
Scheduling Continuous Queries in Data Stream
Management Systems

Mohamed A. Sharaf1 Alexandros Labrinidis2 Panos K. Chrysanthis2

1 ECE Department, University of Toronto
2 CS Department, University of Pittsburgh

msharaf@eecg.toronto.edu {panos, labrinid}@cs.pitt.edu

ABSTRACT
Recently, several policies have been proposed for schedul-
ing multiple Continuous Queries (CQs) in a Data Stream
Management System (DSMS). The decision on which pol-
icy to use plays an important role in shaping the percieved
online performance provided by the DSMS. In this tutorial,
we provide an overview of different policies employed by cur-
rent CQ schedulers and the performance goals optimized by
these policies. Further, we discuss the salient properties of
CQs conisdered by current policies as well as the efficent im-
plementation of such policies into CQ schedulers. Finally,
we present future research directions and open problems in
CQ scheduling.

1. INTRODUCTION
The growing need for monitoring applications has caused

a shift in data processing paradigm, moving from Database
Management Systems (DBMSs) to Data Stream Manage-
ment Systems (DSMSs). Traditional DBMSs employ a store-
and-then-query data processing paradigm, where data is
stored in the database and queries are submitted by the
users to be answered in full, based on the current snapshot
of the database. In contrast, in DSMSs, monitoring applica-
tions register Continuous Queries (CQs) which continuously
process unbounded data streams looking for data items that
represent events of interest to the end-user.

One main component in all DSMS is the CQ Scheduler
which is the part of the system responsible for ordering the
execution of registered CQs. Specifically, in a DSMS, the
arrival of new data triggers the execution of multiple cor-
responding CQs, where the CQ scheduler is the component
which decides the execution order of the operators of these
CQs. As such, CQ scheduling is basically the resource al-
location mechanism used to allocate the DSMS’s processing
power to different registered CQs with the objective of op-
timizing a certain performance goal. This is especially im-
portant when different CQs exhibit different characteristics
and have different requirements. For instance, some CQs

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

might be more important than others, or some CQs might
be more costly to process than others. Hence, one of the
main objectives in the design of a DSMS is the development
of scheduling policies that leverage CQs characteristics to
optimize the DSMS online performance.

Challenges: Scheduling is a well know technique for op-
timizing the performance of computer systems (e.g., Web
servers and O.S.). However, the scheduling problem in DSMSs
is more challenging due to the salient characteristics of CQs
which are significantly different from those of simple jobs
in traditional computer systems. Among these features are
complex query structures, dependency between queries, and
the probabilistic nature of query processing.

To address the scheduling problem in DSMS, several re-
search efforts have been devoted to different dimensions of
the problem. These dimensions are as follows:

1. Performance goals: defining the DSMS performance
goals and device policies for meeting these goals (e.g.,
minimize latency, or optimize memory usage). In ad-
dition, multi-objective scheduling tries to balance the
trade-off between multiple performance goals.

2. Window-based CQs: scheduling of the more compli-
cated window-based CQs like Joins and Aggregates.
In such queries, buffers are used to store input data
and the execution of a query involves processing this
buffered data in addition to the newly arriving data.

3. Shared CQs: scheduling multiple optimized CQs with
shared common subexpressions. This is another unique
scheduling problem in DSMS where the CQ scheduler
should exploit the sharing for further optimization.

4. Scheduler implementation: designing low-overhead CQ
schedulers that are practical to use in such online sys-
tem. This often involves a trade-off between the com-
plexity of the scheduler and the quality of the schedul-
ing decision.

Most of the above dimensions have been studied in iso-
lation though they are interdependent by nature. The goal
of this tutorial is to highlight the synergy between these
different efforts. The expected outcome is a ready recipe
of ingredients that are essential for designing efficient CQ
schedulers in DSMSs.

Tutorial Overview: In this tutorial, we discuss all the
previously mentioned aspects of CQ scheduling in a DSMS.
The discussion partially builds on our own experience in this

1526

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

area in building the NSF-funded AQSIOS DSMS prototype
[1]. Specifically, we present the following: (1) Introduction
to CQ processing in DSMSs, (2) DSMS performance goals,
(3) Basic scheduling strategies, (4) Scheduling strategies for
complex CQs, (5) Scheduler implementation issues, and (6)
Future directions and open problems.

2. SCOPE OF TUTORIAL
In the following, we describe the main points addressed in

this tutorial on scheduling CQs in a DSMS.

2.1 Continuous Query Plans
Scheduling is a well know technique for optimizing the

performance of traditional computer systems. However, the
scheduling problem in a DSMS is significantly different due
to the special characteristics of CQs. These characteristics
are easily illustrated by considering the following types of
CQ plans:

1. Single-stream CQs,

2. Multi-stream CQs,

3. Multiple CQs with shared operators, and

4. Window-based CQ plans.

Each of the above CQ plans exhibit special features which
are different from traditional jobs in an O.S. or Web server.
This in turn makes the CQ scheduling problem more chal-
lenging. Moreover, CQs with different kinds of plans are
expected to coexist at the same time at the DSMS. Hence,
an efficient CQ scheduler should exploit the characteristics
of those plans for further performance improvements.

2.2 Basic Scheduling Strategies
The MCQ scheduler decides the execution order of CQs,

or more precisely, the execution order of operators within
CQs. The execution order is decided with the objective
of optimizing the DSMS performance under certain met-
rics. We classify performance metrics into traditional met-
rics and DSMS specific metrics. We also, orthogonally, clas-
sify scheduling policies into:

Single-Objective Scheduling: In a CQ, a tuple that fails
some predicate is discarded, whereas a tuple that satisfies
all predicates produces an event which is of interest to the
user. This probabilistic nature of query processing has lead
to a new family of Rate-based scheduling strategies for opti-
mizing the traditional metrics in a DSMS, namely, response
time, throughput and slowdown. In this tutorial, we explain
the basic concepts underlying these policies as well as the
specific variants used for:

1. optimizing average-case performance, and

2. balancing the trade-off between average- and worst-
case performance.

While traditional metrics are suitable for measuring per-
formance in any on-line system, in DSMS, more metrics are
needed to measure performance from the data-perspective.
Thus, we also discuss such metrics and scheduling policies
for optimizing them. Our discussion includes scheduling
policies for improving the QoD of data streams, when QoD is

defined in terms of freshness or through application-specified
graphs which define the utility of stale output. Finally, since
a DSMS is basically an in-memory database system, we dis-
cuss scheduling policies that have been proposed to optimize
the memory usage.

Multiple-Objective Scheduling: In DSMSs, and in com-
puter systems in general, it is often desirable to optimize for
multiple metrics at the same time. However, those metrics
might be in conflict most of the time. Towards this, we
present the current attempts for designing schedulers that
are able to balance the trade-off between certain conflicting
metrics (e.g., memory and response time).

2.3 Scheduling of Complex Queries
We will discuss in details the scheduling challenges due to

two unique features of certain CQs, namely:

1. the presence of window-based operators, and

2. the inter-dependency between operators.

These features are manifested in several types of CQs
where aggregate CQs use window-based operators, while
optimized multiple CQ plans will exhibit operator inter-
dependency, and finally join CQs will exhibit both features.
In this tutorial, we will discuss several scheduling policies
that handle these queries under different performance mea-
sures.

2.4 Scheduler Implementation
To ensure the applicability of scheduling policies in DSMSs,

a low-overhead implementation is needed in order to reduce
the amount of computation involved in computing priorities.
In this tutorial, we make the distinction between:

1. Static CQ scheduling policies, and

2. Dynamic CQ scheduling policies.

For static policies, the schedule is computed only once
which naturally leads to a low-overhead implementation. On
the other hand, for dynamic policies, the schedule is a func-
tion in time which might render that class of policies very
impractical. In this tutorial, we discuss several approxima-
tion methods for efficient implementation of dynamic poli-
cies to balance the trade-off between scheduling overhead
and accuracy.

2.5 Future Directions and Open Problems
We discuss the requirements for a comprehensive frame-

work of a CQ scheduler which accommodates different schedul-
ing policies and considers all types of CQ operators and
structures. That framework should also provide various
knobs for balancing the trade-offs between different perfor-
mance goals as well as for balancing the trade-offs between
the scheduling complexity and accuracy. We also discuss
the possibility of collaborative techniques that utilize the
synergy between the CQ scheduler and other components in
the DSMS, namely, the load shedder, query optimizer, and
memory manager.

3. REFERENCES
[1] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros

Labrinidis, and Kirk Pruhs. Algorithms and metrics for
processing multiple heterogeneous continuous queries.
ACM Trans. Database Syst., 33(1), 2008.

1527

