 10

 20

 30

 40

 50

 60

 70

1000750500250

P
e

rc
e

n
ta

g
e

 (
%

)

No. of points (in thousands)

|SKY(R)|/|D|
|AFFECT(R)|/|SKY(R)|

|SKY(R’)|/|SKY(R)|

(a) (b) (c) (d)

Figure 5: Scalability with respect to database size

 10

 100

 1000

 10000

 100000

 3 4 5 6

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

No. of dimensions

IPO Tree
IPO Tree-10

SFS-A

 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

 3 4 5 6

Q
u

e
ry

 t
im

e
 (

s)

No. of dimensions

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0

 20

 40

 60

 80

 100

 120

 3 4 5 6

S
to

ra
g

e
 (

M
B

)

No. of dimensions

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0

 10

 20

 30

 40

 50

 60

 70

 80

6543

P
e

rc
e

n
ta

g
e

 (
%

)

No. of dimensions

|SKY(R)|/|D|
|AFFECT(R)|/|SKY(R)|

|SKY(R’)|/|SKY(R)|

(a) (b) (c) (d)

Figure 6: Scalability with respect to dimensionality where no. of nominal attributes is fixed to 2

 100

 1000

 10000

 100000

 1e+06

 4 5 6 7

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

No. of dimensions

IPO Tree
IPO Tree-10

SFS-A

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 4 5 6 7

Q
u

e
ry

 t
im

e
 (

s)

No. of dimensions

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 4 5 6 7

S
to

ra
g

e
 (

M
B

)

No. of dimensions

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0

 20

 40

 60

 80

 100

 120

7654

P
e

rc
e

n
ta

g
e

 (
%

)

No. of dimensions

|SKY(R)|/|D|
|AFFECT(R)|/|SKY(R)|

|SKY(R’)|/|SKY(R)|

(a) (b) (c) (d)

Figure 7: Scalability with respect to dimensionality where no. of numeric attributes is fixed to 3

 100

 1000

 10000

 100000

 10 15 20 25 30 35 40

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

Cardinality of nominal attribute

IPO Tree
IPO Tree-10

SFS-A

 0.1

 1

 10

 100

 1000

 10000

 10 15 20 25 30 35 40

Q
u

e
ry

 t
im

e
 (

s)

Cardinality of nominal attribute

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0

 100

 200

 300

 400

 500

 10 15 20 25 30 35 40

S
to

ra
g

e
 (

M
B

)

Cardinality of nominal attribute

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

40302010

P
e

rc
e

n
ta

g
e

 (
%

)

Cardinality of nominal attribute

|SKY(R)|/|D|
|AFFECT(R)|/|SKY(R)|

|SKY(R’)|/|SKY(R)|

(a) (b) (c) (d)

Figure 8: Scalability with respect to cardinality of nominal attribute

 100

 1000

 10000

 1 2 3 4

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

Order of implicit preference

IPO Tree
IPO Tree-10

SFS-A

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4

Q
u

e
ry

 t
im

e
 (

s)

Order of implicit preference

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4

S
to

ra
g

e
 (

M
B

)

Order of implicit preference

IPO Tree
IPO Tree-10

SFS-A
SFS-D

 0

 10

 20

 30

 40

 50

 60

 70

4321

P
e

rc
e

n
ta

g
e

 (
%

)

Order of implicit preference

|SKY(R)|/|D|
|AFFECT(R)|/|SKY(R)|

|SKY(R’)|/|SKY(R)|

(a) (b) (c) (d)

Figure 9: Effect of order of implicit preference

1041

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 1 2 3

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

Order of implicit preference

IPO Tree
SFS-A

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 1 2 3

Q
u

e
ry

 t
im

e
 (

s)

Order of implicit preference

IPO Tree
SFS-A
SFS-D

 0

 20

 40

 60

 80

 100

 0 1 2 3

S
to

ra
g

e
 (

K
B

)

Order of implicit preference

IPO Tree
SFS-A
SFS-D

 0

 20

 40

 60

 80

 100

 120

 140

3210

P
e

rc
e

n
ta

g
e

 (
%

)

Order of implicit preference

|SKY(R)|/|D|
|AFFECT(R)|/|SKY(R)|

|SKY(R’)|/|SKY(R)|

(a) (b) (c) (d)

Figure 10: Effect of order of implicit preference (real data set)

5.1.1 Effect of Database Size
In Figure 5(d), we note that |SKY (R)|/|D| decreases

slightly when the data size increases. This is because, when
there are more data points, there is a higher chance that a
data point is dominated by other data points. Nevertheless,
|SKY (R)| increases with database size, and therefore we see
an upward trend in run time and in storage. For the IPO tree
methods, the skyline information size will increase with data
size. For SFS-A, the preprocessing time is O(n log n + Nn)
and the query time is O(l log N + min(N ′, l) · N), where

n is the data size, l = |AFFECT (R)|, N = |SKY (eR)|
and N ′ = |SKY (eR′)|. For SFS-D the query time is
O(N log N + Nn). We can see that the results from graphs
match with the complexity expectation.

5.1.2 Effect of Dimensionality
We study the effect of the number of nominal attribute

m′ where the number of numeric attributes is fixed to 3,
with the results as shown in Figure 7. In Figure 7(d),
|SKY (R)|/|D| increases. With more nominal attributes, it
is less likely that the data points are dominated by others
and thus |SKY (R)| increases. |AFFECT (R)|/|SKY (R)|
also increases with m′ because it is more likely that a data
point is affected when the implicit preference contains pref-
erences on more nominal attributes. The number of nodes
in a full IPO tree is given by O(cm′

) where c is the cardi-
nality of a nominal attribute. Because of these factors, the
preprocessing time and the query time of all algorithms in-
crease with m′. For the same reason, the storage for IPO
Tree and the storage of SFS-A also increase slightly. We
have also studied the effect of the number of numeric at-
tributes where the number of nominal attributes is fixed to
2. The results are similar to Figure 7.

5.1.3 Effect of Cardinality of Nominal Attribute
Figure 8(d) shows that |SKY (R)|/|D| increases with car-

dinality. This is because, when the cardinality increases,
there is a higher chance that a data point is not dominated
by other data points. Also, the number of nodes in a full IPO

tree is given by O(cm′

) where c is the cardinality of a nom-
inal attribute and m′ is the number of nominal attributes.
Thus, the preprocessing time, query time and storage of our
proposed algorithms increases with the cardinality. From
Figure 8(b), the increase is dampened for SFS-A because
the query time of SFS-A depends on |AFFECT (R)| and
there is a decrease in |AFFECT (R)|/|SKY (R)|, which is
caused by fewer data points with frequent nominal values
when there are more values in a nominal attribute.

5.1.4 Effect of Order of Implicit Preference

For IPO tree, the number of set operations is given by

O(xm′

) where x is the order of implicit preference. Hence,
in Figure 9(b), the query time for IPO Tree increases. The
query times for SFS-A and SFS-D are slightly dropping be-
cause the skyline size decreases when the order of implicit
preference increases. It is obvious that neither the pre-
processing nor storage will be affected. Figure 9(d) shows
that the size of affected skyline points increases. This is be-
cause more nominal values involved in the preference affect
more data points.

5.2 Real Data Set
To demonstrate the usefulness of our methods, we ran

our algorithms on a real data set, Nursery data set, which
is publicly available from the UCIrvine Machine Learning
Repository1. In this data set, there are 12,960 instances and
8 attributes. The experimental setup is same as [25]. There
are six totally-order attributes and two nominal attributes,
namely form of the family and the number of children. (Note
that although the number of children is a numeric attribute,
it is not clear whether a family with one child is “better”
than a family with two children.) The cardinalities of both
nominal attributes are equal to 4. The results in the per-
formance are similar to those for the synthetic data sets.
Figure 10 shows the results on the real data set with the
effect of the order of implicit preference. It is noted that
the storage of IPO Tree is smaller than 50KB. At the same
time, the query time of IPO Tree is 0.0001s when the order
of implicit preference is 2. On average, the query time of
IPO Tree is more than 20 times shorter than that of SFS-
A. In conclusion, in practice, IPO Tree is feasible to store
partial results and is efficient for answering skyline queries.

It is noted that, in this real dataset, some points dom-
inate most points and thus |SKY (R′)| is small. So,
|SKY (R′)|/|SKR(R)| nearly equals 0 in Figure 10(d). The
other figures (i.e., Figures 5, 6, 7, 8 and 9(d)) are based on
synthetic anti-correlated data sets in which it is less likely
that some points dominate most points. Since |SKY (R′)|
is not small, |SKY (R′)|/|SKR(R)| is not close to 0 in the
other figures.

5.3 Main Observations
The major findings from the experiments are the follow-

ings. The SFS-D algorithm cannot meet real-time require-
ments, since the query time is at least in terms of tens of
seconds and, in some cases, exceeds 1000 seconds. In gen-
eral, IPO Tree is the fastest. Besides, SFS-A returns the
result for about 20 seconds in some cases and is orders of
magnitude faster than SFS-D. The results with IPO Tree-10

1http://kdd.ics.uci.edu/

1042

show that, by handling a smaller set of nominal values, one
can control both the pre-processing and storage costs.

6. CONCLUSION
Most previous works on the skyline problem consider data

sets with attributes following a fixed ordering. However,
nominal attributes with dynamic orderings according to dif-
ferent users exist in almost all conceivable real-life applica-
tions. In this work, we study the problem of online responses
for such dynamic preferences, and a semi-materialization
method is proposed. Our experiments show how our pro-
posed algorithm computes the skyline results efficiently.

There are a lot of promising future directions with the
consideration of nominal attributes. One of possible future
directions is to investigate how the IPO-tree is updated when
data is changed. Another possible direction is to study how
the existing variations of traditional skyline models (which
do not consider nominal attributes) can be applied in the
data with nominal attributes. One example is to study how
subspace skyline queries [27, 22, 26, 23, 21] can be applied
in our problem setting with the consideration of nominal at-
tributes. Another example is to find skyline efficiently with
the consideration of nominal attributes over data streams
[17]. Besides, it is also interesting to investigate how the
concept of reverse skyline published recently in [8] can be
applied in our problem setting.

ACKNOWLEDGEMENTS
The research of R. C-W Wong and A. W-C Fu was supported
in part by the RGC Earmarked Research Grant of HKSAR
CUHK 4120/05E and 4118/06E. J. Pei was supported in
part by an NSERC Discovery Grant. Y. Liu was supported
in part by the National Natural Science Foundation of China
(60703111). All opinions, findings, conclusions and recom-
mendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

7. REFERENCES

[1] S. Borzsonyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, 2001.

[2] C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified
computation of skylines with partially-ordered
domains. In SIGMOD, 2005.

[3] C.Y. Chan, P.-K. Eng, and K.-L. Tan. Efficient
processing of skyline queries with partially-ordered
domains. In ICDE, 2005.

[4] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust
cardinality and cost estimation for skyline operator. In
ICDE, 2006.

[5] J. Chomicki. Database querying under changing
preferences. In Annals of Mathematics and Artificial
Intelligence, 2006.

[6] J. Chomicki. Iterative modification and incremental
evaluation of preference queries. In FoIKS, 2006.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting. In ICDE, 2003.

[8] E. Dellis and B. Seeger. Efficient computation of
reverse skyline queries. In International Conference on
Very Large Data Bases (VLDB), 2007.

[9] D. Kossmann et al. Shooting stars in the sky: An
online algorithm for skyline queries. In International
Conference on Very Large Data Bases (VLDB), 2002.

[10] H.T. Kung et al. On finding the maxima of a set of
vectors. In Journal of ACM, 22(4), 1975.

[11] J. L. Bentley et al. Fast linear expected-time
algorithms for computing maxima and convex hulls. In
SODA’90.

[12] J. L. Bentley et al. On the average number of maxima
in a set of vectors and applications. In Journal of
ACM, 25(4), 1978.

[13] O. Barndorff-Nielsen et al. On the distribution of the
number of admissable points in a vector random
sample. In Theory of Probability and its Application,
11(2), 1966.

[14] W.-T. Balke et al. Eliciting matters - controlling
skyline sizes by incremental integration of user
preferences. In DASFAA’07.

[15] W.-T. Balke et al. Exploiting indifference for
customization of partial order skylines. In the 10th
International Database Engineering and Applications
Symposium, 2006.

[16] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. In International
Conference on Very Large Data Bases (VLDB), 2005.

[17] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the
sky: Efficient skyline computation over sliding
windows. In ICDE, 2005.

[18] M. Morse, J. M. Patel, and H.V.Jagadish. Efficient
skyline computation over low-cardinality domains. In
International Conference on Very Large Data Bases
(VLDB), 2007.

[19] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An
optimal and progressive algorithm for skyline queries.
In SIGMOD, 2003.

[20] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive skyline computation in database systems.
In TODS, Vol. 30, No. 1, 2005.

[21] J. Pei, A. W.-C. Fu, X. Lin, and H. Wang. Computing
compressed multidimensional skyline cubes efficiently.
In ICDE, 2007.

[22] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the
best views of skyline: A semantic approach based on
decisive subspaces. In International Conference on
Very Large Data Bases (VLDB), 2005.

[23] J. Pei, Y. Yuan, and X. Lin et al. Towards
multidimensional subspace skyline analysis. In ACM
TODS, 2006.

[24] K.-L. Tan, P.K. Eng, and B.C. Ooi. Efficient
progressive skyline computation. In International
Conference on Very Large Data Bases (VLDB), 2001.

[25] R.C.W. Wong, J. Pei, A. Fu, and K. Wang. Mining
favorable facets. In SIGKDD, 2007.

[26] T. Xia and D. Zhang. Refreshing the sky: The
compressed skycube with efficient support for frequent
updates. In SIGMOD, 2006.

[27] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and
Q. Zhang. Efficient computation of the skyline cube.
In International Conference on Very Large Data Bases
(VLDB), 2005.

1043

