
Pivot-based Metric Indexing
Lu Chen

†,

‡ Yunjun Gao

†,
 * Baihua Zheng

‡ Christian S. Jensen
§ Hanyu Yang

† Keyu Yang
†

†
 College of Computer Science, Zhejiang University, Hangzhou, China

* The Key Lab of Big Data Intelligent Computing of Zhejiang Province, Zhejiang University, Hangzhou, China
‡

 School of Information Systems, Singapore Management University, Singapore
§

 Department of Computer Science, Aalborg University, Denmark
†

 {luchen, gaoyj, hyy_zju, kyyang}@zju.edu.cn ‡ bhzheng@smu.edu.sg § csj@cs.aau.dk

ABSTRACT
The general notion of a metric space encompasses a diverse range
of data types and accompanying similarity measures. Hence,
metric search plays an important role in a wide range of settings,
including multimedia retrieval, data mining, and data integration.
With the aim of accelerating metric search, a collection of pivot-
based indexing techniques for metric data has been proposed,
which reduces the number of potentially expensive similarity
comparisons by exploiting the triangle inequality for pruning and
validation. However, no comprehensive empirical study of those
techniques exists. Existing studies each offers only a narrower
coverage, and they use different pivot selection strategies that
affect performance substantially and thus render cross-study
comparisons difficult or impossible. We offer a survey of existing
pivot-based indexing techniques, and report a comprehensive
empirical comparison of their construction costs, update
efficiency, storage sizes, and similarity search performance. As
part of the study, we provide modifications for two existing
indexing techniques to make them more competitive. The findings
and insights obtained from the study reveal different strengths and
weaknesses of different indexing techniques, and offer guidance
on selecting an appropriate indexing technique for a given setting.

1. INTRODUCTION
Search is a fundamental functionality in computer science, with

similarity search being a prominent type of queries. Given a query
object, similarity search finds similar objects according to a
definition of similarity. This kind of functionality is useful in
many settings. For instance, in pattern recognition, similarity
queries can be used to classify a new object according to the
labels of already classified nearest neighbors; in multimedia
retrieval, similarity queries can be utilized to identify images
similar to a specified image; and in recommender systems,
similarity queries can be employed to generate personalized
recommendations based on users’ preferences.

Considering the wealth of data types (e.g., images and strings),
a generic model is desirable that is capable of accommodating a
wide spectrum of data types rather than some specific data types.
In addition, the distance metric used for comparing the similarity
of objects goes beyond the Euclidean distance (i.e., the L2-norm)
and includes metrics such as the Lp-norm distance for images and

the edit distance for strings. Hence, we consider metric spaces to
accommodate a wide of data types and similarity notations.

A number of indexes aim to accelerate search in metric spaces.
As an example, environment for developing KDD-applications
supported by index-structures, termed as ELKI, is an open source
data mining software that uses indexing (e.g., M-tree [13]) to
improve efficiency [25]. Existing indexes can be classified into
two categories, i.e., compact partitioning techniques [1, 3, 7, 10,
13, 14, 18, 21, 22, 27] and pivot-based techniques [5, 8, 11, 12, 17,
19, 20, 23, 24, 26]. The former divides data space into compact
regions and tries to eliminate entire regions during search. The
latter employs search relying on pre-computed distances between
data objects and pivots. Given two objects q and o, the distance
d(q, o) cannot be smaller than |d(q, p)  d(o, p)| for any pivot p,
due to the triangle inequality. Thus, it may be possible to prune an
object o for q using the lower bound value |d(q, p)  d(o, p)| rather
than computing d(q, o), which enables pivot-based methods to
outperform compact partitioning methods in terms of the number
of distance computations [2], one of the key performance criteria
in metric spaces. Hence, we focus on the pivot-based techniques.

We aim to address limitations of existing empirical studies.
First, the use of different pivot selection strategies renders the
comparison of pivot-based indexing techniques challenging. For
example, the OmniR-tree [17] utilizes the hull of foci algorithm
(HF) to select outliers as pivots, while the spacing filing curve
and pivot based B+-tree (SPB-tree) [12] uses the HF based
incremental pivot selection algorithm (HFI) to select pivots that
maximize the similarity between the original metric space and the
vector space (achieved by using the pivots). Since the
performance of similarity query processing depends highly on the
pivots used [9], we compare pivot-based indexes using the same
pivot selection strategy. Second, while studies [11, 30] survey
metric indexing techniques pre-2006, the last dozen years have
seen many proposals for new and better metric indexes (e.g., disk-
based indexes), such as the OmniR-tree, the M-index [23], and the
SPB-tree. We offer a comprehensive empirical study as of today.

In brief, the key contributions of this paper are as follows:

 We provide a compact survey of existing pivot-based
indexing techniques, focusing on the underlying principles.

 We enhance two existing pivot-based metric indexes to give
them better search performance. Specifically, we provide a
better pivot selection strategy for the extreme pivot table,
and integrate minimum bounding box into the M-index.

 We give a comprehensive empirical comparison of existing
pivot-based indexes, considering index construction cost,
update efficiency, index size, and query performance while
ensuring an equal footing where the same pivot selection
strategy is employed. The findings and insights obtained
from the empirical study offer new insights on the strengths

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 10
Copyright 2017 VLDB Endowment 2150-8097/17/06.

1058

and weaknesses of exiting techniques and aid in selecting an
appropriate indexing technique for a given setting.

The rest of this paper is organized as follows. Section 2 presents
the preliminaries of pivot-based indexes. Sections 3, 4, and 5
describe three categories of pivot-based metric index structures.
Experimental results and our findings are reported in Section 6.
Finally, Section 7 concludes the paper.

2. PRELIMINARIES
We proceed to define the core metric similarity queries. Then,

we provide a brief overview of the pivot-based indexes, and
describe the pivot-based filtering enabled by these indexes.

2.1 Metric Similarity Search
A metric space is a two-tuple (M, d), in which M is an object

domain and d is a distance function for measuring the “similarity”
between objects in M. In particular, the distance function d has
four properties: (1) symmetry: d(q, o) = d(o, q); (2) non-negativity:
d(q, o) ≥ 0; (3) identity: d(q, o) = 0 iff q = o; and (4) triangle
inequality: d(q, o) ≤ d(q, p) + d(p, o). Based on these properties,
we define metric similarity search, including the metric range
query and the metric k nearest neighbor query below.

DEFINITION 1 (METRIC RANGE QUERY). Given an object set O,
a query object q, and a search radius r in a metric space, a metric
range query (MRQ) returns the objects in O that are within
distance r of q, i.e., MRQ(q, r) = {o| o  O  d(q, o)  r}.

DEFINITION 2 (METRIC K NEAREST NEIGHBOR QUERY). Given
an object set O, a query object q, and an integer k in a metric
space, a metric k nearest neighbor query (MkNNQ) finds k objects
in O that are most similar to q, i.e., MkNNQ(q, k) = {S | S  O 
|S| = k  s  S, o  O  S, d(q, s) ≤ d(q, o)}.

Consider the English word set O = {“defoliates”, “defoliation”,
“defoliating”, “defoliated”}, where edit distance is used. An MRQ
example finds the words from O with edit distances to the query
word “defoliate” no larger than 1, i.e., MRQ(“defoliate”, 1) =
{“defoliates”, “defoliated”}. An MkNNQ example finds 2 words
from O with the smallest edit distances to query word “defoliate”,
i.e., MkNNQ(“defoliate”, 2) = {“defoliates”, “defoliated”}.

An MkNNQ can be answered by an MRQ, if the distance from
q to its kth nearest neighbor, denoted as NDk, is known. However,
NDk is not known when a query is issued. Two typical methods
exist for computing MkNNQ [6, 15]. One utilizes MRQ with
incremental search radius. Specifically, an MRQ with a small
search radius is performed first, and then the search radius is
increased gradually until k nearest neighbors are found. Although
this method tries to avoid visiting objects already verified, it still
traverses the index multiple times, resulting in high query cost.
The other sets the search radius to infinity and then verifies the
objects in order, and the search radius is tighten using verification.

2.2 Pivot-based Metric Index Structures
Pivot-based methods store pre-computed distances from every

object to a set of pivots and then use those distances to prune
objects during search. Pivot-based methods can be clustered into
three categories, namely, pivot-based tables, pivot-based trees,
and pivot-based external indexes, according to the structures they
use for storing the pre-computed distances, as listed in Table 1.

Indexes in the first category utilize tables to store pre-computed
distances. Approximating Eliminating Search Algorithm (AESA)
[28] uses a table to preserve the distances from each object to
other objects. However, it incurs a high storage cost O(n2), where

n is the number of objects in the dataset. To save main memory
storage for the table, Linear AESA (LAESA) [19] only keeps the
distances from every object to selected pivots; Extreme Pivot
Table (EPT) [24] selects a set of essential pivots covering the
entire database; and Clustered Pivot Table (CPT) [20] clusters the
pre-computed distances to further improve query efficiency.

Indexes in the second category use tree structures to store pre-
computed distances. Burkhard-Keller Tree (BKT) [8] is designed
for discrete distance functions. It chooses a pivot p as the root,
and inserts the objects having distance i to the pivot p in its ith
sub-tree. Unlike BKT that uses different pivots for every node,
Fixed Queries Tree (FQT) [4] and Fixed Queries Array (FQA) [11]
use the same pivot for nodes at the same tree level. Vantage-Point
Tree (VPT) [29] is designed for continuous distance functions,
and its generalization to m-ary trees is called MVPT [5].

Indexes in the third category use an existing disk-based index
to store pre-computed distances. The Omni-family [17] employs
existing structures (e.g., the R-tree) to index pre-computed
distances. The PM-tree [26] stores cut-regions defined by pivots
in each node of an M-tree to accelerate search. The M-index [23]
generalizes the iDistance [16] technique for general metric spaces,
and uses the B+-tree to store pre-computed distances. The SPB-
tree [12] utilizes a space-filling curve to map pre-computed
distances to integers, which are then indexed by the B+-tree.

The index structures that belong to the first and the second
categories refer to indexes stored in main memory, while index
structures in the third category are disk-based.

2.3 Pivot-based Filtering
Using well-chosen pivots, the objects in a metric space can be

mapped to data points in a vector space. Given a pivot set P = {p1,
p2, …, pl}, a metric space (M, d) can be mapped to a vector space
(Rl, L). Specifically, an object q in the metric space is
represented as a point (q) = d(q, p1), d(q, p2), …, d(q, pl) in the
vector space. Consider the example in Fig. 1, where the L2-norm
is used. If P = {o1, o6}, the object set in the original metric space
(as illustrated in Fig. 1(a)) can be mapped to the data points in a
two-dimensional vector space (as depicted in Fig. 1(b)), in which
the x-axis denotes d(oi, o1) and the y-axis represents d(oi, o6) for
any object oi. As an example, object o5 is mapped to point 2, 4.

Based on the pivot mapping, the pivot-based filtering [12] can
be used to avoid unnecessary similarity computations.

LEMMA 1 (PIVOT FILTERING). Given a set P of pivots, a query
object q, and a search radius r, let SR(q) be a search region such
that SR(q) = {v1, v2, …, vl | 1  i  l  vi  0  vi  [d(q, pi) – r,
d(q, pi) + r]}. If (o) locates outside SR(q), then o  MRQ(q, r).

PROOF. Assume, to the contrary, that there exists an object o (
MRQ(q, r)) which satisfies d(q, o) ≤ r, but (o)  SR(q) (i.e.,  pi

Table 1. Pivot-based metric index structures

Category Index Storage Distance Domain

Pivot-based
tables

AESA[28], LAESA [19] Main-memory Continuous
EPT [24] Main-memory Continuous
CPT [20] Main-memory Continuous

Pivot-based
trees

BKT [8] Main-memory Discrete
FQT [4], FQA [11] Main-memory Discrete
VPT [29], MVPT [5] Main-memory Continuous

Pivot-based
external
indexes

PM-tree [26] Disk Continuous
Omni-family [17] Disk Continuous
M-index [23] Disk Continuous
SPB-tree [12] Disk Continuous

1059

 P, d(o, pi) > d(q, pi) + r or d(o, pi) < d(q, pi) – r). According to
the triangle inequality, d(q, o)  |d(q, pi) – d(o, pi)| > r, which
contradicts our assumption. The proof completes. 

Since the pre-computed distances (o)s are stored together with
object o, we can avoid distance computations involving object o if
(o) SR(q), based on Lemma 1. Consider the example in Fig. 1(b)
where the dotted rectangle represents the search region SR(q).
Here, object o1 can be pruned as (o1)  SR(q). Also, Lemma 1
can be utilized to prune an entire region (i.e., a minimum bounding
box that contains multiple (o)) if it does not intersect SR(q).

To obtain compact regions, two typical techniques, i.e., ball
partitioning and generalized hyperplane partitioning, are used [30].

DEFINITION 3 (BALL PARTITIONING). Let Ri.p be the pivot for
a partition region Ri, and let Ri.r be the radius of Ri. Then the set
of objects o ( O) in the partition Ri, obtained via ball
partitioning, is defined as {o | o  O  d(o, pi) ≤ Ri.r}.

Based on the definition of ball partitioning, a range-pivot
filtering technique [30] can be developed as follows.

LEMMA 2 (RANGE-PIVOT FILTERING). Given a ball
partitioning region Ri, a query object q, and a search radius r, if
d(q, Ri.p) > Ri.r + r, then Ri can be pruned safely.

PROOF. For any object o in Ri, if d(q, Ri.p) > Ri.r + r, then d(q,
o) ≥ d(q, Ri.p) – d(o, Ri.p) > Ri.r + r – d(o, Ri.p) due to the
triangle inequality. As d(o, Ri.p) ≤ Ri.r according to Definition 3,
then d(q, oj) > r. Hence, any object o in Ri cannot be in the final
result set, and Ri can be pruned safely. 

Consider the ball partitioning example depicted in Fig. 2(a),
where the red solid circle denotes the ball region Ri with Ri.p = o7,
Ri.r = d(o7, o6), and Ri = {o6, o7, o8}. As d(q, Ri.p) > Ri.r + r, Ri can
be pruned away according to Lemma 2.

DEFINITION 4 (GENERALIZED HYPERPLANE PARTITIONING).
Given a set P of pivots, let pi be the corresponding pivot for a
partition region Ri. Then the set of objects o ( O) in the partition
Ri, obtained by the generalized hyperplane partitioning, is defined
as {o | o  O  pj  pi, d(o, pi) ≤ d(o, pj)}.

Based on the definition of generalized hyperplane partitioning,
a double-pivot filtering technique [30] is developed as follows.

LEMMA 3 (DOUBLE-PIVOT FILTERING). Given two pivots pi and
pj, a query object q, and a search radius r, if d(q, pi) – d(q, pj) > 2
 r, then Ri can be pruned safely, as pi is the corresponding pivot
for the partition region Ri.

PROOF. For every o in Ri, according to the definition of Ri, d(o,
pi) ≤ d(o, pj). Based on the triangle inequality, we have d(q, pi) ≤
d(o, pi) + d(q, o) and d(q, pj) ≥ d(o, pj) – d(q, o). Thus, we can
derive that d(q, pi) – d(q, pj) ≤ d(o, pi) + d(q, o) – d(o, pj) + d(o, q)

≤ 2  d(q, o) as d(o, pi) ≤ d(o, pj). If d(q, pi) – d(q, pj) > 2  r,
then d(q, o) > r. Therefore, no object o ( Ri) can be a real answer
object (i.e., o  MRQ(q, r)), and Ri can be pruned safely. 

Consider the generalized hyperplane partitioning example in Fig.
2(b). Assume o2 and o6 are two pivots, and Ri = {o6, o7, o8, o9} is the
hyperplane partition region corresponding to pivot o6. Since d(q, o6)
– d(q, o2) > 2  r, Ri can be discarded safely according to Lemma 3.

Lemmas 1 through 3 are pivot filtering techniques. Nonetheless, a
distance computation is still needed for verifying each object that
cannot be pruned. Hence, a validation technique [12] is proposed to
save unnecessary verifications, as stated in Lemma 4 below.

LEMMA 4 (PIVOT VALIDATION). Given a pivot set P, a query
object q, and a search radius r, if there exists, for an object o in O,
a pivot pi ( P) satisfying d(o, pi)  r – d(q, pi), then o is validated
to be an actual answer object for MRQ(q, r).

PROOF. Given a query object q, an object o, and a pivot pi, d(q,
o)  d(o, pi) + d(q, pi) because of the triangle inequality. If d(o, pi)
 r – d(q, pi), then d(q, o)  r – d(q, pi) + d(q, pi) = r. Thus, o is
guaranteed to be contained in the final result set. 

3. PIVOT-BASED TABLES
We proceed to describe the indexes that belong to the category

of pivot-based tables, and present corresponding MRQ and
MkNNQ processing, together with some discussions.

3.1 AESA and LAESA
AESA uses a table to store the distances from every object to

other objects. If |O| is the cardinality of a dataset O, the main-
memory storage cost of AESA is O(|O|2), which renders AESA a
theoretical metric index. In order to reduce the storage cost of
AESA, LAESA is proposed. It only stores the distances from each
object to the pivots in a pivot set P, and thus, its storage cost is
reduced to O(|P|  |O|), in which |P| is the number of pivots in P.
LAESA utilizes three tables to store the pivots, the real data, and
the pre-computed distances to the pivots. Fig. 3 shows the
LAESA on the object set O depicted in Fig. 1, where P = {o1, o6}.

MRQ processing. MRQ(q, r) processing using LAESA is
simple. We compute the distances d(q, pi) between the query
object q and the pivots pi ( P) and then verify the objects one by
one. For every object o in O, if it cannot be pruned by Lemma 1,
we compute d(q, o) and insert o into the result set Sr if d(q, o) ≤ r.

MkNNQ processing. MkNNQ(q, k) processing based on
LAESA follows the second approach introduced in Section 2.1. It
initializes the search radius to infinity, and computes the distances
from the query object q to the pivots in P. Subsequently, objects
in the dataset O are evaluated one by one. For each object o, if it
cannot be pruned by Lemma 1, we compute d(q, o) and update the
search radius using the current kth nearest neighbor distance.

o7

o2 o3

o4

o5o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9

o8
o7

o2

o3

o4

o8

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9o5

q
r

q

(a) Oringal metric space (b) Mapped vector space

SR(q)

o7

o2 o3

o4

o5o1 o6

10 2

2

1

3 4 5 6

3

4

5

6
y

o9

o8

q

Ri.r

Ball partition
region Ri

r o7o2 o3

o4

o5o1 o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9

o8
q r

Hyperplane
partition region Ri

(a) Range-pivot filtering (b) Double-pivot filtering

x

Figure 1. Pivot mapping Figure 2. Pivot filtering Figure 3. LEASA

1060

Discussion. Although LAESA significantly reduces the main-
memory storage cost of AESA, it still incurs high storage cost for
a large dataset. In addition, since the objects are verified
according to the order they are stored, MkNNQ processing using
LAESA results in unnecessary distance computations.

3.2 EPT
Unlike LAESA, EPT selects different pivots for different

objects in order to achieve better search performance.
Extreme pivots (EP) consist of a set of pivot groups. Each

group G contains m pivots pi (1≤ i ≤ m), according to which the
whole dataset O is partitioned into m parts A(pi), such that

 =  (i  j) and = O. An object o belongs
to A(pi) iff |d(o, pi) – pi| ≥ , where pi is the expected value of
d(o, pi). Consider the example in Fig. 4, A(pi) = {o1, o2, o6, o7, o9}.

It is hard to obtain , and hence, EPT tries to maximize . In
other words, EPT randomly selects m pivots as a pivot group Gj,
and sets the pivot pi in Gj to an object o having max{|d(o, pi) – pi|
| pi  Gj}. The processing is repeated l times, i.e., l groups Gj (1 ≤
j ≤ l) are selected. Thus, each object has corresponding l pivots.

Given the dataset shown in Fig. 1, and letting m = 2 and l = 2,
two pivot groups are selected at random, i.e., G1 = {o1, o6} and G2
= {o4, o9}. Fig. 5 depicts an example of EPT. The structure used
by EPT is similar to that used by LAESA. However, since each
object in EPT may have different pivots, EPT needs to store the id
of the pivot with the pre-computed distance.

Let X = d(pi, o) and Y = d(pi, q), then the query cost in terms of
the number of distance computations can be estimated as:

cost = m  l + |O|  (1 Pr(|X  Y| > r))l

 ≥ m  l + |O|  (1)l (1)

Using Equation (1), we can approximate the optimal m by
fixing l (to control the main-memory storage size), where , ,

and r can be estimated. Nevertheless, EPT utilizes Z = d(o, q) to
estimate Y = d(pi, q), which is inaccurate. In addition, it is
difficult to estimate r value which is specified by the user.

We proceed to improve the efficiency of EPT. Let D(q, o) =
max{|d(q, pi) – d(o, pi)| | pi  P}, which is a lower bound of d(q,
o). Hence, the query cost can be estimated as:

cost = m  l + |O|  Pr(D(q, u)  r) (2)

To achieve the optimal query cost defined in Equation (2), D(q,
u) should approach d(q, o) as much as possible. Motivated by this,
we introduce a new pivot selection algorithm (PSA) that tries to
maximize the random variable D(q, o)/d(q, o).

Algorithm 1 presents the pseudo-code of PSA. First, it samples
the object set O as set S, and invokes HF algorithm [17] to obtain
outliers as candidate pivots CP (lines 1-2). Here, cp_scale is set to
40 because this value yields enough outliers in our experiments.
Then, for each object o in O, the algorithm incrementally selects
effective pivots from CP (lines 4-7), and updates EPT* (line 8).
Finally, EPT* is returned (line 9).

MRQ and MkNNQ processing. Like LAESA, EPT and EPT*
use tables to store pre-computed distances. The only difference is
that EPT and EPT* utilize different pivots for different objects,
while LAESA uses the same pivots. Hence, MRQ and MkNNQ
processing on EPT or EPT* are the same as those on LAESA.

Discussion. EPT* achieves a better search performance than
EPT, contributed by the higher quality pivots selected by PSA.
Nonetheless, it is costly to maximize .

3.3 CPT
LAESA and EPT store the distance table and the data file in

main memory. However, when the size of the dataset exceeds the
capacity of the main memory, we need to store the dataset on disk,
and it is attractive to cluster the data to improve I/O efficiency.

CPT uses an M-tree to cluster and store the objects on disk. Fig.
6(b) shows an M-tree for the object set O = {o1, o2, …, o9} in Fig.
1. An intermediate (i.e., a non-leaf) entry e in a root node (e.g., N0)
or a non-leaf node (e.g., N1, N2) records: (i) a routing object e.RO
that is a selected object in the subtree STe of e; (ii) a covering
radius e.r that is the maximum distance between e.RO and the
objects in STe; (iii) a parent distance e.PD that equals the distance
from e to the routing object of its parent entry. Since a root entry
e (e.g., e6) has no parent entry, e.PD = ∞; and (iv) an identifier
e.ptr that points to the root node of STe. A leaf entry (i.e., a data
object) o in a leaf node (e.g., N3, N4, N5, N6) records: (i) an object
oj that stores the detailed information of o; (ii) an identifier oid
that represents o’s identifier, and (iii) a parent distance o.PD that
equals the distance from o to the routing object of o’s parent entry.

An example of CPT is shown in Fig. 6. CPT consists of a pivot
table, a distance table, and an M-tree. The distance table stores the
pre-computed distances between objects and pivots in main
memory. The M-tree stores the objects in the tree structure on
disk (i.e., each M-tree entry contains one object). Note that, the
distance table includes pointers to the leaf entries in the M-tree, to
enable loading of the corresponding objects for verification.

MRQ and MkNNQ processing. MRQ and MkNNQ
processing using CPT are similar as the processing using LAESA.

Algorithm 1 Pivot Selecting Algorithm (PSA)
 Input: a set O of objects, the number l of pivots for each object
 Output: EPT*
 1: obtain a sample set S from O
 2: CP = HF(O, cp_scale) // get a candidate pivot set CP (|CP| = cp_scale)
 3: for each object o in O do
 4: P = 
 5: while |P| < l do
 6: select a different pi from CP with maximal
 7: P = P ∪ {pi}
 8: update EPT* with (p1, d(o, p1)), (p2, d(o, p2)), …, (pl, d(o, pl))
 9: return EPT*

d(o, pi)o1
µp

o2 o5 o6o9 o7o8

o4

o3
µp + aµp – a

A(pi) A(pi)

i ii
Figure 4. Illustration of A(pi)

Pivot table Object table Distance table
P object (p1, d(oi, p1)) (p2, d(oi, p2))
o1 o1 (o1, 0) (o9, 5)
o4 o2 (o1,) (o4, 1)
o6 o3 (o1,) (o9,)
o9 o4 (o6,) (o4, 0)
 o5 (o1, 2) (o9,)
 o6 (o6, 0) (o4,)
 o7 (o6,) (o4,)

 o8 (o1,) (o9, 1)
 o9 (o1, 5) (o9, 0)

Figure 5. EPT

1061

The only difference is that, when an object cannot be pruned by
Lemma 1, the object must be read from disk.

Discussion. CPT avoids loading the whole dataset into main
memory to perform query processing, which incurs additional CPU
cost. In addition, the distance table is stored in main memory,
meaning that the applicability of CPT is only limited to the
dataset whose distance table fits in main memory.

4. PIVOT-BASED TREES
We describe the indexes belonging to the category of pivot-

based trees along with the MRQ and MkNNQ processing.

4.1 BKT
BKT is a tree structure designed for discrete distance functions.

It chooses a pivot as the root, and maintains the objects having the
distance i to the pivot in its ith sub-tree. If a sub-tree contains more
than one object, it selects a pivot at random and partitions the sub-
tree recursively. Fig. 7 gives an example BKT, constructed based
on the objects from Fig. 1(a) and the discrete distance function
L-norm. The leaf nodes store the actual objects, while the non-
leaf nodes store the pivots used to partition the sub-trees. To
improve the efficiency of the pivot-based trees, we only store the
identifiers in the tree, and store the objects in a separate table.

MRQ processing. To answer MRQ(q, r), the nodes in the BKT
are traversed in depth-first fashion. When a non-leaf node is
accessed, we identify its qualifying child entries using Lemma 1;
and when a leaf node is accessed, we insert the corresponding
object into the result set if it is not pruned by Lemma 1.

MkNNQ processing. To answer MkNNQ(q, k), the nodes in
the BKT are traversed in best-first manner, i.e., in ascending order
of their minimum distances to the query object q, where Lemma 1
is used to filter unqualified nodes. Here, we first set the search
radius to infinity and then update it using the visited objects.

Discussion. BKT is an unbalanced tree. To avoid empty sub-
trees for large distance domains, every sub-tree covers the same
range of distance values, which are stored together with each sub-
tree. BKT randomly selects the pivots for sub-trees. If BKT uses
the same pivots as other pivot-based metric indexes, it produces
FQT as discussed below.

4.2 FQT
Unlike BKT, FQT utilizes the same pivot at the same level. Fig.

8 shows an example of FQT, where o1 and o6 are selected as the
pivots for the first level and the second level, respectively.

MRQ and MkNNQ processing. MRQ and MkNNQ
processing using FQT are the same as that for BKT.

Discussion. FQT is also an unbalanced tree. In order to utilize
the same set P of pivots as other pivot-based metric indexes, the
tree-level is set to the number of pivots, and pi  P is set as the
pivot for the ith level. With well-chosen pivots, the performance of
FQT is expected to be better than that of BKT.

4.3 MVPT
Unlike BKT and FQT that only support discrete distance

functions, VPT and its variant MVPT are able to support
continuous distance functions. VPT chooses a pivot p as the root,
and selects a medium value v so that the objects o with d(o, p) ≤ v
are put in the left sub-tree, while the remaining objects are put in
the right sub-tree. If the number of objects in a sub-tree exceeds a
threshold, the sub-tree is further partitioned. Fig. 9(a) depicts an
example of VPT, where L-norm is used. Here, in order to be able
to compare the efficiency of different indexes using the same set
of pivots, nodes of VPT at the same level share the same pivot.

VPT can be generalized to m-ary trees, yielding MVPT.
Specifically, each time, MVPT selects m  1 medium values v1,
v2, …, vm-1 instead of one, such that the objects o with d(o, p) ≤ v1
are put in the first sub-tree, the objects o with v1 < d(o, p) ≤ v2 are
put in the second sub-tree, etc. Fig. 9(b) gives an example of
MVPT, where L-norm is used and m is set to 3.

MRQ and MkNNQ processing. MRQ and MkNNQ
processing using VPT are similar to the processing using BKT.

Discussion. Unlike BKT and FQT, MVPT is a balanced tree.
As m grows, the pruning ability first increases and then drops.
This occurs because, with larger m values, more compact sub-
trees are obtained at every tree level. Nevertheless, larger m
values also result in lower MVPT tree levels, indicating that fewer
pivots are available for pruning. In this paper, we set m as 5. In
addition, it only needs to store medium values to partition the sub-
trees, which incurs lower storage cost than BKT and FQT.

5. PIVOT-BASED EXTERNAL INDEXES
We proceed to detail the indexes belonging to the category of

pivot-based external indexes, present corresponding MRQ and
MkNNQ processing, and give some discussions.

5.1 PM-Tree
The PM-tree combines the pivot mapping and the M-tree,

where the M-tree is used to cluster the objects, and the pivot
mapping is utilized to avoid unnecessary distance computations.
Hence, different from the M-tree introduced in Section 3.3, each

Pivot table Distance table

e1 e2

o6 o7 o8 o9

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

o1 o2 o4 o3 o5

e2.RO e2.PDe2.ptre2.r
r2 N2 o6

e6.RO e6.PDe6.ptre6.r
r6 N6 o8 d(o8,o6)

o9.PDoidoj
9o9 r6

8

(b) The M-tree

o7o2 o3

o4

o5

o1 o6

o9

o8

e3

e4

e6

e5

e1 e2

r6

r2

P ptr d(oi, o1) d(oi, o6)
o1 o1 0 6
o6 o2
 o4
 o3
 o5 2 4
 o6 6 0
 o7
 o8
 o9 5

(a) Pivot and distance tables (c) Data distribution

Figure 6. CPT

o1 o8

o1

o7o4o2

1 2 3 4 50 6

o6o3

o4 o5 o8 o9

0 02 1

o1 o6

o1

o7o6o2

1 2 3 4 50 6

o6o3

o5 o4

4 5

o8 o9

2 3

Figure 7. BKT Figure 8. FQT

o6, 1

o1, 3

o6, 4

{o2, o4, o1}{o3, o5} {o6, o7}{o8, o9}

o6

{o6, o7, o8}{o3, o5, o9}{o1, o2, o4}

2 4

(a) VPT (b) MVPT

Figure 9. VPT and MVPT

1062

leaf entry of the PM-tree stores the mapped vector (i.e., the pre-
computed distances to the pivots) with the real data object. In
each intermediate entry, the PM-tree stores a minimum bounding
box (MBB) that bounds all the mapped vectors in its child leaf
entries. Specifically, given a pivot set P = {pi| 1 ≤ i ≤ n}, MBB(e)
= {[ai, bi] | 1 ≤ i ≤ n}, where ai = min{d(o, pi) | o  e}, and bi =
max{d(o, pi) | o  e}. Fig. 10 depicts an example of PM-tree, with
the data distribution shown in Fig. 6(c).

MRQ processing. To answer MRQ(q, r), the entries in the
PM-tree are visited in depth-first fashion. When an intermediate
entry is accessed, we verify its child entries using Lemmas 1 and
2; and when a leaf entry is accessed, we insert the corresponding
object into the result set if it is not discarded by Lemma 1.

MkNNQ processing. To answer MkNNQ(q, k), the entries in
the PM-tree are traversed in best-first manner, where Lemmas 1
and 2 are employed to eliminate unqualified entries. We first set
the search radius to infinity, and then, update the search radius
during the search using the visited objects.

Discussion. The PM-tree stores the data objects in its entries
instead of in a separate file, which limits its usability. In particular,
for complex objects, the PM-tree needs a large page/node size.

5.2 Omni-Family
Unlike the PM-tree, Omni-family stores objects in a separate

random access file (RAF), to avoid the impact of the object size.
It also utilizes the sequential file, the B+-tree, or the R-tree, to
index the vectors after the pivot mapping. A sequential file stores
the pre-computed distances of objects in order of their identifiers;
a B+-tree indexes the pre-computed distances for each pivot; and
an R-tree indexes the pre-computed distances for all the pivots
together. As verified in [17], the OmniR-tree performs the best in
most cases. Fig. 11 depicts an example of OmniR-tree, including
a pivot table that stores the pivots, an R-tree that indexes the pre-
computed distances, and an RAF that stores the objects. The MBB
of each R-tree node is shown in Fig. 10(b).

MRQ processing. To answer MRQ(q, r), the entries in the R-
tree are visited in depth-first fashion. When an intermediate entry
is visited, we prune its child entries using Lemma 1; and when a
leaf entry is accessed, we compute the actual distance of the
corresponding object and insert it into the result set if not pruned.

MkNNQ processing. To answer MkNNQ(q, k), the entries in
the R-tree are visited in best-first manner, i.e., in ascending order
of their minimum distances to the query object q, where Lemma 1
is used to eliminate unqualified entries. Here, we set the search
radius to infinity and then update it using the visited objects.

Discussion. The Omni-family contains the Omni-sequential-
file, the OmniB+-tree, and the OmniR-tree. Omni-sequential-file
can be regarded as disk-based LAESA, which incurs substantial
I/O during search as the data is not clustered. The OmniB+-tree
needs one B+-tree for every pivot, resulting in redundant storage
and I/O during search. The OmniR-tree utilizes MBBs to cluster
the data, and uses the pivot filtering to improve query efficiency.

5.3 M-Index
Unlike the PM-tree that utilizes the ball partitioning technique,

the M-index uses hyperplane partitioning (as discussed in Section
2.3) to cluster the data. Given a set P of pivots, each object o is
mapped to the real number key(o) = d(pi, o) + (i – 1)  d+, where
pi ( P) is the pivot nearest to o and d+ is the maximum distance
in a certain metric space. Considering the example in Fig. 12, if P
= {o1, o6}, we obtain two clusters C1 and C2. M-index consists of
(i) a pivot table, (ii) a cluster tree that maintains the information
of the clusters (i.e., the minimum and maximum mapped digits
minkey and maxkey in each cluster), (iii) a B+-tree that indexes the
mapped real numbers, and (iv) an RAF that stores the data objects
with all the pre-computed distances. If more pivots are used, the
cluster-tree can be extended to a dynamic tree. Specifically, if the
number of the objects in a certain cluster exceeds a threshold
maxnum (set to 1,600 in this paper), it can be further partitioned
using the left pivots, as shown in Fig. 12(d).

MRQ processing. To answer MRQ(q, r), the entries in the
cluster tree are traversed in depth-first fashion. When an
intermediate entry is visited, we evaluate its qualifying child
entries using Lemma 3; and when a leaf entry is accessed, we
obtain the objects that belong to this cluster from B+-tree, and
filter out the unqualified objects according to Lemma 1.

MkNNQ processing. To answer MkNNQ(q, k), a range query
with a small search radius is performed first, and then, the search
radius is increased gradually until k nearest objects are found.

e1 e2

o6 o7 o8 o9

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

o1 o2 o4 o3 o5

e2.RO e2.PDe2.ptre2.r
r2 N2 o6 8

e6.RO e6.PDe6.ptre6.r
r6 N6 o8 d(o8,o6)

o9.PDoidoj
9o9 r6

d(o9, o1)
5

d(o9, o6)

MBB(e6)
M6

M2

MBB(e2)Pivot table
P
o1

o6
o7

o2

o3

o4

o8

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9o5

q
M6

M5

M2

M1

M3

M4

(a) PM-tree structure (b) MBB

Figure 10. PM-tree

e1 e2

e13 e14 e15

N0

N1 N2

N3 N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e6.ptr
N6

(o9)

e6.MBB
M6

e16.ptr
o9

o1 o92 8RAF o4 o3

id len obj
o2 o5 o6 o7 o8 o9

e16

Pivot table
P
o1

o6 e16.MBB

R-tree

Figure 11. OmniR-tree

o7o2 o3

o4

o5 o1 o6

10 2

2

1

3 4 5 6

3

4

5

x

y

o9

o8

0 102 10+

d(oi, o1) d++d(oi, o6)

6

C1 C2

e1 e2

e13 e14 e15

N0

N1 N2

N3
N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e6.ptr

e16.ptr
o9

RAFo2 o3 o6 o7 o8 o9

e16

o1 o5 o4

e6.key
N6

e16.key

C1 C2

minkeyMBB
10

maxkey
M2 10+Cluster-tree

B+-tree

10+

10+

Pivot table
P
o1
o6

(a) Hyperplane partitioning (b) M-index structure

o7

o2

o3

o4

o8

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6

x

y

o9o5

M2

M1

C1 C2

C1,2 C1,3

Cn...

C1,n... C2,1 C2,3 C2,n...

C1,3,2 C1,3,4 C1,n,n-1...

Level =1

Level = 2

Level = 3

C2,3,1 C2,3,4 C2,3,n...

Cluster-tree

(c) MBB (d) Dynamic cluster-tree

Figure 12. M-index

1063

We add the MBB information for each cluster to the M-index,
obtaining an M-index*. Based on the MBBs, the pivot filtering
technique (i.e., Lemma 1) can be applied to filter unqualified
clusters, and MkNNQ can traverse the cluster-tree in best-first
manner. In addition, the data validation technique (i.e., Lemma 4)
can also be integrated to avoid unnecessary verifications.

Discussion. By integrating the data validation and the MBB
information, the efficiency of MRQ and MkNNQ is improved.
Since the M-index* can use Lemma 3 based on the hyperplane
partitioning technique for pruning while others cannot, it can
achieve a better performance in terms of distance computations.

5.4 SPB-Tree
To reduce the storage cost, the SPB-tree utilizes a space-filling

curve (SFC) to map the pre-computed distances into SFC values
(i.e., integers) while (to some extent) maintaining spatial
proximity. SPB-tree consists of (i) a pivot table, (ii) a B+-tree
storing SFC values, and (iii) an RAF that stores data objects. Each
non-leaf B+-tree entry e stores SFC values min and max for a1,
a2,…, an and b1, b2,…, bn that represent MBB(e) = {[ai, bi] | 1 ≤
i ≤ n}. Fig. 13 depicts an example of SPB-tree, where Fig. 13(b)
illustrates the Hilbert mapping.

MRQ processing. To answer MRQ(q, r), the entries in the B+-
tree are traversed in depth-first fashion. When an intermediate
entry is visited, we identify its qualifying child entries using
Lemma 1; and when a leaf entry is accessed, we utilize Lemma 4
or compute the actual distance to validate the object.

MkNNQ processing. To answer MkNNQ(q, k), the entries in
the B+-tree are traversed in best-first manner, i.e., in ascending
order of their minimum distances to the query object q, where
Lemma 1 is used to filter unqualified entries. Here, we set the
search radius to infinity and update it using the visited objects.

Discussion. We employ the SFC mapping to reduce the storage
cost and meanwhile keep spatial proximity, resulting in low I/O
and index storage costs. However, for continuous distance functions,
the continuous distances are approximated as the discrete ones to
perform the SFC mapping, which decreases the pruning power.

6. EXPERIMENTAL STUDY
We proceed to report an empirical study on the performance of

the pivot-based metric indexes via experiments. Specifically, we
consider the index construction cost, study the efficiency of EPT*
and the M-index*, and evaluate the search performance.

6.1 Experimental Setup
We implemented all the indexes and associated similarity

search algorithms in C++. Further, all pivot-based metric indexes
utilize the same set of pivots selected by the state-of-the-art
algorithm [12]. This does, however, not apply to EPT, EPT*, and

BKT. As discussed in Sections 3.2 and 4.1, EPT and EPT* utilize
different pivots for different objects, while BKT randomly selects
pivots in its sub-trees. All experiments were conducted on an Intel
Xeon E5-2620 v3 2.4GHz PC with 8GB memory.

We employ three real datasets, namely, LA, Words, and Color.
LA1 consists of geographical locations in Los Angeles. Words2
contains proper nouns, acronyms, and compound words taken
from the Moby project. Color 3 consists of standard MPEG-7
image features extracted from Flickr. A synthetic dataset is also
created. To study the performance of BKT and FQT that are
designed for discrete distance functions, the values in Synthetic
are generated as integers. Table 2 summarizes the statistics of the
datasets, including the cardinality, the dimensionality (Dim.), the
intrinsic dimensionality (Int. Dim.), and the distance measure (Dis.
Measure). To capture the distance distribution of the dataset, the
Int. Dim. is calculated as 2/22, where  and 2 are the mean and
variance of the pairwise distances in the dataset.

We investigate the similarity query performance when varying
the parameters listed in Table 3. The value of the radius r denotes
the percentage of objects in the dataset that are result objects of a
MRQ. In each experiment, one parameter is varied, and the others
are fixed at their default values. The main performance metrics
contain the number of page accesses (PA), the number of distance
computations (compdists), and the CPU time. Each measurement
we report is an average over 100 random queries.

To maintain consistency with the operating system, the indexes
use a fixed page size of 4KB as default. CPT and PM-tree store
directly the data in the index structures, and hence, a larger page
size is needed for a larger data size to ensure a proper tree height;
while other indexes separate the data from the index structures,
meaning that the tree height is independent of the data size. Thus,
a page size of 40KB is used for CPT and PM-tree on Color and
Synthetic datasets. Here, a 128KB LRU cache is also used in our
experiments to improve the MkNNQ efficiency.

6.2 Construction Cost
Table 4 details the construction costs and storage sizes for the

indexes using real datasets, where I denotes a main-memory
storage cost, and D indicates a disk storage cost. There are no
values for BKT and FQT on LA and Color, as BKT and FQT
assume discrete distance functions; and there are also no PA
values for LAESA, EPT, EPT*, BKT, FQT, and MVPT, since
they are in-memory indexes. To summarize our findings, Table 5
provides the ranking for all pivot-based metric indexes. Here, the

1 LA is available at http://www.dbs.informatik.uni-muenchen.de/~seidl.
2 Words is available at http://icon.shef.ac.uk/Moby/.
3 Color is available at http://cophir.isti.cnr.it/.

e1 e2

e13 e14 e15

N0

N1 N2

N3
N4 N5 N6

e5 e6e3 e4

e7 e8 e9 e11 e12

e6.ptr e6.min

e16.ptr
o6

RAFo2 o5 o9 o8 o7 o6

e16

000 001 010 011 100 101 110 111
000

001

010

011

100

101

110

111

o1

o2

o4

o3 o9

o5

o6

o7

o8

o3 o1 o4

60

58

M2
M1

(M3)

M4

M5

M6

e6.key
N6

e16.key

56

e6.max
61

Pivot table
P
o1

o6

B+-tree

(a) SPB-tree structure (b) Hilbert mapping

Figure 13. SPB-tree

Table 2. Datasets used in the experiments

Dataset Cardinality Dim. Int. Dim. Dis. Measure
LA 1,073,727 2 5.4 L2-norm
Words 611,756 1~34 1.2 Edit distance
Color 1,000,000 282 6.5 L1-norm
Synthetic 1,000,000 20 6.6 L-norm

Table 3. Parameter settings

Parameter Value Default
the number |P| of pivots 1, 3, 5, 7, 9 5
r 4%, 8%, 16%, 32%, 64% 16%
k 5, 10, 20, 50, 100 20

1064

M-index and the M-index* are listed together as M-index(*)
because they have similar construction costs.

I/O cost. The SPB-tree performs the best in I/O cost, followed
by the M-index(*), while the PM-tree and CPT perform the worst.
The SPB-tree and the M-index(*) achieve high I/O efficiency via
the B+-tree, and the SPB-tree uses SFC to further reduce I/O cost.

Compdists. LAESA, BKT, FQT, MVPT, the OmniR-tree, the
M-index, and the SPB-tree achieve the same performance in terms
of compdists. This is because compdists for these indexes depend
on the number of pivots and the number of data objects. However,
the PM-tree and CPT incur additional distance computations for
constructing the M-tree to store actual data, while EPT and EPT*
need more compdists to select pivots for every data.

CPU time. First, LAESA, BKT, FQT, and MVPT perform the
best in terms of CPU time, since they operate in main memory.
Although EPT and EPT* are in-memory indexes, EPT ranks 3rd
and EPT* performs the worst in terms of CPU time. Because they
need to select different pivots for different objects while selecting
pivots for EPT* is costly as analyzed in Section 3.2. Second, the
SPB-tree and the M-index(*) can achieve high CPU efficiency
(i.e., ranking 2nd) because of the B+-tree used, while the OmniR-
tree, CPT, and the PM-tree need more CPU time (i.e., ranking 4th)
as they use an R-tree or an M-tree instead of a B+-tree.

Storage. The storage cost for a pivot-based metric index
includes two parts, i.e., the storage for the pre-computed distances
and the storage needed for the objects themselves. First, the SPB-
tree performs the best, since it utilizes an SFC to reduce the
storage cost of the pre-computed distances. However, on the
Color dataset, the storage cost of the SPB-tree is relatively larger.
The reason is that, each object in Color needs 1,136 bytes, and
that the size of the pages used to store the real objects is 4KB,
thus incurring a waste of storage in every page. Second, the
storage costs of the pivot-based trees are relatively smaller,
because they only store the distance values used to partition the
sub-tree instead of all the pre-computed distances. Third, the
storage costs of LAESA and EPT(*) are smaller than those of the
OmniR-tree and the M-index, since the latter two require

additional storage to index the pre-computed distances. In
addition, the storage cost of EPT(*) exceeds that of LAESA, as
EPT(*) selects different pivots for every object and hence needs
additional storage to indicate the corresponding pivot for each
object. Finally, the storage costs of CPT and the PM-tree are the
largest. Because they store the real objects in the tree structures.

In conclusion, the pivot-based trees (i.e., BKT, FQT, MVPT),
LAESA and the SPB-tree achieve the highest construction and
storage efficiency, followed by the M-index, EPT and the OmniR-
tree, while EPT*, CPT and the PM-tree perform the worst.

Discussion. Index construction can be accelerated using
parallelization as follows: (i) the pre-computed distances to each
pivot can be computed in parallel; (ii) the pre-computed distances
for each object can be computed in parallel; and (iii) as the data
can be partitioned into disjoint parts, multiple index structures
(e.g., multiple BKTs) instead of one can be constructed in parallel.

6.3 Update Cost
Table 6 details the update costs when using real datasets. Here,

an update operation first deletes a specific data object and then
inserts it back. First, we observe that BKT, FQT, and MVPT can
achieve high update efficiency. This is because the positions for
inserting/deleting can be found quickly using the tree structures

Table 6. Update Costs

LA Words Color

PA Comp. Time(s) PA Comp. Time(s) PA Comp. Time(s)
LAESA  5 0.15  5 0.14  5 2.29
EPT  15M 2.5  3.3M 2.1777  7.5M 11.7
EPT*  5.4K 0.3999  3.1K 0.2612  5K 2.94
CPT 15.2 78.3 0.6559 1052 93 0.1772 16.4 80.9 0.5698
BKT     9.6 0.0001   
FQT     10 0.0004   
MVPT  10 0.0001  10 0.0001  10 0.0001
PM-tree 32 48 0.0023 2004 4.1K 0.035 119 227 0.1033
OmniR-tree 16.1 10 0.0042 52.9 10 0.0029 15.9 10 0.0045
M-index(*) 13 10 0.0014 20.5 10 0.0016 11.8 10 0.0027
SPB-tree 12.9 10 0.0003 12.6 10 0.0014 12.5 10 0.0009

Table 4. Construction costs and storage sizes

 LA Words Color
 PA Compdists Time (s) Storage (KB) PA Compdists Time (s) Storage (KB) PA Compdists Time(s) Storage (KB)

LAESA  5.4M 2 50,331 (I)  3M 3 44,209 (I)  5M 80 1,140,625 (I)
EPT  0.54G 87 71,302 (I)  0.12G 82 56,157 (I)  0.24G 426 1,160,156 (I)
EPT*  5.8G 6,375 71,302 (I)  1.9G 2,545 56,157 (I)  5G 11,742 1,160,156 (I)

CPT 12M 92M 263
54,525 (I)
73,836 (D)

1.7M 66M 113
31,066 (I)
96,880 (D)

12.6M 76M 390
50,782 (I)

2,035,599 (D)
BKT      3M 1.6 22,896 (I)    
FQT      3M 1.3 22,770 (I)    
MVPT  5.4M 2.7 21,054 (I)  3M 1.8 22,729 (I)  5M 117 1,105,552 (D)
PM-tree 4.3M 33M 167 240,424 (D) 4.6M 60M 230 213,552 (D) 4.8M 94M 609 2,605,440 (D)
OmniR-tree 0.2M 5.4M 291 90,956 (D) 1.4M 3M 68 57,104 (D) 3.7M 5M 495 1,400,752 (D)
M-index(*) 0.09M 5.4M 15 76,775 (D) 0.05M 3M 10 45,140 (D) 0.42M 5M 101 1,389,174 (D)
SPB-tree 0.03M 5.4M 8 33,844 (D) 0.02M 3M 7 18,228 (D) 0.36M 5M 95 1,349,168 (D)

Table 5. Ranking according to construction and storage costs

 1st 2nd 3rd 4th 5th
PA SPB-tree M-index(*) OmniR-tree PM-tree CPT

Compdists
{LAESA, BKT, FQT, MVPT,
OmniR-tree, M-index(*), SPB-tree}

PM-tree CPT-tree EPT EPT*

Time {LAESA, BKT, FQT, MVPT } {SPB-tree, M-index(*)} EPT {CPT, PM-tree, OmniR-tree} EPT*
Storage {BKT, FQT, MVPT, SPB-tree} LAESA EPT(*) {M-index(*), OmniR-tree} {CPT-tree, PM-tree}

1065

stored in main-memory. Second, the update costs of the PM-tree
and CPT are relatively larger since they store the data objects in
the trees. Third, the CPU time of LEASA, EPT*, and CPT is
relatively high as they employ sequential scans for deletions.
Finally, the update costs of EPT and EPT* are high, because they
need additional cost when selecting pivots for each data to be
inserted. Note that, EPT* has better update efficiency than EPT,
because EPT incurs high estimation costs when selecting pivots.

6.4 Efficiency of EPT* and M-Index*
We proceed to consider the efficiency of EPT*, as compared

against EPT. In doing so, we only employ MkNNQs to observe
the effect of parameters on the indexes, due to the space limitation
and because MRQs yield similar findings. Fig. 14 depicts the
results, where PA is omitted, since EPT and EPT* are in-memory
indexes. As observed, EPT* performs better than EPT. This is
because the quality of the pivots selected by EPT* is higher. Note
that, although the construction cost of EPT* (as shown in Table 4)
is much higher in order to select pivots with higher quality, it can
be built in advance and has better update efficiency.

Fig. 15 plots the efficiency of M-index* compared with M-
index. As observed, the M-index* performs better than the M-
index. The reason is that M-index are visited multiple times
during search, resulting in redundant PA and CPU costs, while M-
index* is visited only once. However, the number of unnecessary
distance computations depends on the distance distribution of the
dataset, which makes it possible that the compdists of M-index*

and M-index are similar on Color and Synthetic. Second, the CPU
time and PA of the M-index* are slightly larger than those of M-
index for smaller k values on LA. Because, for smaller k values on
LA, the M-index based MkNNQ processing algorithm needs fewer
MRQs to find the results, incurring little redundant cost.

6.5 Similarity Search Performance
We compare the efficiency of the pivot-based metric indexes

under various parameters as listed in Table 3.

6.5.1 Effect of R
We first compare the performance of the pivot-based metric

indexes by using MRQ. Fig. 16 depicts the query costs including
compdists, PA, and CPU time for varying R values. As expected,
the query costs increase with the growth of R due to a larger
search space. However, on LA, the query costs of the SPB-tree
and the M-index* drop at the value of 64% due to the stronger
validation capabilities achieved by larger R values.

Compdists. We observe that (i) the M-index* and the SPB-tree
achieve high search performance in terms of compdists on LA and
Words, because they utilize the pivot validation technique to
avoid unnecessary distance computations; (ii) the PM-tree
achieves high computational efficiency on Synthetic due to its
range-pivot filtering, i.e., the routing objects of the PM-tree can
be regarded as an additional pivot used for pruning; and (iii)
EPT* has the smallest compdists on Color, as it selects different
pivots for each object to achieve high pruning power. In addition,

5 10 20 50 100
0.00

0.02

0.04

0.06

k

C
P

U
 t

im
e

(s
ec

)

0.0

0.5

1.0

1.5

2.0

com
p

d
ists (x10

3)

5 10 20 50 100
0.10

0.15

0.20

0.25

0.30

k

C
P

U
 t

im
e

(s
ec

)

1.0

1.5

2.0

2.5

3.0

com
p

d
ists (x10

5)

5 10 20 50 100
0.4

0.6

0.8

1.0

1.2

k

C
P

U
 t

im
e

(s
ec

)

2

3

4

5

com
p

d
ists (x10

5)

5 10 20 50 100
0.00

0.03

0.06

0.09

k

C
P

U
 t

im
e

(s
ec

)

0.0

0.5

1.0

1.5

com
pd

ists (x10
4)

 (a) LA (b) Words (c) Color (d) Synthetic

Figure 14. Comparison between EPT and EPT*

5 10 20 50 100
0.0

0.1

0.2

0.3

k

C
P

U
 t

im
e

(s
ec

)

0

100

200

300

com
p

dists

5 10 20 50 100
0.0

0.5

1.0

1.5

k

C
P

U
 t

im
e

(s
ec

)

0

1

2

3

4

com
p

dists (x10
5)

5 10 20 50 100
0

5

10

15

k

C
P

U
 t

im
e

(s
ec

)

2.0

2.5

3.0

3.5

4.0

com
pd

ists (x10
5)

5 10 20 50 100
0.0

0.5

1.0

1.5

k

C
P

U
 t

im
e

(s
ec

)

0

1

2

3

4

com
pdists (x10

3)

(a) LA (b) Words (c) Color (d) Synthetic

5 10 20 50 100
0.0

0.4

0.8

1.2

1.6

P
A

 (
x1

04)

k

5 10 20 50 100
0.0

1.5

3.0

4.5

P
A

 (
x1

04)

k

5 10 20 50 100
0.0

0.5

1.0

1.5

2.0
P

A
 (

x1
06)

k

5 10 20 50 100
0.0

0.5

1.0

1.5

P
A

 (
x1

05)

k

(e) LA (f) Words (g) Color (h) Synthetic

Figure 15. Comparison between M-index and M-index*

1066

the compdists of the pivot-based trees (i.e., BKT, FQT, and
MVPT) are slightly higher. This is because only some of the pre-
computed distances used for the pivot filtering are stored. In
addition, MVPT is slightly better than BKT and FQT in most
cases, since BKT and FQT are unbalanced trees. Finally, the
remaining indexes share similar compdists, as their pruning power
relies on the pivot filtering based on the same set of pivots.

I/O cost. As observed, the SPB-tree has the lowest I/O cost,
followed by the OmniR-tree and the M-index*, while CPT and
the PM-tree perform the worst. The reasons are that, (i) the SPB-
tree uses an SFC to compact the pre-computed distances while
preserve the similarity proximity, incurring lower I/O cost; (ii) the
OmniR-tree and M-index* store all the pre-computed distances,
resulting in larger I/O costs; and (iii) CPT and the PM-tree store
the real objects directly in the tree structure instead of in a
separate file, leading to low I/O efficiency. The I/O cost of the M-
index* is high on LA, because MBBs do not cluster well on LA
with the i-Distance technique.

CPU time. The first observation is that, the CPU costs of the
in-memory indexes (viz., BKT, FQT, MVPT, LAESA, and EPT*)
are relatively lower than those of the disk-based indexes (viz.
CPT, the SPB-tree, the M-index*, the OmniR-tree, and the PM-
tree). The reason is that the disk-based indexes need additional
work to transform data read from disk into the formats required
for further processing. In addition, the CPU cost of CPT on low
dimensional datasets (e.g., LA and Words) is better than that on
high dimensional datasets (e.g., Color and Synthetic) due to the
additional CPU time needed to read objects from disk. It is
observed that, the in-memory pivot-based trees (i.e., BKT, FQT,

and MVPT) have lower CPU costs than the in-memory pivot-
based tables (i.e., LAESA and EPT*), especially on LA and
Words. This is because LAESA and EPT* need to scan the whole
pivot table of the dataset, while the pivot-based trees can prune
sub-trees via the pivot-based filtering.

6.5.2 Effect of k
Then, we compare the performance of indexes by using

MkNNQs. Fig. 17 shows the query costs. As expected, query
costs increase with the growth of k due to larger search space.

Compdists. As discussed in Section 6.5.1, (i) the PM-tree and
EPT* achieve the highest computational efficiency on Color and
Words, and (ii) the compdists of the pivot-based trees (viz., BKT,
FQT, and MVPT) are the largest. The second observation is that
the compdists of the SPB-tree is higher than that of the M-index*
and the OmniR-tree on LA and Color. This is because, for
continuous distance functions, the SPB-tree uses approximated
discrete distances in order to perform its SFC mapping, resulting
in less effective pivot-based filtering. In addition, the compdists of
LAESA and CPT are relatively larger, because their MkNNQ
algorithms traverse the objects in the dataset in the same order as
they appear, which is suboptimal in terms of compdists.

I/O cost. First, we see that the SPB-tree achieves the highest
I/O efficiency. Second, the PA of the M-index* is the largest on
LA and Synthetic, due to the unbalanced partitions caused by the
data distribution. Finally, the PA of the PM-tree is the largest on
Color and Words datasets. As the PM-tree stores objects directly
in its tree structure instead of in a separate file, the high
dimensional and variable sized data incurs low page utilization.

 EPT* CPT BKT FQT MVPT SPB-tree M-index* PM-tree OmniR-tree

4% 8% 16% 32% 64%
0

2

4

6

8

co
m

pd
is

ts
 (

x1
05)

r

4% 8% 16% 32% 64%
2

3

4

5

6

7

co
m

pd
is

ts
 (

x1
05)

r

4% 8% 16% 32% 64%
0.6

0.7

0.8

0.9

1.0

1.1

co
m

p
d

is
ts

 (
x1

06)

r

4% 8% 16% 32% 64%
0.0

0.3

0.6

0.9

1.2

co
m

p
d

is
ts

 (
x1

06)

r

(a) LA (b) Words (c) Color (d) Synthetic

4% 8% 16% 32% 64%
102

103

104

105

P
A

r

4% 8% 16% 32% 64%
0

2

4

6
P

A
 (

x1
04)

r

4% 8% 16% 32% 64%
2

4

6

8

P
A

 (
x1

05)

r

4% 8% 16% 32% 64%
0

3

6

9

P
A

 (
x1

04)

r

(e) LA (f) Words (g) Color (h) Synthetic

4% 8% 16% 32% 64%
0.0

0.2

0.4

0.6

C
P

U
 t

im
e

(s
ec

)

r

4% 8% 16% 32% 64%
0.00

0.25

0.50

0.75

1.00

C
P

U
 t

im
e

(s
ec

)

r

4% 8% 16% 32% 64%
0

1

2

3

7

8

C
P

U
 t

im
e

(s
ec

)

r

4% 8% 16% 32% 64%
0.0

0.4

0.8

1.2

C
P

U
 t

im
e

(s
ec

)

r

(i) LA (j) Words (k) Color (l) Synthetic

Figure 16. MRQ performance vs. radius r

1067

CPU time. As expected, the in-memory indexes have lower
CPU costs than the disk-based indexes. Further, the CPU costs of
EPT* and LAESA generally exceed those of the pivot-based trees.
Because MkNNQ based on EPT* and LAESA verifies the objects
in the order as they appear, incurring many unnecessary
verifications. In addition, although the computational cost of the
SPB-tree is slightly higher than that of the M-index* when using
continuous distance functions, the CPU time of the M-index* is
larger, due to the additional CPU cost caused by larger PA.

6.5.3 Effect of |P|
Next, we explore the influence of |P| on MkNNQ performance

of the indexes. Fig. 18 depicts the query costs using LA and
Synthetic. Values for the M-index* are absent when |P| = 1, as
more than one pivot is needed for the generalized hyperplane
partitioning. First, the compdists drops as |P| grows, as more
pivots yields better pivot filtering. Second, the PA and CPU time
first drop and then stay stable or increase with |P|. The reason is
that, (i) the number of verified objects drops as compdists
decreases, incurring smaller I/O and CPU costs; and that (ii) the
storage size increases due to more pre-computed distances being
stored, resulting in more I/O and higher CPU costs.

7. CONCLUSIONS
We classify pivot-based metric indexes into three categories,

i.e., pivot-based tables, pivot-based trees, and pivot-based
external indexes, and we study their performance empirically on
an equal footing. The findings and insights, summarized below,
enable selecting indexes that best support the intended uses:

 Although the storage sizes of the indexes in our experiments
can be loaded into main-memory, the pivot-based external
indexes can achieve better scalability than the pivot-based
tables and trees for the cases when the available main
memory is small or the dataset is extremely large.

 For the pivot-based tables, (i) CPT tries to improve LAESA
by utilizing an M-tree to store the data, in order to handle
the case when the dataset does not fit into main memory,
resulting in high construction, update, and query costs; and
(ii) EPT* tries to improve EPT by trading index
construction efficiency for query efficiency. Although the
construction cost of EPT* is high, it can be built in advance
and has fewer distance computations for a query. As the
computational cost is the dominant cost in the case of
complex distance functions, EPT* is a good candidate for
small datasets with complex distance functions.

 The pivot-based trees can achieve high construction and
update efficiency. Although they incur more distance
computations during search, they have smaller CPU time
due to the tree structures and the absence of I/O cost. In
addition, MVPT performs the best in this category, because
it is a balanced tree. Thus, for small datasets with simple
distance computation functions, MVPT is a good candidate.

 For pivot-based external indexes, (i) the PM-tree stores the
data and pre-computed distances together, incurring relatively
large construction, update, and query costs; (ii) the SPB-tree
and the M-index* achieve high construction, update, and
query efficiency by using a B+-tree with MBB information;

 EPT* CPT BKT FQT MVPT SPB-tree M-index* PM-tree OmniR-tree

5 10 20 50 100
101

102

103

104

co
m

p
di

st
s

k

5 10 20 50 100
1.0

1.5

2.0

2.5

3.0

3.5

co
m

pd
is

ts
 (

x1
05)

k

5 10 20 50 100
2

3

4

5

co
m

pd
is

ts
 (

x1
05)

k

5 10 20 50 100
0

1

2

3

4

5

co
m

p
d

is
ts

 (
x1

04)

k

(a) LA (b) Words (c) Color (d) Synthetic

5 10 20 50 100
100

101

102

103

104

P
A

k

5 10 20 50 100
103

104

105
P

A

k

5 10 20 50 100
2.0

2.5

3.0

3.5

4.0

P
A

 (
x1

05)

k

5 10 20 50 100
101

102

103

104

105

P
A

k

(e) LA (f) Words (g) Color (h) Synthetic

5 10 20 50 100
10-4

10-3

10-2

10-1

100

C
P

U
 t

im
e

(s
ec

)

k

5 10 20 50 100
0.0

0.2

0.4

0.6

0.8

C
P

U
 t

im
e

(s
ec

)

k

5 10 20 50 100
0

2

4

6

C
P

U
 t

im
e

(s
ec

)

k

5 10 20 50 100
10-3

10-2

10-1

100

C
P

U
 t

im
e

(s
ec

)

k

(i) LA (j) Words (k) Color (l) Synthetic

Figure 17. MkNNQ performance vs. k

1068

and (iii) the SPB-tree outperforms the OmniR-tree, as it
utilizes an SFC to reduce the storage cost and meanwhile
preserving similarity locality. Hence, for large datasets, the
SPB-tree and the M-index* are good candidates.

The study suggests that extension of EPT(*) to a disk-based
index with a low construction cost is a promising direction. Also,
comparisons between pivot-based metric indexes and compact
partitioning metric indexes are an interesting research direction.

8. ACKNOWLEDGMENTS
This work was supported in part by the 973 Program Grant No.
2015CB352502, NSFC Grant No. 61522208 and 61379033, NSFC-
Zhejiang Joint Fund No. U1609217, and a grant from the Obel Family
Foundation. Yunjun Gao is a corresponding author of this work.

9. REFERENCES
[1] J. Almeida, R. D. S. Torres, and N. J. Leite. BP-tree: An efficient

index for similarity search in high-dimensional metric space. In
CIKM, pages 1365–1368, 2010.

[2] L. G. Ares, N. R. Brisaboa, M. F. Esteller, O. Pedreira, and A. S.
Places. Optimal pivots to minimize the index size for metric access
methods. In SISAP, pages 74–80, 2009.

[3] L. Aronovich and I. Spiegler. CM-tree: A dynamic clustered index
for similarity search in metric databases. Data Knowl. Eng.,
63(3):919–946, 2007.

[4] R. A. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity
matching using fixed-queries trees. In CPM, pages 198–212, 1994.

[5] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-
dimensional metric spaces. In SIGMOD, pages 357–368, 1997.

[6] T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for
similarity search queries. ACM Trans. Datab. Syst., 24(3):361–404,
1999.

[7] S. Brin. Near neighbor search in large metric spaces. In VLDB, pages
574–584, 1995.

[8] W. Burkhard and R. Keller. Some approaches to best-match file
searching. Commun. ACM, 16(4):230–236, 1973.

[9] B. Bustos, G. Navarro, and E. Chavez. Pivot selection techniques for
proximity searching in metric spaces. Pattern Recognition Letters,
24(14):2357–2366, 2003.

[10] E. Chavez and G. Navarro. A compact space decomposition for
effective metric indexing. Pattern Recognition Letters, 26(9):1363–
1376, 2005.

[11] E. Chavez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroquin.
Searching in metric spaces. ACM Comput. Surv., 33(3):273–321, 2001.

[12] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen. Efficient metric
indexing for similarity search. In ICDE, pages 591–602, 2015.

[13] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In VLDB, pages 426–435,
1997.

[14] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance
searching index for metric data sets. Multimedia Tools Appl.,
21(1):9–33, 2003.

[15] G. Hjaltason and H. Samet. Index-driven similarity search in metric
spaces. ACM Trans. Database Syst., 28(4):517–580, 2003.

[16] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance:
An adaptive B+-tree based indexing method for nearest neighbor
search. ACM Trans. Database Syst., 30(2):364–397, 2005.

[17] C. T. Jr, R. F. S. Filho, A. J. M. Traina, M. R. Vieira, and C. Faloutsos.
The omni-family of all-purpose access methods: A simple and
effective way to make similarity search more efficient. VLDB J.,
16(4):483–505, 2007.

[18] C. T. Jr, A. J. M. Traina, B. Seeger, and C. Faloutsos. Slim-trees:
High performance metric trees minimizing overlap between nodes. In
ICDE, pages 51–65, 2000.

[19] L. Mico, J. Oncina, and R. C. Carrasco. A fast branch & bound
nearest neighbour classifier in metric spaces. Pattern Recognition
Letters, 17(7):731–739, 1996.

[20] J. Mosko, J. Lokoc, and T. Skopal. Clustered pivot tables for I/O-
optimized similarity search. In SISAP, pages 17–24, 2011.

[21] G. Navarro. Searching in metric spaces by spatial approximation.
VLDB J., 11(1):28–46, 2002.

[22] H. Noltemeier, K. Verbarg, and C. Zirkelbach. Monotonous
bisector* Trees —A tool for efficient partitioning of complex scenes
of geometric objects. In Data Struc. and Efficient Algo., pages 186–
203, 1992.

[23] D. Novak, M. Batko, and P. Zezula. Metric Index: An efficient and
scalable solution for precise and approximate similarity search. Inf.
Syst., 36(4):721–733, 2011.

[24] G. Ruiz, F. Santoyo, E. Chavez, K. Figueroa, and E. S. Tellez.
Extreme pivots for faster metric indexes. In SISAP, pages 115–126,
2013.

[25] E. Schubert, A. Koos, T. Emrich, A. Zufle, K. A. Schmid, and A.
Zimek. A framework for clustering uncertain data. PVLDB,
8(12):1976–1979, 2015.

[26] T. Skopal, J. Pokorny, and V. Snasel. PM-tree: Pivoting metric tree
for similarity search in multimedia databases. In ADBIS, pages 803–
815, 2004.

[27] J. K. Uhlmann. Satisfying general proximity/similarity queries with
metric trees. Inf. Process. Lett., 40(4):175–179, 1991.

[28] E. Vidal. An algorithm for finding nearest neighbors in (approximately)
constant average time. Pattern Recognition Letters, 4(3):145–157, 1986.

[29] P. N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In SODA, pages 311–321, 1993.

[30] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity search:
The metric space approach. Springer US, 2006.

 EPT* CPT BKT FQT MVPT
 SPB-tree M-index* PM-tree OmniR-tree

1 3 5 7 9
100

102

104

106

co
m

pd
is

ts

the number |P| of pivots
1 3 5 7 9

102

103

104

105

106

co
m

p
d

is
ts

the number |P| of pivots
(a) LA (b) Synthetic

1 3 5 7 9
100

101

102

103

104

P
A

the number |P| of pivots
1 3 5 7 9

101

102

103

104

105

P
A

the number |P| of pivots
(c) LA (d) Synthetic

1 3 5 7 9
10-5

10-4

10-3

10-2

10-1

C
P

U
 t

im
e

(s
ec

)

the number |P| of pivots
1 3 5 7 9

10-3

10-2

10-1

100

C
P

U
 t

im
e

(s
ec

)

the number |P| of pivots
(e) LA (f) Synthetic

Figure 18. MkNNQ performance vs. |P|

1069

