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ABSTRACT
Online-Analytical Processing (OLAP) has been a field of compet-
ing technologies for the past ten years. One of the still unsolved
challenges of OLAP is how to provide quick response times on
any Terabyte-sized business data problem. Recently, a very clever
multi-dimensional index structure termed Dwarf [26] has been pro-
posed offering excellent query response times as well as unmatched
index compression rates. The proposed index seems to scale well
for both large data sets as well as high dimensions. Motivated by
these surprisingly excellent results, we take a look into the rearview
mirror. We have re-implemented the Dwarf index from scratch and
make three contributions. First, we successfully repeat several of
the experiments of the original paper. Second, we substantially
correct some of the experimental results reported by the inventors.
Some of our results differ by orders of magnitude. To better un-
derstand these differences, we provide additional experiments that
better explain the behavior of the Dwarf index. Third, we provide
missing experiments comparing Dwarf to baseline query process-
ing strategies. This should give practitioners a better guideline to
understand for which cases Dwarf indexes could be useful in prac-
tice.

1. INTRODUCTION
Online analytical processing (OLAP) has been an area of interest

for the past ten years [31, 5]. In contrast to OLTP-systems, OLAP
systems require quite different access patterns to data. For instance,
OLAP queries are mostly value-oriented instead of key-oriented.
Therefore, OLAP queries typically touch considerable portions of
the data. Moreover, OLAP scenarios comprise Terabyte-sized data
volumes [32] including data from hundreds of OLTP source databases.
In addition, OLAP queries may involve dozens of join operators on
complex galaxy schemas1. In addition, OLAP queries are naviga-
tional [7].

Therefore, it had become clear very early that the relational database
engines of the early 90ies were not appropriate to cope with the

1Using a star schema is already an optimization: it simply replaces
all non-fact tables by materialized views.
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massive data volumes, large query plans, multi-dimensional schemas,
and sheer complexity of OLAP problems.

Since then, vendors have followed three different approaches to
implement efficient OLAP engines:

(1.) Relational OLAP (ROLAP). This approach implements multi-
dimensional schemas directly on top of an existing relational DBMS;
however, it extends DBMSs by appropriate indexing techniques
to speed-up query processing. Important extensions were bitmap-
indexes which were pioneered by Model 204 [22], Sybase IQ [8, 9],
and Oracle. Other important extensions were materialized views [12]
and the CUBE-operator [11].
(2.) Multi-dimensional OLAP (MOLAP). This approach imple-
ments multi-dimensional schemas on top of a multi-dimensional
database system2. Systems include Essbase (first acquired by Hy-
perion and then by Oracle) [15] and Microsoft Analysis Services [17].
Note that it is also possible to combine ROLAP and MOLAP, i.e.,
parts of the data are kept in the ROLAP, others in MOLAP. This is
termed Hybrid OLAP (HOLAP).
(3.) Column-oriented OLAP (VROLAP3). This approach im-
plements multi-dimensional schemas on top of a relational DBMS
using a column-oriented storage manager based on vertical par-
titioning [1, 6]. Examples include Sybase IQ [8, 9], KDB [16],
MonetDB [4], SAP BI Accelerator [29], and, more recently, Ver-
tica [30]. Column stores have only recently become more popular
due to the shift from external to main memory databases.

The three approaches may be judged by three different features:
(1) effort for index selection, (2) predictability of the (nightly) in-
dex rebuild process, and (3) predictability of query response times.
Table 1 gives a brief summary on the three features for the different
OLAP approaches.

Approach Index Selection Index Rebuild Query Response
Effort Time Time

Predictability Predictability
ROLAP Bad Good Bad
MOLAP Good Bad Very Good
VROLAP Good Very Good Good

Table 1: Comparison of competing OLAP approaches

Obviously, VROLAP seems to perform well in all three aspects.
This is mainly due to the fact that query plans in a VROLAP sys-
tem are mostly simple column scans. In addition, maintenance of

2Some definitions for MOLAP are restricted to OLAP systems
working on array representations. In contrast, we include any
approach working on top of a multi-dimensional storage man-
ager/index structure.
3There is no accepted acronym for this approach. We term it verti-
cal relational OLAP here.
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Figure 1: Recap of running example: the Dwarf index for Table 2 (see Figure 1 in [26])

materialized views is rarely required. In contrast, MOLAP has bet-
ter response times, however, at the cost of possibly unpredictable
indexing times.

The goal of this paper is to examine a recently proposed very
promising approach for MOLAP: Dwarf [26]. The proposed Dwarf
index seems to work well for both large data sets as well as high di-
mensions. Experimental results in [26] indicate that Dwarf indexes
work for both uniformly distributed as well as highly skewed data
sets. Both index sizes as well as indexing times seem to be control-
lable.

Motivated by these seemingly excellent results, this paper takes
a look into the rearview mirror. We have re-implemented the Dwarf
index from scratch and carefully examine its performance charac-
teristics. In this paper we make the following contributions:

(1.) Repeating Experiments. We repeat the experiments of the
original paper using a re-implementation of Dwarf. We success-
fully repeat several of the experiments as presented by the inven-
tors. Our results indicate that results using uniformly distributed
data match the ones reported by the inventors.
(2.) Correcting Experiments. We make substantial corrections to
the experimental results reported by the inventors. In particular, for
skewed data sets we obtain Dwarf index sizes that are by orders
of magnitude higher than reported by the inventors – even though
Dwarf index sizes are hardware independent. As a consequence,
we also obtain Dwarf index construction times that are by orders of
magnitude higher than reported by the inventors — even though we
are using much better hardware. In summary, our results indicate
that Dwarf indexes seem to be hard to control for skewed data sets.
(3.) Additional Experiments. To understand why our results dif-
fer, we provide additional experiments that better explain the be-
havior of Dwarf indexes. This includes experiments using Zipf dis-
tributions as well as experiments using different parameters than
the ones used by the inventors. Furthermore, we report index sizes
in relation to the original fact table size (compression ratio) instead
of comparing index sizes to a fully materialized exponentially-sized
cube. Moreover, we compare index sizes to a later work of the in-
ventors [28] measuring the number of coalesced tuples.
(4.) Guideline. We provide missing experiments comparing Dwarf
indexes to baseline query processing strategies. We add query per-
formance experiments comparing Dwarf indexes with simple table
scans which are common in OLAP query engines. This should give
practitioners a better guideline to understand for which cases Dwarf
indexes could be useful in practice.

This paper is structured as follows. The following section recaps
Dwarf indexes. Section 3 presents details of our Dwarf implemen-
tation. Section 4 details the setup used for our experiments. Sec-
tion 5 presents results of Dwarf index construction experiments.

Section 6 presents results of query processing experiments. Sec-
tion 7 discusses related work.

2. RECAP: THE DWARF INDEX
In this section we briefly review the Dwarf index. This section

is meant to be self-contained. We will try to keep the description
concise and refer the interested reader to [26] for details.

We will first explain the Dwarf structure (Section 2.2) using a
running example (the same as used by the inventors). After that we
recap the Dwarf construction algorithms (Section 2.3).

2.1 Running Example
We explain the Dwarf index by using the running example of [26].

Let’s assume we want to create a Dwarf index for a simple three-
dimensional fact table as displayed in Table 2.

Store Customer Product Price
1 2 2 70
1 3 1 40
2 1 1 90
2 1 2 50

Table 2: Running example fact table from [26]

The table consists of three dimensions Store, Customer, and Prod-
uct and single measure Price. Dwarf indexes for multiple measures
are also possible; however, similar to the inventors, we will assume
a single measure for the remainder of this paper. We assume an
aggregation function SUM on that measure. Other aggregation func-
tions may also be supported.

2.2 Dwarf Structure
The main idea of Dwarf indexes is to precompute all possible

views of a given fact table at indexing time and represent all views
in a single compact structure: the Dwarf index. This means that at
query time no aggregation computation has to be performed any-
more. Instead, query processing is restricted to simply looking up
values in the Dwarf index.

For our running example this means that all possible views (23 =
8) are already precomputed. The Dwarf index that will be created
based on the Running Example is displayed in Figure 1. We will
explain the different aspects of a Dwarf index stepwise:

(1.) Node Layout and Prefix Compression. A Dwarf index for a
cube of D dimensions consists of exactly D levels (one for each di-
mension). The root node corresponds to the first level L = 1. Nodes
on levels L < D are termed non-leaf-nodes. Nodes on the D-th level
are termed leaf-nodes. Non-leaf-nodes contain mappings from a
key to a node at level L + 1. Leaf-nodes contain mappings from a
key to a measure value. A Dwarf index applies prefix-compression
on the data. This means that each prefix is stored only once. For
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instance, rows (2,1,1;90) and (2,1,2;50) have the common pre-
fix (2,1). Therefore, this prefix only has to be stored once. This
effect is similar to the one used in search tries [14]. The aforemen-
tioned properties of a Dwarf index can be seen in Figure 1 when
only considering black framed cells and arrows
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(2.) Aggregation Cells and Suffix Compression. Each node in a
Dwarf contains an additional aggregation cell "∗". In Figure 1 ag-
gregation cells are shaded in grey. For leaf-nodes, an aggregation
cell maps to a measure, e.g., consider node (3) mapping "∗" to value
70. For a non-leaf node at level L < D an aggregation cell points to
a node at level L + 1. It may either point to a newly created node
(red framed cells), i.e., a node that would not exist in the prefix-
tree. Or it may point to an existing node. For instance, node (2)
contains an aggregation cell pointing to a newly created node (5).
Aggregation cells pointing to newly created nodes are displayed
using arrows
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. Alternatively, aggregation cells for non-leaves
may also point to existing nodes. For instance, the aggregation cell
of node (6) points to the already existing node (7). This effect is
termed suffix compression (or suffix coalescing) as possibly redun-
dant suffixes are only stored once. This property turns the tree into
a DAG. It is displayed using arrows
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. For instance, if we fol-
low one of the paths (2,1,2) or (2,∗,2), or (∗,1,2) we will end up
at the same cell of node (7) providing the mapping 2 7→ 50.

2.3 Dwarf Construction Algorithms
In this section we briefly review the core idea of Dwarf index

construction algorithms. The Dwarf construction process consists
of two Algorithms CreateDwarfCube (Algorithm 1, corresponds
to Algorithm 1 in [26]) and SuffixCoalesce (Algorithm 2, cor-
responds to Algorithm 2 in [26]). Again, we will describe both
algorithms in our own words.

Dwarf index construction is started by invoking CreateDwarfCube
on the unsorted input fact table F and specifying the maximum
number of dimensions D.
CreateDwarfCube. This method takes as input an unsorted fact
table F and the maximum dimension D. The methods starts by
sorting F into a sorted sequence F ′ (Line 2). Then the method it-
erates over all tuples in F ′ (Lines 5–34). The main idea here is
to compare the tuple treated in the previous iteration (lastTuple)
to the tuple treated in the current iteration (nextTuple). This will
determine a suffix su flast of keys in which nextTuple differs from
lastTuple (Line 6). Based on this information we determine the
Nodes Ni+1, . . . ,ND for which we need to compute ∗-cells (Lines
7–16). In more detail, for each leaf-level node, we compute its ag-
gregate measure (Line 10) by calling an aggregate function. For
non-leaf-nodes we call SuffixCoalesce. That method takes as its
input the children of the current node N j as well as the current di-
mension increased by one (Line 14). If all nodes have computed
their ∗-cells, we check whether we need to create additional Dwarf
nodes (Lines 17–30), i.e., in order to store new prefixes in the struc-
ture. If we are already on the last level of the Dwarf (Line 21),
we create a leaf-node (Lines 22–25) and insert an appropriate map-
ping into that node (Lines 23&24). Otherwise we create a non-leaf-
node (Lines 26–29) and insert an appropriate mapping into the new
node (Line 28). This insertion recursively creates additional nodes
on lower levels similar to a recursive insert on any tree-structure
(Line 29, omitted). After that the new node is inserted into the ex-
isting Dwarf (Line 32). The loop of Lines 5–34 terminates when
all input tuples of F ′ have been treated. After that, the root node
of the Dwarf computes its ∗-cell by calling SuffixCoalesce and
assigning its ∗ entry (Line 36).
SuffixCoalesce. This method takes as input a set of Dwarf
nodes nodes, the maximum dimension D, and the current tree-level

Algorithm 1: CreateDwarfCube
Input: FactTable F ,
MaxDimension D.
Output: DwarfIndex dwar f .
//sort fact table:1
F ′ = sort(F)2
lastTuple = <empty>3
// iterate over sorted fact table:4
foreach Tuple nextTuple ∈ F ′ do5

Suffix su flast = suffix of lastTuple differing from nextTuple6
// Determine nodes that need to compute ∗-cell:7
Let Ni, . . . ,ND be the nodes corresponding to suffix su flast8
if i != D then9

ND.∗= aggregate(ND)10
//call SuffixCoalesce bottom-up:11
foreach Node N j ∈ ND−1, . . . ,Ni+1 do12

// call SuffixCoalesce for node N j:13
N j.∗ = SuffixCoalesce(N j .children(), D, j +1)14

end15
end16
// Determine additional Dwarf nodes to be created:17
Node currentNode = Ni18
Node newNode= <empty>19
Integer currentDim = i+120
if currentDim == D then21

newNode = new Leaf()22
Integer key = nextTuple.getKey().getDim(currentDim)23
newNode.addMapping(key 7→ nextTuple.getMeasure())24

else25
newNode = new NonLeaf()26
//create D− i−1 additional nodes recursively:27
newNode.insert(currentDim, D, nextTuple)28
[...]29

end30
//insert newly created sub-Dwarf into existing Dwarf:31
currentNode.addMapping(nextTuple.getKey(i) 7→ newNode)32
lastTuple = nextTuple33

end34
//compute ∗-cell for root node of dwarf:35
dwar f .getRoot().∗ = SuffixCoalesce(dwar f .getRoot().children(),36
D, 2)
// return new dwarf index:37
return dwar f38

level. The method first checks whether the set nodes contains only
a single element (Line 1). If that is the case, it simply returns the
single node contained in nodes (Line 2). This is where suffix co-
alescing happens. If the node set contains more than one element
(Lines 3–23), a new node is created (Lines 4–9). The latter depends
on the current level level, which will determine whether to create a
non-leaf or a leaf-node (Line 5). After that, we loop over all distinct
keys available in the set of input nodes (Lines 10–21). For each
key we compute the subset containsKey ⊆ nodes having that key
(Line 12). For each of those nodes we then unfold the correspond-
ing mapping into a set of values (Line 13). This set may either con-
tain nodes or measures. If we are already on the last level (Line 14),
we aggregate the measures contained in values into an aggregate
measure and append a mapping to newNode (Line 16). Otherwise,
i.e., if we are on a non-leaf-level, we call SuffixCoalesce on the
nodes contained in values and append a mapping with the result
to newNode (Line 19). If all distinct keys in nodes have been pro-
cessed, we return newNode (Line 22). Note that [26], as well as our
implementation, uses a merge-based implementation of Lines 11–
21. However, these lines could also be implemented using a hash-
based approach.
External Memory. In our description of the algorithms so far we
have assumed the entire Dwarf structure to fit into main memory.
Obviously, this would not make sense in a real application. There-
fore, in sync with the inventors, we assume an external memory
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Algorithm 2: SuffixCoalesce
Input: Input: DwarfNodeSet nodes,
MaxDimension D,
Integer level.
Output: Node subDwar f .
if nodes.size() == 1 then1

return nodes.firstEntry()2
else3

Node newNode= <empty>4
if level == D then5

newNode = new Leaf()6
else7

newNode = new NonLeaf()8
end9
//for each distinct key available in the set of nodes:10
foreach Integer key ∈ nodes do11

DwarfSet containsKey =12
{node | node ∈ nodes∧node.hasKey(key)}
Set values = {node.getValue(key) | node ∈ containsKey}13
if level == D then14

//aggregate measures:15
newNode.addMapping(key 7→ aggregate(values))16

else17
//aggregate nodes:18
newNode.addMapping(key 7→ SuffixCoalesce(values))19

end20
end21
return newNode22

end23

implementation. The main idea of this implementation is to re-
place node pointers by offsets. Furthermore, nodes may be written
to disk whenever their ∗-cells have been determined. Therefore, in
theory, we only have to keep one node per level in main memory,
plus the nodes required to compute "∗" cells in SuffixCoalesce.
An interesting property of Dwarf is that each input tuple only has
to be visited once. Therefore reading the input data is fully sequen-
tial. In addition, Dwarf nodes are written to disk fully sequentially.
Thus, the CreateDwarfCube Algorithm presented above is in fact
a bulk loading algorithm for Dwarfs. However, SuffixCoalesce
may implicitly perform considerable random I/O as the recursive
all node construction (Lines 13&19) may touch large portions of
the DAG. In the worst case this method will therefore revisit all de-
scendant nodes of all input nodes. As SuffixCoalesce is called
for each non-leaf-node, this may be very expensive.
Coarse-Grained Dwarfs and Gmin. The inventors have already
observed that the size of a Dwarf index as constructed by the al-
gorithms described above may be too high to be useful in practice.
Therefore they propose a technique to reduce the size by trading
index size for query performance. The idea is to not initialize cer-
tain ∗-cells. This works as follows: whenever for a node Ni at any
level of the Dwarf the number of tuples that contributed to the sub-
dwarf beneath Ni is less than a given parameter Gmin, the ∗-cell of
Ni will not be computed. As a consequence, aggregation queries
that would follow the ∗-cell of Ni have to resort to performing ag-
gregations at query time. This leads to higher query runtimes (see
also Section 4.4 in [26]).
Coalesced Tuples. In a follow-up paper [28] the inventors pro-
posed an implementation-independent measure for the size of a
Dwarf index termed the number of coalesced tuples. We argue that
the number of coalesced tuples is a measure to count the number of
semantically different measure cells. For instance, in the Running
Example of Figure 1 of [26] node (4) contains value $40 for key
P1. The same value will be replicated in node (5) for the same key
by the Dwarf construction algorithm. However, in Table 2 of [28]
both values $40 are counted only once. Therefore, the number of
coalesced tuples is only a lower bound for the size of the Dwarf

index. This is because a Dwarf index does not compress to seman-
tically different measure cells only but to a larger number of cells.
Also note that this property of a Dwarf index cannot be reduced by
introducing additional enhancements like pointers on the leaf-level.
For the settings used in [26, 28] and this paper the resulting Dwarf
sizes would be exactly the same. Still we will use this lower bound
measure to make an additional comparison to the results of [28].

3. OUR IMPLEMENTATION OF DWARF
We have implemented Dwarf strictly following [26]. All code

was implemented using Java 5. We avoided object-orientation wher-
ever possible and used native types. We used the Dwarf construc-
tion algorithm as described in the original paper and recapitulated
above. In addition, in order to make our Dwarf implementation
efficient, we used the following optimizations:

(1.) Writable and Read-only Nodes. A Dwarf uses two different
node types: leaves and non-leaves. Implementation-wise, however,
it makes sense to keep two different representations: two for each
of the leaf and the non-leaf nodes. This results in four different
node types. This is because the Dwarf index creation algorithm ba-
sically needs to keep only a single writable node for each level
— all other nodes may be considered read-only. As a writable
node-representation is less space-efficient than a read-optimized
version, it makes sense to provide two different implementations.
Our writable implementation of nodes is based on linked lists. All
writable nodes are pinned in main memory. As soon as a node has
computed its ∗-cell, the node will be replaced by a read-optimized
version and unpinned.

(2.) Compact Node Representation. The node representation it-
self is based on integers as in the original paper. Each node con-
tains a header of length 4 Bytes that indicates the node type (for
deserialization) and the number of entries. A node may contain at
most 230 entries. If the node has N entries, we first store the N
keys contiguously. After that, in case of non-leaf nodes we store N
offsets pointing to lower-level nodes, and in case of leaf nodes we
store the N values. This provides better cache behavior for intra-
node searches. Our experiments give some evidence that our node
representation is slightly more effective than the one used by the
inventors.

(3.) Optional Aggregate Representation. There are some cases
when the ∗-cell does not have to be represented: (1) if the ∗-cell
is trivial, i.e., the node only has a single entry. Then the ∗-cell
would point to the same entry. Therefore, we do not serialize it in
our implementation. This implicitly implements the case Gmin = 1.
However, in addition, we also drop the ∗-cell if the current node
contains a single prefix cell leading to multiple tuples in the sub-
Dwarf. (2) if the aggregate node is non-existent due to a coarse-
grained Dwarf (see above). In both cases we use the node header
to indicate that there is no aggregate node. Again, this saves some
storage space — without changing the actual Dwarf algorithms.

(4.) Efficient I/O. As the I/O-classes of java.io are rather ineffi-
cient, we used the newer I/O-classes of java.nio. These classes
perform considerably better than the old java.io. We implemented
the Dwarf index using a memory mapped file which provides all
buffering. As each memory-mapped area was limited to 2 billion
Bytes, we implemented a segmented buffer working on a set of F
memory-mapped files. In our implementation, non-leaf nodes con-
tain integer offsets to nodes in the memory mapped array. Note
that we map data to integer arrays rather than byte arrays. Due
to this data layout of Dwarfs we do not loose any storage space.
This allows us to support a maximum Dwarf index size of up to
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16 GB even though we are only using integers for offsets4. Also
note that we do not use pointers in the tree-structure at any point
in time as this would be space-inefficient. Furthermore, our read-
optimized node representation does not copy any data from the
memory-mapped array but rather operates directly on the memory-
mapped array which saves even more memory space (similar to a
C++ implementation).

4. EXPERIMENTAL SETUP
4.1 Hardware

All experiments were performed on servers having each two 2.4
GHz Dual Core AMD Opteron 280 processors, i.e., four cores in
total, and 6 GB of main memory. The operating system used was
Linux 2.6.9. The disk used was a 300 GB ATA/133 hard disk with
16 MB Cache (Maxtor 6L300R0). It has an average seek time of
<9 ms and a data transfer rate of 70 MB/sec. In order to have better
control on I/O, we turned of swapping. Our implementation does
not make use of multiple threads. However, to prevent the JVM
from implicitly using more than one computing core we switched
off all cores except one. Still, our hardware is of course better than
the hardware available in 2002. In [26] the authors used a 700 Mhz
Celeron processor running Linux 2.4.12 with 256 MB of RAM. The
hard disk used was a 30 GB disk rotating at 7200 rpms, able to write
at about 8 MB/sec and read at about 12 MB/sec. The average disk
seek time was not specified. Obviously, due to improved hardware
we expect our runtime measurements for index construction and
query response times to be always by a factor better than the results
reported by the inventors in [26]. However, note that as the index
size is hardware independent, index sizes should match precisely
the results obtained by the inventors.

4.2 Data Sets
Synthetic. We used synthetic as well as real data sets. Similarly
to [26] we used data where dimension values follow either a uni-
form or a self-similar 80-20 distribution [10] over a given cardi-
nality. Similarly to the inventors, we did not impose any corre-
lations among the dimensions. Note that [26] does not specify
whether the self-similar distribution of [10] or a zipfian distribu-
tion was used. These distributions are often confused, e.g., see the
discussion in [10]. In this paper we present results of both self-
similar and Zipf distributions. Random numbers were generated
using FastMersenneTwister [21]. Both self-similar 80-20 and Zipf
distributions were generated using the methods described by Gray
et al. [10]. Unless specified otherwise, we use a value θ = 0.95 for
the Zipf distribution.

Data Set Description Raw Size #Tuples[MB]
Weather-FULL Weather Full Prec 39 1,015,367
Weather-TRUNC Weather Truncated 39 1,015,367

FOREST Forest 24 581,012

Table 3: Raw size and #Tuples of real data sets used
Weather Data Set. In [26], the inventors of Dwarf evaluate their
technique with real data sets, among them the Weather data set [13].
A subset of [13] was chosen corresponding to weather conditions
at various weather stations on land for September 1985. While the
inventors report that the data set had 348,448 tuples, the original

4A minor detail here is that Java does not provide an unsigned
int type. However, in our implementation we use the full range
of 32 bits by letting Integer offsets start at the minimal negative
integer value. These offsets are than translated back to long typed
offsets in the buffer.

Data Set Dimension Card. Min Val Max Val

Weather-FULL

station-id 7037 1001 98851
longitude 5359 5 36000

latitude 3809 -8999 8250
solar-altitude 1782 -891 896

present-weather 101 -1 99
day 30 1 30

weather-change-code 10 0 9
hour 8 0 21

brightness 2 0 1

Weather-TRUNC

station-id 7037 1001 98851
longitude 352 0 360

solar-altitude 179 -89 89
latitude 152 -89 82

present-weather 101 -1 99
day 30 1 30

weather-change-code 10 0 9
hour 8 0 21

brightness 2 0 1

FOREST

slope 5827 0 7173
horz-dist-to-roadways 5785 0 7117

horz-dist-to-fire-points 1978 1859 3858
vert-dist-to-hydrology 700 -173 601
horz-dist-to-hydrology 551 0 1397

aspect 361 0 360
hillshade-noon 255 0 254
hillshade-3pm 207 0 254
hillshade-9am 185 0 254

elevation 67 0 66

Table 4: Dimensions, cardinalities, and key ranges of real data
data from [13] actually contains 1,015,367 tuples5. We believe this
discrepancy could stem from the fact that [26] took only a subset of
the dimensions from the data set. In fact, [26] reports creating two
derived data sets, one with 9 dimensions (Meteo-9) and one with 12
dimensions (Meteo-12), from the original Weather data. We believe
that the inventors have pre-aggregated the data according to those
dimensions, but that remains unclear in [26]. Furthermore, [26]
does not report which dimensions were used. This means that it is
unclear how to repeat their experiments for this data set.

We have, therefore, resorted to the literature to understand sim-
ilar uses of the same Weather data set. We have found, however,
divergent uses of the data set in the literature. In [19], for ex-
ample, the data set is reported to have 6 dimensions out of the
20 existing. In contrast, all of [20, 18, 2, 23] report using a su-
perset consisting of 9 dimensions. They report these dimensions
(with respective cardinalities) to be: station-id (7,037), longitude
(352), solar-altitude (179), latitude (152), present-weather (101),
day (30), weather-change-code (10), hour (8), and brightness (2).
We have tried to verify the cardinalities of those columns listed
in the literature, but we found inconsistent numbers for the longi-
tude (5,359), latitude (3,809), and solar-altitude (1,782) columns.
In fact, in the original data set, these columns represent fixed pre-
cision floating point numbers. When truncating the numbers on the
three columns, we have obtained the same cardinalities reported in
the literature. As we believe that by performing truncation we are
altering the original features of the data set, we have decided to
conduct our experiments with both the full precision and with the
truncated Weather data used in literature.
Forest Data Set. The Forest data set [3] includes forest cover type
data for areas in the Roosevelt National Forest of northern Col-
orado. It contains 581,012 tuples and 55 columns of data. Out of
these columns, only 10 are quantitative variables and one is a mea-

5We pointed this out to the inventors on Feb 25, 2008, but did not
receive any reply. We also asked for the source code used in the
original paper. However, the code was not made available by the
inventors due to technology licensing issues.
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D
F.Tbl. Uniform 80-20 Zipf (θ = 0.95)

Size Dwarf [MB] Time [sec] Dwarf [MB] Time [sec] Dw.[MB] T.[sec]
[MB] ORIG NEW ORIG NEW ORIG NEW ORIG NEW NEW NEW

10 4 62 55 26 11 115 152 46 26 118 22
15 6 153 141 68 22 366 1293 147 195 515 85
20 8 300 283 142 42 840 7779 351 1123 1570 234
25 10 516 495 258 66 1788 n/a 866 n/a 3851 548
30 12 812 790 424 102 3063 n/a 1529 n/a 8272 1153

(a) Dwarf index sizes and creation times

Uniform 80-20 Zipf (θ = 0.95)
#coalesced #coalesced #coalesced

Tuples Tuples Tuples
0.3 E6 2.3 E6 1.3 E6
0.6 E6 16.4 E6 4.1 E6
1.0 E6 88.6 E6 10.2 E6
1.5 E6 n/a 21.3 E6
2.2 E6 n/a 39.8 E6

(b) #coalesced tuples

Figure 2: Storage size and creation time vs #dimensions. Repeats and complements Table 4 from [26]. Cardinalities for all dimensions
equal 1,000. Fact table size = 100,000 tuples.

D
Fact Table Uniform 80-20 Zipf (θ = 0.95)

Size Dwarf Time Dwarf Time Dwarf Time
[MB] [MB] [sec] [MB] [sec] [MB] [sec]

10 <1 5 <1 13 3 9 2
15 1 11 2 82 13 30 5
20 1 19 3 410 72 79 12
25 1 31 5 1763 276 170 25
30 1 44 6 6537 1016 325 43

(a) Dwarf index sizes and creation times

D
Uniform 80-20 Zipf (θ = 0.95)

#coalesced #coalesced #coalesced
Tuples Tuples Tuples

10 0.02 E6 0.17 E6 0.08 E6
15 0.03 E6 0.95 E6 0.22 E6
20 0.04 E6 4.33 E6 0.45 E6
25 0.05 E6 17.52 E6 0.83 E6
30 0.06 E6 61.44 E6 1.40 E6

(b) #coalesced tuples
Figure 3: Storage size and creation time vs #dimensions. Additional experiment complementing Table 4 from [26] with results for
10,000 tuples. Cardinalities for all dimensions equal 1,000.
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Figure 4: Number of coalesced tuples versus #dimensions. Repeats and complements Figure 12 from [28]. Fact table size 100,000
tuples. Logarithmic scale on vertical axis.

sure. The remaining 44 columns are binary qualitative indicators.
Following the methodology of [26], we have taken the 10 quantita-
tive variables as dimensions.

We summarize the features of the real data sets used in our exper-
iments in Tables 3 and 4. Note that we have ordered the dimensions
of all data sets in descending order of cardinalities, as this ordering
benefits the Dwarf.

4.3 Outline of Experiments
We will examine two principal features of Dwarf indexes: (1) in-

dex size and construction time (Section 5) and (2) query perfor-
mance (Section 6).

We repeat the most important experiments of [26], i.e., those ex-
periments that give the best understanding on how Dwarf indexes
scale for certain scenarios. We also repeat some experiments of
[28]. We will use the same data sets, query workloads, and param-
eters as specified by the inventors wherever possible. We measure
the same characteristics of the Dwarf index including index cre-
ation time, index size, and query response time. In addition, we
show the number of coalesced tuples as proposed in [28] which is a
hardware- and implementation-independent measure for the index
size. As explained in Section 2.3 it is a lower bound on the ac-
tual entries in a Dwarf index. Furthermore, we provide additional
experiments that help to understand better the performance char-
acteristics of Dwarf indexes. This includes experiments for index
creation as well as for query processing. For index creation we dis-

play additional observations of Dwarf index creations including:
(1) size of a Dwarf index when compared to fact table size, i.e., the
actual index expansion ratio, and (2) behavior of Dwarf indexes
under different skewed distributions (80-20 self-similar and Zipf).
For query processing we provide comparisons with realistic base-
lines, i.e., scans on row- and column-stores. This will be explained
in more detail below.

In the experiments we will refer to results presented in the orig-
inal work [26] and [28] as ORIG. Where appropriate, results ob-
tained from our implementation are labeled NEW. For additional
experiments we omit to specify NEW.

5. INDEX CONSTRUCTION EXPERIMENTS
In this section we examine Dwarf index construction times and

index sizes.

5.1 Scaling in the Number of Dimensions
We discuss how Dwarf index sizes and construction times scale

with the number of dimensions D.
This experiment corresponds to Table 4 from [26]. Like the in-

ventors, we have constructed Dwarf indexes for increasing num-
bers of dimensions all of which had cardinalities set to 1,000. The
number of tuples in the fact table was always 100,000. Again like
the inventors, we have generated the data using uniform and self-
similar 80-20 distributions. As described in Section 5.1.1 of [26],
dimension values were generated to follow the given distribution
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(c) Expansion Ratio vs #Dimensions
Figure 5: Storage space, Construction Time, and Expansion Ratio vs #Dimensions. Repeats and complements Figures 3 & 4 from [26]
by showing up to 20 dimensions and also a Zipf distribution. In addition, we compare the size of Dwarf indexes to the size of the raw
fact table.

over the cardinality of the dimensions. Furthermore, we also did
not impose any correlation among the dimensions. In addition to
the original evaluation, however, we have also used a Zipf distribu-
tion. The results we have obtained are shown in Figure 2(a).
Effect of Uniform Data. For a uniform distribution, our results
are very consistent with the ones from [26]. Our index sizes were
always slightly smaller than the ones reported in [26] as we have
introduced the storage optimizations described in Section 3. More-
over, the index construction times were proportional to the index
sizes6. We observe that the Dwarf index is always bigger than the
fact table. For D = 10, Dwarf takes 55 MB while the fact table
takes 4 MB, a 13:1 expansion ratio. The ratio becomes even worse
for higher dimensionality. For D = 30, Dwarf takes 790 MB com-
pared to only 12 MB for the fact table, resulting in an expansion
ratio of 66:1.
Effect of Self-Similar Data. For a self-similar 80-20 distribution,
however, the Dwarf index sizes differ significantly from the ones
reported in [26] for D≥ 15. In fact, we observe a strong growth in
the Dwarf index size, reaching 1.3 GB for 15 dimensions and 7.8
GB for 20 dimensions (expansion ratios 216:1 and 972:1, resp.).
This is by a factor 3 to 9 larger than reported by the inventors. In
addition, we could not scale Dwarf beyond 20 dimensions, as the
index size was in excess of 16 GB, the maximum index size sup-
ported in our implementation (see Section 3). In order to better
understand those differences, we have taken three steps: (1) we
have also evaluated Dwarf using a Zipf distribution to understand
the sensitiveness of Dwarf to skew; (2) we have compared the num-
ber of coalesced tuples as obtained from our implementation with
the one of the inventors presented in [28], (3) we have repeated the
same experiment with only 10,000 tuples in the fact table to under-
stand the scaling behavior of Dwarf with increasing dimensionality.
Effect of Zipf Data. As for the first step, we have chosen θ = 0.95
in order to generate a distribution which presents significant skew
while still having less skew than the self-similar 80-20 distribu-
tion. The results are displayed in Figure 2(a). The results show
that indeed Dwarf produces smaller indexes for less skewed dis-
tributions. Nevertheless, as the distribution has significant skew,
expansion ratios are still increasing significantly with higher di-
mensionality. For instance, for D = 30, the Dwarf index uses 8.3
GB and exhibits a fact table expansion ratio of 689:1.
Coalesced Tuples. As for our second step, in later work [28] the
inventors proposed an implementation-independent lower bound
for the Dwarf index size counting the number of coalesced tuples.
As [28] also provides results for Zipf data, this allows us to make a

6We remind the reader that times from the original paper are not di-
rectly comparable with times reported for our implementation due
to hardware differences.

direct, implementation-independent comparison. This experiment
corresponds to Figure 12 of [28]. Figure 4(a) shows results for
very lightly skewed data (θ = 0.2). The figure displays results for
two different cardinalities C = 1,000 and C = 10,000. The results
show that the number of coalesced tuples as counted in our imple-
mentation (NEW) matches the numbers reported by the inventors
(ORIG) perfectly. The same holds for slightly higher skew factors
(θ = 0.4). This is displayed in Figure 4(b). In summary, we con-
clude that the implementations of ORIG and NEW report the same
number of coalesced tuples. For completeness we will also display
the number of coalesced tuples for other experiments of this paper
including Figures 2(b), 3(b), 6(b), 7(b), and Table 10.

Let’s look at the number of coalesced tuples in more detail. For
instance in Figure 2(b) we observe that for a fact table size of
100,000 tuples and a 20-dimensional 80-20 distribution the num-
ber of coalesced tuples is already about 88.6 million tuples. This
is by a factor 886 larger than the number of tuples in the fact ta-
ble. Similar observations may be made for less skewed data, e.g.,
for the Zipfian ditribution and 20 dimensions we receive a factor of
102. Thus we conclude that the index growth of the Dwarf index
is an intrinsic characteristic of the method and not due to a specific
implementation.
General Behavior for Skewed Data. As for our third step, Fig-
ure 3(a) shows the results we have obtained when repeating the
same experiment with only 10,000 tuples in the fact table. Note
that the raw data size for D = 10 is displayed as <1 MB in the table
as the fact table allocates 430 KB only. Again, we have obtained a
similar scaling behavior with higher dimensionality for Dwarf in-
dexes. Although the Dwarf index is always bigger than the fact
table, the expansion ratios observed with a uniform distribution
are not as dramatic as the ones observed with skewed distribu-
tions. At D = 30, uniform data produces an expansion ratio of 38:1,
compared to a 275:1 ratio for Zipf and an impressive 5528:1 ratio
for self-similar 80-20 data. We once more observe that the more
skewed the distribution the higher the expansion ratio for Dwarf
indexes. In addition, confirming the results of Figure 2(a), index
creation times are proportional to index sizes.
Graphical Comparison. We have also reproduced the results for
scaling Dwarfs as found in Figures 3 and 4 in [26]. The results of
this experiment are shown in Figures 5(a), 5(b), and 5(c). Like in
the original evaluation, the fact table always contained 250,000 tu-
ples. Unlike the inventors, however, we have not compared Dwarf
against Cubetrees, but rather against the fact table itself (see also
Sections 6.1 and 6.2 for a comparison of Dwarf query performance
with full scan performance under different organizations of the fact
table). In addition, we scale Dwarf not only to 10 dimensions as
in [26], but rather to 20 dimensions. This is because, as we have
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#Tuples
Fact Table Uniform 80-20

Size Dwarf [MB] Time [sec] Dwarf [MB] Time [sec]
[MB] ORIG NEW ORIG NEW ORIG NEW ORIG NEW

100,000 4 62 53 27 8 72 94 31 16
200,000 8 133 113 58 19 159 195 69 35
400,000 17 287 239 127 43 351 400 156 70
600,000 25 451 372 202 64 553 608 250 109
800,000 34 622 509 289 90 762 818 357 146

1,000,000 42 798 651 387 114 975 1031 457 188
(a) Dwarf index sizes and creation times

#Tuples
Uniform 80-20

#coalesced #coalesced
Tuples Tuples

100,000 0.7 E6 1.9 E6
200,000 1.5 E6 4.1 E6
400,000 3.4 E6 8.6 E6
600,000 5.3 E6 13.2 E6
800,000 7.4 E6 17.9 E6

1,000,000 9.6 E6 22.7 E6
(b) #coalesced tuples

Figure 6: Storage size and creation time requirements vs #Tuples. Repeats and complements Table 5 from [26]. Cardinalities for the
dimensions are 30,000, 5,000, 5,000, 2,000, 1,000, 1,000, 100, 100, 100, and 10.

#Tuples
Fact Table Uniform 80-20

Size Dwarf Time Dwarf Time
[MB] [MB] [sec] [MB] [sec]

100,000 4 55 8 152 26
200,000 8 130 21 314 54
400,000 17 326 53 653 114
600,000 25 566 88 1002 177
800,000 34 836 127 1358 246

1,000,000 42 1123 172 1720 312
(a) Dwarf index sizes and creation times

#Tuples
Uniform 80-20

#coalesced #coalesced
Tuples Tuples

100,000 0.3 E6 2.3 E6
200,000 1.0 E6 4.7 E6
400,000 3.2 E6 9.9 E6
600,000 6.1 E6 15.3 E6
800,000 9.4 E6 21.0 E6

1,000,000 12.9 E6 26.8 E6
(b) #coalesced tuples

Figure 7: Storage size and creation time requirements vs #Tuples. Additional experiment complementing Table 5 from [26] with
numbers having dimension cardinalities compatible with Table 4 from [26]. Cardinalities for all dimensions are 1,000.

seen in our previous results, the effect of higher dimensionality can
be significant on Dwarf indexes.

Figures 5(a) and 5(c) show that Dwarf indexes exhibit modest ex-
pansion ratios when compared to the fact table up to 10 dimensions
for all three distributions (Uniform, 80-20, and Zipf). Above 10 di-
mensions, however, the growth rate on index sizes depends on the
distribution, being more acute for distributions with higher skew.
For a uniform distribution, we obtain an expansion ratio of 54:1
at 20 dimensions. For Zipf and self-similar 80-20, the ratios are
253:1 at 20 dimensions and 473:1 at 17 dimensions, respectively.
We could not scale further than 17 dimensions with a self-similar
80-20 distribution as that would exceed the maximum index size of
16 GB in our implementation. In addition, we confirm our obser-
vation that index creation times are proportional to index sizes, as
may be observed in Figure 5(b).

In summary, our experiments show that for uniform data the
Dwarf index sizes and construction times are in sync with the in-
ventors. For skewed distributions, however, both index sizes and
construction times are considerably larger than reported by the in-
ventors. In addition, we observe that the size of a Dwarf index may
be up to 5500 times larger than the fact table.

5.2 Scaling in the Number of Tuples
In this section we examine how Dwarf indexes perform when

scaling the number of tuples in the fact table. We repeat the ex-
periment presented in Table 5 of [26]. This means that we keep
the dimensionality constant at 10 dimensions. In addition, we use
the same cardinalities as used by the inventors, i.e., 30,000, 5,000,
5,000, 2,000, 1,000, 1,000, 100, 100, 100, and 10. Figure 6(a)
shows the results.
Scaling Changing Cardinalities. Figure 6(a) shows results as re-
ported by the inventors (ORIG) and our results (NEW). The results
for uniform data show that the index sizes obtained by NEW are
slightly smaller than the ones of ORIG. This is due to the fact that
we are using a node representation that is slightly more efficient.
In addition, index creation times of NEW are by a factor 2–4 bet-
ter than ORIG. Again, this is not surprising as we are using newer
hardware. However, the results for 80-20 data show that the in-
dex sizes of NEW are slightly bigger than ORIG. This is against

our expectations as we would assume that a more effective node
size should lead to smaller indexes independent of the distribution
used. We do not have an explanation for these results. However,
recall that for the experiments in Section 5.1 we have already ob-
served larger index sizes for 80-20. In terms of index creation times
we observe that the results of NEW for 80-20 are better than ORIG.
Scaling Keeping Cardinalities. Another interesting aspect of this
experiment is that the inventors change at the same time the scal-
ing dimension as well as the cardinalities of the dimensions. In
more detail, in Section 5.1.1 of [26] the inventors scale the dimen-
sion while using a cardinality of 1000 for each dimension (repeated
above in Section 5.1). Then, in the same section they perform a
similar experiment scaling the number of tuples (Table 5 of [26]).
However, at the same time while changing the scaling parameter
the inventors also change the cardinalities of the dimensions. The
differing cardinalities are reported in the last paragraph of Section
5.1.1 of [26], however, without giving any motivation for this.

Due to this observation we decided to provide an additional ex-
periment that does not change the cardinalities but only the scaling
parameter. It is displayed in Figure 7(a). The results show that if
we keep the cardinalities at 1,000 each, Dwarf index sizes as well
as index construction times are considerably larger. For instance,
for uniform data and 1,000,000 tuples the Dwarf index has a size of
1,123 MB instead of 651 MB. For 80-20 data the Dwarf index has
a size of 1,720 MB instead of 1,031 MB. The same increase may
be observed for index construction times.

We conclude that the cardinalities of the dimensions have a strong
impact on both Dwarf index sizes and construction times.
Index Expansion Ratios. Figure 6 also displays the sizes of the
original fact tables. Again, this is done to give a better feeling on
the relative space requirements of Dwarfs when compared to the
original fact table. For the cardinalities used in Figure 6(a), we
observe that Dwarf indexes are about 10–25 times larger than the
fact table. For cardinalities equal to 1,000 in each dimension (see
Figure 7(a)) we observe that the Dwarf indexes are even larger and
may grow up to 41 times larger than the fact table. We argue that
it is important to display such a huge expansion ratio in order to
judge the costs of an indexing method.

In summary, our experiments show that for uniform data our re-
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(a) Uniform data, query workload A
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(b) 80-20 data, query workload A
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(c) Zipf data, query workload A

 0

 5

 10

 15

 20

 25

 5  10  15  20  25  30

R
e

s
p

o
n

s
e

 T
im

e
 [

s
e

c
]

#Dimensions

Dwarf
row-scan

column-scan

(d) Uniform data, query workload B
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(e) 80-20 data, query workload B
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(f) Zipf data, query workload B
Figure 8: Query performance on synthetic data: Dwarf versus row-scan and column-scan (complements Figures 5&6 from [26] by
showing up to 30 dimensions and by comparing with full table scan methods)

sults are in sync with the inventors. For skewed data, however, we
observe larger index sizes. The index sizes increase even more if
we keep the original cardinality distribution.

5.3 Results with Real Data Sets
In this section we examine how Dwarf indexes perform on real

data sets. We repeat the experiment presented in Table 6 of [26].
As mentioned above, only one of the real data sets used in ORIG
could be reproduced. Table 5 shows the results.

Dataset
Fact Table

D
Dwarf [MB] Time [sec]

Size ORIG NEW ORIG NEW[MB]
Weather-FULL 39 9 n/a 212 n/a 35
Weather-TRUNC 39 9 n/a 294 n/a 48

Forest 24 10 594 524 350 74

Table 5: Storage and creation time for real datasets (repeats
and complements see Table 6 in [26])

The results for Forest show a slightly smaller index size for
NEW than ORIG. The Dwarf index is 22 times bigger than the fact
table. The index construction time for NEW is by a factor five bet-
ter than ORIG. For Weather-FULL and Weather-TRUNC we obtain
index sizes of 212 MB and 294 MB and index construction times
below a minute. The results are in sync with the results observed
above for 10-dimensional data. It would, however, be interesting to
try higher-dimensionality data sets as we have seen that the Dwarf
is sensitive to high dimensional data. We leave this to future work.

6. QUERY PROCESSING EXPERIMENTS
In this section we examine the query performance of Dwarf in-

dexes. In addition to the experiments shown by the inventors we
also show comparisons to scans on a row- and a column-store.

6.1 Query Performance on Synthetic Data
In this section we evaluate the query performance of Dwarf in-

dexes on synthetic data. This corresponds to the results shown in
Figures 5&6 in [26]. Our results are shown in Figure 8. Simi-
larly to the inventors we scale the dimensionality and show query
performance for two different query workloads as specified by the
inventors. The fact table size is 250,000 tuples. In contrast to the
inventors we scale up to 30 dimensions and not only 10. Moreover,
we do not only use uniform and 80-20 distributed data but also Zipf
distributed data. The query workloads are summarized in Table 6.

Probabilities Range
Workload #Queries PnewQ Pdim PpointQ Max Min

A 1,000 0.34 0.4 0.2 20% 1
B 1,000 1.00 0.4 0.2 20% 1

Table 6: Workload Characteristics for "Dwarfs vs Full Table
Scans" Query Experiment (see Table 7 in [26])

For these query workloads PnewQ describes the probability that a
new query will not be related to the previous query. 1−PnewQ is the
probability that the query is a drill-down or a roll-up query. Pdim
describes the probability that a single dimension will be selected
to participate in a query. PpointQ describes the probability that the
entire query specifies only a point for each dimension. A range
query covers at most 20% of the possible values and has at least
one value (see Section 5.2.1 of [26] for details).

In contrast to the inventors we also show two additional ag-
gregation methods: (1) row-scan which uses a full-table scan on
the fact table to obtain tuples that qualify for the aggregation, and
(2) column-scan which corresponds to a dimension-wise scan on
a column-store. It uses a bitmap to mark tuples qualifying for a
query. All three methods Dwarf, row-scan, and column-scan re-
turn the same result.
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Weather-FULL Weather-TRUNC FOREST
WL Dwarf row-scan column-scan Dwarf row-scan column-scan Dwarf row-scan column-scan

NEW NEW ORIG NEW
A’ 4.0 77.5 35.2 1.1 76.6 35.2 150 21.5 49.0 24.8
B’ 3.1 74.5 34.2 1.0 74.4 34.3 176 14.8 47.1 21.8
C’ 6.0 75.8 35.0 2.2 76.1 35.1 208 33.8 50.8 23.0
D’ 2.0 76.0 30.3 0.6 77.6 30.3 217 11.1 49.3 19.4
E’ 4.7 81.4 32.0 1.6 80.3 31.8 262 23.5 48.8 20.6

Table 7: Query performance for query workload A’–E’ on three real data sets [times in sec]. Repeats and complements Tab. 9 of [26].

Effect of Uniform Data. Figures 8(a) and 8(d) show the results for
uniform data for query workload A (resp. B). The results show that
Dwarf performs pretty well: it only needs up to 3 seconds for the
entire workload A and for workload B it takes up to 5 seconds to
process 1000 queries. This is because workload B does not contain
any drill-down or roll-up queries (PnewQ = 1), which slightly affect
the query performance of Dwarf. Figures 8(a) and 8(d) also show
row-scan which takes from 7 seconds for 4 dimensions up to 20
seconds for 30 dimensions. In contrast, column-scan only requires
4 seconds for 4 dimensions up to 9 seconds for 30 dimensions. In
summary, the Dwarf index performs by a factor 1.5 to 3 better than
the best scan method on uniform data.
Effect of Self-Similar Data. Figures 8(b) and 8(e) show the results
for the same experiment for 80-20 self-similar data. Here, the per-
formance characteristics of the different methods are quite differ-
ent. The runtimes for row-scan are similar to the ones for uniform
data. For column-scan the runtimes slightly increase to 4 seconds
for 4 dimensions up to 11.5 seconds for 30 dimensions. In contrast,
the runtimes for Dwarf increase dramatically: for 11 dimensions
Dwarf is already slower than column-scan; for 15 dimensions it
is comparable to row-scan and increases sharply for higher di-
mensions to multiples of the runtimes needed for row-scan. This
increase is due to the fact that for more than 15 dimensions the
Dwarf index built for the 16 MB size fact table does not fit into the
5 GB available main memory anymore and has to perform consid-
erable I/O. Also note that this strong increase may not have been
observed by the inventors as the corresponding Figure (Figure 6
in [26]) only scales up to 10 dimensions. Our index sizes for uni-
form data, which closely match the ones reported by the inventors,
were always below 256 MB up to 11 dimensions. With these index
sizes the Dwarf would have remained in main memory even with
the hardware used in [26]. The increase in query response time,
however, only happens for higher dimensions.
Effect of Zipf Data. To better understand these results we also
show results for Zipf data (not shown by the inventors) which is
less skewed than the self-similar data. We have run Dwarf with
two different values of the θ parameter for the Zipf distribution:
θ = 0.95 (as used in other experiments) and θ = 0.7 (less skewed).
Figures 8(c) and 8(f) show the results for the same experiment using
Zipf data. For row-scan and column-scan we see the same ten-
dencies: runtimes are somewhere in-between the ones for uniform
and 80-20 data. The change in runtime is minimal. Therefore, we
present only the scan results for the more skewed distribution with
θ = 0.95. For Dwarf, however, we see a similar strong increase in
runtimes as for self-similar data when θ = 0.95. This increase is
due to the fact that for 19 dimensions the Dwarf index does not fit
into the 5GB available main memory anymore. For query workload
A that increase does not seem to be as pronounced. For query work-
load B, however, that increase matches the one observed for 80-20
data. This means that for θ = 0.95 column-scan will perform bet-
ter than Dwarf for dimensions higher than 6 (see Figure 8(f)). For
a less skewed Zipf distribution, with θ = 0.7, the growth in the
runtime of Dwarf is smoother up to 24 dimensions. Above that
threshold, Dwarf performance again deteriorates due to insufficient

main memory. Between 10 and 24 dimensions, the difference in
performance between Dwarf and column-scan is not significant,
with Dwarf performing slightly better on workload A and slightly
worse on workload B. This means that for less skewed data Dwarf
will only outperform column-scan for less than 10 dimensions for
workload A and less than 7 dimensions for workload B.

6.2 Query Performance on Real Data
In this section we evaluate the query performance of Dwarf in-

dexes on real data sets. This corresponds to the results shown in
Table 9 of [26]. Our results are shown in Table 7.

Workload #Queries PnewQ Pdim PpointQ Rangemax

A’ 2,000 0.34 0.4 0.1 15%
B’ 2,000 0.34 0.4 0.5 25%
C’ 2,000 1.00 0.4 0.5 25%
D’ 2,000 0.34 0.3 0.5 25%
E’ 2,000 1.00 0.3 0.5 25%

Table 8: Workload Characteristics for "Dwarfs vs Full Table
Scans" Query Experiment. Corresponds to Table 8 of [26].

Similarly to the inventors we use three different real data sets us-
ing five different query workloads. The query workloads are spec-
ified in Table 8. The features of the data sets are summarized in
Table 3. As stated above (see Section 4.2) only one of the data sets
FOREST used by the inventors was sufficiently specified such that it
could be exactly reproduced. Again, in addition to the inventors we
also show results for row-scan and column-scan. As before, we
may not compare our query response times with the ones reported
by the inventors for FOREST as we are using different hardware.
However, we may compare the performance of the three different
aggregation methods Dwarf, row-scan, and column-scan. For
Weather-FULL Dwarf is consistently faster than column-scan by
about a factor 10. For Weather-TRUNC this advantage is even more
pronounced. The reason is that for the artificially created data set
Weather-TRUNC the number of nodes and leaves touched to pro-
cess a query is by a factor three smaller than for Weather-FULL.
For FOREST, however, the performance of Dwarf is comparable to
the one of column-scan. For workload A’, B’, and D’, Dwarf per-
forms better. For workload C’ and E’ column-scan performs bet-
ter. This again supports the observation made by the inventors that
Dwarf indexes profit from drill-down and roll-up queries, but do
not perform as well on workloads of independent queries.

In summary, Dwarf seems to perform well for some real data
sets. For other real data sets, however, the performance of Dwarf
matches the one of a simple column scan on unindexed data. How-
ever, it is difficult to estimate in advance for which data sets a Dwarf
will be advantageous over a column scan.
6.3 Coarse-Grained Dwarfs

In this section we examine how storage requirements, construc-
tion time, and query performance are affected by coarse-grained
Dwarfs. As described in Section 2.3, the index size may be traded
for query performance by setting the minimum granularity (Gmin)
parameter. Like that we obtain a coarse-grained Dwarf. This ex-
periment repeats and complements Table 10 of [26]. Our results
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Uniform 80-20 Zipf (θ = 0.95)
Gmin Space [MB] Creation [sec] Queries [sec] Space [MB] Creation [sec] Queries [sec] Space Creation Queries

ORIG NEW ORIG NEW ORIG NEW ORIG NEW ORIG NEW ORIG NEW [MB] [sec] [sec]
1 490 418 202 64 154 9 482 242 218 43 199 24 433 70 29

10 n/a 237 n/a 38 n/a 10 n/a 147 n/a 30 n/a 39 253 48 42
50 n/a 168 n/a 26 n/a 11 n/a 105 n/a 21 n/a 59 164 32 67

Dwarf
100 400 137 74 19 110 15 376 85 81 18 262 77 128 25 84
500 n/a 82 n/a 10 n/a 90 n/a 59 n/a 13 n/a 162 75 16 184

1,000 312 66 59 7 317 254 343 52 62 12 295 280 65 13 319
5,000 166 66 29 7 408 254 288 50 53 11 1094 297 63 13 332

20,000 151 66 25 7 476 256 160 49 30 11 1434 305 61 13 341
row-scan n/a 222 n/a 251 237

column-scan n/a 138 n/a 192 167

Table 9: Storage size, Creation Time, and Query Performance for synthetic data set for coarse-granular Dwarfs, row-scan, and
column-scan. Repeats and complements Table 10 of [26].

are shown in Tables 9 and 10. We use the same synthetic dataset
as described in [26], having 8 dimensions and 800,000 tuples. The
cardinalities of the dimensions are: 1250, 625, 300, 150, 80, 40, 20
and 10. Similarly to the inventors we use a uniform as well as a
self-similar 80-20 distribution. In addition, we use a Zipf distribu-
tion (θ = 0.95). Moreover, we show additional values for Gmin to
better understand the trade-offs of this tuning knob.
Query Workload. The query workload for this experiment is again
different from the ones in the previous experiments. However, we
precisely follow the query workload description given by the in-
ventors. The query workload contains 8,000 queries using rotated
dimensions. The first 1,000 queries perform a range query in di-
mensions 1 to 3. In the remaining 5 dimensions (4 to 8) a point
query is issued with probability 30%, otherwise ALL semantics
are used. For the next 1,000 queries, the range queries are exe-
cuted in dimensions 2 to 4. The remaining five dimensions (1 and
5 to 8) again contain point queries or ALL semantics as described
above. Creating the next 1,000 queries continues in the same fash-
ion. When the range query dimensions reach the last dimension 8,
they wrap around. See the technical report [27] for details.
Increasing Gmin. The results show that for increasing Gmin the
Dwarf index benefits in terms of index size and index creation time.
The price that has to be paid, however, is increased query runtime.

For uniform data, we observe that index sizes of NEW drop from
418 MB to 66 MB whereas query response times rise from 9 sec
to 256 sec. Note that the index sizes of ORIG and NEW again do
not match. The results of NEW are in fact by a factor better which
cannot be explained solely based on our more compact node rep-
resentation. For 80-20 data and Zipf data we see similar effects
for index sizes, which go down for increasing Gmin. Once more,
creation times are correlated with index sizes over all distributions.
Similarly, for query response times, we observe that runtimes grow
for increasing Gmin. Another interesting observation is that most
of the reduction in index size is already obtained for small values
of Gmin, e.g., Gmin = 10. At these values query performance is still
very close to the one of a fine-grained Dwarf for a uniform distribu-
tion. For skewed distributions, however, query response times rise
much quicker even for small values of Gmin.
Comparison with Scan-Methods. Table 9 also shows query ex-
ecution times for both scan methods row-scan and column-scan
(not shown by the inventors). For uniform data we observe that
a Dwarf for Gmin = 100 requires 15 seconds to process the query
workload. For Gmin = 1,000, however, the Dwarf requires 254
seconds. This is slower than both scan methods row-scan and
column-scan which require 222 sec (resp. 138 sec). Therefore we
observe that in fact a coarse-granular Dwarf is smaller than a fine-
granular Dwarf, i.e., for Gmin ≥ 1,000 it was ‘only’ about three
times bigger than the fact table which had 28.8 MB. However, at

Gmin

Uniform 80-20 zipf (θ = 0.95)
#coalesced #coalesced #coalesced

Tuples Tuples Tuples
1 8.7 E6 7.2 E6 11.5 E6

10 3.6 E6 3.0 E6 4.5 E6
50 1.4 E6 1.6 E6 1.9 E6

100 1.0 E6 1.2 E6 1.2 E6
500 0.8 E6 0.9 E6 0.8 E6

1,000 0.8 E6 0.8 E6 0.8 E6
5,000 0.8 E6 0.8 E6 0.8 E6

20,000 0.8 E6 0.8 E6 0.8 E6

Table 10: Storage size, Creation Time, and Query Performance
for synthetic data set for coarse-granular Dwarfs. Comple-
ments Table 10 of [26] showing number of coalesced tuples.

the same time the query response times on such a coarse-granular
Dwarf are higher than the ones for both scan-methods. This obvi-
ates the need to use a Dwarf index. Similar observations hold for
80-20 and uniform data. Only for a small Gmin it makes sense to
keep a coarse-granular Dwarf. For higher values of Gmin the scan
methods perform better.

In summary, coarse-granular Dwarfs may have lower index sizes
and creation times at the cost of increases in query response times.
The Gmin tuning knob has to be tuned carefully to avoid response
times worse than the ones obtained by simple scan methods.

7. RELATED WORK
As mentioned in the Introduction, much work has been done in

the area of OLAP. Here we focus on work related to Dwarf indexes.
Dwarf. The Dwarf index was proposed on SIGMOD 2002 [26,
27] and also patented [24]. We have already detailed its main ideas
in Section 2. An in-depth discussion of differences among perfor-
mance results reported by the inventors and our implementation is
provided in Sections 5 and 6. Here, we want to point out a few ad-
ditional observations. In [26] a point that is particularly misleading
is that the inventors compare the size of Dwarf indexes to the size
of the fully materialized cube. For instance, in Table 4 of [26] the
size of the cube is counted using a binary storage footprint (BSF)
which is equal to storing all possible views of the cube in unin-
dexed relations. Obviously, the size of BSF is exponential in the
number of dimensions. Throughout their work the inventors com-
pare Dwarf indexes to BSF but never to the size of the original
fact table. Thus, they claim compression ratios of up to 1:400,000.
We think that this kind of comparison is highly unrealistic as the
fully materialized cube would never be computed and, in fact, was
never materialized by the inventors. On the contrary, the origi-
nal fact table was simply expanded to a Dwarf index. Let’s pick
one example, e.g., from Table 4 in [26] we pick a 25-dimensional
cube that when fully materialized would require a claimed 173 TB
of storage. We may calculate the size of the original fact table as
4 ·100,000 ·(d +1) = 9.9 Megabytes. Using [26] we can then com-
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pute the size ratio of a Dwarf compared to the original fact table as
52 times bigger (Uniform) and 181 times bigger (80-20) than the
original fact table. We argue that an index size two orders of mag-
nitude bigger than the original data set is an important number to
understand the performance characteristics of a method.
Dwarf Extensions. The idea of Dwarf indexes was extended in
more recent work. In [25] the idea was extended to also support
hierarchies which are common in OLAP. However, that paper did
not change the underlying principal structure and algorithms of the
Dwarf. In [28] a complexity analysis for Dwarfs was presented.
It makes the same comparisons to fully materialized cubes as dis-
cussed above. The main result of that work is that the expected size
and computation time complexity is polynomial, i.e, for a uniform
cube the expected size and computation time complexity is shown
to be O(D · |F |1+1/logDC) = O(D · |F | · |F |1/logDC) where |F | is the
number of rows in the fact table, D the number of dimensions, and
C the cardinality in each dimension. Although Dwarf index sizes
grow polynomially for uniform data, even a modest exponent for
the polynomial may lead to very large index sizes in practice, sev-
eral times larger than the original data set. Therefore we agree with
the inventors that a polynomial complexity is a nice result [28].
However, we think that this theoretical result is of limited practical
value — as evidenced by our experiments.
8. CONCLUSIONS

This paper has taken a look into the rearview mirror to better un-
derstand a promising index structure for multi-dimensional OLAP:
Dwarf indexes. Our experiments for uniform data indicate that the
behavior of Dwarf indexes seem to be in sync with the observations
of the inventors. For skewed data, however, our results show that
the size of a Dwarf index may be orders of magnitude larger than
reported by the inventors.

In fact, Dwarfs seem to be very sensitive to skewed data which
makes these structures hard to control in practical situations. In
particular, Dwarf indexes do not scale well for more than 10 di-
mensions on these data sets. Moreover, Dwarf indexes require con-
siderable disk (or main memory) space ranging from 10 up to 5,500
times larger than the original fact table size. This makes the tech-
nique hard to apply to large scenarios – unless one is willing to pay
the price for huge storage and index construction times.

Furthermore, given the current hardware trends that allow sys-
tem architects to keep the entire data set in main memory, we con-
clude that for many realistic scenarios (at least the ones presented
by the inventors of Dwarf) it makes sense to keep the raw fact table
entirely in main memory. Consequently, we showed experiments
comparing Dwarf indexes to simple main memory table scans on
both a row-store and a column-store which are widely used in RO-
LAP and VROLAP implementations. Our results indicate that in
several situations the cost of a Dwarf index will not be competitive.
However, there are some situations where Dwarf outperforms even
a column scan, i.e., for uniform data one may gain a factor two
over a column-scan. The same holds for some of the real data sets
we tried where one may gain an even higher factor. However these
gains seem to be unpredictable. On the downside, the price to pay
for a Dwarf index are: considerable storage space, long index con-
struction times as well as possibly unpredictable increase in index
rebuild time. Therefore, Dwarf does match very well the behavior
of a typical MOLAP method.

As a general guideline we recommend to use Dwarf indexes only
for cases where the query load is so demanding that it cannot be
satisfied by a column-store. For instance for uniform data and 10
dimensions we observed that a throughput of 200 queries per sec-
ond may be served by a simple column-scan. Only if this query
throughput is not sufficient or cannot be coped with by scaling out

(i.e., adding more computing nodes), Dwarf should be considered.
In addition, the data sets indexed by Dwarf should only be lightly
skewed and should not have too many dimensions.
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