
Knowledge Verification for Long-Tail Verticals

Furong Li† Xin Luna Dong‡ Anno Langen§ Yang Li§
†National University of Singapore ‡Amazon §Google Inc.

furongli@comp.nus.edu.sg lunadong@amazon.com {arl, ngli}@google.com

ABSTRACT
Collecting structured knowledge for real-world entities has become
a critical task for many applications. A big gap between the knowl-
edge in existing knowledge repositories and the knowledge in the
real world is the knowledge on tail verticals (i.e., less popular do-
mains). Such knowledge, though not necessarily globally popular,
can be personal hobbies to many people and thus collectively im-
pactful. This paper studies the problem of knowledge verification
for tail verticals; that is, deciding the correctness of a given triple.

Through comprehensive experimental study we answer the fol-
lowing questions. 1) Can we find evidence for tail knowledge from
an extensive set of sources, including knowledge bases, the web,
and query logs? 2) Can we judge correctness of the triples based
on the collected evidence? 3) How can we further improve knowl-
edge verification on tail verticals? Our empirical study suggests
a new knowledge-verification framework, which we call FACTY,
that applies various kinds of evidence collection techniques fol-
lowed by knowledge fusion. FACTY can verify 50% of the (cor-
rect) tail knowledge with a precision of 84%, and it significantly
outperforms state-of-the-art methods. Detailed error analysis on
the obtained results suggests future research directions.

1. INTRODUCTION
Collecting structured knowledge for real-world entities has be-

come a critical task for many applications, such as semantic search,
query answering and machine reading. Both academia and in-
dustry have spent considerable efforts on constructing large-scale
knowledge bases (KBs), such as YAGO [35], NELL [7], Knowl-
edge Vault [11], DeepDive [30], DBpedia [1], Probase [41], Google
Knowledge Graph [20], and Microsoft Satori [34].

Knowledge is usually stored as (subject, predicate, object) triples,
where each triple states a fact of some entity. To exemplify, a
triple (Kobe Bryant, profession, basketball player) means that Kobe
Bryant’s profession is basketball player. Triples in knowledge bases
are often organized into verticals, where each vertical describes a
set of entities in the same domain sharing common attributes (i.e.,
predicates). For instance, the vertical of athletes contains triples
regarding different athletes, and describes each athlete by profes-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

sion, country, team, and so on. Verticals may have hierarchy; for
example, basketball players is a sub-vertical of athletes.

A big gap between the knowledge in existing knowledge bases
and the knowledge in the real world is the knowledge on tail ver-
ticals. Roughly speaking, a vertical is a tail vertical if its subject
entities are not globally popular (for example, in terms of search
query volume); the number of triples in a tail vertical is usually not
huge (below millions). In contrast to head (popular) verticals such
as music, movies and celebrities, examples of tail verticals include
gym exercises, yoga poses, cheese varieties, and tomato varieties.
Although existing knowledge bases contain billions of triples, their
information on tail verticals is still limited. For instance, we found
that in Freebase [4] about 40% entities have no factual triples (i.e.,
triples that state some properties of an entity), but only triples about
their names, types, and descriptions; the majority of such entities
belong to some tail verticals. As another example, we manually
collected triples for the four aforementioned tail verticals from up
to three manually selected authoritative sources, and observed that
in total only about 150 triples exist in Freebase, and the coverage
of their subject entities is below 10%. Although a tail vertical may
not be popular by itself, given the large number of tail verticals,
they can be collectively impactful.

Collecting knowledge for tail verticals is hard. On the one hand,
there can be millions of tail verticals and their attributes are highly
diverse, so manual curation cannot scale. On the other hand, auto-
matic extractions fall short both because we lack good training data,
and because reconciliation (i.e., deciding if two mentions refer to
the same entity) on tail entities can be error-prone. We thus tried
a different approach: we identified a set of tail verticals and a few
data sources for each vertical1, and then asked the crowd to extract
triples from these given sources through annotation tools and hand-
crafted patterns [9]. Although the results are much cleaner than
those from automatic extraction systems, there can still be remnant
extraction errors [14] and imprecise information from the sources.
Thus, it is critical to verify the correctness of the collected knowl-
edge before populating knowledge bases.

There exist two approaches for knowledge verification. First,
one can search the subject and object of a triple on the web, and
then apply a classifier to decide if the triple is true based on the
search results [25]. However, this approach obtains poor results on
tail verticals: we can verify only 19% of the tail knowledge with a
precision of 22% (i.e., for every 100 triples that we verified as true,
only 22 are actually true) in our experiments. This is because tail
knowledge is not globally popular on the web and search results can
be very noisy. Another solution is to apply supervised knowledge
extraction [15] on the web, and consider a triple as verified if it

1Vertical discovery and source selection are very important problems but
are out of the scope of this paper.

1370

can be extracted. Unfortunately, this solution usually leads to a low
recall on tail verticals because it cannot extract any triple whose
subject or object is unknown to existing knowledge bases.

In this paper we investigate a third approach that first leverages
both search-based and extraction-based techniques to find support-
ing evidence for each triple, and subsequently predicates the cor-
rectness of each triple based on the evidence. Our investigation
tries to answer the following questions:
• How can we find evidence for the tail triples, and what are the

sources that we can use?
• Can we judge the correctness of the triples based on the col-

lected evidence?
• How can we further improve knowledge verification on tail ver-

ticals?
This paper makes four contributions. First, we explored an ex-

tensive set of sources to collect supporting evidence for a triple. We
start with existing knowledge bases, which provide highly reliable
information but with limited coverage on tail verticals. We then ex-
pand our search space to the web, which has a much higher cover-
age but can be noisy. Further, we enrich the evidence by analysing
search query logs, which reflect users’ perspectives on the world.
In total we tried seven approaches to extract evidence from these
sources. Overall we found evidence for 60% of the correct triples
on over 96% of the entities in the tail verticals we examined. How-
ever, there are evidence for wrong triples too. We provide a detailed
study to compare various sources and approaches that we used.

Second, we investigate how knowledge fusion [12] can be ap-
plied to distinguish correct triples from wrong ones based on the
collected evidence. Knowledge fusion [12, 13] is recently invented
to decide the correctness of an extracted triple based on the data
sources that provide the triple and the extractors that obtain the
triple. We tried both single-truth methods [10, 12], and multi-truth
methods [32, 45]; the former assume that there is only one true
value for an entity, while the latter allow the existence of multiple
true values (e.g., a book can have multiple authors). Our experi-
ments show that single-truth methods usually give the highest pre-
cision, and multi-truth methods usually lead to the highest recall.
We then propose a hybrid approach that combines the strengths of
them and thus balances the precision and recall.

Third, this paper is the first to propose an end-to-end knowledge
verification framework that performs evidence collection followed
by knowledge fusion. Our framework, which we call FACTY, can
verify 50% of the (correct) tail knowledge with a precision of 84%,
significantly better than existing approaches.

Finally, we conducted a detailed error analysis on the obtained
results, and suggest several directions for improving both knowl-
edge verification and knowledge curation in general.

The rest of the paper is organized as follows. Section 2 defines
the problem and describes our experiment datasets. Section 3 de-
scribes how we collect evidence from different sources. Section 4
studies how knowledge fusion can be applied to decide the correct-
ness of a triple. Section 5 presents results obtained by knowledge
fusion. Section 6 compares our framework with existing knowledge-
verification systems, and Section 7 discusses future directions. Sec-
tion 8 reviews related work, and Section 9 concludes the paper.

2. PROBLEM DEFINITION
Triple, vertical. A triple is in the form of (subject, predicate, object),
where subject is an entity, predicate is an attribute of the entity, and
object is a value for the attribute of the entity. An object may be
an entity, an arbitrary string, a number, and so on. A subject en-
tity could have several values for an attribute, and there is a triple

Table 1: Sample triples for the vertical Winter sports.
subject predicate object

t1 skiing equipment boots
t2 snowboarding equipment board
t3 ice hockey equipment helmet
t4 ice hockey equipment stick
t5 ice hockey equipment neck guard
t6 ice hockey venue hockey rink
t7 skiing venue outdoor

for each value. For example, Table 1 has three triples (t3-t5) re-
garding ice hockey equipments, each for an equipment. We con-
sider factual triples and say a triple is true if it conforms to the
real world; for example, (ice hockey, equipment, stick) is true, while
(ice hockey, equipment, board) is false. If a (subject, predicate) pair
has only one true triple (e.g., date-of-birth), we call the case single-
truth; otherwise, we call it multi-truth.

A vertical is a collection of triples whose subjects are entities in
the same domain and have a set of predicates in common. Table 1
exemplifies a small set of triples in the vertical Winter sports; it
contains seven triples for three winter sports on two predicates.

We can now formally define the problem we study in this paper.

DEFINITION 2.1 (KNOWLEDGE VERIFICATION). Given a set
T of triples in a vertical, knowledge verification decides if each
triple in T is true. 2

Experiment dataset. We experimented on four verticals: Cheese
varieties, Tomato varieties, Gym exercises and Yoga poses. We
chose these four verticals because they represent verticals with dif-
ferent characteristics. For each vertical, we manually collected
triples from up to three carefully selected authoritative and compre-
hensive sources, and kept those for which we can manually validate
the correctness as true triples.

Then for experimental purpose, we generate false triples as fol-
lows. Given a true triple, we consider triples that share the same
subject and predicate, but have different objects as its alternatives;
for instance, (ice hockey, venue, outdoor) is an alternative of the triple
t6 in Table 1. All alternatives that are not contained in our input are
considered false; this is known as the Local Closed-World Assump-
tion (LCWA) and is commonly used for generating negative ex-
amples for knowledge extraction and fusion [11]. More precisely,
given a set T of true triples, for each triple t = (s, p, o) ∈ T , let O
be the set of objects associated with p. We generate a false triple
t′ = (s, p, o′) for each o′ ∈ O if t′ /∈ T . In our experiments, for a
true triple, we generate at most 20 false triples by considering only
popular objects for the predicate. Then the input of the knowledge-
verification task contains both the true triples and the false triples.
We chose the top-20 popular objects because they typically occur
more often on the web and thus increased the hardness of the prob-
lem. We also note that we found very few false negatives since the
data sources we selected have high coverage for these domains.

Table 2 shows the statistics of the verticals, where each verti-
cal contains hundreds of entities and thousands of true triples. The
number of predicates ranges from 7 to 17. The ratio between false
triples to true triples ranges from 5 to 14. In the first three verticals,
the majority of the (subject, predicate) pairs have a single object as
the true value, whereas in the Yoga vertical, most (subject, predi-
cate) pairs have multiple truths.

3. COLLECTING EVIDENCE
We first try a simple approach for knowledge verification: con-

sider any triple as correct if we can find some kind of evidence
that supports the triple. In this section we answer the following

1371

Table 2: Statistics for each tail vertical.
Vertical #entities #preds #true triples #false triples %multi-truth
Cheese 420 17 4,753 68,480 2.3%
Tomato 574 14 5,464 64,935 3.7%

Gym 931 7 7,114 48,348 7.4%
Yoga 123 10 1,826 9,759 59.0%

questions: 1) Is this approach adequate? 2) How many true triples
can we find evidence for (i.e., recall)? 3) Will we also find evi-
dence for false triples (i.e., precision)? 4) Which sources contain
rich evidence for tail knowledge and which extraction methods are
effective? We explain where and how we collect evidence in Sec-
tions 3.1 and 3.2, and present results in Section 3.3.

3.1 Sources for evidence collection
We first define the concept of evidence. Evidence of a triple is

a piece of information that supports the triple. Evidence can be a
triple in a knowledge base, a sentence in a document, a row in a
web table, and so on. For instance, “Besides ice skates and sticks,
hockey players are usually equipped with...” from Wikipedia is con-
sidered evidence for the triple (ice hockey, equipment, ice skates).

We consider three types of sources to find evidence for triples.
First, we consider existing knowledge bases. As data in knowledge
bases are structured and often of high quality, they should provide
fairly reliable evidence. However, their coverage on tail knowl-
edge can be low. Second, we consider the web, which contains
rich data. However, the web data are often unstructured and thus
make the evidence collection harder. There may also be errors on
the web [13], reducing the trustworthiness of the evidence. Third,
we consider query logs. As reported by previous research, 71% of
search queries contain named entities [17]. The entities extracted
from query logs can be different from those appear in web docu-
ments, as query logs model the world from user perspectives [18].

3.2 Techniques for evidence collection
Ideally, the evidence of a triple should mention the subject, pred-

icate and object in some way. Usually one can recognize the men-
tions of subjects or objects through string matching or entity link-
ing [19]. However, it is hard to identify the mentions of a predicate,
because predicates often appear in distinct forms (e.g., birthday
vs. was born on), and sometimes even do not appear (e.g., search
queries may contain only subject and object). Explicitly looking for
evidence containing a particular predicate usually leads to a low re-
call. Therefore, when collecting evidence, we only require subject
and object matching, but relax on predicate. With no surprise, not
requiring predicate matching causes errors; we compensate this by
recording the matching information in pattern (we explain shortly)
and leverage it in knowledge fusion (Section 5).

To facilitate the matching between entities, we conduct reconcil-
iation [19] to map all entities to a unified repository (Freebase in
particular). More precisely, if the subject/object of a triple exists
in Freebase, we record its entity ID (known as mid); otherwise, the
subject/object remains in its raw form.

For book-keeping purpose, we record the provenance of each
piece of evidence. We write 〈url, system, pattern〉 as provenance,
where url is the webpage on which the evidence is found, system is
the system that finds the evidence, and pattern is the pattern used in
evidence discovery (e.g., a pattern for extracting sport equipments
from texts can be “〈sport〉 players are equipped with 〈noun〉”).
Note that url may be set to null if the evidence is not from a web-
page (e.g., query log), and pattern can be null if we are not aware of
the pattern used to discover the evidence. As we show later, such
provenance information can help significantly in knowledge fusion
(Sections 4-5)

We next describe how we find evidence from each type of data
sources in detail.

3.2.1 Collecting evidence from knowledge bases
We consider two types of knowledge bases for evidence collec-

tion: manually curated KBs and automatically generated KBs.

Freebase: Freebase is a human curated knowledge base consisting
of 50M entities and 1,500 verticals2. All subjects in the triples
are entity IDs, and objects are either entity IDs or values from a
fixed domain (e.g., date, number). The predicates come from a pre-
defined ontology.

Given an input triple t = (s, p, o), we consider a Freebase triple
(s′, p′, o′) as evidence for t if s = s′ and o = o′ (recall that predicate
matching is not required). Two subjects are the same if they are the
same ID; two objects are the same if they are the same ID, date,
or number (possibly in different formats). The provenance of this
evidence is 〈null,Freebase, p′〉; url is set to null as it typically is not
recorded in Freebase; pattern is set to p′, meaning that we discover
the evidence by considering triples with predicate p′.

KV [11]: Knowledge Vault (KV) is an automatically generated
knowledge base containing 2.8B triples, among which 90M high-
probability (≥ 0.7) triples are not in Freebase. A KV triple is in the
same format as Freebase, and in addition has a probability indicat-
ing the likelihood of the triple being true, and a list of URLs where
the triple is extracted.

We consider a KV triple t′=(s′, p′, o′) as evidence of t = (s, p, o)

if s = s′ and o = o′, and Pr(t′) ≥ 0.7 (0.7 is a threshold suggested
in [11]). For each webpage url from which t′ is extracted, we output
a provenance 〈url,KV, p′〉.

3.2.2 Collecting evidence from the web
The web contains rich information in various formats, includ-

ing web tables (structured), DOM trees (semi-structured), and texts
(unstructured). We applied a wide spectrum of techniques to col-
lect evidence from the web, ranging from sophisticated supervised
learning to simple co-occurrences of entity names.

Web tables: Previous research [5] shows that web tables contain a
vast amount of structured information about entities. Here we con-
sider webpages where some keywords of the vertical (e.g., “win-
ter sports”) are mentioned. Then, following the techniques in [6],
we extract from these webpages all instances under the table tag,
and further identify relational tables in contrast to tables for layout
(1.3% relational tables among all raw tables [5]).

Next we extract a set of triples from each relational table. We
distinguish vertical tables and horizontal tables (the “vertical” here
should not be confused with that in “tail verticals”). A vertical table
(e.g., Wikipedia infobox [40]) describes an entity in two columns,
where the first column gives the attributes and the second column
gives the values. We then generate a triple from each row, where
the subject entity is identified from the table header or surrounding
texts. A horizontal table often contains multiple entities, where
each row describes an entity, each column represents an attribute,
and each cell gives the value of the column attribute for the row
entity. We train a classifier to decide the entity column, from which
we extract subjects; we extract predicates from table header; and
we generate a triple from each remaining cell. Whenever possible,
we reconcile the subjects and objects to Freebase mids.

We consider an extracted triple (s′, p′, o′) as evidence of an input
triple (s, p, o) if they match on both subjects and objects. We say s′
and s (respectively, o′ and o) match if (1) their mids are identical,
or (2) their Jaccard string similarity is above a threshold θ. The

2https://developers.google.com/freebase/data

1372

predicates extracted from web tables are strings, so can have much
higher variety than KB triples. Hence instead of tracking each pred-
icate as a pattern, we compare p with p′ and decide whether or not
they match (string similarity above θ). The provenance of the ev-
idence is 〈url,Webtables, pred-match/pred-unmatch〉, where url is
the webpage that the evidence is extracted from.
Closed IE: We apply closed information extraction [15] techniques
to extract triples from DOM trees and texts. The general idea is to
learn a set of patterns from training data for each targeted relation
(i.e., predicate), and then apply the learnt patterns to extract new
instances. We say this extraction method is closed since it is re-
stricted to pre-defined predicates and vocabularies.

In particular, we take our true triples as training examples, and
apply distant supervision [29] to learn extraction patterns for each
predicate. We then use the learnt patterns to extract triples from the
web. In addition to phrases, the patterns we learned include two
types of information for the purpose of improving extraction pre-
cision. First, we apply Natural Language Processing (NLP) tech-
niques to parse texts [8], and the patterns may contain sentence
structure. Second, we annotate Freebase entities in web docu-
ments [19], and the patterns contain the types of annotated enti-
ties; as such, we cannot extract triples whose subjects or objects
are unknown to Freebase.

We consider an extracted triple (s′, p′, o′) as evidence of (s, p, o)

if s=s′, p=p′ and o=o′ (we require p=p′ here because triples ex-
tracted by Closed IE are guaranteed to have the same predicates as
our input). For each webpage url and extraction pattern pattern, we
have a provenance 〈url,ClosedIE, pattern〉 for the evidence.
Open IE: Open IE [2] systems can extract triples on any domain
without specifying vocabulary, thereby called open. We apply Open
IE on web texts; our extraction system works in a similar way as
TEXTRUNNER [2] and REVERB [16]. Basically it leverages NLP
annotations to identify a relation phrase (e.g., equipped with) and a
pair of entities from surrounding texts, and then generates a triple
correspondingly. Both the relations and the entities can be arbitrary
strings; but we reconcile them to Freebase mids whenever possible.

The way we identify an Open IE extraction as evidence of a triple
is exactly the same as we do for web-table extractions. We do not
repeat the details here.
Web co-occurrences: Given a triple t = (s, p, o), we find the co-
occurrences of the subject s and the object o on webpages as ev-
idence for t. To allow for small variations, for each entity we (1)
look up its aliases in Freebase if possible, and (2) use the n-grams
of its name and aliases, where each n-gram contains n consecutive
words in the string. To improve accuracy, (1) we allow a maximum
number of 30 words between the two n-grams; (2) in case of free
texts (instead of DOM trees), we further restrict the co-occurrence
to the same sentence.

We consider the pair (s-n-gram, o-n-gram) as evidence of t if
they co-occur in at least three webpages (so it is less likely to be
random noise). For each webpage url, we output a provenance
〈url,Web co-occur, null〉; we do not require a predicate match here
in order to improve recall, and we set extraction pattern to null.

3.2.3 Collecting evidence from query logs
We annotate each query in Google’s search log with Freebase

entities following the techniques in [17]. We consider a query Q
as evidence of a triple t = (s, p, o), if (1) s has a corresponding
Freebase mid, and Q contains an annotation for this mid, and (2) Q
contains the name, alias, or Freebase annotation of o. We do not
check predicates here since they rarely occur in a query where both
subjects and objects occur; we require the subject to match on mid
to reduce noise.

Table 3: Summary of different evidence-collection approaches.
Source Technique Closed Open Co-occur

Knowledge Freebase
√

bases KV
√

Web

Web tables
√

Closed IE
√

Open IE
√

Web co-occur
√

Query log Query logs
√

Table 4: Evidence collection results on each vertical.
Cheese Tomato Gym Yoga Average

URLs 20.6M 2.1M 4.6M 16.4M 9.2M
Precision 0.183 0.181 0.244 0.188 0.201

Recall 0.518 0.642 0.548 0.833 0.595
F1 0.270 0.282 0.338 0.307 0.300

We distinguish two patterns for the evidence: entity-to-entity if
the object o and Q match on Freebase mids, and entity-to-text oth-
erwise. The provenance, thus, is 〈null,Query logs, entity-to-entity/
entity-to-text〉. We distinguish these two patterns since they often
lead to different evidence quality (see Section 5).

3.2.4 Summary
Table 3 summarizes the different evidence-collection approaches.

Horizontally the approaches are divided into three classes based on
the type of the data sources. Vertically, there are also three cat-
egories: Freebase, KV and Closed IE are “closed” since they are
restricted to known entities and relations; Open IE and Web tables
are considered “open” since they can recognize unknown entities
and relations; Web co-occurrences and Query logs are based on the
“co-occurrences” of subject and object.

3.3 Results and discoveries
We next examine the evidence we obtained through the above

techniques. Empirically, we set the string-similarity threshold θ =

0.35, and use 4-gram for Web co-occurrences (we discuss param-
eter setting shortly). We use precision and recall to quantify the
quality of the collected evidence. Let Evidence be the set of triples
that we found evidence for, and Truth be the set of true triples. We
define:

Precision =
|Evidence ∩ Truth|
|Evidence|

;

Recall =
|Evidence ∩ Truth|

|Truth|
.

Further we have F–measure = 2∗Precision∗Recall
Precision+Recall .

Quality of evidence. Table 4 shows the evidence collection results
on each vertical. We find evidence from millions of URLs; there
are more webpages about cheese and yoga poses, while fewer about
tomato and gym exercises. The precision of the evidence is fairly
similar among different verticals (between 0.18 and 0.25), while the
recall ranges from 0.51 to 0.84. On average the obtained evidence
has a precision of 0.20 and recall of 0.60, and covers 96% of the
entities (we discuss the recall loss in Section 7.1).

Interestingly, based on the results, a more widely mentioned ver-
tical may not have a higher recall in evidence collection. For in-
stance, the vertical Cheese obtains evidence from the largest num-
ber of URLs, but it has the lowest recall. A detailed examination
shows that in this vertical, the evidence for triples about differ-
ent predicates differ greatly. For predicates like cheese type and
state of origin, we obtain a recall over 0.8 and each triple has hun-
dreds of pieces of evidence; in contrast, for predicates like taste
and pairings, the recall is around 0.1 and each triple has only a few
pieces of evidence.

1373

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Freebase

KV

Web tables

Closed IE

Open IE

Web co-occur

Query logs

Overall

Figure 1: Quality of the ev-
idence from different sys-
tems on Cheese vertical.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Freebase

KV

Web tables

Closed IE

Open IE

Web co-occur

Query logs

Overall

Figure 2: Average quality
of the evidence from differ-
ent systems on all verticals.

Table 5: The recall of evidence obtained by different methods
from various sources; singleton rate is the percentage of triples
for which only the particular method can find evidence.

Closed Open Co-occur
Knowledge bases 3.3% - -
Web 2.8% 19.7% 46.7%
Query logs - - 7.3%
Singleton rate 0.0% 4.4% 29.0%

Comparison of different strategies. Using the Cheese vertical
as an example, we further evaluate the performance of different
evidence collection approaches. Figure 1 plots the precision and
recall of each approach.

We can see that the two knowledge bases (Freebase and KV)
provide evidence with the highest precision but the lowest recall,
exactly as expected. Both Closed IE and Query logs have low re-
call (but higher than the knowledge bases), as they provide evi-
dence only for Freebase entities, which is a very small portion of
the input. Query logs also has quite low precision, indicating that
understanding short query phrases is hard. Open IE and Web ta-
bles in a sense both apply open extractions; the former on texts and
the latter on tables. They have medium precision and fairly low re-
call, but better than any closed system. Web co-occurrences has the
highest recall but the lowest precision. This is not surprising as it
purely relies on string matching and ignores any possible hint from
structural information.

Figure 2 shows the average performance on the four verticals.
We observe very similar trend, except that the quality of Open IE
and Web tables, both being open extraction systems but applied on
different types of data, are even closer.

In Table 5 we compare the recall of different methods. If we
rely on closed techniques only, we obtain a recall of 0.04 in total:
most of the evidence obtained by Closed IE are already contained
in existing knowledge bases, and all evidence obtained by closed
techniques can also be found through other approaches (singleton
rate = 0). After including open techniques and relax the require-
ment for predicate matching, we obtain a recall of only 0.2; 4.4%
of the true triples can only gain evidence through open extraction
techniques. Web co-occurrences is the major contributor, with a
singleton rate of 29%; the quality of all collected evidence is more
or less dominated by it. However, because removing evidence col-
lected by other approaches will decrease the recall of the final re-
sults by about 15% (by 30% in the vertical Tomato), to maintain
the same precision. This justifies the need of the larger spectrum
of extraction techniques we used. The majority of the evidence are
collected from the web, which is not surprising.

Difference between true triples and false triples. As we have
shown, we can find evidence for not only true triples, but also false
triples. We are now wondering if the amount of evidence for a true

Table 6: Comparing evidence for true triples and evidence for
false triples. %True and %False are the percentage of true
triples that have evidence, and respectively, the percentage of
false triples that have evidence. #forTrue and #forFalse are the
number of pieces of evidence for a true triple, and respectively,
for a false triple; ratio is the ratio between them.

%True %False #forTrue #forFalse ratio
Freebase 3.1% 0.02% 1.5 1.1 1.4
KV 0.7% 0.003% 4.3 2.0 2.1
Web tables 15.6% 1.9% 4.6 2.4 1.9
Closed IE 2.8% 0.1% 43.1 6.7 6.4
Open IE 13.8% 1.0% 21.3 3.9 5.5
Web co-occur 46.7% 14.8% 209.4 16.2 12.9
Query logs 7.3% 0.9% 2.7 2.0 1.4
Overall 51.8% 17.3% 117.7 13.4 8.8

triple is different from that of a false triple. We show results on
Cheese vertical in Table 6 (we observe similar patterns on other
verticals).

We first compare the percentage of true triples with evidence
against that of false triples. On average, we were able to find ev-
idence for 52% of the true triples and 17% of the false triples; all
systems are more likely to find evidence for true triples rather than
false triples. Next we compare the amount of evidence for a true
triple against that for a false triple. We observe that the number of
pieces of evidence for a true triple is 8.8 times as many as that for
a false triple on average.

For all evidence-collection approaches, there are more evidence
for true triples than for false triples, which conforms to our intu-
ition. Among different approaches, although Web co-occur finds
evidence for 14.8% false triples, its evidence is the most distin-
guishable: the number of pieces of evidence for a true triple is 13
times as many as that for a false triple. Closed IE and Open IE also
give reasonable results, where the evidence for true triples is six
times as much as that for false triples. Web tables and Query logs
are less effective on distinguishing true triples from false triples
(with a ratio below 2). Although the ratio for Freebase and KV are
not high, they rarely provide evidence for false triples (i.e., with
low %False), even though we do not require predicate match.

Parameter tunning. We found that setting θ = 0.35 and using
4-gram for Web co-occurrences obtain the best results for all ver-
ticals. A higher parameter value would inevitably reduce recall.
Interestingly, a lower parameter value can increase recall and F-
measure for evidence collection, but introduce noise in the evi-
dence, and thus hurt the precision and F-measure of the final results
from knowledge fusion, which we describe in the next section.

Summary. By exploiting a wide spectrum of techniques, we were
able to collect evidence for 60% of the (correct) tail knowledge.
However, we also found evidence for much more false triples, show-
ing that simply looking for supporting evidence is not a reliable
approach for knowledge verification. Among different strategies,
we found that the web is the best source for finding evidence, co-
occurence-based approaches have the highest recall, but open tech-
niques make the balance between precision and recall.

4. OVERVIEW OF KNOWLEDGE FUSION
The previous section shows that although we found evidence for

both true triples and false triples, the amount of evidence for a true
triple is usually much more than that for a false triple. Also, the ev-
idence obtained by different approaches often have different qual-
ities. These two observations inspire us to apply knowledge fu-
sion [12, 13] to decide the truthfulness of each triple based on the
collected evidence.

1374

Table 7: Triples regarding ice hockey equipment. √/× indicates
the correctness of a triple.

subject predicate object source
√
c1 ice hockey equipment helmet s1, s3√
c2 ice hockey equipment stick s1, s2

× c3 ice hockey equipment boots s2
× c4 ice hockey equipment board s3√
c5 ice hockey equipment neck guard

Table 8: Notations used in Section 4.
Notation Description
d a data item
v a value
S a source that provides values
Φ mapping between values and sources for a data item
Φ(S) the set of values provided by S on a data item
O a sequence of values that have been selected as truths
⊥ “there is no more truth”

Knowledge fusion is a research topic that predicts the correctness
of knowledge triples by examining extractions made by multiple
systems from various sources. We review the existing knowledge
fusion methods and propose a new approach in Section 4.1, and
then study their performance in Section 4.2.

4.1 Review of knowledge fusion methods
In the context of knowledge verification, each (subject, predicate)

pair is considered as a data item, and each object is considered as
a value. For simplicity, we follow [12] and consider an evidence
provenance as a source that provides the triple (our experiments
did not show significant gain by separating sources and extractors
as in [13]). For instance, Table 7 shows five triples regarding the
data item (ice hockey, equipment). There are three sources (s1,
s2 and s3) that provide four values for this data item, while “neck
guard” is not provided by any source.

Given a data item d and a set S̄ of sources that provide values on
d, knowledge fusion aims to compute a probability p(v) for each
value v ∈ V being true, where V denotes all possible values for d
(V may contain values not provided by any source). Let Φ denote
the mapping between S̄ and V, and Φ(S) denote the values provided
by a source S ∈ S̄ on d (we dismiss d in the notation for simplic-
ity). Our goal then becomes computing the posterior probability
p(v|Φ) for v being true based on the observations from the sources.
Table 8 summarizes the notations. Note that in this paper we focus
on the case where the sources are independent of each other; one
can incorporate with the techniques from [10, 32] to address the
correlations between sources.

We categorize the existing knowledge fusion methods into two
classes: single-truth models [24], and multi-truth models [32, 45].
Our observation from Table 2 shows that the majority of our data
items have a single truth, but there are also cases with multiple
truths. We thus propose a hybrid method that combines the strengths
of existing methods and meanwhile takes into consideration the
prior value of the number of truths. We next introduce each cat-
egory respectively. While our review mainly focuses on Bayesian-
based approaches, there are also graphical-model approaches [31]
and optimization-based approaches [23] that share similar intuitions.

4.1.1 Single-truth models
Single-truth models [24, 26] assume that there is only one true

value for a data item, and thus
∑
v∈V p(v|Φ) = 1. The value v with

the highest probability p(v|Φ) is then selected as the truth.

The intuition behind the single-truth models is that values pro-
vided by more sources and higher-quality sources are more likely
to be true. The quality of a source S is measured by its accuracy
A(S), which is the probability that a value provided by S is true.

We now explain how to compute p(v|Φ) using the ACCU [10]
model, as other models share a lot of commonalities. Let Φ(S)

denote the values provided by a source S on d. Under the source-
independence assumption and applying Bayesian analysis, we have

p(v|Φ) =
ΠS∈S̄ p(Φ(S)|v) · λ∑

v′∈V ΠS∈S̄ p(Φ(S)|v′) · λ
. (1)

Here p(Φ(S)|v) is the probability of observing Φ(S) given that v
is the truth. λ is the a priori probability that a value v is true; we
usually assume λ is the same for all values in V, so can cross it out
from the numerator and the denominator.

Assuming there are n false values in the domain (n = |V|− 1), S
provides a true value with probability A(S), and a particular false
value with probability 1−A(S)

n . Thus we have:

p(Φ(S)|v) =

{
A(S) if v ∈ Φ(S);
1−A(S)

n
if v 6∈ Φ(S).

(2)

EXAMPLE 4.1. Consider the triples c1-c5 in Table 7. Suppose
n = 10 and A = 0.6 for all sources.

Triples c1 and c2 are provided by 2 sources, so we have
ΠS∈S̄ p(Φ(S)|c1) = ΠS∈S̄ p(Φ(S)|c2) = 0.62× 1−0.6

10 = 0.0144.
Similarly, ΠS∈S̄ p(Φ(S)|c3) = ΠS∈S̄ p(Φ(S)|c4) = 0.001.

From Eq. (1) we compute triple probabilities as follows:
p(c1) = p(c2) = 0.0144

0.0144+0.0144+0.001+0.001 = 0.47; p(c3) =

p(c4) = 0.03, and p(c5) = 0 as it is not provided by any source.
We see that the probabilities of all values add up to 1, so even

true values (helmet and stick) have rather low probabilities. 2

Obviously, the limitation of single-truth models is that when
multiple truths exist, they at best find one of them.

4.1.2 Multi-truth models
Multi-truth models [32, 38, 45] allow the existence of multi-

ple truths. They compute the probability of each value separately.
Hence, they do not require

∑
v∈V p(v|Φ) = 1, but only p(v|Φ) +

p(¬v|Φ) = 1, where ¬v denotes that v is a false value. A value v is
considered true if p(v|Φ) > p(¬v|Φ); that is, p(v|Φ) > 0.5.

An unknown semantics is used to capture the nature of multi-
truth: if a source S does not provide the value v on d, S means that
it does not know whether or not v is correct (instead of saying v is
incorrect). Accordingly, multi-truth methods capture the quality of
a source S by two metrics: the precision P (S), which is the same as
the accuracy in ACCU, and the recallR(S), which is the probability
of a truth is provided by S. Intuitively, values provided by high-
precision sources are likely to be true, and values not provided by
high-recall sources are likely to be false.

The PRECREC method [32] computes p(v|Φ) as follows:

p(v|Φ) =
ΠS∈S̄ p(Φ(S)|v) · λ

ΠS∈S̄ p(Φ(S)|v) · λ+ ΠS∈S̄ p(Φ(S)|¬v) · (1− λ)
. (3)

We now explain the computation of p(Φ(S)|v) and p(Φ(S)|¬v).
First, from P (S) and R(S), we derive the false positive rate Q(S)

of S, as Q(S) = λ
1−λ ·

1−P (S)
P (S)

· R(S) according to [32]. Then S
provides v with probability R(S) if v is true, and with probability
Q(S) if v is false:

p(Φ(S)|v) =

{
R(S) if v ∈ Φ(S);
1−R(S) if v 6∈ Φ(S).

(4)

1375

p(Φ(S)|¬v) =

{
Q(S) if v ∈ Φ(S);
1−Q(S) if v 6∈ Φ(S).

(5)

EXAMPLE 4.2. Again, consider triples c1-c5 in Table 7. Sup-
pose R = 0.5 and Q = 0.33 for all sources. Then for c1, we have

ΠS∈S̄ p(Φ(S)|c1) = R(s1)(1−R(s2))R(s3) = 0.125;
ΠS∈S̄ p(Φ(S)|¬c1) = Q(s1)(1−Q(s2))Q(s3) = 0.074.

Assuming λ=0.5, from Eq. (3) we have
p(c1) = 0.125×0.5

0.125×0.5+0.074×(1−0.5)
= 0.63. Similarly,

p(c2) = 0.63, p(c3) = p(c4) = 0.54, and p(c5) = 0.28.
Therefore, all provided values are considered true under PRECREC,
resulting in false positives (i.e., boots and board). 2

In practice, even multi-truth items often have only a few true
values instead of infinite number of truths. Existing multi-truth
models cannot capture this because they decide the truthfulness of
each value independently, without considering other values in V
and thus lack a global view of a data item.

4.1.3 Hybrid models
To gain a global view in truth finding while allowing identifying

multiple truths, we propose a hybrid model, called HYBRID. HY-
BRID considers the conflicts between values as important evidence
for ruling out wrong values, while keeping the flexibility of allow-
ing multiple truths. In addition, HYBRID considers the prior value
of the number of truths in the model.

HYBRID makes two decisions for a data item: (i) how many
truths there are, and (ii) what they are. Essentially, it interleaves
the two decisions and finds the truths one by one: conditioning on
a sequence O of true values that have been selected previously, it
decides (1) the probability of a value v being the next truth, de-
noted by p(v|O,Φ), and (2) the probability that there is no more
truth, denoted by p(⊥|O,Φ). These are disjoint decisions so their
probabilities sum up to 1:

∑
v∈V\O p(v|O,Φ) + p(⊥|O,Φ) = 1.

Thus, when selecting the next truth, HYBRID basically applies a
single-truth model. However, when deciding whether there is any
more truth (i.e., p(⊥|O,Φ)), HYBRID incorporates the unknown se-
mantics used in multi-truth models.

Moreover, HYBRID leverages the typical number of truths for
each type of data items. For example, a person typically has 2 par-
ents and 1-5 children. HYBRID allows incorporating such knowl-
edge as a priori probability of p(⊥|O,Φ).

Source quality metrics. As HYBRID jointly models the number of
truths as well as the true values, it captures the quality of a source
with two sets of metrics: that for deciding whether there exists a
truth, and that for deciding the true values.

The first set of metrics enables the unknown semantics for multi-
truth, and it includes two measures: (1) precision P (S), the proba-
bility that when S provides a value, there indeed exists a truth; (2)
recall R(S), the probability that when there exists a truth, S pro-
vides a value. Note that our P (S) and R(S) are different from the
same notions in PRECREC: we only measure how well S predicts
whether or not there exists a truth, but not how well S predicts what
the truth is; in other words, we do not require the value provided by
S to be the same as the truth.

The second set of metrics follows single-truth models to address
the conflicts between values. It contains one measure: accuracy
A(S), the probability that a value provided by S for a “real” truth
slot is true (i.e., S provides a true value after it has correctly pre-
dicted the existence of a truth slot). Note that values provided for
non-existing truth slots, which are absolutely false, are not counted
here, as they have been captured by P (S).

Figure 3: Tree structure for computing p(c2) in Table 7. We
omit triples without any source for simplicity.

Table 9: Value probabilities computed by different fusion
methods for data item (ice hockey, equipment).

helmet stick boots board neck guard
Single-truth [10] 0.47 0.47 0.03 0.03 0.00
Multi-truth [32] 0.63 0.63 0.54 0.54 0.28
HYBRID 0.92 0.92 0.08 0.08 0.00

Value probability computation. We next describe how to obtain
p(v|Φ). As we select the truths one by one, there can be various se-
quences of truths (of any length below |V|) that are selected before
v (we may select the value v after selecting v1, or after selecting
v1v2, etc.). We call each sequence O a possible world and denote
by Ω all possible worlds. Then the probability of v is the weighted
sum of its probability p(v|O,Φ) in each possible world O:

p(v|Φ) =
∑
O∈Ω

p(v|O,Φ) · p(O|Φ) (6)

where p(O|Φ) is the probability of entering the possible world O.
Let O = v1v2 . . . v|O|, v /∈ O, denote a possible world with

the sequence v1, v2, . . . , v|O| of values selected as truths. Let Oj
denote a prefix of O with length j and O0 = ∅. Applying the chain
rule leads us to:

p(O|Φ) =

|O|∏
j=1

p(vj |Oj−1,Φ). (7)

Now the only piece missing from Eqs (6-7) is the conditional
probability p(v|O,Φ). They are computed according to the three
quality metrics and we refer readers to [21] for details.

EXAMPLE 4.3. One way to think about the computation in HY-
BRID is through a tree structure (See Figure 3 as an example for c2
in Table 7). The root of the tree represents having not selected any
value. A path from the root to a node v represents a possible way
to select v; for example, the path c1-c4-c2 corresponds to the case
where we select c2 after selecting c1 and c4 sequentially (O=c1c4).
The children of a node represent candidates for the next truth, con-
taining all unselected values in V and ⊥.

The number under each node v is the probability p(v|O,Φ). For
example, following the path ∅-c1-c4-c2, we have p(c2|c1c4,Φ) =

0.23 (see [21] for details on how this number is obtained). Proba-
bility p(O) is given by the product of the numbers along the path.
For example, p(c1c4c2|Φ) = 0.47 × 0.06 × 0.23 = 0.007. Then the
probability p(v|Φ) of v being true is thus the sum of the probabili-
ties of all paths ending with v, according to Eq. (6). In our example,
we can reach c2 through 16 paths, and we obtain p(c2) = 0.92. 2

While computing value probabilities by enumerating all possible
worlds is expensive, we develop an efficient algorithm that runs in
polynomial time and has an approximation bound of 1/6 (see [21]
for details).

Table 9 compares the probabilities computed by different fusion
models on the data item (ice hockey, equipment). We can see that

1376

Table 10: Statics of the Book data.
#entities #triples #sources precision recall %multi-truth

1,263 6,139 876 0.62 0.98 57%

Table 11: Results on Book data. HYBRID obtains the highest
recall and F-measure.

Precision Recall F1
ACCU 0.990 0.532 0.692
ACCU LIST 0.974 0.801 0.879
LTM 0.911 0.973 0.941
PRECREC 0.965 0.931 0.947
HYBRID 0.941 0.973 0.957

HYBRID clearly gives high probabilities for true values and low
probabilities for false values.

4.2 Performance study of different methods
Before showing the results on tail verticals, we first compare

the various methods, including the newly proposed HYBRID, on
a widely used dataset, as well as synthetic data, to gain insights on
their performance. We compare HYBRID with a single-truth ap-
proach ACCU [10], and two multi-truth approaches PRECREC [32]
and LTM [45] (LTM shares the same intuition as PRECREC but
uses a graphical model).

We implemented all methods in Java. Following previous works,
we set n = 10, and λ = 0.5. We initialize the source quality metrics
as A(S) = P (S) = 0.8 and Q(S) = 0.2 for every source S. We then
iteratively compute triple probabilities and source qualities for up
to 5 iterations.

We report the precision, recall and F1 for each method. Preci-
sion measures among all values predicted as true, the percentage
that are indeed true. Recall measures among all true values, the
percentage that are predicted as true.

4.2.1 Results on Book data
We first use the Book data from [43], which has been widely

used for knowledge-fusion experiments. As shown in Table 10, it
contains 6,139 book-author triples on 1,263 books from 876 retail-
ers. The gold standard consists of authors for 100 randomly sam-
pled books, where the authors were manually identified from book
covers. According to the gold standard, 62% of the provided au-
thors are correct, and 98% of the true values are provided by some
source. There are 57% of the books that have multiple authors.

In addition to the five fusion methods we listed before, we also
compared with ACCU LIST, which applies ACCU but considers the
full list of authors as a whole [10, 43].

Table 11 shows the results. Not surprisingly, ACCU has the high-
est precision but the lowest recall as it only finds one author for a
book; even though ACCU LIST treats each author list as a whole, its
recall is still low. The two multi-truth models, LTM and PRECREC,
have similar F-measure, while PRECREC appears to be more con-
servative (a higher precision but lower recall). In this dataset many
sources only provide the first author of a book and this explains
the low recall; the high precision is because the sources rarely pro-
vide the same wrong value. HYBRID obtains a higher F-measure
than existing single-truth and multi-truth models. By considering
both conflicts between values and the possibility of having multi-
ple truths, it is able to identify more true values without sacrificing
much of precision.

4.2.2 Results on synthetic data
To better understand the performance of different methods in var-

ious situations, we next compare them on synthetic data where we
vary the number of truths and the quality of sources. We generated

10 data sources providing values on 100 data items, where wrong
values are randomly sampled from a domain of 100 values.

The data generation is controlled by two sets of parameters. The
first parameter is the number of truths for a data item. It ranges from
1 to 10, and by default follows a Gaussian distribution with mean =
6 and standard deviation = 1. The second set of parameters control
the values of a source S. Given the ground truth T of a data item,
for each v ∈ T , S has a probability of %cover to provide a value,
and with probability %correct this provided value is v (otherwise
it is a wrong value). Meanwhile, for each v ∈ T , S has a proba-
bility of %extra to provide a random wrong value. Hence, %cover

and %extra control the number of values provided by a source,
while %correct controls the correctness of a provided value. All
the three parameters range from 0.2 to 1; by default we set %cover

and %correct to 0.7, and %extra to 0.2. All experiments were re-
peated 100 times and we report the average performance.

Figure 4 shows the results when we vary the number of truths for
a data item. We can see that HYBRID can fairly well “guess” the
number of truths and consistently outperforms the others. As the
number of truths increases, the precision of HYBRID remains high,
while the precision of PRECREC drops. This is because the extra
ratio is fixed; so when there are more truths, more wrong values
will be provided by the sources, and PRECREC is more sensitive to
noise. Again, LTM gives a low precision but a high recall, consis-
tent with our observation on the Book data. ACCU usually has the
highest precision but the lowest recall. However, its precision can
be low when the number of truths is small; this is because ACCU al-
ways finds a truth for each data item, while other methods may not
output any truth (when all the value probabilities are below 0.5).

Figure 5 shows the F-measure of all methods when we vary
%cover, %correct, and %extra of the sources (see [21] for preci-
sion and recall). Not surprisingly, all methods obtain better results
when the sources are more complete (higher %cover) and accurate
(higher %correct). On the contrary, the performance of all meth-
ods drop when %extra increases. We observe that HYBRID has
the highest F-measure in general and it is the most robust; it typ-
ically outperforms others when the source observations are noisy.
PRECREC obtains the worst results when %cover and %correct

are medium (0.4-0.6); this is because in this case the sources have
similar probabilities to provide a true value and a false value, and
PRECREC is unable to distinguish them.
Summary. HYBRID outperforms existing single-truth and multi-
truth models and is the most robust under varying source qualities.

5. APPLYING KNOWLEDGE FUSION
We now apply knowledge fusion on tail verticals. As shown in

Figure 2 and Table 10, the quality of the collected evidence on tail
verticals is much lower than that of the Book data. Furthermore, the
long-tail data has a higher variety in terms of the number of truths
and the number of sources. Hence, in this set of experiments we
seek to answer the following questions: 1) Is knowledge fusion ef-
fective on datasets that are highly incomplete and noisy? 2) Among
different fusion models, which one performs the best on tail data?

We point out that the effectiveness of knowledge fusion relies on
the fact that the set of triples are in the same vertical, so that we
can estimate the quality of the sources meaningfully. We also point
out that the predicate matching information recorded in pattern is
leveraged in knowledge fusion as we evaluate the quality of each
provenance.

5.1 Implementations
We compare the following three knowledge fusion algorithms:

the single-truth model ACCU, the multi-truth model PRECREC, and

1377

1 2 3 4 5 6 7 8 9 10

number of true values

0.0

0.2

0.4

0.6

0.8

1.0

F
1

Accu
LTM

PrecRec
Hybrid

1 2 3 4 5 6 7 8 9 10

number of true values

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

1 2 3 4 5 6 7 8 9 10

number of true values

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Figure 4: Varying the number of truths on synthetic data. HYBRID improves over other models when the number of truths is large.

0.2 0.4 0.6 0.8 1.0

%correct

0.0

0.2

0.4

0.6

0.8

1.0

F
1

Accu
LTM

PrecRec
Hybrid

0.2 0.4 0.6 0.8 1.0

%cover

0.0

0.2

0.4

0.6

0.8

1.0

F
1

Accu
LTM

PrecRec
Hybrid

0.0 0.2 0.4 0.6 0.8 1.0

%extra

0.0

0.2

0.4

0.6

0.8

1.0

F
1

Accu
LTM

PrecRec
Hybrid

Figure 5: Varying source quality on synthetic data. HYBRID performs best and is the most robust among all methods.

the hybrid model HYBRID. We skip LTM because it does not scale
on this dataset. We test two settings of the algorithms: (1) assume
each source has the same quality, and then iteratively compute triple
probabilities and source qualities; (2) initialize source quality by
comparing its provided values against the gold standard3, and run
the fusion algorithms in one-pass. We distinguish these two options
by appending “+” to the latter (e.g., ACCU+ for quality bootstrap).
By default, we use HYBRID+ for our framework.

We remove evidence from sources that provides no evidence for
any true triple, as these are likely to be irrelevant sources. Our
experimental results show slightly better results and we skip the
details because of lack of space.

5.2 Results
High-level results. We first evaluate the effectiveness of knowl-
edge fusion on tail verticals. Note that knowledge fusion models
predict the probability of a triple being true. We thus order triples
in decreasing order of the predicted probabilities; then as we gradu-
ally consider triples above a probability threshold, we plot the pre-
cision vs. recall (known as the PR-curve) obtained by HYBRID+ in
Figure 6. In a PR-curve, the highest point corresponds to the re-
sults when considering triples with probabilities above 0.99, while
the lowest point corresponds to all triples with evidence.

We observe that knowledge fusion effectively filters false triples.
For instance, in the Cheese vertical, while the raw evidence has an
F-measure of 0.27 (precision = 0.18, recall = 0.52, corresponding to
the lowest point in the curve), the highest F-measure obtained after
knowledge fusion is 0.62 (precision = 0.84, recall = 0.49). With
only 3% recall loss, the precision is 4.6 times higher.

Among different verticals, we obtain fairly similar precision (be-
tween 0.81 and 0.86), but the recall vary from 0.37 to 0.61. In-
terestingly, while the vertical Yoga obtains the lowest recall after
knowledge fusion, its recall on evidence collection (the rightmost
point of the red curve) is considerably higher than the others. A

3In practice, we can use a gold standard on a small sample to ini-
tialize source quality. Our experiments on a 10% sample obtains
similar results.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Cheese
Tomato

Gym
Yoga

Figure 6: PR-curves of knowledge fusion on tail verticals.

Table 12: Requiring a precision of 0.9, we achieve a recall of
47.1%, and we can provide at least three sources for 44.8% of
the true triples.

Cheese Tomato Gym Yoga Average
recall@0.9 46.7% 61.7% 40.0% 31.9% 47.1%

#URLs ≥ 3 45.0% 60.1% 38.8% 21.7% 44.8%

closer examination reveals that in Yoga the collected evidence is
very noisy: we find evidence for 67% false triples, and a true triple
has only twice as much evidence as a false triple. In contrast, on
the Cheese vertical a true triple has eight times as much evidence
as a false triple. Therefore the knowledge fusion is less effective on
Yoga since the collected evidence is less distinguishable.

In practice we require a high precision such that the approach
can be deemed reliable. As shown in Table 12, when we require a
precision of 0.9, we were able to verify 47.1% of the true triples,
and for 44.8% of the true triples we can find at least three web-
sites that contain supporting evidence, showing that they are public
knowledge.

Effect of triple types. Using the Cheese vertical as an example,
we next study how the type of a triple may affect the performance
of knowledge fusion. We distinguish triples based on whether or
not their objects can be reconciled to Freebase mids, calling them
entity-obj triples and string-obj triples correspondingly. Figure 7
shows the PR-curve of each category.

1378

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0
P
re
ci
si
o
n

Entity-obj
String-obj

Overall

Figure 7: Effect of triple
types.

0.0 0.1 0.2 0.3 0.4 0.5

Perturbation rate

0.0

0.2

0.4

0.6

0.8

1.0

NoBootstrapPrec

NoBootstrapRecall

Result precision
Result recall
Perturbed input precision

Figure 8: Effect of source
quality bootstrap.

Table 13: Knowledge fusion results on four verticals.
P R F P R F

Cheese Tomato
ACCU 0.637 0.790 0.705 0.725 0.828 0.773
PRECREC 0.597 0.820 0.691 0.701 0.836 0.763
HYBRID 0.610 0.822 0.700 0.706 0.853 0.773
ACCU+ 0.850 0.923 0.885 0.852 0.944 0.896
PRECREC+ 0.791 0.975 0.873 0.826 0.970 0.892
HYBRID+ 0.842 0.954 0.894 0.851 0.958 0.901

Gym Yoga
ACCU 0.669 0.704 0.686 0.514 0.233 0.321
PRECREC 0.642 0.712 0.675 0.388 0.212 0.275
HYBRID 0.652 0.724 0.686 0.482 0.253 0.332
ACCU+ 0.838 0.841 0.839 0.786 0.353 0.487
PRECREC+ 0.796 0.929 0.857 0.720 0.709 0.715
HYBRID+ 0.829 0.861 0.845 0.813 0.448 0.577

With no surprise, entity-obj obtained much higher precision and
recall than string-obj: the higher recall is because reconciled ob-
jects are typically more popular and thus widely mentioned; the
higher precision is due to the more reliable evidence from struc-
tured sources like Freebase and KV.

Comparing different knowledge fusion methods. Table 13 com-
pares the performance of different approaches. To focus on the
fusion models, we report the relative recall; that is, the recall on
triples for which at least some evidence is collected.

We observe that HYBRID (or HYBRID+) has slightly better re-
sults than ACCU and PRECREC. Comparing with ACCU, it has sim-
ilar precision but higher recall; it is able to find 10% more truths on
predicates where over 10% data items have multiple truths. Com-
paring with PRECREC, it has higher precision and slightly lower
recall, but higher F-measure; the precision gain is more pronounced
for predicates with a lot of noise, where the precision of HYBRID
can be twice as much as that of PRECREC.

An exception is vertical Yoga, where about 60% data items have
multiple truths. Although HYBRID+ has a 13% higher precision
than PRECREC+, its recall is 35% lower. This is because most of
the provenances contribute evidence for a single triple of a data
item, so HYBRID+ often predicts that there is only one truth, es-
pecially given that the evidence for this vertical is very noisy. In-
terestingly, without source-quality bootstrap, HYBRID outperforms
PRECREC by 24% on precision and by 19% on recall, showing that
HYBRID is more robust in absence of bootstrap.

Effect of source quality bootstrap. As shown in Table 13, by ini-
tializing source quality using the gold standard before fusion, we
obtained significantly better results. We next examine the effect of
this bootstrap process. We ask two questions: (1) does this boot-
strap always work? (2) if our prior knowledge on source quality is
inaccurate, how robust are the results?

Table 14: Results on knowledge verification. Each column
evaluates the output of a component (e.g., Evidence collection
and Knowledge fusion for FACTY). The highlighted column
of each method gives the final results; FACTY outperforms T-
VERIFIER significantly.

FACTY T-VERIFIER
Step I Step II Step I Step II

Evidence KFusion Search Ranking
P 0.183 0.842 0.066 0.163

Cheese R 0.518 0.494 0.984 0.159
F 0.270 0.623 0.124 0.161
P 0.181 0.851 0.129 0.131

Tomato R 0.642 0.614 0.979 0.218
F 0.282 0.713 0.228 0.163
P 0.244 0.849 0.147 0.279

Gym R 0.548 0.466 0.898 0.232
F 0.338 0.602 0.252 0.253
P 0.188 0.813 0.161 0.245

Yoga R 0.833 0.373 0.947 0.093
F 0.307 0.512 0.275 0.135
P 0.201 0.843 0.123 0.223

Overall R 0.595 0.506 0.947 0.190
F 0.301 0.633 0.218 0.205

We perturbed the gold standard that we use to initialize source
quality: given a percentage of data items, we replace a triple in gold
standard with a wrong triple. As such, the initial source quality
we obtained according to this perturbed gold standard would be
different from the real quality of the sources. We show results on
the Cheese vertical by HYBRID+ in Figure 8 (similar trends are
observed in other verticals). We see that both the precision and
the recall of the fusion results drop when the initial source quality
becomes inaccurate. However, comparing with the dropping rate
on the perturbed gold standard, the dropping rate of result precision
is 44% and that of result recall is 30%. Further, the result precision
is always higher than that without bootstrap.
Summary. Our experiments show that knowledge fusion can effec-
tively identify the correct triples based on the evidence, improving
precision from 0.20 to 0.84, without sacrificing much of the recall.
In general HYBRID is adequate for both single-truth and multi-truth
cases; however, comparing with the results on synthetic data, the
improvement of HYBRID is limited because of the sparsity of evi-
dence we can automatically collect for tail verticals. In cases when
the majority of data items have multiple truths and we have reli-
able data to estimate source quality, applying PRECREC may better
leverage the bootstrap and improve recall.

6. OVERALL EVALUATION OF KNOWL-
EDGE VERIFICATION

We finally evaluate the overall performance of knowledge verifi-
cation. We compare the following methods.
• FACTY, our framework that performs evidence collection fol-

lowed by knowledge fusion. It applies HYBRID+ to decide the
correctness of each triple.

• T-VERIFIER [25], the state-of-the-art approach that verifies a
triple by searching the web. For each candidate triple, it first
searches its subject and object using Google. It then ranks the
candidates of each data item based on features such as the num-
ber of results returned by the query, distance between keywords
in the result snippet, ranking given by Google, and so on. A
weight vector is learnt to combine the features. Among differ-
ent candidates, it selects the triple with the highest score as true.

Table 14 reports the precision, recall and F1 of each method.
On average, FACTY obtains a precision of 0.843 and a recall of

1379

0.506 (in column “KFusion”), whereas T-VERIFIER gives much
lower precision and recall (in column “Ranking”). In the first step,
T-VERIFIER obtains very noisy results (low precision in column
“Search”); this is because a false triple whose object contains pop-
ular words or phrases can occur much more often than a true triple.
Unfortunately, none of the features considered in the ranking step
is able to detect this, resulting in a low precision. In contrast, the
knowledge-fusion step in FACTY dramatically increases the preci-
sion over raw evidence. Note that the quality of T-VERIFIER results
we obtained is also lower than that reported in [25], indicating that
it is not suitable for verifying long-tail triples.

We also note that evidence collected by FACTY are more precise
than that by web search in T-VERIFIER. This is because our evi-
dence collection approaches usually exploit stricter rules than web
search. However, the search results obtained by T-VERIFIER have
a very high recall (95% on average); this is not surprising since for
most queries, the search engines will return some results, although
they may not be relevant.

7. FUTURE DIRECTIONS
Our experimental results show that by employing various evi-

dence collection techniques and applying knowledge fusion on the
obtained evidence, we can obtain reasonable results for knowledge
verification, and it significantly outperforms the existing approach.
However there are still much room for improvement. Next, through
a series of error analysis, we discuss possible future directions.

7.1 Improving recall
As shown in Figure 2, our evidence collection has a recall of

60%, which means that there are 40% of correct triples for which
we cannot find any evidence. We randomly selected 10 such triples,
and manually constructed various keyword search queries for each
of them and tried to find evidence from top-20 search results. We
were able to find evidence for 8 of them. For the two we cannot
find, one has a very ambiguous entity name and it is even hard to
find the entity itself; the other is not mentioned in top-20 results of
various keyword search. This investigation suggests several possi-
bilities for improving the recall of evidence collection.

Open extraction for DOM trees. Among the eight triples, six
triples exist in DOM data. Recall that we have open extractions for
web tables and texts, but not for DOM trees. Indeed, we are not
aware of any such technique, since DOM trees have neither gram-
mar structure nor table structure to indicate the semantics. There
are rich data in DOM trees, and many of them are regarding enti-
ties and attributes not in existing knowledge bases. We believe that
extracting knowledge in this form will dramatically enrich existing
knowledge bases.

Allowing long-distance co-occurrences. In our examination, four
triples have the subject mentioned in article (or DOM tree) title,
while the predicate or object mentioned in the texts. Extractions,
including Web co-occurrences, fail because of the long distance
between subjects and objects. An easy fix would be increasing the
window size when looking for co-occurrences, but this may hurt
the precision. A more advanced approach is to treat the article title
and the texts differently.

Using embedding methods. Another possibility is to jointly em-
bed web documents and the existing knowledge-base triples into
the same vector space [28, 39]. In this way, we represent predicates
with dense vectors instead of lexical words, and thus largely reduce
the dimensionality. Then a candidate triple is true if its subject-
vector can be transformed to object-vector through predicate-vector.
While prior research on this direction is restricted to pre-known

predicates, extending to unknown predicates is an interesting prob-
lem.
Extractions of dates and numbers. In general we miss a lot of
dates and numbers (often with units) because they can appear in
many different formats, especially for range numbers. Sometimes
the number is not exact (such as population), which makes it hard to
verify. This applies to one triple in our sample. Possible solutions
include defining numerical value mapping rules and improving ex-
traction of numerical relations [27].

7.2 Improving precision
Matching Predicates. Recall that when we look for evidence, we
require subject match and object match, but being tolerant on pred-
icate semantics; actually, Web co-occurrences, our major evidence
contributor, completely ignores predicates. This strategy signifi-
cantly increases recall, but fails in two cases (the vertical Yoga has
both cases, making the collected evidence very noisy):

1. When we have two predicates with related but different (or even
contradictory) semantics, such as “major source” versus “other
sources”, or “friends” versus “foes”, the objects of the two pred-
icates are from the same domain, and are thus indistinguishable
without considering the predicates.

2. When the subjects and objects of a predicate are in the same do-
main, such as the “follow-up posture” of a posture in exercises,
Web co-occurrences may simply return all postures in a list.

We may improve precision by requiring the predicate to also co-
occur with the subject and object for such special cases, or use
embedding instead of lexical words to represent the predicates.
Removing noise from highly frequent names. Another place
where we make mistakes is when an object name is very popu-
lar and thus ambiguous, so false triples may obtain more evidence
due to the high frequency of the entity name. How to incorporate
the DF (i.e., document frequency) in evidence collection is a topic
of future research.

8. RELATED WORK
Knowledge verification. To the best of our knowledge, T-VERIFI
ER [25] is the first system on knowledge-verification, and we have
reviewed it in Section 6. A recently proposed supervised approach,
ClaimEval [33], aims to decide the correctness of a binary claim,
such as “yoghurt is healthy food”, and “SIGMOD is a top CS con-
ference”. It also finds evidence for each claim through web search;
then it trains a classifier for each category of claims (e.g., classifiers
for “healthy food” and “top CS conferences” respectively). This
method works only for IS-A relationships whereas we consider all
possible relationships.

Tylenda et al. [36] study how to find evidence for a triple inside
a given document, but focus on the cases where entities and pred-
icates all exist in some knowledge base; in our datasets all predi-
cates are new and no more than 10% of the subject entities exist in
Freebase. Knowledge verification has also been studied in the NLP
community with emphasis on linguistic features [44]. Our frame-
work allows applying extraction techniques proposed in [36, 44]
whenever applicable.
Knowledge fusion. Besides the methods we have reviewed and
evaluated in Section 4, a recent method TEM [46] considers in ad-
dition if the truth for a data item exists at all (i.e., date-of-death does
not exist for an alive person). It is mainly designed for single-truth
scenario. The work in [22] studies the case where most sources
provide very few triples, and thus source quality cannot be reliably
estimated. Our framework can be enhanced by these techniques.

1380

Knowledge collection on the long-tail. Our work is generally re-
lated to knowledge collection on the long-tail. A concept expansion
system [37] finds entities belonging to a tail vertical by leveraging
both structured and unstructured signals in web tables. An open IE
system called ReNoun [42] focuses on extracting nominal attributes
on the long-tail. The work in [3] answers queries regarding long-
tail knowledge through log mining and crowdsourcing. Our work
differs in that we consider the context of collecting knowledge by
crowdsourcing, and focus on verifying the collected knowledge.

9. CONCLUSIONS
This paper studies the problem of verifying knowledge for long-

tail verticals. We investigated seven evidence-collection approaches
and four knowledge-fusion algorithms, and provided a detailed anal-
ysis of their performance on various long-tail verticals. Our exper-
imental results inspire the FACTY knowledge-verification frame-
work that first finds supporting evidence for a triple from various
sources, and then applies knowledge fusion to predict the correct-
ness of a triple based on the evidence. We showed that our frame-
work significantly outperforms existing knowledge-verification tech-
niques. Finally, a detailed loss analysis suggests future directions
to improve knowledge verification for tail verticals.

10. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and

Z. Ives. DBpedia: A nucleus for a Web of Open Data. The Semantic
Web, 2007.

[2] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni. Open information extraction for the web. In IJCAI, 2007.

[3] M. S. Bernstein, J. Teevan, S. Dumais, D. Liebling, and E. Horvitz.
Direct answers for search queries in the long tail. In CHI, 2012.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: A collaboratively created graph database for structuring
human knowledge. In SIGMOD, 2008.

[5] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
Webtables: Exploring the power of tables on the web. PVLDB, 2008.

[6] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and E. Wu.
Uncovering the relational web. In WebDB, 2008.

[7] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and
T. M. Mitchell. Toward an architecture for never-ending language
learning. In AAAI, 2010.

[8] M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al.
Generating typed dependency parses from phrase structure parses. In
LREC, 2006.

[9] X. L. Dong. Leave no valuable data behind: The crazy ideas and the
business. PVLDB, 2016.

[10] X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating
conflicting data: The role of source dependence. PVLDB, 2009.

[11] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge Vault: A web-scale
approach to probabilistic knowledge fusion. In KDD, 2014.

[12] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun,
and W. Zhang. From data fusion to knowledge fusion. PVLDB, 2014.

[13] X. L. Dong, E. Gabrilovich, K. Murphy, V. Dang, W. Horn,
C. Lugaresi, S. Sun, and W. Zhang. Knowledge-based trust:
Estimating the trustworthiness of web sources. PVLDB, 2015.

[14] J. S. Downs, M. B. Holbrook, S. Sheng, and L. F. Cranor. Are your
participants gaming the system?: Screening Mechanical Turk
workers. In CHI, 2010.

[15] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates. Web-scale
information extraction in KnowItAll. In WWW, 2004.

[16] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open
information extraction. In EMNLP, 2011.

[17] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity recognition in
query. In SIGIR, 2009.

[18] A. Jain and M. Pennacchiotti. Open entity extraction from web
search query logs. In COLING, 2010.

[19] H. Ji. Entity linking and wikification reading list, 2014.
http://nlp.cs.rpi.edu/kbp/2014/elreading.html.

[20] Introducing the knowledge graph: Things, not strings.
https://googleblog.blogspot.com/2012/05/
introducing-knowledge-graph-things-not.html.

[21] F. Li, X. L. Dong, A. Langen, and Y. Li. Discovering multiple truths
with a hybrid model. CoRR, abs/1705.04915, 2017.

[22] Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W. Fan, and
J. Han. A confidence-aware approach for truth discovery on long-tail
data. PVLDB, 2014.

[23] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. Resolving conflicts
in heterogeneous data by truth discovery and source reliability
estimation. In SIGMOD, 2014.

[24] X. Li, X. L. Dong, K. Lyons, W. Meng, , and D. Srivastava. Truth
finding on the Deep Web: Is the problem solved? PVLDB, 2013.

[25] X. Li, W. Meng, and C. Yu. T-verifier: Verifying truthfulness of fact
statements. In ICDE, 2011.

[26] Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, and J. Han. A
survey on truth discovery. SIGKDD Exploration Newsletter, 2016.

[27] A. Madaan, A. Mittal, G. R. Mausam, G. Ramakrishnan, and
S. Sarawagi. Numerical relation extraction with minimal supervision.
In AAAI, 2016.

[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed representations of words and phrases and their
compositionality. In NIPS, 2013.

[29] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for
relation extraction without labeled data. In ACL, 2009.

[30] F. Niu, C. Zhang, C. Ré, and J. W. Shavlik. DeepDive: Web-scale
knowledge-base construction using statistical learning and inference.
VLDS, 2012.

[31] J. Pasternack and D. Roth. Latent credibility analysis. In WWW,
2013.

[32] R. Pochampally, A. Das Sarma, X. L. Dong, A. Meliou, and
D. Srivastava. Fusing data with correlations. In SIGMOD, 2014.

[33] M. Samadi, P. Talukdar, M. Veloso, and M. Blum. ClaimEval:
Integrated and flexible framework for claim evaluation using
credibility of sources. In AAAI, 2016.

[34] Understand your world with bing.
https://blogs.bing.com/search/2013/03/21/
understand-your-world-with-bing.

[35] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of
semantic knowledge. In WWW, 2007.

[36] T. Tylenda, Y. Wang, and G. Weikum. Spotting facts in the wild. In
Workshop on Automatic Creation and Curation of Knowledge Bases,
2014.

[37] C. Wang, K. Chakrabarti, Y. He, K. Ganjam, Z. Chen, and P. A.
Bernstein. Concept expansion using web tables. In WWW, 2015.

[38] X. Wang, Q. Z. Sheng, X. S. Fang, L. Yao, X. Xu, and X. Li. An
integrated Bayesian approach for effective multi-truth discovery. In
CIKM, 2015.

[39] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge Graph and text
jointly embedding. In EMNLP, 2014.

[40] F. Wu, R. Hoffmann, and D. S. Weld. Information extraction from
wikipedia: Moving down the long tail. In KDD, 2008.

[41] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic
taxonomy for text understanding. In SIGMOD, 2012.

[42] M. Yahya, S. E. Whang, R. Gupta, and A. Halevy. Renoun: Fact
extraction for nominal attributes. In EMNLP, 2014.

[43] X. Yin, J. Han, and P. S. Yu. Truth discovery with multiple
conflicting information providers on the web. In KDD, 2007.

[44] D. Yu, H. Huang, H. J. Taylor Cassidy, C. Wang, S. Zhi, J. Han,
C. Voss, and M. Magdon-Ismail. The wisdom of minority:
Unsupervised slot filling validation based on multi-dimensional
truth-finding. In COLING, 2014.

[45] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han. A bayesian
approach to discovering truth from conflicting sources for data
integration. PVLDB, 2012.

[46] S. Zhi, B. Zhao, W. Tong, J. Gao, D. Yu, H. Ji, and J. Han. Modeling
truth existence in truth discovery. In KDD, 2015.

1381

