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ABSTRACT

We propose Graph Priority Sampling (GPS), a new paradigm for
order-based reservoir sampling from massive graph streams. GPS
provides a general way to weight edge sampling according to aux-
iliary and/or size variables so as to accomplish various estimation
goals of graph properties. In the context of subgraph counting, we
show how edge sampling weights can be chosen so as to minimize
the estimation variance of counts of specified sets of subgraphs.
In distinction with many prior graph sampling schemes, GPS sepa-
rates the functions of edge sampling and subgraph estimation. We
propose two estimation frameworks: (1) Post-Stream estimation, to
allow GPS to construct a reference sample of edges to support retro-
spective graph queries, and (2) In-Stream estimation, to allow GPS
to obtain lower variance estimates by incrementally updating the
subgraph count estimates during stream processing. Unbiasedness
of subgraph estimators is established through a new Martingale for-
mulation of graph stream order sampling, in which subgraph es-
timators, written as a product of constituent edge estimators, are
unbiased, even when computed at different points in the stream.
The separation of estimation and sampling enables significant re-
source savings relative to previous work. We illustrate our frame-
work with applications to triangle and wedge counting. We perform
a large-scale experimental study on real-world graphs from various
domains and types. GPS achieves high accuracy with < 1% er-
ror for triangle and wedge counting, while storing a small fraction
of the graph with average update times of a few microseconds per
edge. Notably, for billion-scale graphs, GPS accurately estimates
triangle and wedge counts with < 1% error, while storing a small
fraction of < 0.01% of the total edges in the graph.

1. INTRODUCTION

The rapid growth of the Internet and the explosion in online so-
cial media has led to a data deluge. A growing set of online ap-
plications are continuously generating data at unprecedented rates,
from the Internet of things (e.g., connected devices, routers), elec-
tronic communication (e.g., email, groups, IMs, SMS), social me-
dia (e.g., blogs, web pages), to the vast collection of online social
networks and content sharing applications (e.g., Facebook, Twitter,
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Youtube, Flickr). Graphs (networks) are a natural data representa-
tion in many of these application domains, where nodes represent
individuals (or entities) and edges represent the interaction, com-
munication, or connectivity among them. Consider interaction and
activity networks formed from electronic communication between
users (e.g., emails, SMS, IMs, etc). These resulting interaction and
activity networks manifest as a stream of edges, where edges (i.e.,
interactions) occur one at a time, carrying a wealth of behavioral,
community, and relationship information. Many of these networks
are massive in size, due to the prolific amount of activity data (e.g.,
4.75 billion pieces of content shared daily on Facebook).

Modeling and analyzing these massive and dynamic interaction
graphs have become important in various domains. For example,
detecting computer/terrorist attacks and anomalous behavior in com-
puter networks and social media [6, 1], identifying the behavior
and interests of users in online social networks (e.g., viral market-
ing, online advertising) [22, 35], real-time monitoring and detect-
ing virus outbreaks in human contact networks [23], among many
others. But the volume and velocity of these graphs outpaces prac-
titioners’ ability to analyze and extract knowledge from them. As a
result, a common practice is to analyze static windowed snapshots
of these graphs over time. However, this is costly and inefficient
both in terms of storage volumes, and management for future use.

To keep up with the growing pace of this data, we need efficient
methods to analyze dynamic interaction networks as the data ar-
rives in streams, rather than static snapshots of graphs. In various
application domains, graph mining is rapidly shifting from min-
ing static graph snapshots to mining an open-ended graph stream
of edges representing node interactions. We would like to have a
framework capable of operating continuously and efficiently, pro-
cessing edges/links as they arrive and providing timely answers for
various network analysis tasks. This motivates the streaming graph
model in which the graph is presented as a stream of edges/links in
any arbitrary order, where each edge can be processed only once,
and any computation uses a small memory footprint (i.e., often sub-
linear in the size of the input stream) [26, 25, 3].

Other scenarios require efficient methods to analyze static graphs
that are too large to fit in memory [30, 26]. In the case of mem-
ory constraints, traditional graph methods are costly as they require
random disk accesses that incur large I/O costs. This naturally leads
to the question: how can we process graphs sequentially (one edge
at a time). The streaming graph model provides an ideal frame-
work for dynamic and naturally streaming graph data. In addition,
it would also apply to the case of graph data that is stored as a list
of edges streaming from storage [30, 26, 3].

Despite the recent advances in high-performance graph analysis
tools and the availability of computational resources on the cloud,
running brute-force graph analytics is usually too costly, too ineffi-
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cient, and too slow in practical scenarios. In many cases, the cost of
performing the exact computation is often not worth the extra ac-
curacy. While an approximate answer to a query or an analysis task
is usually sufficient, in particular when the approximation is per-
formed with sufficient high-quality, unbiasedness, and confidence
guarantees. Sampling provides an attractive approach to quickly
and efficiently find an approximate answer to a query, or more gen-
erally, any analysis objective. While previous work on sampling
from graph streams focused on sampling schemes for the estima-
tion of certain graph properties (i.e., in particular triangles) [20, 27,
8], in this paper however, we focus on an adaptive general purpose
framework for sampling from graph streams. From a high-volume
stream of edges, the proposed framework maintains a generic sam-
ple of limited size that can be used at any time to accurately es-
timate the total weight of arbitrary graph subsets (i.e., triangles,
cliques, stars, subgraphs with particular attributes). To obtain ac-
curate estimates of various graph properties, we maintain a weight
sensitive sample that devotes sampling resources to edges that are
informative for those properties. In addition, we want a sampling
scheme that is capable of utilizing auxiliary information about the
items in the stream. Most previous work on stream sampling is
either hard to adapt to various estimation objectives, focused on
specific graph properties, or does not utilize auxiliary information.

Contributions. The main contributions of this paper are as follows.

e Framework. We propose graph priority sampling (GPS), the
first adaptive, general purpose, weight sensitive, one-pass, fixed-
size without replacement sampling framework for massive graph
streams. GPS provides a general way to weight edge sampling ac-
cording to auxiliary/size variables to estimate various graph prop-
erties (Sec 3). We discuss antecedents to our approach in Sec 2.

o Theoretical Analysis. We propose a new Martingale formulation
for subgraph count estimation, and show how to compute unbiased
estimates of arbitrary subgraph counts from the sample at any point
during the stream. This Post-Stream Estimation can be used to
construct reference samples for retrospective graph queries (Sec 3).

o [n-Stream Estimation is a second framework in which subgraph
count estimates are incrementally updated during stream process-
ing rather than computed at a selected point, which can be used to
obtain accurate estimates with lower variance (Sec 5).

e Algorithms. We design efficient/parallel algorithms for triangle
and wedge count estimation using GPS (Sec 4-5).

e Accuracy. We test our framework on graphs from various do-
mains and types. Our estimates are accurate with < 1% error.
Notably, for billion-scale graphs, GPS accurately estimates triangle
and wedge counts with < 1% error, while storing a small fraction
of < 0.01% of the total number of edges in the graph.

e Real-time Tracking. The proposed framework can maintain ac-
curate real-time estimates while the stream is evolving (Sec 6).
We survey related work in Section 7 before concluding in Section 8.
Proofs of the Theorems are deferred to Section 9.

2. ANTECEDENTS TO OUR WORK

We now discuss how our proposed framework generalizes and
exploits the properties of many known sampling schemes: reservoir
sampling, probability proportional to size, and order sampling.

Reservoir Sampling is a class of single-pass schemes to sample
a fixed number n of items from a stream of N > n items [21,
33]. The sample is maintained incrementally over the stream, and
can be used at any time to estimate the stream properties up to that
time. Graph priority sampling uses reservoir sampling to form a
fixed-size weighted sample from an input edge stream in one pass.
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Probability Proportional to Size Sampling. In many real-world
applications, each item has an auxiliary variable (a size or weight).
Auxiliary variables correlated with the population variable under
study can be used as weights for non-uniform sampling. Variants
of this scheme have been designed to fulfill different estimation
goals [32]. Inclusion Probability Proportional to Size (IPPS) is a
variance minimizing scheme for a given average sample size [15].

Priorty Sampling is an IPPS order-based reservoir sampling with
item ¢ assigned a priority w; /u;, where the u, are IID uniform on
(0,1]. A priority sample takes the n highest priority items, each
with an unbiased estimator w; = max{w;, z} of w;, where z is the
(n + 1) highest priority. See [16, 28, 17, 11] for further details.
Most of these methods suit mainly sampling IID data (streams of
database transactions, IP network packets). In this paper, however,
we deal with graph data that exhibit both structure and attributes.
A few of the methods discussed above have been extended to graph
streams, in particular uniform-based reservoir sampling (see Sec-
tion 7). Graph priority sampling generalizes most of the above
sampling schemes, and obtains an adaptive, weight sensitive, gen-
eral purpose, fixed-size sample in one-pass, while including topo-
logical information hat we wish to estimate as auxiliary variables.

3. GRAPH PRIORITY SAMPLING

This section establishes a methodological framework for graph
priority sampling. Sec 3.1 sets up our notation and estimation
goals. Sec 3.2 specifies our algorithm and its properties. Sec 3.3
and 3.4 establishes the unbiasedness for our subgraph estimators
and their variance. Sec 3.5 shows how to choose sampling weight
to minimize the variance for target subgraphs.

3.1 Proposed Framework

Notation and Problem Definition. Let G = (V, K) be a graph
with no self loops, where V' is the set of nodes, and K is the set
of edges. For any node v € V, let I'(v) be the set of neighbors
of node v and so deg(v) = |['(v)] is the degree of v. We call two
edges k, k' € K adjacent, k ~ k', if they join at some node,
ie.,k N Kk # 0 [2]. In this paper, we are principally concerned
with estimating the frequency of occurrence of certain subgraphs
of G. Our proposed graph stream model comprises an input graph
G = (V, K) whose edges arrive for sampling in any arbitrary or-
der [2]. We assume edges are unique and so we can identify each
edge in K with its arrival order in [|K|] = {1,2,...,|K|}. Dueto
the identity between edges and arrival order we will use the no-
tation J C K and J C [|K]] interchangeably. Thus, we can
uniquely identify a subgraph J € J with the corresponding or-
dered subset of edges J C [|K|], written as an ordered subset,
J = (41,12, ...,%¢) With i1 < 42 < ... < 7 being the arrival order.
Thus, J C [t] if all the edges in J have arrived by time .

We use the general notation 7 to denote the set of all subgraphs
of G whose count N(J) = |J| we wish to estimate. As special
cases, A will denote the set of triangles and A the set of wedges
(paths of length 2) in G, Let « = 3N (A)/N(A) denote the global
clustering coefficient of G. For a set of subgraphs J we shall use
the notation J; = {J € J : J C [t]} to denote those members
J of J all of whose edges have arrived by time ¢, The number of
these is denoted N¢(J) = | J¢|

Algorithm and Intuition. The basic outline and intuition of the
proposed framework comprises of two steps. In the first step, we
select a small sample of edges K¢ C [¢] from the set of all edges

arriving by time ¢, with m = |IA(,5| is the reservoir capacity. The
second step allows us to estimate the count of general subgraphs



in G regardless of whether they were all sampled. We define the
subset indicator of a subset of edges J C [|K|] by the function,

1, Jc[
S = { 0, otherwise )

Thus, S+ = 1if and only if all the edges in J have arrived by time
t. In the above notation S+ = Ne({j}) and Nt(JT) = >_ ;c ; Sut
is the count of all members of J (i.e., subgraphs J € J) whose
edges have all arrived by time ¢. Our goal is to estimate N¢(7)
from a selected sample of edges K: C [t].

3.2 Algorithm Description & Properties

We formally state our main algorithm GPS(m) for Graph Pri-
ority Sampling into a reservoir K of capacity m in Algorithm 1.
The main algorithm GPS(m) (see Algorithm 1) maintains a dy-
namic reservoir/sample K of size m from a graph whose edges
are streaming over time. When a new edge k arrives (Line 3),
we call the procedure GPSUPDATE. We assume a weight function
W (k, K ) that expresses the sampling weight for edge k as a func-
tion of both £ and the topology of the reservoir K (Line 8). For
example, W (k, K ) could be set to the number of sampled edges
adjacent to k, or the number of triangles in K completed by k. In
general, the function W (k, K ) can be set to include topology, at-
tributes, and/or any auxiliary information in the graph. Once the
weight w(k) = W(k, I?) is computed, we assign edge k a pri-
ority (k) = w(k)/u(k) (Line 9), where u(k) is an independent
uniformly generated random number (Line 7). GPS maintains a pri-
ority queue where each edge in the reservoir K is associated with
a priority (computed at arrival time) that defines its position in the
queue. When a new edge k arrives in the stream (and if the reser-
voir is full, see Lines 11-14), its priority is computed and compared
with the lowest priority edge in the queue. If edge k has a lower
priority, then it is discarded. If edge k has a higher priority, then
the lowest priority edge is discarded and replaced by edge k.

Implementation and data structure. We implement the priority
queue as a min-heap [12], where each edge has a priority less than
or equal to its children in the heap, and the root position points to
the edge with the lowest priority. Thus, access to the lowest pri-
ority edge is performed in O(1). If edge k has a higher priority
than the root, edge k is initially inserted at the root position, then
moved downward to its correct position in the heap in O(logm)
time (worst case). Note that if the sample size is less than the reser-
voir capacity, i.e., |IA( |< m, edge k is inserted in the next available
position in the heap, then moved upward to its correct position in
the heap in O(logm) time (worst case). The threshold z* is the
(m + 1)* highest priority (see Line 13). To simplify the analysis,
we provisionally admit a new edge & to the reservoir, then one of
the m + 1 edges is discarded if it has the lowest priority. Finally, at
any time in the stream, we can call the procedure GPSNORMALIZE
to obtain the edge sampling probabilities. As shown in the proof of
Theorem 1, p(k’) = min{1,w(k")/z*} (see Lines 16-17) is the
conditional sampling probability for k" given z*; hence 1/p(k’)
forms the Horvitz-Thompson estimator for the indicator of k’.

Algorithm Properties. Graph Priority Sampling demonstrates the
following properties:

(S1) Fixed Size Sample. As seen above, K, is a reservoir sample
of fixed size |I?t|: m forall t > m.

(S2) Unbiased Subgraph Estimation. In Section 3.3 we construct
unbiased subgraph estimators §J,t of S+ for each subgraph J and
t > 0. The Sy is computable from the sample sets I?t. Section 5
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Algorithm 1 Family of Graph Priority Sampling Algorithms
1 procedure GPS(m)
2 R« 02«0
while new edge k do
GPSUPDATE(k, m)
GPSNORMALIZE(K)

3
4
5

procedure GPSUPDATE(k, m)
Generate u(k) ~ Uni(0, 1]
w(k) « W(k, K)

r(k) < w(k)/u(k)

6
7
8

9 > Priority of edge k

10 K« Ku{k} > Provisionally include edge k
11 if|K|> m then

12 k™ < argmin,, R r(k’) > Lowest priority edge
13 2" « max{z",r(k")} > New threshold
14 K« R\ {k*} > Remove lowest priority edge

procedure GPSNORMALIZE(IA()
for k' € K do

p(k’) + min{1, w(k’)/z*} > HT Renormalize

extends our construction to new classes of estimators || it §1t7
that are edge products over multiple times. These allow unbiased
estimation of subgraphs in new ways: as they arise in the sample, or
prior to discard, or on arrival of certain edges. These results follow
from a novel Martingale formulation of graph priority sampling.

(S3) Weighted Sampling and Variance Optimization. Graph pri-
ority sampling provides a mechanism to tune sampling weights to
the needs of applications. We accomplish this using edge weights
that express the role of an edge in the sampled graph (see Sec. 3.5).
Examples include the number of edges in the currently sampled
graph that are adjacent to an arriving edge, and the number of sub-
graphs bearing a given motif that would be created by inclusion of
the edge in the sample. In addition, weights may also express in-
trinsic properties that do not depend explicitly on the graph struc-
ture. Examples include endpoint node/edge identities, attributes,
and other auxiliary variables, e.g. user age, gender, interests, etc.

(S4) Computational Feasibility. For each incoming edge k =
(v1, v2), the GPS framework calls GPSUPDATE to update reservoir
K of capacity m. The processing time per arrival comprises the
cost to compute the weight (i.e., W (k, K ) and the cost to update
the heap (if the new edge is inserted). The worst case cost of heap
insertion/deletion is O (log m).

The cost of W (k, K ) is problem-specific and depends on the
sampling objective and the function that computes the sampling
weight for edge k. We use the number of triangles in K completed
by k. i.e., W(k, K) = |T'(v1) N T'(v2)|. This can be achieved in
O(min{deg(v1), deg(v2)}), if a hash table or a bloom filter is used
for storing f(vl), f(vg) and looping over the sampled neighbor-
hood of the vertex with minimum degree and querying the hash
table of the other vertex. The space requirements of the proposed
framework GPs are: O(|V|+m), where | V| is the number of nodes
in the reservoir, and m is the reservoir capacity. There is a trade-off
between space and time, and GPS could limit the space to O(m).
However, the cost update per edge would require a pass over the
reservoir (O(m) in the worst case). On the other hand, increasing
the space to O(|V|+m) can yield sub-linear time for edge updates.

3.3 A Martingale for Subgraph Counting

We now axiomatize the dependence of w on k and K and ana-
lyze the statistical properties of estimates based on the sample set.
We index edge arrivals by ¢ € N, and let K; C [t] denote the
set of indices in the sample after arrival ¢ has been processed and
K . K +—1 U {t} denote the index set after ¢ has been provision-



ally included in the sample. Let w; denote the weight assigned to
arrival ¢ and u; be IID uniform on (0, 1]. The priority of arrival ¢
is then ry = wy/uy. Anedgei € IA(Q is selected if it does not have
the smallest priority in [?{, ie., if
T >z = min 7j 2)
JEK\{i}
When 7 is selected from I?{ then r; ; is equal to the unrestricted
minimum priority z; = max Ry T since the discarded edge takes
the minimum. For ¢ < 7, z;,; = z; since ¢ has not yet appeared.
Defining B;(z) = {r; > =}, we write the event that ¢ is in the
sample at time ¢ > 7 as
{i € Ki} = Ni_sBi(zis) 3)

We now construct for each edge ¢ a sequence of Edge Estima-
tors S’\i,t that are unbiased estimators of the corresponding edge in-
dicators. We prove unbiasedness by establishing that the sequence
is a Martingale [34]. A sequence of random variables {X; : t €
N} is a Martingale with respect to a filtration 7 = {F; : t € N}
of increasing o-algebra (these can be regarded as variables for con-
ditioning) if each X is measurable w.r.t. F; (i.e. it is function of
the the corresponding variables) and obeys: E[X;|Fi—1] = X¢—1.
Martingales provide a framework within which to express unbiased
estimation in nested sequences of random variables.

We express GPS within this framework. For J C Nlet z;; =
min, FAVAEE Let ]-'1-(’2) denote the o-algebra generated by the
Jj # i, s < t}, let Fi be the o-algebra
generated by F.' 't ) and the variables Z;; = {zis : 5 < t} and
{Bi(zi+),7 < s < t}, and let F; be the filtration {F5,; : t >
i —1}. Set 27 = max;<s<t 2,5 and define:

Riy = min{l,wi/z},}, Si.=I(Bi(z}4))/Riy (4
fort >iand S;; = 0for0 <t < i.

THEOREM 1 (EDGE ESTIMATION). Assume w;; is Fit—1-
measurable. Then {S; ¢ : t > i} is a Martingale w.r.t. the filtration
Fi, and hence E[S; t| = S; ¢ forall t > 0.

variables {B; (Z{”} s)

The measurability condition on w; means that it is determined by
the previous arrivals, including the case that an edge weight de-
pends on the sampled topology that it encounters on arrival.

To compute S we observe that when i € Kt, then (i) 7; > zi¢
and hence z;; = z¢; and (ii) z;,; > maxs<; 2;,s since otherwise
the minimizing j for z;; could not have been selected. Hence for
t > i with 2; = maxs<¢ 2s:

Si=1I(i € K;)/min{1,w,/z} (5)

It is attractive to posit the product Sy = ILics S;asa subgraph
estimator J when J C [t]. While this estimator would be unbi-
ased for independent sampling, the constraint of fixed-size intro-
duces dependence between samples and hence bias of the prod-
uct. For example, VarOpt sampling [10] obeys only E[[ ], ; §z} <
ILic,s E[S:]. We now show that the edge estimators for Graph Pri-
ority Sampling, while dependent, have zero correlation. This is a
consequence of the property, that we now establish, that the edge
product estimator is a Martingale.

Fix a subgraph as J C N, set J; = J N [t] and for k € [t] N J°
define z5,5,c = MAaxX, ¢ g1\ (7,u{k}) s i.e., the maximal rank in I?{
apart from k and those in J;. Let }'§ t) denote the conditioning w.r.t
{Bi(zsks) - k & J,s < t},and let F;; denote conditioning w.r.t
f§03, Zyi={zss: s <tland {B;(zys) : i € J,s <t} and let
Fj denote the corresponding filtration.

THEOREM 2 (SUBGRAPH ESTIMATION). (i) For J C N
define Sy = Hzerlt Then {Sy: : t > maXJ} is a

Martingale w.r.t. the filtration Fj and hence E[[ [, ; Si,t] =
Sy fort > 0.

(ii) Forany set J of subgraphs of G, ﬁt(J) = ZJEJ:JC& §J7t
is an unbiased estimator of N¢(J) = |J¢|= ZJEJ St
and the sum can be restricted to those J € J for which
J C l?t, i.e., entirely within the sample set at t.

The proof of Theorem 2(i) mirrors that of Theorem 1, and fol-

lows from the fact that the expectation of [,  ; Bj(zs,), condi-

tional on Fj:—1, is a product over J; we omit the details. Part (ii)
follows by hnearlty of expectation, and the restriction of the sum
follows since SJt = O unless J C Kt

3.4 Variance and Covariance Estimation
Theorem 2 also allows us to establish unbiased estimators for

the variance and covariance amongst subgraph estimators. Con-

sider two edge subsets J1, Jo C K;. We use the following as an

~

estimator of Cov(Sy, ¢, S,,¢):

Cyy,amt = S ,tS75,6 — SJl\Jg,tSJg\Jl,tSJlﬁJz,t

= §J1\J2,tSJ2\J1,tSJlﬁJ2,t(SJlﬁJg,t - 1)
= §J1UJ2,t (§J1mJ2,t - 1) (6)

THEOREM 3 (COVARIANCE ESTIMATION). Cy, j,. isanes-
timator of Cov(Sy, ¢, S7,,t)-

(i) ah,b,t is an unbiased estimator ()fCov(gjl,t, §J2,t).
(ii) Cyy. 190 > 0 and hence Cov(Sy, 1, S1,.4) > 0.
(iii) gjyt(gjyt — 1) is an unbiased estimator ofVar(gJyt).

(iv) Cyy 55,6 = 0ifand only if Sj, ¢+ = 0o0r Sye = 0, or
J1 N Jzs = 0, ie., covariance estimators are computed only
from edge sets that have been sampled and their intersection
is non-empty.

We do not provide the proof since these results are a special case
of a more general result that we establish in Section 5 product from
graph estimators in which the edges are sampled at different times.

3.5 Optimizing Subgraph Variance

How should the ranks r; ¢ be distributed in order to minimize
the variance of the unbiased estimator Nt (J) in Theorem 2 ? This
is difficult to formulate directly because the variances of the S it
cannot be computed simply from the candidate edges. Instead, we
minimize the conditional variance of the increment in N¢(J) in-
curred by admitting the new edge to the sample: more precisely:
1. For each arriving edge ¢ find the marginal selection probability
for 7 that minimizes the conditional variance Var(N;(7)|Fii—1).
2. Edges are priority order sampled using weights that implement
the variance-minimizing selection probabilities.
Our approach is inspired by the cost minimization approach of
IPPS sampling [15]. When i € K| we define N; (7)) = #{J €
J:ieJAJ C K} ie. the number of members .J of 7 that
are subsets of the set of candidate edges I?{ and that contain 3.
Put another way, ﬁi,t(J ) is the number of members of 7 that are
created by including ¢ within IAQ. Suppose ¢ is sampled with prob-
ability p, conditional on F;;_1. The expected space cost of the
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sample is proportional to p, while the sampling variance associated

with Horvitz-Thompson estimation of the increment n = N; ()
isn?(1/p — 1). Following [15], we form a composite cost

C(z) =2"p+n°(1/p—1) 7
where z is a coefficient expressing the relative scaling of the two
components in the cost. C'(z) is minimized by p = min{1,n/z},
corresponding to IPPS sampling with threshold z and weight n.
By comparison with the relation between threshold sampling and
priority sampling, this suggests using n = ]Vi,t(j) as the weight
for graph stream order sampling. We also add a default weight for
each edge so that an arriving edge k that does not currently intersect

with the target class (i.e. k # J C ﬁt(j)) can be sampled.

4. TRIANGLE & WEDGE COUNTING

In this section we apply the framework of Section 3 to triangle
and wedge counting, and detail the computations involved for the
unbiased subgraph count estimates and their variance estimates.

Unbiased Estimation of Triangle/Wedge Counts. From the nota-
tion in Sec. 3, let A, be the set of triangles whose edges have arrived
by t, and A; CA; be the subset of such triangles that appear in the
sample K;. Then, N;(A) is the Horvitz-Thompson estimator of the
count of members (i.e., triangles) in A;. We write 7 €A, as a subset
(K1, k2, k3) ordered by edge arrival (i.e., k3 is the last edge). Sim-
ilarly, A+ denotes wedges whose edges have arrived by time t. So
Ni(A) is the Horvitz-Thompson estimator of the count of wedges
in A¢, and XA € A, is written as an ordered subset (k1, k2) with k2
the last edge. The following are direct corollaries of Theorem 2:

COROLLARY 1 (TRIANGLE COUNT). Nt(A) =3 §T,t
is an unbiased estimator of N¢(A).

TEA:

COROLLARY 2 (WEDGE COUNT). N;(A) = D oaeA,s S is
an unbiased estimator of Ny(A).

Additionally, we use &; = 3N;(A)/N;(A) as an estimator for
the global clustering coefficient av.

Variance Estimation of Triangle/Wedge Counts. Let Var[ﬁt (a
)] denote the variance of the unbiased estimator of triangle count at
time ¢, and Var[N;(A)] the variance of the unbiased estimator of
wedge count at time ¢, given by Corollaries 1 and 2 respectively.
Expressions for unbiased estimates of these variances are direct
corollaries from Theorem 3, which itself follows from Theorem 5.

COROLLARY 3 (VARIANCE OF TRIANGLE COUNTS). IZ(A)
is an unbiased estimator of Var[Ni(A)], where

Vi)=Y Sre(Sre—1)+2> Y Cre ®

TEAY TEAL 7 <1
T'ent

COROLLARY 4 (VARIANCE OF WEDGE COUNTS). XA/t(A) is
an unbiased estimator of Var[N¢(A)], where

Vi)=Y SuS—D+2> 3 Cave )
AEAL AEAL N <A
NeAg
Variance Estimation for Global Clustering Coefficient. We use

& = 3N;(A)/N:(A) as an estimate of the global clustering coef-
ficient « = 3N (A)/N(A). While this estimate is biased, asymp-
totic convergence to the true value for large graphs would follow
from the property of N;(A) and N;(A). This motivates using a
Taylor expansion of the estimator, using the asymptotic form of the
well-known delta-method [31] in order to approximate its variance;

see [2] for a similar approach for Graph Sample and Hold. The re-
sulting approximation is:

Var(R(8)/F(A)) ~ Va;\}((];fng)) N(A)N\ET)(AZN(A)) (10)
_2N(A) Cov(N(a), N(A))
N(A)3
Following Theorem 3, Cov(N (2), N(A)) is estimated as
Vo) = Y S (Srn-1) an
e

Efficiency. The basic intuition of Algorithm 2 is that the subgraph
estimation problem is localized. Hence, all computations can be ef-
ficiently performed by exploring the local neighborhood of an edge
(or a node) [4]. In this section, we discuss how the estimators can
be adapted to make the computations more efficient and localized,
while still remaining unbiased.

By linearity of expectation, we express ]Vt(A) (in Corollary 1) as
Ni(n) = 1/3 D keR: Ni.:(A) where Ny ¢(2) is the conditional
estimator of triangle counts for edge k& normalized by the number
of edges in a triangle. Similarly, we express the unbiased estimator
Ni(A) (in Corollary 2) as Ny(A) = 1/2 D keR, Ni.+(A) where
]vk,t(A) is the conditional estimator of wedge counts for edge k
normalized by the number of edges in a wedge.

Consider any two distinct edge subsets Ji, Jo C K. From The-
orem 3, the covariance estimator aJl,JN = 0if J; and J; are
disjoint (i.e., |.J; N J2|= 0). Otherwise, Cs, 7,.+ > 0 if and only
if their intersection is non-empty (i.e., |J1 N J2|> 1). If Ji, Jo
are triangles (or wedges), then |J1 N J2|< 1, since any two dis-
tinct triangles (or wedges) could never overlap in more than one
edge. Thus, the unbiased variance estimators can also be computed
locally for each edge, as we show next.

By linearity of expectation, we re-write Equation 8 as follows:

Via) = 135 3 5u(Seu—1) (12)

keR, T€Lt(K)

+ Z Z Z ST\T’,tST/\T,tSTF‘IT’,t (S‘rﬁ‘r’,t - 1)
ke, T€M(k) T'<T
T’ En (k)
Note that for any two distinct triangles 7,7’ C K., we have
§m717t > 0if and only if 7 N 7" = {k} for some edge k € K.
Similarly, we could re-write Equation 9 as follows:

Vi(n) = 17230 > SuSae -1 (13)

kGIA(f, AEA(K)

+ Z Z Z SN NN ANt (Smw,t - 1)
keR, AEAL(k) X<
N e (k)

Algorithm Description. To simplify the presentation of Algo-
rithm 2, we drop the variable ¢ that denote the arrival time in the
stream, however the algorithm is valid for any ¢ € N. We start by
calling Algorithm 1 to collect a weighted sample K of capacity m
edges. For each edge k € K, we use W(k, K) = 9 % |A(k)|+1
where |A (k)| is the number of triangles completed by edge k and
whose edges in K. Then, we call Algorithm 2 at any time ¢ in
the stream to obtain unbiased estimates of triangle/wedge counts,
global clustering, and their unbiased variance.
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Algorithm 2 Unbiased Estimation of Triangle & Wedge Counts

1 procedure GPSESTIMATE(IA()

2 Initialize all variables to zero

3 parallel for edge k = (v1,v2) € K do
4 q < min{1, w(k)/z"}

5 for each vs € T'(v1) do > found wedge
6 k)l — (’Ul7 Ug)

7 q1 < min{1,w(ky)/2"}

8

/*Compute triangle estimates™*/

9 if vg € T'(v2) then > found triangle
10 k2 < (v2,v3)

11 g2 < min{1,w(k2)/2"}

12 Ni(8) += (qq1q2) 7" > triangle count
13 Vi(8) += (gq192) ' ((qqra2) ' = 1) b tri. var.
14 Cr(b) +=cu * (q1a2) " > triangle covariance
15 ca =ca + (q1q2) "

16 /*Compute wedge estimates for wedges (v3, v1, v2)*/

17 Nie(A) += (qq1)7* > wedge count
18 ‘A/'A(A) +=(qq1) " ((gq1) "t = 1) > wedge variance
19 Cr(A) +=ca * qfl > wedge covariance
20 ca=cataqrt

21 /*Compute wedge estimates for wedges (vs, vz, v1)*/

22 for each vz € T'(vs) do

23 ]Cz — ('U27 Ug)

24 g2 < min{1, w(ks)/2"}

25 Ni(A) += (qg2) 7" > wedge count
26 VK(A) += (quQ)fl((q(I’z)il —1) > wedge variance
27 Cr(A) +=ca * q2—1 > wedge covariance
28 cA =ca +qy

2 Cr(s) =Cr(8)x2xq (g~ " = 1)

30 Cr(A) = Cr(M) %25 q T (g7t = 1)

31 /*Compute total triangle/wedge estimates™/

3 JF(A) — L Eke?]yk(A),Aﬁ(A) — 1 Zkeaﬁkm)
B V() 1 * her Vi(4), V(A) 1 * Tier Vi(A)
34 C(8) « Xper Cr(8), C(A) + X ez Cr(A)

35 V() « V(a)+ C(n)

36 V(A) « V(A)+C(A)

37 return N(a), N(A), V(a), V(A)

For each edge k = (v1,v2) € K, Alg. 2 searches the neigh-
borhood T'(v1) of the node with minimum degree (i.e., deg(v1) <
deg(v2) for triangles (Line 5). Lines 9—15 compute the estimates
for each triangle (k1, k2, k) incident to edge k. Lines 17-20 com-
pute the estimates for each wedge (k1, k) incident to edge k (and
centered on node v1). Lines 25-28 compute the estimates for each
wedge (k2, k) incident to edge k (and centered on node vs). Fi-
nally, the individual edge estimators are summed in Lines 32-36,
and returned in Line 37.

We state two key observations in order: First, the estimators of
triangle/wedge counts can be computed locally for each sampled
edge k € K, while still remaining unbiased. Thus, Algorithm 2
is localized. Second, since the estimators of triangle/wedge counts
can be computed for each sampled edge k € K independently in
parallel, Algorithm 2 already has abundant parallelism.

Complexity. Algorithm 2 has a total runtime of O(m?>/?). This is
achieved bAy 2 (o1 0a)e & Min{deg(v1), deg(v2)}) = O(a(K)m),
where a(K) is the arboricity of the reservoir graph. This com-
plexity can be tightly bounded by O(m>/?) since O(a(K)m) <
O(m?/?) for any sampled graph [9, 4].

Sampling and Counting Cliques and Other Subgraphs. While
this section has focused on estimating counts of triangles/wedges
and their variances, the statistical framework of Sec. 3 applies to

arbitrary subgraphs. We outline the procedure for computing more
general subgraph count estimators, specifically for the counts of

cliques of some degree d. The disjoining of sampling and estima-
tion steps in our framework allows great flexibility in algorithm de-
sign and resource trade-offs. Edge sampling for general cliques can
use triangle-count weighting in Alg. 1; this is favorable for general
clique count estimation because triangles form sub-cliques of the
target d-cliques. Extending the edge sampling weight to include a
count of higher-order sub-cliques would increase estimation accu-
racy at the expense of a higher computational cost. For estimation,
d-cliques in the edge sample can be identified using any algorithm
designed for this purpose; see e.g., [4]. The count and variance es-
timates are then computed from the sampling probabilities of the
clique edges according to the formulas in Theorems 1, 2 and 3. We
stress the flexibility of our framework to target differing classes of
target subgraphs, which compares favorably with approaches such
as [27] which require the use of subgraph specific data structures.

S. IN-STREAM ESTIMATION

The foregoing analysis enables retrospective subgraph queries:
after any number ¢ of stream arrivals have taken place, we can com-
pute an unbiased estimator S, (J) for any subgraph J. We term this
Post-Stream Estimation. We now describe a second estimation
framework that we call In-Stream Estimation. In this paradigm,
we can take “snapshots” of specific sampled subgraphs at arbitrary
times during the stream, and preserve them as unbiased estima-
tors. These can be used or combined to form desired estimators.
These snapshots are not subject to further sampling; their estimates
are not updated. However their original subgraphs remain in the
graph sample and are subject to sampling in the normal way. Thus
we do not change the evolution of the graph sample, we only ex-
tract information from it that does not change after extraction. The
snapshot times need not be deterministic. For example, each time a
subgraph that matches a specified motif appears (e.g. a triangle or
other clique) we take a snapshot of the subgraph estimator. If we
only need to estimate the number of such subgraphs, it suffices to
add the inverse probability of each matching subgraph to a counter.

5.1 Unbiased Estimation with Snapshots

In-stream estimation can be described within the framework of
stopped Martingales [34]. Return for the moment to our general
description in Section 3 of a Martingale { X; : ¢t € N} with respect
to a filtration 7 = {F; : t € N}. A random time T is called a
stopping time w.r.t F if the event " < t is F;-measurable, i.e.,
we can decide at time ¢ whether the event has occurred yet. The
corresponding stopped Martingale is

X" = {X{ :t € N} where X/ = Xping7.0) (14)
Thus, the value of X is frozen at T'.

We define a snapshot as an edge subset J C N and a family
T ={T; : j € J} for Fs-measurable stopping times, giving rise
to the product stopped process

S5 =115 = 1 Simmner; 0 (15)
jeJ jed
Although in-steam estimates use snapshots whose edges have the
same stopping time, variance estimation involves products of snap-
shots with distinct stopping times. Unbiasedness then follows from
the following result that applies to any snapshot of the form (15).

THEOREM 4. (i) {S%, :
respect to Fj and hence E[§§t] =S4

t > max J} is Martingale with

(ii) For any set J of subgraphs of G, each J C J equipped with
an F y-measurable stopping time T, then ), ; T S;{ is an
unbiased estimator of | J¢|.
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Algorithm 3 In-Stream Estimation of Triangle & Wedge Counts

1 procedure INSTREAM_GPS(K)

2 K« 02«0

3 while new edge k do

4 GPSESTIMATE(k)

5 GPSUPDATE(k, m)

§  return N(a), N(A), V(a), V(A), V(a,A)
8

procedure GPSESTIMATE(k)
9 parallel for Triangle (k1, k2, k) completed by k do

10 if (2 ==0) thengqy + g2 < 1

11 else

12 q1 < min{l, w(ky)/z"}

13 g2 + min{l, w(k2)/z"}

14 N(A) = 1/(111112) > Triangle Count
15 V(2) += ((q192) 7" = 1)/(q102) > Triangle Var.
16 V() +=2(Ck, (8) + Ciy (8))/(a142)

17 V(a,A) += (ékl(A) + Cry (M) /(q102) > Tri.-Wedge Cov.
13 Ck1 (8) += -1)/q2 > Triangle Covariance
19 Cry(8) += (Qz -D/a

20 parallel for Wedge j € K adjacent to k do

21 if (2 ==0)theng + 1

22 else ¢ + min{1,w(j)/z"}

23 N(A) +=q* > Wedge Count
24 V(A) +=¢q 1(11 -1 > Wedge Variance
2 V(W) +=204(0)/a

26 V(8,A) +=C;i(8)/q

% Ci(A) += 1/‘1 -1 > Wedge Covariance

29 procedure GPSUPDATE(k, m)

30 Generate u(k) uniformly on (0, 1]
31 w(k) « W(k,K)

2 r(k) — wik)/u(k)

33 KR+ Ru {k}

34 CkﬁA eCk(A)HO

35 if | K|> m then

> Priority of edge k
> Provisionally include edge &

36 k* « argmin,, & (k") > Lowest priority edge
37 2"+ max{z",r(k")} > New threshold
38 K+ K \{k"} > Remove lowest priority edge
39 C(n) < C(a)\ Cr+ () > Remove covariances of k™
40 C(A) + C(A)\ Crx (M)

5.2 Variance Estimation for Snapshots

In this section we show how the variance and covariances of
snapshots can be estimated as sums of other snapshots involving the
stopping times of both constituents. The Martingale formulation is
a powerful tool to establish the unbiasedness of the estimates, since
the otherwise statistical properties of the product of correlated edge
estimators drawn at different times are not evident.

Consider two edge sets J; and J> each equipped with families
of stopping times 7 = {T' : j € J;}, with i = 1,2, for the
purpose of snapshots. Thus each 5 € J; N Jz is equipped with
two generally distinct stopping times T(l) and T(2) according to

its occurrence in the snapshots ST Jl t and ST J2 t As an estimator
T @) )
of Cov (S}, +,S57,,+ ) we will use:

AT(I),T@) ~7(1) T(2) ~7(1) ~7(2) A7)y (2)
CleJz,t Sfl t S SJl\Jz iSJz\Jl,tSJlﬂJz,t (16)

where TV v 72 = {maX{Tj(l),Tj(Q)} : j € JinJa},ie., we
use the earlier stopping time for edges common to both subsets.
. 1) 7(2) | . .
THEOREM 5. (i) leﬁJ;’t is an unbiased estimator of
Cov(S3,, 55,7
7D A7)

~7(1)
(ii) Ci(,lJ;;@) > 0 and hence Cov (S}, ; ,SJ2 .) > 0.

1) is an unbiased estimator ofVar(gzt).

(iii) ST ,(S7, -

.o AT 72 . L ar® (2)
(iv) C§1J2€ = 0 if and only sz?ht = 0 or S?z . =0,
i.e., covariance estimators are computed only from snapshots

that have been sampled.

Covariance Estimation for Post-Stream Estimation. Post-stream
estimation is a special case of in-stream estimation with all 7} =
oo. We recover the corresponding Thm 3 concerning covariances
from Thm 5 by omitting all stopping times 7; from the notation.

5.3 In-Stream Triangle & Wedge Counts

We now describe an application of In-Stream Estimation to Tri-
angle Sampling and Counting. We sample from the stream based
on the previous triangle count weighting, but the triangle counting
is performed entirely in-stream. The full process is described in Al-
gorithm 3. In this section we state and prove the form of estimators
for triangle count and its variance, and describe the corresponding
steps in the algorithm. Space limitations preclude giving a similar
level of detail for wedge counting and edge-wedge covariance.
Unbiased In-Stream Estimation of Triangle Count. Using our
previous notation A; to denote the set of triangles all of whose
edges have arrived by ¢, we write each such triangle as (k1, k2, k3)
with k3 the last edge to arrive. If ki and k2 are in the sample K
when ks arrives, we take a snapshot of the wedge (k1, k2) prior
to the sampling step for k3. Formally, we let T}, denote the slot
immediately prior to arrival of k3 and form the snapshot S (5 kz}
T}, is a stopping time because edge arrivals are determlnlstlc

ATk

THEOREM 6. Ni(8) = 3k, 5y ks)ens Ogho ko)t IS AN unbi-

ased estimator of Ny(A).

Estimation of Triangle Count Variance. We add some further
notation in preparation for estimating the variance of Nt(A). Let
K, [ = Ut>olA(t denote the set of edges that are sampled at any
timeuptot. Let Ay = {(k1, ka, k3) €A g{T,:f’kz} > 0 denote the
(random) subset of all triangles in A; that have positive snapshot.
Let I?(Q)(k) denote the set of pairs (j', k') of edges in IA(M such
that each of the edge pairs (k, j ") and (k k') are the first two edges

in distinct triangles in A, and with (5, k") ordered by their stop-
ping time of the third edges in these triangles, i.e., Tj ;» < T /.

THEOREM 7. Var(N;(A)) has unbiased estimator

Vi(a)= > : ( ! - 1)(17)

—~ k1,T; ko, T k1,T) ko, T}
(k1,hoohs)EE Pk1, Ty, Pko,Try \ Pk1,Tiy Pk, Ty

Yy > ()

keRp G K)E Pr!Ty 4 P3? Ty, PRTy o \ PRTy, o
RO

Description of Algorithm 3. We now describe the portions of Al-
gorithm 3 relating the in-stream estimator N (A) and V (2). When
an edge k arrives, an update is performed for each triangle that k
completes (line 9). These updates can be performed in parallel
because each such triangle must have distinct edges other than k.

Triangle count N (2) is updated with the current inverse probabil-

ities of its first two edges k1 and ks (line 14). The variance V (2)
is updated first with the variance term for the current triangle (line
15) then secondly with its cumulative contributions Cy, (A) and
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ékl (A) to the covariances with all previous triangles whose first
two edges include k1 or k2 (line 16). These cumulative terms are
then updated by the current triangle (lines 18 and 19). Wedge
count variables are updated in a similar manner in lines 20-27. The
edge-wedge covariance \7(A, A) used for estimation of the global
clustering coefficient « is updated using the cumulative triangle and
wedge covariances in lines 17 and 26.

6. EXPERIMENTS & RESULTS

We test the performance of graph priority sampling on a large
set of graphs up to billions of nodes/edges, selected from a vari-
ety of domains and types, such as social, web, among others. All
graph data sets are available for download [29] '. For all graph
datasets, we consider an undirected, unweighted, simplified graph
without self loops. We generate the graph stream by randomly per-
muting the set of edges in each graph. For each graph, we perform
ten different experiments with sample sizes in the range of 10K-
1M edges. We test GPS as well as baseline methods using a single
pass over the edge stream (such that each edge is processed once):
both GPS post and in-stream estimation randomly select the same
set of edges with the same random seeds. Thus, the two methods
only differ in the estimation procedure. For these experiments, we
used a server with two Intel Xeon E5-2687W 3.1GHz CPUs. Each
processor has 8 cores with 20MB of L3 cache and 256KB of L2
cache, and 128GB of memory. The experimental setup is executed
independently for each sample size as follows:

1. For each sample size m, Alg 1 collects an edge sample KCK.
2. We use Alg 2 for post stream estimation, where the estimates are
obtained only from the sample. We use Alg 3 for in-stream estima-
tion, where the estimates are updated incrementally in a single pass
during the sampling process. Thus, both GPS post and in-stream
estimation use the same sample.

3. Given a sample K C K, we use the absolute relative error
(ARE) [E[X] — X|/X to measure the deviation between the ex-
pected value of the estimates X and the actual statistics X. We use
X to refer to triangle, wedge counts, or global clustering.

4. We compute 95% confidence bounds as X +1.961/ Var[)? 1[32].

Error Analysis and Confidence Bounds. Table 2 summarizes
the main graph properties and compares GPS post stream and in-
stream estimation for a variety of graphs at sample size m = 200K
edges. First, we observe that GPS in-stream estimation has on av-
erage < 1% relative error across most graphs. In addition, GPS
post stream estimation has on average < 2%. Thus, both methods
provide accurate estimates for large graphs with a small sample
size. Table 2 also shows that the upper and lower bounds of GPS
in-stream estimation are smaller than those obtained using GPS post
stream estimation. Both methods use the same sample. However, a
key advantage for GPS in-stream estimation versus GPS post stream
estimation is its ability to minimize the variance of the estimators.
Thus, GPS in-stream estimates are not only accurate but also have
a small variance and tight confidence bounds.

Second, we observe that the GPS framework provides high qual-
ity general samples to accurately estimate various properties simul-
taneously. For example, Table 2 shows consistent performance
across all graphs for the estimation of triangle/wedge counts and
global clustering with the same sample. Similarly, in Figure 1,
we observe that GPS accurately estimates both triangle and wedge
counts simultaneously with a single sample, with a relative error of
0.6% for for both triangle and wedge counts.

1www.networkrepository.com
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Figure 1: Comparing Z/= of triangles and wedges. The closer
the points are to the intersection of the red lines (actual) the
better. Points are colored by graph type. Results are from the
in-stream estimation method at 100K.

Table 1: Estimates of expected value and relative error using
GPS in-stream with 1M edges for a representative set of billion-
scale graphs. The number of triangles in the full graph is shown
in the fourth column. syn(|V|, p) is an Erdés-Rényi graph with
|V| is the number of nodes and p is the density.

[K|

graph |K| e X X X _Xl1p  uB
soc-friendster 1.8B  0.0006 4.17B 4.17B  0.0004 4.02B 4.3B
web-Clueweb09 7.9B 0.0001 31B 31B 0.009 299B 32.7B
syn(100M,107%) 49B  0.0002 165.8K 166K 0.001 1352K 196.9K
syn(100M,107%) 499B  0.00002 165.4M 165.IM 0.001  155.3M 174.8M

Finally, we investigate the properties of the sampling distribution
and the convergence of the estimates as the sample size increases
between 10K—-1M edges (See Figure 2). We used graphs from var-
ious domains and types. We observe that the confidence intervals
of triangle counts are small in the range 0.90-1.10 for most graphs
at 40K sample size. Notably, for a large Twitter graph with more
than 260M edges (soc-twitter-2010), GPS in-stream estimation ac-
curately estimates the triangle count with < 1% error, while storing
40K edges, which is only a fraction of 0.00015 of the total number
of edges in the graph. Due to space limitations, we removed the
confidence plots for wedges and clustering coefficient. However,
we observe that the confidence interval are very small in the range
of 0.98-1.02 for wedges, and 0.90-1.10 for global clustering.

Results for both massive real-world and synthetic graphs of up
to 49B edges are provided in Table 1. Synthetic graphs were gener-
ated using Erd6s-Rényi graph model with different densities. No-
tably, GPS is shown to be accurate with less than 0.01 error. We
observed similar results for wedges and clustering coefficient, the
details were removed due to space constraints.

Baseline Study. The state-of-the-art algorithms for triangle count
estimation in adjacency graph streams are due to the neighborhood
sampling (NSAMP) in [27] and the triangle sampling (TRIEST)
in [14]. We discuss their performance in turn compared with GPS
post stream estimation. We also compare with MASCOT [24]
and simple uniform random sampling (SRS) [33]. Table 3 sum-
marizes the results of the comparison. Our implementation of the
NsAMP [27] algorithm follows the description in the paper, which
achieves a near-linear total time if and only if running in bulk-
processing. Otherwise the algorithm is too slow and not practi-
cal even for medium size graphs with a total time of O(|K|r).
Overall, GPS post stream estimation achieves 98%—99% accuracy,
while NSAMP achieves only 80%—84% accuracy for most graphs
and 92% accuracy for higgs-soc-net graph. Our implementation of



Table 2: Estimates of expected value and relative error using 200K edges for a representative set of 10 graphs. The graphlet statistic

for the full graph is shown in the fourth column. LB and UB are 95% confidence lower and upper bounds, respectively.

ACTUAL GPS IN-STREAM GPS POST STREAM
graph | K| b X X XX 1B UB X XX 1B UB
ca-hollywood-2009  56.3M 0.0036 4.9B 4.9B 0.0009 4.8B 5B 4.8B 0.0036 4.6B 5.1B
com-amazon  925.8K 0.216 667.1K 667.2K 0.0001 658.5K 675.8K 666.8K 0.0004 653.6K 680K
&4 higgs-social-network 12.5M 0.016 83M 82.6M 0.0043 80.8M 84.4M 83.2M 0.0031 79.5M 87M
S soc-livejournal  27.9M 0.0072 83.5M 83.1IM 0.0043 80.6M 85.7M 81.5M 0.0244 72M 91M
<ZC soc-orkut 117.1IM  0.0017 627.5M 625.8M 0.0028 601.4M 650.1M 614.8M 0.0203 396M 833.7M
] soc-twitter-2010  265M 0.0008 17.2B 17.3B 0.0009 16.8B 17.7B 17.3B 0.0027 13.3B 21.3B
= soc-youtube-snap  2.9M 0.0669 3M 3M 0.0004 2.9M 3.IM 3M 0.0003 2.9M 3.1M
socfb-Texas84 1.5M 0.1257 11.IM 11.1M 0.0011 10.9M 11.3M 11.1M 0.0013 10.4M 11.9M
tech-as-skitter 11M 0.018 28.7M 28.5M 0.0081 27.7M 29.3M 28.3M 0.0141 26.5M 30.1IM
web-google  4.3M 0.0463 13.3M 13.4M 0.0034 13.2M 13.6M 13.4M 0.0078 13.1IM 13.8M
ca-hollywood-2009  56.3M 0.0036 47.6B 47.5B 0.0011 47.3B 47.8B 47.5B 0.0026 46.9B 48.1B
com-amazon  925.8K 0.216 9.7M 9.7M 0.0002 9.7M 9.8M 9.7M 0.0021 9.6M 9.9M
., higgs-social-network 12.5M 0.016 28.7B 28.7B 0.001 28.5B 28.9B 28.7B 0.0008 28.1B 29.3B
g soc-livejournal  27.9M 0.0072 1.7B 1.7B 0.0005 1.7B 1.8B 1.8B 0.0008 1.7B 1.8B
5 soc-orkut 117.1M  0.0017 45.6B 45.5B 0.0016 45B 46B 45.5B 0.0009 44.3B 46.8B
= soc-twitter-2010  265M 0.0008 1.8T 1.8T 0.0002 1.8T 1.8T 1.8T 0.0016 1.7T 1.8T
soc-youtube-snap  2.9M 0.0669 1.4B 1.4B 0.0035 1.4B 1.4B 1.4B 0.0084 1.4B 1.5B
< socfb-Texas84 1.5M 0.1257 335.7M 334.9M 0.0022 331.4M 338.5M 335.1IM 0.0017 323M 347.2M
tech-as-skitter 11IM 0.018 16B 16B 0.0005 15.8B 16.1B 15.9B 0.0016 15.6B 16.3B
web-google  4.3M 0.0463 727.4M 728.8M 0.002 721M 736.7TM 732.2M 0.0066 711.8M 752.5M
° ca-hollywood-2009  56.3M 0.0036 0.31 0.31 0.002 0.306 0.315 0.309 0.0009 0.295 0.323
L com-amazon  925.8K 0.216 0.205 0.205 <10~4 0.203 0.208 0.205 0.0025 0.201 0.209
:i] higgs-social-network 12.5M 0.016 0.009 0.009 0.0034 0.008 0.009 0.009 0.0039 0.008 0.009
g soc-livejournal  27.9M 0.0072 0.139 0.139 0.0039 0.135 0.143 0.136 0.0252 0.12 0.151
] soc-orkut  117.IM  0.0017 0.041 0.041 0.0012 0.04 0.043 0.04 0.0193 0.026 0.055
% soc-twitter-2010  265M 0.0008 0.028 0.028 0.0012 0.028 0.029 0.028 0.0004 0.022 0.035
= soc-youtube-snap  2.9M 0.0669 0.006 0.006 0.0032 0.006 0.006 0.006 0.0088 0.006 0.007
E socfb-Texas84 1.5M 0.1257 0.1 0.1 0.0012 0.098 0.102 0.1 0.0031 0.093 0.107
3 tech-as-skitter 11M 0.018 0.005 0.005 0.0076 0.005 0.006 0.005 0.0124 0.005 0.006
[} web-google  4.3M 0.0463 0.055 0.055 0.0014 0.054 0.056 0.055 0.0013 0.053 0.057
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Figure 2: Confidence bounds for Graph Priority Sampling with instream estimation of triangle counts. We used graphs from a
variety of domains and types. The properties of the sampling distribution and convergence of the estimates are investigated as the
sample size increases. The circle (@) represents X /x (y-axis) whereas A and V are Z5/x and UB/x, respectively. Dashed vertical line
(grey) refers to the sample at 40K edges. Notably, the proposed framework has excellent accuracy even at this small sample size.

forms the four baseline methods. Table 3 also shows the average
update time per edge (in microseconds). We note that GPS post
stream estimation achieves an average update time that is 35x—
56x faster than NSAMP with bulk-processing (for cit-Patents and
infra-roadNet-CA graphs and at least 2x faster for higgs-soc-net).

the TRIEST [14] algorithm follows the main approach in the pa-
per. TRIEST was unable to produce a reasonable estimate show-
ing only 60%—82% accuracy. Similarly, MASCOT achieves only
35%—79% accuracy and simple random sampling achieves only
19%-66% accuracy. Thus, GPS post stream estimation outper-
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TRIEST, MASCOT, and SRS use an average of 3, 2, and 2.5 mi-
croseconds/edge respectively. In Table 3, we observe the update
time for higgs-soc-net to be slower compared to the other graphs.
This is likely due to higgs-soc-net having a much larger local clus-
tering than the other graphs which in turn triggers more updates in
the GPS sample. However, the error from GPS remains small and is
orders of magnitude smaller than the state-of-the-art methods.

Table 3: Baseline comparison at sample size ~100K
Nsamp TRIEST MASCOT SRS GPS PosT
Absolute Relative Error (ARE)

cit-Patents 0.192  0.401 0.65 0.81 0.008

higgs-soc-net 0.079 0.174 0.209 0.34 0.011

infra-roadNet-CA  0.165  0.301 0.39 0.48 0.013
Average Time (pus/edge)

cit-Patents 34.2 3.01 2.02 2.5 0.63

higgs-soc-net 26.08 4.40 2.02 2.2 11.74

infra-roadNet-CA  28.72 2.81 2.05 2.5 0.831

We also compared to other methods in [20] and [8] (results omit-
ted for brevity). Even though the method in [8] is fast, it fails to
find a triangle most of the time, producing low quality estimates
(mostly zero estimates). On the other hand, the method of [20] is
too slow for extensive experiments with O(m) update complexity
per edge (where m is the reservoir size). GPS post stream estima-
tion achieves at least 10x accuracy improvement compared to their
method.

Unbiased Estimation vs. Time. We now track the estimates as
the graph stream progresses one edge at a time, starting from an
empty graph. Figure 3 shows GPS estimates for triangle counts and
clustering coefficient as the stream is evolving overtime. Notably,
the estimates are indistinguishable from the actual values. Figure 3
also shows the 95% confidence upper and lower bounds. These
results are for a sample of 80K edges (a small fraction < 1% of the
size of soc-orkut) using GPS in-stream.

Table 4: Mean absolute relative error for estimates of triangle
counts vs. time (sample size = 80K).

graph Algorithm Max. ARE MARE
TRIEST 0.492 0.211
TRIEST-IMPR 0.066 0.018
ca-hollywood-2009 ;g pogry 0.049  0.020
GPS IN-STREAM 0.016 0.003
TRIEST 0.628 0.249
tech-as-skitter TRIEST-IMPR 0.134 0.048
GPS PosT 0.087  0.035
GPS IN-STREAM 0.032 0.014
TRIEST 0.98 0.47
. TRIEST-IMPR 0.33 0.09
infra-roadNet-CA GPS PoST 0.15 0.05
GPS IN-STREAM 0.058 0.02
TRIEST 0.362 0.119
soc-youtube-snal TRIEST-IMPR 0.049 0.016
v P GPs post 0.022  0.009
GPS IN-STREAM 0.020 0.008

Given the slow execution of NSAMP, we compare against TRI-
EST and its improved estimation procedure (TRIEST-IMPR). Note
that TRIEST and TRIEST-IMPR are both using the same sam-
ple and random seeds. The two approaches are based on reser-
voir sampling [33]. We used graphs from a variety of domains
and types for this comparison, and all methods are using the same
sample size. We measure the error using the Mean Absolute Rel-

ative Error (MARE) £ 37 | % where T is the number of

| Xe—X¢|
Xt :

T

time-stamps. We also report the maximum error max;—
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Figure 3: Graph Priority Sampling with in-stream estimation
versus time. Results for social and tech networks at sample size
80K edges for triangle counts and global clustering with 95%
confidence lower and upper bounds.

Table 4 summarizes the comparison results. For all graphs, GPS
with in-stream estimation outperforms both TRIEST and its im-
proved estimation procedure TRIEST-IMPR. We note that indeed
TRIEST-IMPR significantly improves the quality of the estimation
of TRIEST. However, in comparison with GPS we observe that
GPS with post stream estimation is orders of magnitude better than
TRIEST, which shows that the quality of the sample collected by
GPs is much better than TRIEST (regardless the estimation proce-
dure used, whether it is post or in-stream estimation).

Impact of Stream Ordering on Error and Update Time. Results
for different ordering strategies are shown in Table 5. We consider
both the arbitrary stream order where the graph is presented as a se-
quence of edges in any arbitrary order and there is no bound on the
degree of a vertex, and the incidence stream order where all edges
incident to a vertex are presented successively. We observe accurate
results with no significant difference in error between the ordering
schemes. Note that arbitrary ordered streams is much harder since
edges that participate in triangles would appear at random times.
Nevertheless, the proposed approach works well for different or-
dering strategies as shown in Table 5. One real-world example of
incidence ordering pertains to streams with bursty behavior (e.g.,
where all edges adjacent to a node appear in order). For exam-
ple, on Twitter when a celebrity/influencer tweets, and then is re-
tweeted immediately after by many users/followers. In terms of the
average update time, we observe the incidence ordering to be faster
than arbitrary which is likely due to caching and locality benefits.

Table 5: Impact of the ordering of the stream on error and
update time. Estimates are from GPS in-stream with 1M edges.
Recall that ARE is the Absolute Relative Error.

Avg. time
Graph Stream order % ARE  (usledge) LB/x UB/x
. ARBITRARY 0.0006 0.003 2.65 0.95 1.05
soc-friendster
INCIDENCE  0.0006 0.0004 0.53 0.96 1.037
web-ClueWeb50m ARBITRARY 0.002 0.004 3.66 0.97 1.018
INCIDENCE ~ 0.002  0.0006 1.92 0.984 1.016

Impact of Sampling Weight on Error and Variance. When a
new edge k arrives in the stream, Alg. 1 computes a weight func-
tion W (k, K). We consider three different strategies for sampling
weights: (1) triangle-based weights which use the number of com-
pleted triangles by k& whose other edges in K (used in all the previ-
ous results, see Sec. 4 for details), (2) wedge-based weights which
use the number of completed wedges by k& whose other edges in K ,
and (3) uniform weights for all incoming edges (this is equivalent
to simple random sampling [33]). We observed that triangle-based



weights is the most accurate with less variance among the three
weighting schemes for the estimation of triangle counts. We ob-
served significant difference between weighting schemes for Gps
post stream estimation. For soc-friendster graph with m = 1M
edges, we obtained 25% error using wedge-based weights, 43%
error using uniform weights, and 3% error using triangle-based
weights. The estimator variance was 3.8x higher using wedge-
based weights, and 6.2x higher using uniform weights compared
to triangle-based weights.

7. RELATED WORK

Sampling from graph streams. There has been great interest
in algorithms for mining massive and dynamic graphs from data
streams, many based on sampling and approximation techniques.
An early such work [19] concerned following paths and connectiv-
ity in directed graphs. Much earlier work on graph streams focused
on the semi-streaming model [26, 18], where the algorithm is al-
lowed to use O(n polylogn) space to solve graph problems that
are provably intractable in sub-linear space. Recent work focused
on graph mining problems such as finding common neighbors [7],
estimation of pagerank [30], clustering and outlier detection [1],
multigraph streams [13], link prediction [35], among others [3].

Sampling and Estimation of Subgraphs. Subgraph counting (in
particular triangle counting) has gained significant attention due to
its applications in social, information, and web networks. In static
graphs that fit in memory, recent methods focused on estimation
of local and global counts of motifs of size 4 nodes, e.g. [5]. In
streaming graphs, most work focused on estimating only the num-
ber of triangles. Early work [8] provides a space-bounded algo-
rithm for the estimation of triangle counts and clustering coefficient
in the incidence graph stream model. However, these guarantees
no longer hold for the adjacency stream model, where the edges ar-
rive in arbitrary order. A single pass streaming algorithm incurring
O(mA/T)-space, where A is the maximum degree is proposed
in [27]. However, this algorithm requires both large storage and
update overhead to provide accurate results. For example, their al-
gorithm needs at least 128 estimators (i.e., storing more than 128K
edges) and uses large batch sizes (e.g., a million edges) to obtain
accurate/efficient results. A single-pass O(m/+/T)-space stream-
ing algorithm was proposed in [20] for transitivity estimation with
arbitrary additive error guarantees. It maintains two reservoirs, the
first to select a uniform sample of edges from the stream, and the
second to select a uniform sample of wedges from the first.

Other approaches focused on maintaining a set of edges sampled
randomly from the graph stream. Graph sample-and-hold [2] is a
framework for unbiased estimation of subgraph counts, however,
it does not provide a fixed-size sample. A similar approach was
recently proposed for local (node/edge) triangle count estimation
in graph streams [24]. Other methods extend reservoir sampling to
graph streams. For example, reservoir sampling has been used for
detecting outliers in graph streams [1], estimating the distribution
of various graph properties (e.g., path length, clustering) [3], and
estimating triangle counts in dynamic graph streams with insertions
and deletions [14].

8. CONCLUSION

We have presented graph priority sampling, a new framework for
order-based reservoir sampling from massive graph streams. GPS
provides a general way to weight edge sampling according to auxil-
iary variables to estimate various graph properties. We showed how
edge sampling weights can be chosen so as to minimize the estima-
tion variance of counts of subgraphs, such as triangles and wedges.

Unlike previous graph sampling algorithms, GPS differentiates be-
tween the functions of sampling and estimation. We proposed two
estimation approaches: (1) Post-stream estimation, to allow GPS
to construct a reference sample of edges to support retrospective
graph queries, and (2) In-stream estimation, to allow GPS to obtain
lower variance estimates by incrementally updating the count esti-
mates during stream processing. We provided a novel Martingale
formulation for subgraph count estimation. We performed a large-
scale experimental analysis. The results show that GPS achieves
high accuracy with < 1% error on large real-world graphs from a
variety of domains and types, while storing a small fraction of the
graph and average update times of a few microseconds per edge.

9. PROOFS OF THEOREMS
LEMMA 5. Foreacht, the events {{j € K.} : j < t} are mea-
surable w.r.t F; ; .

PROOF OF LEMMA 5. The proof is by induction. It is trivially
true fot t = 7. Assume true for ¢ — 1, then membership of K;_; is
Fit—1 measurable, and hence so is membership of K;_;. Selec-
tion of ¢ is clearly F; ;-measurable, and if 7 is selected, the remain-

. . 0 .
ing selections are }'i( t)-measurable since then Z{ij}, ¢ = Zjt- O

PROOF OF THEOREM 1. Lemma 5 established measurability.
For t > i, since R; ¢ is Z; :-measurable, conditioning first on z; ¢:

~ 1 .
E[Sit|zit, Fie—1] = Ri]E[I(Bi(Zi,t)”Zi,h]:i,tfl] (18)
it
Since Bi(z{‘,t) = Bi(Zi,t)ﬂBi(Z;t_l) and I(Bi(zztfl)) is ]:i,t—l‘
measurable, then for any event on which the conditional expecta-
tion (18) is positive, we have
E[I(Bi(2;0)) |20, Fiim1] = PIBi(z10)|Bi(27 4 1), Zie, Fryi]
P[Bi(2;)| Zi,e, wi] [P[Bi(27,1-1)| Zit, wi
= Plwi/ui > 2i4|Zie, wi] /Plwifui > 274 1|25, wi]
= Rii/Rit (19)
since once we have conditioned on B;(z; ’t,l) and Z; 4, then .7-'1(2)71
conditions only through the dependence of w; on the sample set
K;_1. Thus we have eetabhshed that E[S; ¢| i, t, Fit—1] = Si—1
regardless of z; ¢, and hence ]E[ | Fii—1] = Sip—1. O
PROOF OF THEOREM 4. (11) follows from (1) by linearity of ex-
pectation. For (i), observe that S J = S -1 + (T > t)(SJ ¢ —
§j +—1); one checks that this reproduces S, jmin{t, T; }- Thus
Sho=TI1S0 0+ > TISho IT 1@ = 6)(S5.0—S501)
jeJ LCJ el je€J\L
Observe that I(T; > t) = 1 — I(T; <t —1)isin fact Fyy—1-
measurable. Hence taking expectations w.r.t. F5,;—1 then the prod-
uct form from Theorem 2 tells us that for any L C J

H I(T; > t)(S50 — Sy 1)|Frii]

jEJ\L
= [ 1T > )E[S; — Sj-1|Fre1] =0 (20)
JEJ\L
andhenceE[§£t|fJ,t,1} :Hjejgzi 1 —S” . O
PROOF OF THEOREM 5. (i)
~p(1) ~p(2) (1) ~(2) (1) 7(2)
Cov(S],,50,4) = EIS], 87,1 —E[S], /JEIST, ]
[ES I E))
= E[S] .87, .11 @21
Hence the results follows because
~r(1) A2 A1) y(2)
[Sjl\Jg tSJQ\Jl tSJmJ2 t ] =1 (22)
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from Theorem 4 since J; \ J2, J2 \ J1 and J1 N J; are disjoint.
ar 2 ar 7(2)

. ATM 7(2) ar o a7y (2)
DCT, e = ST\g 575\t (ShrsmShnm—Sinse )

which is nonnegatlve since each j € J1 N Jo brings a factor of the

(1 i
form 1/(p™Vp?) to S?lmJQSJlsz,wherep V=p

j,max{t, T(Z)}

Dy |
This exceeds the matching term in S?l mvat ,ie., 1/min{p1, p2}.

(iii) Follows from (i) upon setting J; = Jo =
(iv) The equivalence clearly applies to the first monomial in (16).

For the second monomial, note that (:6‘311( 1t) = ) (Sg? =0)
if and only if ST( ' = = 0 for some j € J; or S = 0 for some

j € Ja. If this condltlon holds for some j € J1 AJQ we are done.

~7()

Otherwise, we require S;3 = 0 for some j € J1 N J2 and some
@

1 E {1, 2}. But for j € JiNJa, Sjj =5

.. ) ,, = 0means
Jymin{T;" t}

that j has not survived until min{Tj(i),t} and hence it also not

present at the later or equal time min{max{Tj(l)Tj(Q) },t}. Hence
Amax{Tgl) ,T(Q) }
se 7 =0and wearedone []
PROOF OF THEOREM 6. Skk o), > Oonlyif (ki k2, ks) €
Ay, and by Theorem 4 has unit expectation. []

PROOF OF THEOREM 7. Distributing the covariance over the
sum N¢(A) in Theorem 6, Var(N;(A)) has unbiased estimator

Thg Ty
Zs{kl,kg} ¢ {k1 ko).t +2zc{k1,k2;,{k/l,ké},t (23)
(k1,k2,k3)€Ent (ky,ko,k3)<
(k].k5 . k3)

Where < denotes k3 < kj in arrival order. Each variance term is
of the form 1/q(1/q — 1) for ¢ = pg, 13 Pk,, ;- Each covariance
term is zero unless {k1, k2} N {k}, k5} # 0. (The sets cannot be
equal for then k3 = k5 if both form triangles). The stated form the
follows by rewriting the sum of covariance terms in (23) as a sum
over edges k € K, of the covariances of all pairs snapshots that
contain k as a sampled edge. [
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