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ABSTRACT 
The general notion of a metric space encompasses a diverse range 
of data types and accompanying similarity measures. Hence, 
metric search plays an important role in a wide range of settings, 
including multimedia retrieval, data mining, and data integration. 
With the aim of accelerating metric search, a collection of pivot-
based indexing techniques for metric data has been proposed, 
which reduces the number of potentially expensive similarity 
comparisons by exploiting the triangle inequality for pruning and 
validation. However, no comprehensive empirical study of those 
techniques exists. Existing studies each offers only a narrower 
coverage, and they use different pivot selection strategies that 
affect performance substantially and thus render cross-study 
comparisons difficult or impossible. We offer a survey of existing 
pivot-based indexing techniques, and report a comprehensive 
empirical comparison of their construction costs, update 
efficiency, storage sizes, and similarity search performance. As 
part of the study, we provide modifications for two existing 
indexing techniques to make them more competitive. The findings 
and insights obtained from the study reveal different strengths and 
weaknesses of different indexing techniques, and offer guidance 
on selecting an appropriate indexing technique for a given setting. 

1. INTRODUCTION 
Search is a fundamental functionality in computer science, with 

similarity search being a prominent type of queries. Given a query 
object, similarity search finds similar objects according to a 
definition of similarity. This kind of functionality is useful in 
many settings. For instance, in pattern recognition, similarity 
queries can be used to classify a new object according to the 
labels of already classified nearest neighbors; in multimedia 
retrieval, similarity queries can be utilized to identify images 
similar to a specified image; and in recommender systems, 
similarity queries can be employed to generate personalized 
recommendations based on users’ preferences. 

Considering the wealth of data types (e.g., images and strings), 
a generic model is desirable that is capable of accommodating a 
wide spectrum of data types rather than some specific data types. 
In addition, the distance metric used for comparing the similarity 
of objects goes beyond the Euclidean distance (i.e., the L2-norm) 
and includes metrics such as the Lp-norm distance for images and 

the edit distance for strings. Hence, we consider metric spaces to 
accommodate a wide of data types and similarity notations. 

A number of indexes aim to accelerate search in metric spaces. 
As an example, environment for developing KDD-applications 
supported by index-structures, termed as ELKI, is an open source 
data mining software that uses indexing (e.g., M-tree [13]) to 
improve efficiency [25]. Existing indexes can be classified into 
two categories, i.e., compact partitioning techniques [1, 3, 7, 10, 
13, 14, 18, 21, 22, 27] and pivot-based techniques [5, 8, 11, 12, 17, 
19, 20, 23, 24, 26]. The former divides data space into compact 
regions and tries to eliminate entire regions during search. The 
latter employs search relying on pre-computed distances between 
data objects and pivots. Given two objects q and o, the distance 
d(q, o) cannot be smaller than |d(q, p)  d(o, p)| for any pivot p, 
due to the triangle inequality. Thus, it may be possible to prune an 
object o for q using the lower bound value |d(q, p)  d(o, p)| rather 
than computing d(q, o), which enables pivot-based methods to 
outperform compact partitioning methods in terms of the number 
of distance computations [2], one of the key performance criteria 
in metric spaces. Hence, we focus on the pivot-based techniques. 

We aim to address limitations of existing empirical studies. 
First, the use of different pivot selection strategies renders the 
comparison of pivot-based indexing techniques challenging. For 
example, the OmniR-tree [17] utilizes the hull of foci algorithm 
(HF) to select outliers as pivots, while the spacing filing curve 
and pivot based B+-tree (SPB-tree) [12] uses the HF based 
incremental pivot selection algorithm (HFI) to select pivots that 
maximize the similarity between the original metric space and the 
vector space (achieved by using the pivots). Since the 
performance of similarity query processing depends highly on the 
pivots used [9], we compare pivot-based indexes using the same 
pivot selection strategy. Second, while studies [11, 30] survey 
metric indexing techniques pre-2006, the last dozen years have 
seen many proposals for new and better metric indexes (e.g., disk-
based indexes), such as the OmniR-tree, the M-index [23], and the 
SPB-tree. We offer a comprehensive empirical study as of today. 

In brief, the key contributions of this paper are as follows: 

 We provide a compact survey of existing pivot-based 
indexing techniques, focusing on the underlying principles. 

 We enhance two existing pivot-based metric indexes to give 
them better search performance. Specifically, we provide a 
better pivot selection strategy for the extreme pivot table, 
and integrate minimum bounding box into the M-index. 

 We give a comprehensive empirical comparison of existing 
pivot-based indexes, considering index construction cost, 
update efficiency, index size, and query performance while 
ensuring an equal footing where the same pivot selection 
strategy is employed. The findings and insights obtained 
from the empirical study offer new insights on the strengths 
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and weaknesses of exiting techniques and aid in selecting an 
appropriate indexing technique for a given setting. 

The rest of this paper is organized as follows. Section 2 presents 
the preliminaries of pivot-based indexes. Sections 3, 4, and 5 
describe three categories of pivot-based metric index structures. 
Experimental results and our findings are reported in Section 6. 
Finally, Section 7 concludes the paper. 

2. PRELIMINARIES 
We proceed to define the core metric similarity queries. Then, 

we provide a brief overview of the pivot-based indexes, and 
describe the pivot-based filtering enabled by these indexes. 

2.1 Metric Similarity Search 
A metric space is a two-tuple (M, d), in which M is an object 

domain and d is a distance function for measuring the “similarity” 
between objects in M. In particular, the distance function d has 
four properties: (1) symmetry: d(q, o) = d(o, q); (2) non-negativity: 
d(q, o) ≥ 0; (3) identity: d(q, o) = 0 iff q = o; and (4) triangle 
inequality: d(q, o) ≤ d(q, p) + d(p, o). Based on these properties, 
we define metric similarity search, including the metric range 
query and the metric k nearest neighbor query below.  

DEFINITION 1 (METRIC RANGE QUERY). Given an object set O, 
a query object q, and a search radius r in a metric space, a metric 
range query (MRQ) returns the objects in O that are within 
distance r of q, i.e., MRQ(q, r) = {o| o  O  d(q, o)  r}. 

DEFINITION 2 (METRIC K NEAREST NEIGHBOR QUERY). Given 
an object set O, a query object q, and an integer k in a metric 
space, a metric k nearest neighbor query (MkNNQ) finds k objects 
in O that are most similar to q, i.e., MkNNQ(q, k) = {S | S  O  
|S| = k  s  S, o  O   S, d(q, s) ≤ d(q, o)}. 

Consider the English word set O = {“defoliates”, “defoliation”, 
“defoliating”, “defoliated”}, where edit distance is used. An MRQ 
example finds the words from O with edit distances to the query 
word “defoliate” no larger than 1, i.e., MRQ(“defoliate”, 1) = 
{“defoliates”, “defoliated”}. An MkNNQ example finds 2 words 
from O with the smallest edit distances to query word “defoliate”, 
i.e., MkNNQ(“defoliate”, 2) = {“defoliates”, “defoliated”}. 

An MkNNQ can be answered by an MRQ, if the distance from 
q to its kth nearest neighbor, denoted as NDk, is known. However, 
NDk is not known when a query is issued. Two typical methods 
exist for computing MkNNQ [6, 15]. One utilizes MRQ with 
incremental search radius. Specifically, an MRQ with a small 
search radius is performed first, and then the search radius is 
increased gradually until k nearest neighbors are found. Although 
this method tries to avoid visiting objects already verified, it still 
traverses the index multiple times, resulting in high query cost. 
The other sets the search radius to infinity and then verifies the 
objects in order, and the search radius is tighten using verification. 

2.2 Pivot-based Metric Index Structures 
Pivot-based methods store pre-computed distances from every 

object to a set of pivots and then use those distances to prune 
objects during search. Pivot-based methods can be clustered into 
three categories, namely, pivot-based tables, pivot-based trees, 
and pivot-based external indexes, according to the structures they 
use for storing the pre-computed distances, as listed in Table 1. 

Indexes in the first category utilize tables to store pre-computed 
distances. Approximating Eliminating Search Algorithm (AESA) 
[28] uses a table to preserve the distances from each object to 
other objects. However, it incurs a high storage cost O(n2), where 

n is the number of objects in the dataset. To save main memory 
storage for the table, Linear AESA (LAESA) [19] only keeps the 
distances from every object to selected pivots; Extreme Pivot 
Table (EPT) [24] selects a set of essential pivots covering the 
entire database; and Clustered Pivot Table (CPT) [20] clusters the 
pre-computed distances to further improve query efficiency.  

Indexes in the second category use tree structures to store pre-
computed distances. Burkhard-Keller Tree (BKT) [8] is designed 
for discrete distance functions. It chooses a pivot p as the root, 
and inserts the objects having distance i to the pivot p in its ith 
sub-tree. Unlike BKT that uses different pivots for every node, 
Fixed Queries Tree (FQT) [4] and Fixed Queries Array (FQA) [11] 
use the same pivot for nodes at the same tree level. Vantage-Point 
Tree (VPT) [29] is designed for continuous distance functions, 
and its generalization to m-ary trees is called MVPT [5].  

Indexes in the third category use an existing disk-based index 
to store pre-computed distances. The Omni-family [17] employs 
existing structures (e.g., the R-tree) to index pre-computed 
distances. The PM-tree [26] stores cut-regions defined by pivots 
in each node of an M-tree to accelerate search. The M-index [23] 
generalizes the iDistance [16] technique for general metric spaces, 
and uses the B+-tree to store pre-computed distances. The SPB-
tree [12] utilizes a space-filling curve to map pre-computed 
distances to integers, which are then indexed by the B+-tree. 

The index structures that belong to the first and the second 
categories refer to indexes stored in main memory, while index 
structures in the third category are disk-based. 

2.3 Pivot-based Filtering 
Using well-chosen pivots, the objects in a metric space can be 

mapped to data points in a vector space. Given a pivot set P = {p1, 
p2, …, pl}, a metric space (M, d) can be mapped to a vector space 
(Rl, L). Specifically, an object q in the metric space is 
represented as a point (q) = d(q, p1), d(q, p2), …, d(q, pl) in the 
vector space. Consider the example in Fig. 1, where the L2-norm 
is used. If P = {o1, o6}, the object set in the original metric space 
(as illustrated in Fig. 1(a)) can be mapped to the data points in a 
two-dimensional vector space (as depicted in Fig. 1(b)), in which 
the x-axis denotes d(oi, o1) and the y-axis represents d(oi, o6) for 
any object oi. As an example, object o5 is mapped to point 2, 4. 

Based on the pivot mapping, the pivot-based filtering [12] can 
be used to avoid unnecessary similarity computations. 

LEMMA 1 (PIVOT FILTERING). Given a set P of pivots, a query 
object q, and a search radius r, let SR(q) be a search region such 
that SR(q) = {v1, v2, …, vl | 1  i  l  vi  0  vi  [d(q, pi) – r, 
d(q, pi) + r]}. If (o) locates outside SR(q), then o  MRQ(q, r).  

PROOF. Assume, to the contrary, that there exists an object o ( 
MRQ(q, r)) which satisfies d(q, o) ≤ r, but (o)  SR(q) (i.e.,  pi 

Table 1. Pivot-based metric index structures 

Category Index Storage Distance Domain

Pivot-based 
tables 

AESA[28], LAESA [19] Main-memory Continuous 
EPT [24] Main-memory Continuous 
CPT [20] Main-memory Continuous 

Pivot-based 
trees 

BKT [8] Main-memory Discrete 
FQT [4], FQA [11] Main-memory Discrete 
VPT [29], MVPT [5] Main-memory Continuous 

Pivot-based 
external 
indexes 

PM-tree [26] Disk Continuous 
Omni-family [17] Disk Continuous 
M-index [23] Disk Continuous 
SPB-tree [12] Disk Continuous 
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 P, d(o, pi) > d(q, pi) + r or d(o, pi) < d(q, pi) – r). According to 
the triangle inequality, d(q, o)  |d(q, pi) – d(o, pi)| > r, which 
contradicts our assumption. The proof completes.                        

Since the pre-computed distances (o)s are stored together with 
object o, we can avoid distance computations involving object o if 
(o) SR(q), based on Lemma 1. Consider the example in Fig. 1(b) 
where the dotted rectangle represents the search region SR(q). 
Here, object o1 can be pruned as (o1)  SR(q). Also, Lemma 1 
can be utilized to prune an entire region (i.e., a minimum bounding 
box that contains multiple (o)) if it does not intersect SR(q).  

To obtain compact regions, two typical techniques, i.e., ball 
partitioning and generalized hyperplane partitioning, are used [30]. 

DEFINITION 3 (BALL PARTITIONING). Let Ri.p be the pivot for 
a partition region Ri, and let Ri.r be the radius of Ri. Then the set 
of objects o ( O) in the partition Ri, obtained via ball 
partitioning, is defined as {o | o  O  d(o, pi) ≤ Ri.r}. 

Based on the definition of ball partitioning, a range-pivot 
filtering technique [30] can be developed as follows. 

LEMMA 2 (RANGE-PIVOT FILTERING). Given a ball 
partitioning region Ri, a query object q, and a search radius r, if 
d(q, Ri.p) > Ri.r + r, then Ri can be pruned safely.  

PROOF. For any object o in Ri, if d(q, Ri.p) > Ri.r + r, then d(q, 
o) ≥ d(q, Ri.p) – d(o, Ri.p) >  Ri.r + r – d(o, Ri.p) due to the 
triangle inequality. As d(o, Ri.p) ≤ Ri.r according to Definition 3, 
then d(q, oj) > r. Hence, any object o in Ri cannot be in the final 
result set, and Ri can be pruned safely.                                         

Consider the ball partitioning example depicted in Fig. 2(a), 
where the red solid circle denotes the ball region Ri with Ri.p = o7, 
Ri.r = d(o7, o6), and Ri = {o6, o7, o8}. As d(q, Ri.p) > Ri.r + r, Ri can 
be pruned away according to Lemma 2. 

DEFINITION 4 (GENERALIZED HYPERPLANE PARTITIONING). 
Given a set P of pivots, let pi be the corresponding pivot for a 
partition region Ri. Then the set of objects o ( O) in the partition 
Ri, obtained by the generalized hyperplane partitioning, is defined 
as {o | o  O  pj  pi, d(o, pi) ≤ d(o, pj)}. 

Based on the definition of generalized hyperplane partitioning, 
a double-pivot filtering technique [30] is developed as follows. 

LEMMA 3 (DOUBLE-PIVOT FILTERING). Given two pivots pi and 
pj, a query object q, and a search radius r, if d(q, pi) – d(q, pj) > 2 
 r, then Ri can be pruned safely, as pi is the corresponding pivot 
for the partition region Ri. 

PROOF. For every o in Ri, according to the definition of Ri, d(o, 
pi) ≤  d(o, pj). Based on the triangle inequality, we have d(q, pi) ≤ 
d(o, pi) + d(q, o) and d(q, pj) ≥ d(o, pj) – d(q, o). Thus, we can 
derive that d(q, pi) – d(q, pj) ≤ d(o, pi) + d(q, o) – d(o, pj) + d(o, q) 

≤ 2  d(q, o) as d(o, pi) ≤  d(o, pj). If d(q, pi) – d(q, pj) > 2  r, 
then d(q, o) > r. Therefore, no object o ( Ri) can be a real answer 
object (i.e., o  MRQ(q, r)), and Ri can be pruned safely.            

Consider the generalized hyperplane partitioning example in Fig. 
2(b). Assume o2 and o6  are two pivots, and Ri = {o6, o7, o8, o9} is the 
hyperplane partition region corresponding to pivot o6. Since d(q, o6) 
– d(q, o2) > 2  r, Ri can be discarded safely according to Lemma 3. 

Lemmas 1 through 3 are pivot filtering techniques. Nonetheless, a 
distance computation is still needed for verifying each object that 
cannot be pruned. Hence, a validation technique [12] is proposed to 
save unnecessary verifications, as stated in Lemma 4 below. 

LEMMA 4 (PIVOT VALIDATION). Given a pivot set P, a query 
object q, and a search radius r, if there exists, for an object o in O, 
a pivot pi ( P) satisfying d(o, pi)  r – d(q, pi), then o is validated 
to be an actual answer object for MRQ(q, r). 

PROOF. Given a query object q, an object o, and a pivot pi, d(q, 
o)  d(o, pi) + d(q, pi) because of the triangle inequality. If d(o, pi) 
 r – d(q, pi), then d(q, o)  r – d(q, pi) + d(q, pi) = r. Thus, o is 
guaranteed to be contained in the final result set.                              

3. PIVOT-BASED TABLES 
We proceed to describe the indexes that belong to the category 

of pivot-based tables, and present corresponding MRQ and 
MkNNQ processing, together with some discussions. 

3.1 AESA and LAESA 
AESA uses a table to store the distances from every object to 

other objects. If |O| is the cardinality of a dataset O, the main-
memory storage cost of AESA is O(|O|2), which renders AESA a 
theoretical metric index. In order to reduce the storage cost of 
AESA, LAESA is proposed. It only stores the distances from each 
object to the pivots in a pivot set P, and thus, its storage cost is 
reduced to O(|P|  |O|), in which |P| is the number of pivots in P. 
LAESA utilizes three tables to store the pivots, the real data, and 
the pre-computed distances to the pivots. Fig. 3 shows the 
LAESA on the object set O depicted in Fig. 1, where P = {o1, o6}. 

MRQ processing. MRQ(q, r) processing using LAESA is 
simple. We compute the distances d(q, pi) between the query 
object q and the pivots pi ( P) and then verify the objects one by 
one. For every object o in O, if it cannot be pruned by Lemma 1, 
we compute d(q, o) and insert o into the result set Sr if d(q, o) ≤ r.  

MkNNQ processing. MkNNQ(q, k) processing based on 
LAESA follows the second approach introduced in Section 2.1. It 
initializes the search radius to infinity, and computes the distances 
from the query object q to the pivots in P. Subsequently, objects 
in the dataset O are evaluated one by one. For each object o, if it 
cannot be pruned by Lemma 1, we compute d(q, o) and update the 
search radius using the current kth nearest neighbor distance.  
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Discussion. Although LAESA significantly reduces the main-
memory storage cost of AESA, it still incurs high storage cost for 
a large dataset. In addition, since the objects are verified 
according to the order they are stored, MkNNQ processing using 
LAESA results in unnecessary distance computations. 

3.2 EPT 
Unlike LAESA, EPT selects different pivots for different 

objects in order to achieve better search performance. 
Extreme pivots (EP) consist of a set of pivot groups. Each 

group G contains m pivots pi (1≤ i ≤ m), according to which the 
whole dataset O is partitioned into m parts A(pi), such that 

 =  (i  j) and  = O. An object o belongs 
to A(pi) iff |d(o, pi) – pi| ≥ , where pi is the expected value of 
d(o, pi). Consider the example in Fig. 4, A(pi) = {o1, o2, o6, o7, o9}. 

It is hard to obtain , and hence, EPT tries to maximize . In 
other words, EPT randomly selects m pivots as a pivot group Gj, 
and sets the pivot pi in Gj to an object o having max{|d(o, pi) – pi| 
| pi  Gj}. The processing is repeated l times, i.e., l groups Gj (1 ≤ 
j ≤ l) are selected. Thus, each object has corresponding l pivots. 

Given the dataset shown in Fig. 1, and letting m = 2 and l = 2, 
two pivot groups are selected at random, i.e., G1 = {o1, o6} and G2 
= {o4, o9}. Fig. 5 depicts an example of EPT. The structure used 
by EPT is similar to that used by LAESA. However, since each 
object in EPT may have different pivots, EPT needs to store the id 
of the pivot with the pre-computed distance. 

Let X = d(pi, o) and Y = d(pi, q), then the query cost in terms of 
the number of distance computations can be estimated as: 

cost = m  l + |O|  (1 Pr(|X  Y| > r))l  

       ≥ m  l + |O|  (1 )l                                              (1) 

Using Equation (1), we can approximate the optimal m by 
fixing l (to control the main-memory storage size), where , , 

and r can be estimated. Nevertheless, EPT utilizes Z = d(o, q) to 
estimate Y = d(pi, q), which is inaccurate. In addition, it is 
difficult to estimate r value which is specified by the user.  

We proceed to improve the efficiency of EPT. Let D(q, o) = 
max{|d(q, pi) – d(o, pi)| | pi  P}, which is a lower bound of d(q, 
o). Hence, the query cost can be estimated as: 

cost = m  l + |O|  Pr(D(q, u)  r)                                         (2) 

To achieve the optimal query cost defined in Equation (2), D(q, 
u) should approach d(q, o) as much as possible. Motivated by this, 
we introduce a new pivot selection algorithm (PSA) that tries to 
maximize the random variable D(q, o)/d(q, o). 

Algorithm 1 presents the pseudo-code of PSA. First, it samples 
the object set O as set S, and invokes HF algorithm [17] to obtain 
outliers as candidate pivots CP (lines 1-2). Here, cp_scale is set to 
40 because this value yields enough outliers in our experiments. 
Then, for each object o in O, the algorithm incrementally selects 
effective pivots from CP (lines 4-7), and updates EPT* (line 8). 
Finally, EPT* is returned (line 9).  

MRQ and MkNNQ processing. Like LAESA, EPT and EPT* 
use tables to store pre-computed distances. The only difference is 
that EPT and EPT* utilize different pivots for different objects, 
while LAESA uses the same pivots. Hence, MRQ and MkNNQ 
processing on EPT or EPT* are the same as those on LAESA. 

Discussion. EPT* achieves a better search performance than 
EPT, contributed by the higher quality pivots selected by PSA. 
Nonetheless, it is costly to maximize . 

3.3 CPT 
LAESA and EPT store the distance table and the data file in 

main memory. However, when the size of the dataset exceeds the 
capacity of the main memory, we need to store the dataset on disk, 
and it is attractive to cluster the data to improve I/O efficiency.  

CPT uses an M-tree to cluster and store the objects on disk. Fig. 
6(b) shows an M-tree for the object set O = {o1, o2, …, o9} in Fig. 
1. An intermediate (i.e., a non-leaf) entry e in a root node (e.g., N0) 
or a non-leaf node (e.g., N1, N2) records: (i) a routing object e.RO 
that is a selected object in the subtree STe of e; (ii) a covering 
radius e.r that is the maximum distance between e.RO and the 
objects in STe; (iii) a parent distance e.PD that equals the distance 
from e to the routing object of its parent entry. Since a root entry 
e (e.g., e6) has no parent entry, e.PD = ∞; and (iv) an identifier 
e.ptr that points to the root node of STe. A leaf entry (i.e., a data 
object) o in a leaf node (e.g., N3, N4, N5, N6) records: (i) an object 
oj that stores the detailed information of o; (ii) an identifier oid 
that represents o’s identifier, and (iii) a parent distance o.PD that 
equals the distance from o to the routing object of o’s parent entry. 

An example of CPT is shown in Fig. 6. CPT consists of a pivot 
table, a distance table, and an M-tree. The distance table stores the 
pre-computed distances between objects and pivots in main 
memory. The M-tree stores the objects in the tree structure on 
disk (i.e., each M-tree entry contains one object). Note that, the 
distance table includes pointers to the leaf entries in the M-tree, to 
enable loading of the corresponding objects for verification.  

MRQ and MkNNQ processing. MRQ and MkNNQ 
processing using CPT are similar as the processing using LAESA. 

Algorithm 1 Pivot Selecting Algorithm (PSA) 
  Input: a set O of objects, the number l of pivots for each object 
  Output: EPT* 
  1: obtain a sample set S from O 
  2: CP = HF(O, cp_scale)   // get a candidate pivot set CP (|CP| = cp_scale)
  3: for each object o in O do 
  4:    P =   
  5:    while |P| < l do 
  6:       select a different pi from CP with maximal  
  7:       P = P ∪ {pi} 
  8:    update EPT* with (p1, d(o, p1)), (p2, d(o, p2)), …, (pl, d(o, pl)) 
  9: return EPT* 

d(o, pi)o1
µp

o2 o5 o6o9 o7o8

o4

o3
µp + aµp – a

A(pi) A(pi)

i ii  
Figure 4. Illustration of A(pi)  

Pivot table Object table Distance table 
P object (p1, d(oi, p1)) (p2, d(oi, p2))
o1 o1 (o1, 0) (o9, 5) 
o4 o2 (o1, ) (o4, 1) 
o6 o3 (o1, ) (o9, ) 
o9 o4 (o6, ) (o4, 0) 
 o5 (o1, 2) (o9, ) 
 o6 (o6, 0) (o4, ) 
 o7 (o6, ) (o4, ) 

 o8 (o1, ) (o9, 1) 
 o9 (o1, 5) (o9, 0)  

Figure 5. EPT  
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The only difference is that, when an object cannot be pruned by 
Lemma 1, the object must be read from disk. 

Discussion. CPT avoids loading the whole dataset into main 
memory to perform query processing, which incurs additional CPU 
cost. In addition, the distance table is stored in main memory, 
meaning that the applicability of CPT is only limited to the 
dataset whose distance table fits in main memory. 

4. PIVOT-BASED TREES 
We describe the indexes belonging to the category of pivot-

based trees along with the MRQ and MkNNQ processing.  

4.1 BKT 
BKT is a tree structure designed for discrete distance functions. 

It chooses a pivot as the root, and maintains the objects having the 
distance i to the pivot in its ith sub-tree. If a sub-tree contains more 
than one object, it selects a pivot at random and partitions the sub-
tree recursively. Fig. 7 gives an example BKT, constructed based 
on the objects from Fig. 1(a) and the discrete distance function 
L-norm. The leaf nodes store the actual objects, while the non-
leaf nodes store the pivots used to partition the sub-trees. To 
improve the efficiency of the pivot-based trees, we only store the 
identifiers in the tree, and store the objects in a separate table. 

MRQ processing. To answer MRQ(q, r), the nodes in the BKT 
are traversed in depth-first fashion. When a non-leaf node is 
accessed, we identify its qualifying child entries using Lemma 1; 
and when a leaf node is accessed, we insert the corresponding 
object into the result set if it is not pruned by Lemma 1. 

MkNNQ processing. To answer MkNNQ(q, k), the nodes in 
the BKT are traversed in best-first manner, i.e., in ascending order 
of their minimum distances to the query object q, where Lemma 1 
is used to filter unqualified nodes. Here, we first set the search 
radius to infinity and then update it using the visited objects. 

Discussion. BKT is an unbalanced tree. To avoid empty sub-
trees for large distance domains, every sub-tree covers the same 
range of distance values, which are stored together with each sub-
tree. BKT randomly selects the pivots for sub-trees. If BKT uses 
the same pivots as other pivot-based metric indexes, it produces 
FQT as discussed below. 

4.2 FQT 
Unlike BKT, FQT utilizes the same pivot at the same level. Fig. 

8 shows an example of FQT, where o1 and o6 are selected as the 
pivots for the first level and the second level, respectively. 

MRQ and MkNNQ processing. MRQ and MkNNQ 
processing using FQT are the same as that for BKT.  

Discussion. FQT is also an unbalanced tree. In order to utilize 
the same set P of pivots as other pivot-based metric indexes, the 
tree-level is set to the number of pivots, and pi  P is set as the 
pivot for the ith level. With well-chosen pivots, the performance of 
FQT is expected to be better than that of BKT.  

4.3 MVPT 
Unlike BKT and FQT that only support discrete distance 

functions, VPT and its variant MVPT are able to support 
continuous distance functions. VPT chooses a pivot p as the root, 
and selects a medium value v so that the objects o with d(o, p) ≤ v 
are put in the left sub-tree, while the remaining objects are put in 
the right sub-tree. If the number of objects in a sub-tree exceeds a 
threshold, the sub-tree is further partitioned. Fig. 9(a) depicts an 
example of VPT, where L-norm is used. Here, in order to be able 
to compare the efficiency of different indexes using the same set 
of pivots, nodes of VPT at the same level share the same pivot. 

VPT can be generalized to m-ary trees, yielding MVPT. 
Specifically, each time, MVPT selects m  1 medium values v1, 
v2, …, vm-1 instead of one, such that the objects o with d(o, p) ≤ v1 
are put in the first sub-tree, the objects o with v1 < d(o, p) ≤ v2 are 
put in the second sub-tree, etc. Fig. 9(b) gives an example of 
MVPT, where L-norm is used and m is set to 3. 

MRQ and MkNNQ processing. MRQ and MkNNQ 
processing using VPT are similar to the processing using BKT. 

Discussion. Unlike BKT and FQT, MVPT is a balanced tree. 
As m grows, the pruning ability first increases and then drops. 
This occurs because, with larger m values, more compact sub-
trees are obtained at every tree level. Nevertheless, larger m 
values also result in lower MVPT tree levels, indicating that fewer 
pivots are available for pruning. In this paper, we set m as 5. In 
addition, it only needs to store medium values to partition the sub-
trees, which incurs lower storage cost than BKT and FQT. 

5. PIVOT-BASED EXTERNAL INDEXES 
We proceed to detail the indexes belonging to the category of 

pivot-based external indexes, present corresponding MRQ and 
MkNNQ processing, and give some discussions. 

5.1 PM-Tree 
The PM-tree combines the pivot mapping and the M-tree, 

where the M-tree is used to cluster the objects, and the pivot 
mapping is utilized to avoid unnecessary distance computations. 
Hence, different from the M-tree introduced in Section 3.3, each 
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leaf entry of the PM-tree stores the mapped vector (i.e., the pre-
computed distances to the pivots) with the real data object. In 
each intermediate entry, the PM-tree stores a minimum bounding 
box (MBB) that bounds all the mapped vectors in its child leaf 
entries. Specifically, given a pivot set P = {pi| 1 ≤ i ≤ n}, MBB(e) 
= {[ai, bi] | 1 ≤ i ≤ n}, where ai = min{d(o, pi) | o  e}, and bi = 
max{d(o, pi) | o  e}. Fig. 10 depicts an example of PM-tree, with 
the data distribution shown in Fig. 6(c). 

MRQ processing. To answer MRQ(q, r), the entries in the 
PM-tree are visited in depth-first fashion. When an intermediate 
entry is accessed, we verify its child entries using Lemmas 1 and 
2; and when a leaf entry is accessed, we insert the corresponding 
object into the result set if it is not discarded by Lemma 1. 

MkNNQ processing. To answer MkNNQ(q, k), the entries in 
the PM-tree are traversed in best-first manner, where Lemmas 1 
and 2 are employed to eliminate unqualified entries. We first set 
the search radius to infinity, and then, update the search radius 
during the search using the visited objects. 

Discussion. The PM-tree stores the data objects in its entries 
instead of in a separate file, which limits its usability. In particular, 
for complex objects, the PM-tree needs a large page/node size. 

5.2 Omni-Family 
Unlike the PM-tree, Omni-family stores objects in a separate 

random access file (RAF), to avoid the impact of the object size. 
It also utilizes the sequential file, the B+-tree, or the R-tree, to 
index the vectors after the pivot mapping. A sequential file stores 
the pre-computed distances of objects in order of their identifiers; 
a B+-tree indexes the pre-computed distances for each pivot; and 
an R-tree indexes the pre-computed distances for all the pivots 
together. As verified in [17], the OmniR-tree performs the best in 
most cases. Fig. 11 depicts an example of OmniR-tree, including 
a pivot table that stores the pivots, an R-tree that indexes the pre-
computed distances, and an RAF that stores the objects. The MBB 
of each R-tree node is shown in Fig. 10(b). 

MRQ processing. To answer MRQ(q, r), the entries in the R-
tree are visited in depth-first fashion. When an intermediate entry 
is visited, we prune its child entries using Lemma 1; and when a 
leaf entry is accessed, we compute the actual distance of the 
corresponding object and insert it into the result set if not pruned. 

MkNNQ processing. To answer MkNNQ(q, k), the entries in 
the R-tree are visited in best-first manner, i.e., in ascending order 
of their minimum distances to the query object q, where Lemma 1 
is used to eliminate unqualified entries. Here, we set the search 
radius to infinity and then update it using the visited objects. 

Discussion. The Omni-family contains the Omni-sequential-
file, the OmniB+-tree, and the OmniR-tree. Omni-sequential-file 
can be regarded as disk-based LAESA, which incurs substantial 
I/O during search as the data is not clustered. The OmniB+-tree 
needs one B+-tree for every pivot, resulting in redundant storage 
and I/O during search. The OmniR-tree utilizes MBBs to cluster 
the data, and uses the pivot filtering to improve query efficiency. 

5.3 M-Index 
Unlike the PM-tree that utilizes the ball partitioning technique, 

the M-index uses hyperplane partitioning (as discussed in Section 
2.3) to cluster the data. Given a set P of pivots, each object o is 
mapped to the real number key(o) = d(pi, o) + (i – 1)  d+, where 
pi ( P) is the pivot nearest to o and d+ is the maximum distance 
in a certain metric space. Considering the example in Fig. 12, if P 
= {o1, o6}, we obtain two clusters C1 and C2. M-index consists of 
(i) a pivot table, (ii) a cluster tree that maintains the information 
of the clusters (i.e., the minimum and maximum mapped digits 
minkey and maxkey in each cluster), (iii) a B+-tree that indexes the 
mapped real numbers, and (iv) an RAF that stores the data objects 
with all the pre-computed distances. If more pivots are used, the 
cluster-tree can be extended to a dynamic tree. Specifically, if the 
number of the objects in a certain cluster exceeds a threshold 
maxnum (set to 1,600 in this paper), it can be further partitioned 
using the left pivots, as shown in Fig. 12(d). 

MRQ processing. To answer MRQ(q, r), the entries in the 
cluster tree are traversed in depth-first fashion. When an 
intermediate entry is visited, we evaluate its qualifying child 
entries using Lemma 3; and when a leaf entry is accessed, we 
obtain the objects that belong to this cluster from B+-tree, and 
filter out the unqualified objects according to Lemma 1. 

MkNNQ processing. To answer MkNNQ(q, k), a range query 
with a small search radius is performed first, and then, the search 
radius is increased gradually until k nearest objects are found. 
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We add the MBB information for each cluster to the M-index, 
obtaining an M-index*. Based on the MBBs, the pivot filtering 
technique (i.e., Lemma 1) can be applied to filter unqualified 
clusters, and MkNNQ can traverse the cluster-tree in best-first 
manner. In addition, the data validation technique (i.e., Lemma 4) 
can also be integrated to avoid unnecessary verifications. 

Discussion. By integrating the data validation and the MBB 
information, the efficiency of MRQ and MkNNQ is improved. 
Since the M-index* can use Lemma 3 based on the hyperplane 
partitioning technique for pruning while others cannot, it can 
achieve a better performance in terms of distance computations. 

5.4 SPB-Tree 
To reduce the storage cost, the SPB-tree utilizes a space-filling 

curve (SFC) to map the pre-computed distances into SFC values 
(i.e., integers) while (to some extent) maintaining spatial 
proximity. SPB-tree consists of (i) a pivot table, (ii) a B+-tree 
storing SFC values, and (iii) an RAF that stores data objects. Each 
non-leaf B+-tree entry e stores SFC values min and max for a1, 
a2,…, an and b1, b2,…, bn that represent MBB(e) = {[ai, bi] | 1 ≤ 
i ≤ n}. Fig. 13 depicts an example of SPB-tree, where Fig. 13(b) 
illustrates the Hilbert mapping.  

MRQ processing. To answer MRQ(q, r), the entries in the B+-
tree are traversed in depth-first fashion. When an intermediate 
entry is visited, we identify its qualifying child entries using 
Lemma 1; and when a leaf entry is accessed, we utilize Lemma 4 
or compute the actual distance to validate the object. 

MkNNQ processing. To answer MkNNQ(q, k), the entries in 
the B+-tree are traversed in best-first manner, i.e., in ascending 
order of their minimum distances to the query object q, where 
Lemma 1 is used to filter unqualified entries. Here, we set the 
search radius to infinity and update it using the visited objects. 

Discussion. We employ the SFC mapping to reduce the storage 
cost and meanwhile keep spatial proximity, resulting in low I/O 
and index storage costs. However, for continuous distance functions, 
the continuous distances are approximated as the discrete ones to 
perform the SFC mapping, which decreases the pruning power. 

6. EXPERIMENTAL STUDY  
We proceed to report an empirical study on the performance of 

the pivot-based metric indexes via experiments. Specifically, we 
consider the index construction cost, study the efficiency of EPT* 
and the M-index*, and evaluate the search performance. 

6.1 Experimental Setup 
We implemented all the indexes and associated similarity 

search algorithms in C++. Further, all pivot-based metric indexes 
utilize the same set of pivots selected by the state-of-the-art 
algorithm [12]. This does, however, not apply to EPT, EPT*, and 

BKT. As discussed in Sections 3.2 and 4.1, EPT and EPT* utilize 
different pivots for different objects, while BKT randomly selects 
pivots in its sub-trees. All experiments were conducted on an Intel 
Xeon E5-2620 v3 2.4GHz PC with 8GB memory. 

We employ three real datasets, namely, LA, Words, and Color. 
LA1 consists of geographical locations in Los Angeles. Words2 
contains proper nouns, acronyms, and compound words taken 
from the Moby project. Color 3  consists of standard MPEG-7 
image features extracted from Flickr. A synthetic dataset is also 
created. To study the performance of BKT and FQT that are 
designed for discrete distance functions, the values in Synthetic 
are generated as integers. Table 2 summarizes the statistics of the 
datasets, including the cardinality, the dimensionality (Dim.), the 
intrinsic dimensionality (Int. Dim.), and the distance measure (Dis. 
Measure). To capture the distance distribution of the dataset, the 
Int. Dim. is calculated as 2/22, where  and 2 are the mean and 
variance of the pairwise distances in the dataset. 

We investigate the similarity query performance when varying 
the parameters listed in Table 3. The value of the radius r denotes 
the percentage of objects in the dataset that are result objects of a 
MRQ. In each experiment, one parameter is varied, and the others 
are fixed at their default values. The main performance metrics 
contain the number of page accesses (PA), the number of distance 
computations (compdists), and the CPU time. Each measurement 
we report is an average over 100 random queries.  

To maintain consistency with the operating system, the indexes 
use a fixed page size of 4KB as default. CPT and PM-tree store 
directly the data in the index structures, and hence, a larger page 
size is needed for a larger data size to ensure a proper tree height; 
while other indexes separate the data from the index structures, 
meaning that the tree height is independent of the data size. Thus, 
a page size of 40KB is used for CPT and PM-tree on Color and 
Synthetic datasets. Here, a 128KB LRU cache is also used in our 
experiments to improve the MkNNQ efficiency.  

6.2 Construction Cost 
Table 4 details the construction costs and storage sizes for the 

indexes using real datasets, where I denotes a main-memory 
storage cost, and D indicates a disk storage cost. There are no 
values for BKT and FQT on LA and Color, as BKT and FQT 
assume discrete distance functions; and there are also no PA 
values for LAESA, EPT, EPT*, BKT, FQT, and MVPT, since 
they are in-memory indexes. To summarize our findings, Table 5 
provides the ranking for all pivot-based metric indexes. Here, the 

                                                                 
1 LA is available at http://www.dbs.informatik.uni-muenchen.de/~seidl.  
2 Words is available at http://icon.shef.ac.uk/Moby/.  
3  Color is available at http://cophir.isti.cnr.it/.  
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Table 2. Datasets used in the experiments  

Dataset Cardinality Dim. Int. Dim. Dis. Measure
LA 1,073,727 2 5.4 L2-norm 
Words 611,756 1~34 1.2 Edit distance 
Color 1,000,000 282 6.5 L1-norm 
Synthetic 1,000,000 20 6.6 L-norm 

 
Table 3. Parameter settings 

Parameter Value Default 
the number |P| of pivots  1, 3, 5, 7, 9 5 
r 4%, 8%, 16%, 32%, 64% 16% 
k 5, 10, 20, 50, 100 20 
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M-index and the M-index* are listed together as M-index(*) 
because they have similar construction costs. 

I/O cost. The SPB-tree performs the best in I/O cost, followed 
by the M-index(*), while the PM-tree and CPT perform the worst. 
The SPB-tree and the M-index(*) achieve high I/O efficiency via 
the B+-tree, and the SPB-tree uses SFC to further reduce I/O cost. 

Compdists. LAESA, BKT, FQT, MVPT, the OmniR-tree, the 
M-index, and the SPB-tree achieve the same performance in terms 
of compdists. This is because compdists for these indexes depend 
on the number of pivots and the number of data objects. However, 
the PM-tree and CPT incur additional distance computations for 
constructing the M-tree to store actual data, while EPT and EPT* 
need more compdists to select pivots for every data. 

CPU time. First, LAESA, BKT, FQT, and MVPT perform the 
best in terms of CPU time, since they operate in main memory. 
Although EPT and EPT* are in-memory indexes, EPT ranks 3rd 
and EPT* performs the worst in terms of CPU time. Because they 
need to select different pivots for different objects while selecting 
pivots for EPT* is costly as analyzed in Section 3.2. Second, the 
SPB-tree and the M-index(*) can achieve high CPU efficiency 
(i.e., ranking 2nd) because of the B+-tree used, while the OmniR-
tree, CPT, and the PM-tree need more CPU time (i.e., ranking 4th) 
as they use an R-tree or an M-tree instead of a B+-tree. 

Storage. The storage cost for a pivot-based metric index 
includes two parts, i.e., the storage for the pre-computed distances 
and the storage needed for the objects themselves. First, the SPB-
tree performs the best, since it utilizes an SFC to reduce the 
storage cost of the pre-computed distances. However, on the 
Color dataset, the storage cost of the SPB-tree is relatively larger. 
The reason is that, each object in Color needs 1,136 bytes, and 
that the size of the pages used to store the real objects is 4KB, 
thus incurring a waste of storage in every page. Second, the 
storage costs of the pivot-based trees are relatively smaller, 
because they only store the distance values used to partition the 
sub-tree instead of all the pre-computed distances. Third, the 
storage costs of LAESA and EPT(*) are smaller than those of the 
OmniR-tree and the M-index, since the latter two require 

additional storage to index the pre-computed distances. In 
addition, the storage cost of EPT(*) exceeds that of LAESA, as 
EPT(*) selects different pivots for every object and hence needs 
additional storage to indicate the corresponding pivot for each 
object. Finally, the storage costs of CPT and the PM-tree are the 
largest. Because they store the real objects in the tree structures. 

In conclusion, the pivot-based trees (i.e., BKT, FQT, MVPT), 
LAESA and the SPB-tree achieve the highest construction and 
storage efficiency, followed by the M-index, EPT and the OmniR-
tree, while EPT*, CPT and the PM-tree perform the worst.  

Discussion. Index construction can be accelerated using 
parallelization as follows: (i) the pre-computed distances to each 
pivot can be computed in parallel; (ii) the pre-computed distances 
for each object can be computed in parallel; and (iii) as the data 
can be partitioned into disjoint parts, multiple index structures 
(e.g., multiple BKTs) instead of one can be constructed in parallel.  

6.3 Update Cost 
Table 6 details the update costs when using real datasets. Here, 

an update operation first deletes a specific data object and then 
inserts it back. First, we observe that BKT, FQT, and MVPT can 
achieve high update efficiency. This is because the positions for 
inserting/deleting can be found quickly using the tree structures 

Table 6. Update Costs 

 
LA Words  Color 

PA Comp. Time(s) PA Comp. Time(s) PA Comp. Time(s)
LAESA  5 0.15  5 0.14  5 2.29
EPT  15M 2.5  3.3M 2.1777  7.5M 11.7
EPT*  5.4K 0.3999  3.1K 0.2612  5K 2.94
CPT 15.2 78.3 0.6559 1052 93 0.1772 16.4 80.9 0.5698
BKT     9.6 0.0001   
FQT     10 0.0004   
MVPT  10 0.0001  10 0.0001  10 0.0001
PM-tree 32 48 0.0023 2004 4.1K 0.035 119 227 0.1033
OmniR-tree 16.1 10 0.0042 52.9 10 0.0029 15.9 10 0.0045
M-index(*) 13 10 0.0014 20.5 10 0.0016 11.8 10 0.0027
SPB-tree 12.9 10 0.0003 12.6 10 0.0014 12.5 10 0.0009

Table 4. Construction costs and storage sizes 

 LA Words  Color  
 PA Compdists Time (s) Storage (KB) PA Compdists Time (s) Storage (KB) PA Compdists Time(s) Storage (KB) 

LAESA  5.4M 2 50,331 (I)  3M 3 44,209 (I)  5M 80 1,140,625 (I)
EPT  0.54G 87 71,302 (I)  0.12G 82 56,157 (I)  0.24G 426 1,160,156 (I)
EPT*  5.8G 6,375 71,302 (I)  1.9G 2,545 56,157 (I)  5G 11,742 1,160,156 (I)

CPT 12M 92M 263 
54,525 (I) 
73,836 (D) 

1.7M 66M 113 
31,066 (I)
96,880 (D) 

12.6M 76M 390 
50,782 (I) 

2,035,599 (D)
BKT      3M 1.6 22,896 (I)    
FQT      3M 1.3 22,770 (I)    
MVPT  5.4M 2.7 21,054 (I)  3M 1.8 22,729 (I)  5M 117 1,105,552 (D)
PM-tree 4.3M 33M 167 240,424 (D) 4.6M 60M 230 213,552 (D) 4.8M 94M 609 2,605,440 (D)
OmniR-tree 0.2M 5.4M 291 90,956 (D) 1.4M 3M 68 57,104 (D) 3.7M 5M 495 1,400,752 (D)
M-index(*) 0.09M 5.4M 15 76,775 (D) 0.05M 3M 10 45,140 (D) 0.42M 5M 101 1,389,174 (D)
SPB-tree 0.03M 5.4M 8 33,844 (D) 0.02M 3M 7 18,228 (D) 0.36M 5M 95 1,349,168 (D)

Table 5. Ranking according to construction and storage costs 

 1st 2nd 3rd 4th 5th 
PA SPB-tree M-index(*) OmniR-tree PM-tree CPT 

Compdists 
{LAESA, BKT, FQT, MVPT,  
OmniR-tree, M-index(*), SPB-tree} 

PM-tree CPT-tree EPT EPT* 

Time {LAESA, BKT, FQT, MVPT } {SPB-tree, M-index(*)} EPT {CPT, PM-tree, OmniR-tree} EPT* 
Storage {BKT, FQT, MVPT, SPB-tree} LAESA EPT(*) {M-index(*), OmniR-tree} {CPT-tree, PM-tree}
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stored in main-memory. Second, the update costs of the PM-tree 
and CPT are relatively larger since they store the data objects in 
the trees. Third, the CPU time of LEASA, EPT*, and CPT is 
relatively high as they employ sequential scans for deletions. 
Finally, the update costs of EPT and EPT* are high, because they 
need additional cost when selecting pivots for each data to be 
inserted. Note that, EPT* has better update efficiency than EPT, 
because EPT incurs high estimation costs when selecting pivots. 

6.4 Efficiency of EPT* and M-Index* 
We proceed to consider the efficiency of EPT*, as compared 

against EPT. In doing so, we only employ MkNNQs to observe 
the effect of parameters on the indexes, due to the space limitation 
and because MRQs yield similar findings. Fig. 14 depicts the 
results, where PA is omitted, since EPT and EPT* are in-memory 
indexes. As observed, EPT* performs better than EPT. This is 
because the quality of the pivots selected by EPT* is higher. Note 
that, although the construction cost of EPT* (as shown in Table 4) 
is much higher in order to select pivots with higher quality, it can 
be built in advance and has better update efficiency. 

Fig. 15 plots the efficiency of M-index* compared with M-
index. As observed, the M-index* performs better than the M-
index. The reason is that M-index are visited multiple times 
during search, resulting in redundant PA and CPU costs, while M-
index* is visited only once. However, the number of unnecessary 
distance computations depends on the distance distribution of the 
dataset, which makes it possible that the compdists of M-index* 

and M-index are similar on Color and Synthetic. Second, the CPU 
time and PA of the M-index* are slightly larger than those of M-
index for smaller k values on LA. Because, for smaller k values on 
LA, the M-index based MkNNQ processing algorithm needs fewer 
MRQs to find the results, incurring little redundant cost. 

6.5 Similarity Search Performance 
We compare the efficiency of the pivot-based metric indexes 

under various parameters as listed in Table 3. 

6.5.1 Effect of R 
We first compare the performance of the pivot-based metric 

indexes by using MRQ. Fig. 16 depicts the query costs including 
compdists, PA, and CPU time for varying R values. As expected, 
the query costs increase with the growth of R due to a larger 
search space. However, on LA, the query costs of the SPB-tree 
and the M-index* drop at the value of 64% due to the stronger 
validation capabilities achieved by larger R values. 

Compdists. We observe that (i) the M-index* and the SPB-tree 
achieve high search performance in terms of compdists on LA and 
Words, because they utilize the pivot validation technique to 
avoid unnecessary distance computations; (ii) the PM-tree 
achieves high computational efficiency on Synthetic due to its 
range-pivot filtering, i.e., the routing objects of the PM-tree can 
be regarded as an additional pivot used for pruning; and (iii) 
EPT* has the smallest compdists on Color, as it selects different 
pivots for each object to achieve high pruning power. In addition, 
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Figure 14. Comparison between EPT and EPT* 
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Figure 15. Comparison between M-index and M-index* 

1066



the compdists of the pivot-based trees (i.e., BKT, FQT, and 
MVPT) are slightly higher. This is because only some of the pre-
computed distances used for the pivot filtering are stored. In 
addition, MVPT is slightly better than BKT and FQT in most 
cases, since BKT and FQT are unbalanced trees. Finally, the 
remaining indexes share similar compdists, as their pruning power 
relies on the pivot filtering based on the same set of pivots. 

I/O cost. As observed, the SPB-tree has the lowest I/O cost, 
followed by the OmniR-tree and the M-index*, while CPT and 
the PM-tree perform the worst. The reasons are that, (i) the SPB-
tree uses an SFC to compact the pre-computed distances while 
preserve the similarity proximity, incurring lower I/O cost; (ii) the 
OmniR-tree and M-index* store all the pre-computed distances, 
resulting in larger I/O costs; and (iii) CPT and the PM-tree store 
the real objects directly in the tree structure instead of in a 
separate file, leading to low I/O efficiency. The I/O cost of the M-
index* is high on LA, because MBBs do not cluster well on LA 
with the i-Distance technique. 

CPU time. The first observation is that, the CPU costs of the 
in-memory indexes (viz., BKT, FQT, MVPT, LAESA, and EPT*) 
are relatively lower than those of the disk-based indexes (viz. 
CPT, the SPB-tree, the M-index*, the OmniR-tree, and the PM-
tree). The reason is that the disk-based indexes need additional 
work to transform data read from disk into the formats required 
for further processing. In addition, the CPU cost of CPT on low 
dimensional datasets (e.g., LA and Words) is better than that on 
high dimensional datasets (e.g., Color and Synthetic) due to the 
additional CPU time needed to read objects from disk. It is 
observed that, the in-memory pivot-based trees (i.e., BKT, FQT, 

and MVPT) have lower CPU costs than the in-memory pivot-
based tables (i.e., LAESA and EPT*), especially on LA and 
Words. This is because LAESA and EPT* need to scan the whole 
pivot table of the dataset, while the pivot-based trees can prune 
sub-trees via the pivot-based filtering.  

6.5.2 Effect of k 
Then, we compare the performance of indexes by using 

MkNNQs. Fig. 17 shows the query costs. As expected, query 
costs increase with the growth of k due to larger search space. 

Compdists. As discussed in Section 6.5.1, (i) the PM-tree and 
EPT* achieve the highest computational efficiency on Color and 
Words, and (ii) the compdists of the pivot-based trees (viz., BKT, 
FQT, and MVPT) are the largest. The second observation is that 
the compdists of the SPB-tree is higher than that of the M-index* 
and the OmniR-tree on LA and Color. This is because, for 
continuous distance functions, the SPB-tree uses approximated 
discrete distances in order to perform its SFC mapping, resulting 
in less effective pivot-based filtering. In addition, the compdists of 
LAESA and CPT are relatively larger, because their MkNNQ 
algorithms traverse the objects in the dataset in the same order as 
they appear, which is suboptimal in terms of compdists. 

I/O cost. First, we see that the SPB-tree achieves the highest 
I/O efficiency. Second, the PA of the M-index* is the largest on 
LA and Synthetic, due to the unbalanced partitions caused by the 
data distribution. Finally, the PA of the PM-tree is the largest on 
Color and Words datasets. As the PM-tree stores objects directly 
in its tree structure instead of in a separate file, the high 
dimensional and variable sized data incurs low page utilization. 

  EPT*  CPT   BKT   FQT  MVPT  SPB-tree   M-index*   PM-tree  OmniR-tree  
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CPU time. As expected, the in-memory indexes have lower 
CPU costs than the disk-based indexes. Further, the CPU costs of 
EPT* and LAESA generally exceed those of the pivot-based trees. 
Because MkNNQ based on EPT* and LAESA verifies the objects 
in the order as they appear, incurring many unnecessary 
verifications. In addition, although the computational cost of the 
SPB-tree is slightly higher than that of the M-index* when using 
continuous distance functions, the CPU time of the M-index* is 
larger, due to the additional CPU cost caused by larger PA. 

6.5.3 Effect of |P| 
Next, we explore the influence of |P| on MkNNQ performance 

of the indexes. Fig. 18 depicts the query costs using LA and 
Synthetic. Values for the M-index* are absent when |P| = 1, as 
more than one pivot is needed for the generalized hyperplane 
partitioning. First, the compdists drops as |P| grows, as more 
pivots yields better pivot filtering. Second, the PA and CPU time 
first drop and then stay stable or increase with |P|. The reason is 
that, (i) the number of verified objects drops as compdists 
decreases, incurring smaller I/O and CPU costs; and that (ii) the 
storage size increases due to more pre-computed distances being 
stored, resulting in more I/O and higher CPU costs. 

7. CONCLUSIONS 
We classify pivot-based metric indexes into three categories, 

i.e., pivot-based tables, pivot-based trees, and pivot-based 
external indexes, and we study their performance empirically on 
an equal footing. The findings and insights, summarized below, 
enable selecting indexes that best support the intended uses: 

 Although the storage sizes of the indexes in our experiments 
can be loaded into main-memory, the pivot-based external 
indexes can achieve better scalability than the pivot-based 
tables and trees for the cases when the available main 
memory is small or the dataset is extremely large.  

 For the pivot-based tables, (i) CPT tries to improve LAESA 
by utilizing an M-tree to store the data, in order to handle 
the case when the dataset does not fit into main memory, 
resulting in high construction, update, and query costs; and 
(ii) EPT* tries to improve EPT by trading index 
construction efficiency for query efficiency. Although the 
construction cost of EPT* is high, it can be built in advance 
and has fewer distance computations for a query. As the 
computational cost is the dominant cost in the case of 
complex distance functions, EPT* is a good candidate for 
small datasets with complex distance functions. 

 The pivot-based trees can achieve high construction and 
update efficiency. Although they incur more distance 
computations during search, they have smaller CPU time 
due to the tree structures and the absence of I/O cost. In 
addition, MVPT performs the best in this category, because 
it is a balanced tree. Thus, for small datasets with simple 
distance computation functions, MVPT is a good candidate. 

 For pivot-based external indexes, (i) the PM-tree stores the 
data and pre-computed distances together, incurring relatively 
large construction, update, and query costs; (ii) the SPB-tree 
and the M-index* achieve high construction, update, and 
query efficiency by using a B+-tree with MBB information; 
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and (iii) the SPB-tree outperforms the OmniR-tree, as it 
utilizes an SFC to reduce the storage cost and meanwhile 
preserving similarity locality. Hence, for large datasets, the 
SPB-tree and the M-index* are good candidates. 

The study suggests that extension of EPT(*) to a disk-based 
index with a low construction cost is a promising direction. Also, 
comparisons between pivot-based metric indexes and compact 
partitioning metric indexes are an interesting research direction. 
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Figure 18. MkNNQ performance vs. |P|                   
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