

Dimensions Based Data Clustering and Zone Maps
Mohamed Ziauddin, Andrew Witkowski, You Jung Kim, Dmitry Potapov, Janaki Lahorani,

Murali Krishna

Oracle Corporation

500 Oracle Parkway, Redwood Shores, CA 94065

{Mohamed.Ziauddin, Andrew.Witkowski, You.Jung.Kim, Dmitry.Potapov,
Janaki.Narasinghanallur, Murali.x.Krishna} @oracle.com

ABSTRACT

In recent years, the data warehouse industry has witnessed

decreased use of indexing but increased use of compression and

clustering of data facilitating efficient data access and data

pruning in the query processing area. A classic example of data

pruning is the partition pruning, which is used when table data is

range or list partitioned. But lately, techniques have been

developed to prune data at a lower granularity than a table

partition or sub-partition. A good example is the use of data

pruning structure called zone map. A zone map prunes zones of

data from a table on which it is defined. Data pruning via zone

map is very effective when the table data is clustered by the

filtering columns.

The database industry has offered support to cluster data in tables

by its local columns, and to define zone maps on clustering

columns of such tables. This has helped improve the performance

of queries that contain filter predicates on local columns.

However, queries in data warehouses are typically based on

star/snowflake schema with filter predicates usually on columns of

the dimension tables joined to a fact table. Given this, the

performance of data warehouse queries can be significantly

improved if the fact table data is clustered by columns of

dimension tables together with zone maps that maintain min/max

value ranges of these clustering columns over zones of fact table

data. In recognition of this opportunity of significantly improving

the performance of data warehouse queries, Oracle 12c release 1

has introduced the support for dimension based clustering of fact

tables together with data pruning of the fact tables via dimension

based zone maps.

1. INTRODUCTION
Data warehouses (DWs) typically contain large fact tables

connected to various dimension tables in a star or snow flake

formation [1]. Naturally, a typical DW query joins a fact table to

one or more dimension tables in the form of a star or snowflake

with filter predicates usually specified on one or more dimension

table columns. Since there are no direct joins between different

dimension tables (apart from joins between tables of normalized

dimensions in the case of snowflake schema) but only to the fact

table, one straightforward strategy would be to join the fact table

to a dimension table and then join to the remaining dimension

tables. Since the fact table is typically orders of magnitude larger

than dimension tables, the size of intermediate results produced

by this strategy will usually be large making the subsequent joins

quite expensive. An alternate strategy would be to postpone

joining the fact table to the end of join order but this leads to the

formation of Cartesian products between different dimension

tables, again making the intermediate join results usually large.

1.1 Star Transformation Technique
The database industry has historically used star transformation

technique using semi-joins [2] [4] [5] for star or snowflake

queries to avoid producing large intermediate results yet joining

the fact table toward the end of join order. This technique is used

when B-tree or bitmap indexes exist on foreign key columns of

the fact table. Since the index size is much smaller compared to

the fact table size each generated semi-join subquery that joins a

foreign key index to a dimension table (or tables within a

normalized dimension) that has filter predicates tends to be

efficient to execute. The result of a semi-join subquery is a list or

bitmap of qualified fact table rowids. If multiple semi-join

subqueries are used the resulting lists or bitmaps are intersected to

produce a final list or bitmap, which is then used as a filter when

fetching rows from the fact table. The qualified fact table rows are

then joined back to appropriate dimension tables to fetch non-key

columns referenced by the query. Star transformation strategy is

quite efficient when the semi-joins are able to filter out a large

majority of the fact table rows thereby making the subsequent join

backs to some of the dimension tables relatively inexpensive.

1.2 Right-Deep Joins with Bloom Filters
A Bloom filter [3] built along with hash table by the left (i.e.

build) side of a hash join serves as a semi-join filter for the table

scanned by the right (i.e. probe) side. Similarly, a Bloom filter

built by the left side of a sort-merge join serves as a semi-join

filter for the table on the right side. A right-deep joins query tree

[6] processes a series of left sides before the table on right side is

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 12

Copyright 2017 VLDB Endowment 2150-8097/17/08.

1622

fetched. Therefore, an optimized plan for a star query could be a

series of right-deep hash or sort-merge joins with a dimension

table on each left side and the fact table on the right side. When a

left side involves a dimension table with filter predicates it creates

a Bloom filter on the join key. Thus Bloom filters built by one or

more left sides are then used to filter out unqualified fact table

rows fetched by the right side thereby boosting the performance of

joins. Similar to a transformed star/snowflake query with semi-

joins, a right-deep joins query tree accomplishes the goal of

joining the fact table at end while producing intermediate results

of manageable size.

1.3 Data Clustering and Data Pruning
Recent trend in DWs has been away from indexing and more

toward better compression (e.g. columnar format) [20] and

clustering of data. Data clustering when properly utilized can lead

to significant improvement in the query performance because of

the avoidance of unnecessary data access from the disk, and when

the data is already cached in memory by avoiding the processing

of unnecessary rows or groups of rows. Data clustering can also

aid in better compression.

The technique of recognizing certain chunk of data as unnecessary

for query processing and thus skipping over such data is called

data pruning. A data chunk could be a table partition, or a set of

contiguous data blocks or rows, so data pruning can operate at

different granularity levels.

Partition pruning is a classic data pruning technique employed

when the table data is horizontally partitioned by the ranges or list

of partitioning key values [7] [8]. The range or list partitioning of

tables represents strict clustering of data because given a

partitioning key value the associated table rows can only be

located in a designated partition. In contrast, table data could be

naturally clustered by some columns such as order_create_date

and order_ship_date of a table storing customer orders that are

created in chronological order. Obviously, this form of data

clustering is not strict but incidental. Thus data in a table can be

strictly clustered using a data partitioning scheme, and within

each partition data can be either implicitly clustered by columns

that are correlated to the partitioning key (e.g. range partitioning

by order_create_date and implicit clustering by order_ship_date)

or explicitly clustered by some columns (e.g. range partitioning by

order_create_date and explicit clustering by order_status).

Explicit clustering of table data is cost effective when it is

performed during bulk operations such as bulk data loads and

bulk data moves.

In the context of the star transformation technique or right-deep

joins query tree, data clustering of fact table data can be exploited

by applying data pruning in addition to regular row filtering via

bitmaps or Bloom filters [3]. For example, a fact table could

contain orders that are created and inserted with their

order_create_date and order_ship_date values appearing in a

rough chronological order. If the fact table is partitioned by

ranges of order_create_date, classic partition pruning technique is

used when a query contains a filter predicate on the partition key

column. What if the query has a filter predicate on non partition

key column such as order_ship_date that is correlated to the

partition key column? Classic partition pruning is not possible in

this situation unless an auxiliary access structure known as zone

map [11] or storage index [12] exists for the fact table.

1.4 Zone Maps
A zone map is like a coarse index that maintains min/max value

ranges of one or more specified columns over contiguous sets of

data blocks or rows called zones of a table. Thus a zone map is a

table that contains rows made up of min/max value ranges of

specified columns per zone of table data. A zone is an arbitrarily

defined unit of data, which can be equal to a table partition but

usually it is much smaller. With zones smaller than table

partitions, a zone map can still maintain min/max value ranges per

zone and per partition of the table data. Now, if a zone map is

maintaining min/max values ranges for order_ship_date column of

a fact table partitioned by value ranges of order_create_date and a

query contains a range predicate on order_ship_date then partition

pruning can be performed using the zone map. Specifically, a

table partition can be pruned if the order_ship_date value range

specified in the query filter predicate doesn't intersect with the

min/max value range of order_ship_date present in the zone map

for that partition. Similarly, data pruning can be performed at a

lower granularity level of zones of table data.

A storage index is like a zone map on a single table. It is an access

structure that is built and maintained within the storage sub-

system separated from the RDBMS. A good example is the

storage sub-system consisting of storage cells in the Oracle

Exadata Database Machine [9]. Storage cells are active

components that can perform simpler query tasks such as

expression evaluation, and filtering and pruning of table rows. For

example, storage cells can filter out unqualified table rows

by evaluating a Bloom filter pushed to the storage sub-system.

Like a zone map a storage index maintains min/max value ranges

for a set of table columns over contiguous chunks of the table data

called regions. Therefore, storage cells can perform data pruning

with the help of a storage index using appropriate pushed-in filter

predicates.

The left side of a hash or sort-merge join can easily compute

min/max value range of the join key in addition to the Bloom

filter. Using the join key min/max value range RDBMS (storage

cells) operating on the right side table can perform data pruning

provided a zone map (storage index) exists on the join key. This is

join key min/max range based pruning or simply join pruning. It

is effective when the right side table data is clustered around the

join key, and the join key is correlated with the filtering column.

Several commercial database vendors offer data pruning

techniques using zone maps and storage indexes. IBM Netezza

Data Warehouse Appliance [10] offers zone map based data

pruning. Amazon Redshift allows for sorting data upon loads and

creating min/max zone maps [21]. Oracle Exadata Database

Machine system offers storage index based data pruning by the

storage cells [12]. The storage indexes are created and maintained

automatically by the storage cells on a set of table columns

determined by the monitoring of pushed-in predicates. In Oracle

RDBMS 12c Release 2, table data can be cached in Oracle

Database In-Memory columnar store [13]. The column data

pertaining to contiguous sets of table rows is stored compressed in

columnar format in memory units called In-Memory Compression

Units (IMCUs) [14]. Thus each column is stored separately in a

series of IMCUs. Each IMCU maintains min/max value range of

the column data it stores, thus it can be pruned if its range doesn’t

intersect with the value range represented by a query filter

predicate.

1623

DW queries usually contain filter predicates on dimension table

columns thus a significant data pruning opportunity is missed

when the fact table data is clustered by its local columns and not

by the dimension table columns. So we argue and show in this

paper that it is quite significant to cluster the fact table data by

columns of one or more dimension tables, or by a combination of

fact and dimension columns. Realizing this significant data

pruning benefit, Oracle 12c release 1 is the first commercial

database product to offer dimensions based data clustering of

tables and data pruning via dimensions based zone maps.

Rest of the paper is organized as follows. We first introduce

dimensions based data clustering in section 2, and dimensions

based zone map in section 3. We explain different types of data

pruning methods employed using a zone map in section 4. In

section 5 we describe the experiments we performed using the

Star Schema Benchmark (SSB) [15] to measure the benefit of

dimensions based data pruning on query performance. We

conclude this paper in section 6 with a summary plus a discussion

of possible future enhancements.

2. DIMENSIONS BASED DATA

CLUSTERING
A majority of DW queries contain filter predicates on dimension

table columns, and a few contain filter predicates on fact and

dimension table columns. For this reason, query performance of

DW queries can be improved significantly if fact table data can be

clustered by dimension columns or when necessary a combination

of dimension and fact columns, together with a zone map that

maintains min/max values ranges of clustered columns on zones

of fact table data.

2.1 Dimensions Based Clustering of Fact Data
Table data can be explicitly clustered by a combination of

columns of other related tables. For example, in data warehouses

that typically have star schema relationships, fact table data can be

clustered by the columns of one or more dimension tables. This

can be accomplished by joining the fact table to the dimension

tables and ordering the fact table data by the specified dimension

columns. In fact, multi-dimensional clustering such as the

ordering produced by Z-curve or Hilbert curve fitting [19] can be

used to cluster fact table data by columns of multiple dimensions.

When the fact table is partitioned, which is usually the case in

data warehouses, multi-dimensional clustering applies to data

within each fact table partition.

Dimensions usually contain data hierarchies such as (c_region,

c_nation, c_city) in the customer dimension and (p_mfgr,

p_category, p_brand1) in the part dimension of the Star Schema

Benchmark (SSB) [15]. The fact table data can be explicitly

clustered in linear manner along the columns of each dimension

hierarchy and then in interleaved (i.e. multi-dimensional) manner

along hierarchies themselves. For example, we can cluster the

lineorder table of SSB in linear manner along customer dimension

so that rows belonging to same c_region are grouped together,

and within each c_region rows belonging to same c_nation are

grouped together, and within each c_nation rows belonging to

same c_city are grouped together. Similar linear grouping of

lineorder rows can be applied along the part dimension hierarchy.

Finally, lineorder rows can be grouped in interleaved manner

along customer and part hierarchies. This type of clustering based

using a combination of linear and interleaved grouping can be

notationally described as INTERLEAVED(LINEAR(c_region,

c_nation, c_city), LINEAR(p_mfgr, p_category, p_brand1)).

In Oracle RDBMS release 12c, table data can be cached in the In-

Memory Columnar store in compressed columnar format. The

data for a contiguous set of table rows is stored separately in

memory chunks called In-Memory Compression Units (IMCUs)

[14]. Thus the data for each column is stored separately in a series

of IMCUs. It is important to note that data cached in IMCUs is in

the same order as the order of rows stored on disk, which means

any clustering of the table data is also preserved in IMCUs.

Therefore, incidental or explicit clustering of table data in IMCUs

can be exploited to identify and prune unnecessary IMCUs.

2.2 Data Clustering Operations
We will use the Star Schema Benchmark (SSB) and the published

Oracle syntax for table clustering to illustrate the operations

performed to define explicit clustering on tables, two forms of

data clustering, and conditions under which to perform automatic

clustering of table data. Further, we will assume that the lineorder

table of SSB is partitioned by yearly ranges of lo_orderdate

column. The simplest form of clustering of a table is by its local

columns. The following statement defines clustering of lineorder

table by its lo_quantity and lo_discount column.

CREATE TABLE lineorder (...)

 CLUSTERING BY ORDER (lo_quantity, lo_discount);

Explicit clustering can be defined for an existing table but its data

is not immediately clustered

ALTER TABLE lineorder

 ADD CLUSTERING

 BY ORDER (lo_quantity, lo_discount);

In Oracle, the clustering of data is performed upon bulk load and

bulk data move operations. The latter are typically partition

maintenance operations, such as move partition. In fact, the

clustering definitions listed above have these options by default.

The following statement modifies clustering to turn off clustering

of data upon bulk loads.

ALTER TABLE lineorder

 MODIFY CLUSTERING

 BY ORDER (lo_quantity, lo_discount)

 NO ON LOAD YES ON DATA MOVEMENT;

After defining clustering for an existing table, its data can be

clustered by performing bulk data move operations as follows.

ALTER TABLE lineorder

 MOVE PARTITION lineorder_part1;

ALTER TABLE lineorder

 MOVE PARTITION lineorder_part2;

....

The partition move causes the data at the original location to be

read and ordered according to the clustering definition before it is

moved to its new location.

If YES ON LOAD option is specified or it is simply omitted then

upon each bulk load operation the source data is clustered before

it is bulk loaded into the table. The following statement bulk loads

data from lo_source_data into lineorder table with defined

clustering. In Oracle RDBMS, the hint /*+ APPEND */ indicates

to perform bulk insert (i.e. bulk load) instead of normal

conventional insert operation.

1624

INSERT /*+ APPEND */ INTO lineorder

 SELECT * FROM lo_source_data;

COMMIT;

Two forms of data clustering are supported. One is linear and the

other is interleaved. Linear clustering means order table rows by

specified columns in major to minor column order, similar to the

ordering of table rows in a multi-column index. Interleaved

clustering means order table rows by specified columns in multi-

dimensional manner such as the ordering produced by well known

Z-curve or Hilbert curve fitting [19]. Since linear is the implicit

default, so interleaved needs to be explicitly specified as

illustrated below.

ALTER TABLE lineorder

 MODIFY CLUSTERING

 BY INTERLEAVED ORDER (lo_quantity, lo_discount);

The statement above modifies the clustering definition but does

not re-cluster the table data until it is bulk moved. Interleaved

clustering orders the table rows equally well by specified columns

so data pruning using filter predicate on one, or other, or both

columns will be effective. Oracle RDBMS uses Z-ordering

technique for interleaved clustering.

All examples above deal with clustering of a table by its local

columns. Clustering of data especially of fact tables can be made

dimensions based. In this case, fact table needs to be joined to the

dimension tables so its rows can be ordered by dimension

columns. For this, the dimension join keys need to be unique. The

following statement modifies clustering of lineorder table to be

dimensions based.

ALTER TABLE lineorder

 MODIFY CLUSTERING

 lineorder LEFT JOIN customer

 ON (lo_custkey = c_custkey)

 LEFT JOIN part

 ON (lo_partkey = p_partkey)

 BY INTERLEAVED ORDER (c_region, p_mfgr);

The left outer joins specified in the clustering definition preserve

all lineorder rows in the joined result. The joined result is then

ordered interleaved by c_region and p_mfgr columns.

In SSB, customer and part dimensions contain (c_region,

c_nation, c_city) and (p_mfgr, p_category, p_brand1) data

hierarchies respectively. This means, the lineorder table data can

be ordered interleaved by these hierarchies. This maximizes the

data pruning opportunity since queries will likely have filter

predicates on any columns of these hierarchies in different

combinations. Dimension hierarchies based clustering can be

specified as shown below.

ALTER TABLE lineorder

 MODIFY CLUSTERING

 lineorder LEFT JOIN customer

 ON (lo_custkey = c_custkey)

 LEFT JOIN part

 ON (lo_partkey = p_partkey)

 BY INTERLEAVED ORDER

 ((c_region, c_nation, c_city),

 (p_mfgr, p_category, p_brand1));

Here, lineorder table rows are ordered linearly along the columns

of two dimension hierarchies, and then ordered interleaved by

these two hierarchies. As stated before, effective data pruning

occurs when queries contain filter predicates on any combination

of these hierarchy columns, such as (p_category = 'MFGR#12’

AND c_region = 'ASIA’).

3. DIMENSIONS BASED ZONE MAPS
In Oracle, you can create either a basic or join zone map on a

table. The table on which a zone map is defined is called fact

table. There are no joins in a basic zone map definition so it has

only the fact table. A join zone map is a dimension based zone

map. It contains a fact table plus one or more dimension tables

joined to the fact table in a star formation. A basic zone map

maintains min/max value ranges on columns of the fact table,

whereas a join zone map usually maintains min/max value ranges

on columns of the dimension tables although it can also maintain

min/max value ranges on columns of the fact table. Oracle

RDBMS allows only one zone map per fact table, which is

adequate for the purpose of data pruning of fact table. However, a

table can appear as a dimension in multiple zone maps. This

allows for defining zone maps on different fact tables that share

same dimensions.

Basic or join zone map is nothing but materialized aggregation of

fact table data, wherein minimum and maximum aggregates of

certain columns are formed on well defined chunks of the fact

table data. Further, join zone map also represents materialization

of joins between the fact table and dimension tables. In other

words, zone map is a materialized view.

Min/max aggregates are difficult to refresh incrementally using

the change delta when deletes or updates to min/max columns

occur. Thus classic incremental refresh method using the change

data logs of base tables cannot be used. In section 3.2, we explain

how zone maps are maintained and refreshed in efficient manner

without the use of change data logs.

3.1 Zone Map Operations
The following statement creates a basic zone map that maintains

min/max value ranges of lo_quantity and lo_discount columns per

zone of lineorder table.

CREATE MATERIALIZED ZONEMAP lineorder_zmap AS

 SELECT SYS_OP_ZONE_ID(rowid),

 MIN(lo_quantity), MAX(lo_quantity),

 MIN(lo_discount), MAX(lo_discount)

 FROM lineorder

 GROUP BY SYS_OP_ZONE_ID(rowid);

The function SYS_OP_ZONE_ID() maps the lineorder table rows

stored in sets of contiguous data blocks on disk into different

zones. Given the rowid (i.e tuple id) of a fact table row this

function computes a unique zone identifier. This function takes an

optional second argument representing zone map scale that

determines the size of each zone. The default value of zone map

scale is for each zone to encompass up to 1024 contiguous data

blocks. The lineorder_zmap will have as many rows as the

number of zones of lineorder data. If lineorder table is partitioned,

say, with 10 partitions then lineorder_zmap will have additional

10 rows each storing min/max value ranges of lo_quantity and

lo_discount for a partition.

If the data in lineorder table is clustered by the customer and part

dimension hierarchies then a join zone map should be

created. The following statement defines a join zonemap on

lineorder table. Since only one zone map can exist on a table we

first drop the previously created one before creating a new one.

1625

CREATE MATERIALIZED ZONEMAP lineorder_zmap AS

SELECT SYS_OP_ZONE_ID(lineorder.rowid),

 MIN(c_region), MAX(c_region),

 MIN(c_nation), MAX(c_nation),

 MIN(c_city), MAX(c_city),

 MIN(p_mfgr), MAX(p_mfgr),

 MIN(p_category), MAX(p_category),

 MIN(p_brand1), MAX(p_brand1)

FROM lineorder LEFT JOIN customer

 ON (lo_custkey = c_custkey)

 LEFT JOIN part

 ON (lo_partkey = p_partkey)

GROUP BY SYS_OP_ZONE_ID(lineorder.rowid);

A DESCRIBE command for above join zone map shows the

following columns present in lineorder_zmap.

DESCRIBE lineorder_zmap;

Name Null? Type

----------------------- -------- --------------

ZONE_ID$ NOT NULL NUMBER

MIN(C_REGION) VARCHAR2(20)

MAX(C_REGION) VARCHAR2(20)

MIN(C_NATION) VARCHAR2(20)

MAX(C_NATION) VARCHAR2(20)

MIN(C_CITY) VARCHAR2(20)

MAX(C_CITY) VARCHAR2(20)

MIN(P_MFGR) VARCHAR2(20)

MAX(P_MFGR) VARCHAR2(20)

MIN(P_CATEGORY) VARCHAR2(20)

MAX(P_CATEGORY) VARCHAR2(20)

MIN(P_BRAND1) VARCHAR2(20)

MAX(P_BRAND1) VARCHAR2(20)

ZONE_LEVEL$ NUMBER

ZONE_STATE$ NUMBER

ZONE_ROWS$ NUMBER

ZONE_AJ_ROWS$1_CUSTOMER NUMBER

ZONE_AJ_ROWS$2_PART NUMBER

Column ZONE_ID$ stores the zone identifiers computed by

SYS_OP_ZONE_ID(). This is followed by pairs of columns

created to store min/max value ranges as specified in the SELECT

list. In Oracle, additional zone map columns are transparently

created to store other zone related information. ZONE_LEVEL$

indicates the granularity (i.e. zone or partition) of min/max value

ranges. ZONE_STATE$ is used to store the staleness state of

min/max value ranges pertaining to a zone or partition.

ZONE_ROWS$ stores the number of fact table rows in that zone

or partition. Columns ZONE_AJ_ROWS$1_CUSTOMER and

ZONE_AJ_ROWS$2_PART capture the referential integrity state

of the set of fact rows belonging to a zone (partition) with respect

to dimension tables customer and part respectively. Specifically,

these columns store the count of orphan fact table rows within a

zone (partition) not joining with any row in the respective

dimension table. This information is used for the purpose of

staleness tracking of a join zone map upon DML operations to

respective dimension tables, which is described in section 3.2.2.2.

The state and properties applicable to entire zone map are stored

in the data dictionary (aka database catalog). The properties

include zone map type (i.e. basic or join), zone map scale, refresh

mode (i.e. when to refresh - upon bulk data load, upon bulk data

move, upon DML transaction commit, or on demand). The zone

map states include zone map being invalid, stale, and disabled

(i.e. zone map use disabled by the user). The following command

disables the use of zone map.

ALTER MATERIALIZED ZONEMAP lineorder_zmap DISABLE

PRUNING;

3.2 Zone Map Maintenance
Zone map maintenance consists of tracking the state of the zone

map itself as well as the state of min/max value ranges stored per

zone (and per partition) upon changes to the fact table and

changes to the dimension tables in the case of a join zone map. A

second aspect of zone map maintenance consists of refresh

operations using full and incremental refresh methods.

3.2.1 Validity Checking
Certain DDL operations on tables on which a zone map depends

necessitate a re-validation of the zone map definition and marking

its validity state accordingly. For example, dropping a table or a

column on which a zone map depends makes its definition

invalid. Changing column data type on which a zone map depends

keeps the zone map definition valid but the min/max value ranges

corresponding to the changed column require re-computation thus

necessitating a full refresh of the zone map. Certain other DDL

operations on tables on which a zone map depends do not

invalidate the zone map. For example, adding a new column or a

constraint to an underlying table leaves the zone map definition

and its content intact.

3.2.2 Staleness Tracking of Zone Map
DML operations on tables on which a zone map is defined make

either none, or some, or entire content of the zone map stale

depending on the nature of change. Thus zone map staleness state

is maintained at different granularity levels of zone, partition (if

fact table is partitioned) and the entire zone map. Staleness

tracking of a basic zone map is straightforward since there are no

joins to worry about. Staleness tracking methodology is same

when the fact table of a basic or join zone map is changed. In

contrast, staleness tracking methodology is more complicated

when dimension table of a join zone map is changed. Below we

describe separately the staleness tracking actions performed upon

fact table DML, and upon dimension table DML.

3.2.2.1 Fact Table DML
Insert of a fact table row belonging to an existing zone (and

partition) makes the min/max value ranges of that zone (and

partition) stale. Subsequent inserts affecting the same zone

(partition) simply skip staleness tracking. Observe that an inserted

row may belong to a zone that is currently not present in the zone

map, in which case no staleness tracking occurs. Instead of

staleness marking, an alternate strategy would be to check the

column values of inserted row with corresponding min/max value

ranges and update them as necessary. However, using alternate

strategy for a join zone map will require joins to the dimension

tables thus rendering it impractical.

Delete of a fact table row doesn’t affect the validity of min/max

value ranges of corresponding zone (and partition) since data

pruning will continue to work albeit with potential for reduced

efficiency. So on deletes corresponding min/max value ranges are

not marked as stale but they are marked as needing refresh.

Fact table row updates that neither modify min/max columns nor

modify join key columns are ignored. Update of a fact table row

belonging to an existing zone (and partition) that modifies

min/max columns (i.e. min/max columns chosen from fact table)

or in the case of join zone map update that modifies join keys (i.e.

foreign keys joining to dimension tables) makes the min/max

value ranges of corresponding zone (and partition) stale. As

1626

noted before, an alternative strategy of directly updating the

affected min/max value ranges incurs excessive overhead upon

join key changes since it requires joining to the corresponding

dimension tables.

3.2.2.2 Dimension Table DML
Before we discuss in detail the staleness tracking methodology for

DML operations on dimension tables, we need to consider the

referential integrity state of the fact table with respect to each

dimension table.

A DML operation on a dimension table of a join zone map usually

requires joining the dimension table to the fact table to identify all

affected zones and partitions. Because joining to the fact table is

impractical, so the main challenge here is to identify a set of zones

(and partitions) affected by dimension table DML without doing

the join. The join can be avoided if referential integrity between

the fact and dimension tables is declared and enforced within the

RDBMS. Referential integrity guarantees that no orphan rows

exist in the fact table except the ones with NULL foreign keys.

Our focus here is on fact orphan rows with non NULL foreign

keys. So from here on, when we refer to an orphan fact row it

means a fact row with non NULL foreign key without a matching

key in the corresponding dimension table. Without referential

integrity, there is always a possibility that a newly inserted

dimension row will join with one or more orphan fact rows. Most

of the data warehouses do not declare and enforce referential

integrity due to performance reasons. However, referential

integrity usually exists and it is maintained in the application layer

via data flow logic. This is good news because it implies that fact

table will not contain orphan rows. For the purpose of staleness

tracking, referential integrity state of the fact table is captured at

the time a join zone map is created or refreshed. In Oracle,

referential integrity state of a fact table with respect to each of the

dimension tables is captured by computing the count of orphan

fact rows in each zone (and partition). This is stored in the anti-

join columns of a join zone map (see DESCRIBE command in

section 3.1).

At first glance, it seems we can ignore dimension table row delete.

But it can result in fresh orphan fact rows. So if a dimension row

delete is followed by a dimension row insert using the same join

key it can potentially affect the min/max values ranges of many

zones (and partitions). Can we find the set of zones (and

partitions) potentially affected by a dimension row delete without

joining to the fact table? Yes, they are the ones with min/max

value ranges encompassing the corresponding min/max values

being deleted. We refer to them as “potentially stale” zones. It is

important to note that because of the clustering of fact table data

by min/max columns the set of zones (and partitions) becoming

potentially stale is usually small. More importantly, zones (and

partitions) marked as potentially stale are handled as follows:

1. They can continue to be used for data pruning.

2. They can become stale on subsequent dimension row inserts.

3. They are candidates for zone map refresh.

A newly inserted dimension row, as observed earlier, can join

with orphan fact rows including the ones made orphan by prior

delete operations. But also, a newly inserted dimension row with a

duplicate join key can potentially join with non-orphan fact rows.

Therefore, if dimension key is not declared to be unique then

zones (and dimensions) with min/max value ranges not

encompassing the corresponding new values are marked as stale.

The good news is that join keys of dimension tables are usually

declared with unique or primary key constraints in the RDBMS.

So when dimension key is unique then zones (and partitions) with

min/max value ranges excluding the corresponding new values are

marked as stale provided they were previously marked as

potentially stale or they have corresponding anti-join count > 0.

Because of the latter condition, usually none or small set of zones

(and partitions) become stale in unique join key case.

Dimension row updates that neither modify min/max columns nor

modify join key columns are ignored. A dimension row update

modifying the join key columns is equivalent to a dimension row

delete with old key followed by a dimension row insert with new

key. The following staleness tracking actions are performed upon

dimension row update modifying column(s) of the join key:

1. Mark zones (and partitions) with min/max value ranges

encompassing the corresponding values in the dimension row

as potentially stale.

2. If the join key is unique, mark zones (and partitions) with

min/max value ranges not encompassing the corresponding

values in the dimension row as stale if they were previously

marked as potentially stale or they have corresponding anti-

join count > 0.

3. If the join key is not unique, mark zones (and partitions) with

min/max value ranges encompassing the corresponding

values in the dimension row as stale.

A dimension row update not modifying the join key but

modifying min/max column values has potential to make stale the

set of zones (and partitions) with min/max value ranges

encompassing the corresponding old values but not encompassing

the corresponding new values. This set can be reduced by joining

to the fact table but this is not really necessary based on the

following observation. Since fact table data is clustered by

min/max columns the potential set of zones (and partitions)

becoming stale is usually small.

3.2.2.3 Additional Staleness Tracking Notes
The enhanced staleness tracking strategy based on the uniqueness

of dimension join keys and the capture of orphan fact row counts

works very well in practice because referential integrity mostly

exists whether or not it is declared and enforced in the RDBMS.

This staleness tracking strategy based on chunks (i.e. zones) of

fact table data enables the incremental refresh of zone maps to

work without requiring the data change logs of underlying base

tables.

It is important to point out that zone maps are automatically

refreshed upon bulk operations (data loads, data moves) unless it

is explicitly turned off. When refresh upon bulk operations is

disabled only the affected portion of the zone map is marked stale

or left with missing zones. For example, without automatic refresh

fact table data moved from an old partition to a new partition will

result in missing zones for the newly moved data. Without

automatic refresh bulk data load generally causes minimal number

of existing zones to go stale since data is loaded into new extents

mostly forming new zones.

With automatic zone map refresh upon bulk operations being the

default, it is the conventional DML operations that entail the

staleness of zone map data. Since conventional DML operations

1627

are typically infrequent in DWs most of the zone map data tends

to stay fresh especially when the dimension join keys are unique

and referential integrity of the fact table data mostly exists.

3.2.3 Refresh Methods
A basic or join zone map can be refreshed to incorporate changes

that may have occurred to the underlying tables since the time it

was created or last refreshed. There are two refresh methods: full

(aka complete) and incremental (aka fast) [18]. A full refresh is

used when the entire zone map is marked as stale or it is explicitly

chosen; otherwise an incremental refresh is used. Any queries that

were using a zone map before its refresh operation started will

continue to use it due to the default isolation level of read

consistency (i.e. READ COMMITED) mode in Oracle. In read

consistency mode read operations are never blocked by the DML

operations and vice versa.

Zone map refresh operations also use the default read consistency

mode, which means they read a consistent snapshot of the table

data while concurrent DML operations could be committing

changes to the tables. This concurrency between refresh and DML

operations can lead to scenarios of refresh computing min/max

value ranges based on the table data that has already grown stale.

This requires identifying the newly computed min/max value

ranges impacted by concurrent DML activity and leaving them as

stale at the end of refresh. To accomplish this, we can first mark

the min/max value ranges to be re-computed as "pending refresh"

and commit this change. A concurrent DML operation that

commits changes to the underlying tables will clear the “pending

refresh” mark of affected zones (and partitions) thus indicating

that corresponding re-computed min/max value ranges have

already grown stale. The refresh sub-system at the end of re-

computation will check for cleared “pending refresh” ones and

leave them as stale. An upshot of concurrent DML activity is that

the zone map after refresh may still contain stale zones but it will

be a lot fresher than before. Also, if the entire zone map was stale

before the refresh operation, it will no longer be fully stale after

refresh but only parts of it may remain stale. This is an important

outcome. In contrast, classic refresh methods [18] such as ones

refreshing materialized joins lack DML activity tracking by data

chunks (e.g. zones). Instead, they usually track concurrent DML

activity at either object or object partition level, which means

entire materialized object or object partitions may remain stale at

the end of refresh. Such classic refresh methods perform retries to

avoid leaving entire or large parts of the materialized result stale.

A zone map being refreshed could have missing zones due to

newly added data to its fact table since it was created or last

refreshed. Refresh should compute min/max value ranges for the

missing zones but concurrent DML activity can occur on newly

added data so we first need to insert rows in the zone map

corresponding to missing zones and mark them also as “pending

refresh”. Missing zones can be found by scanning the fact table

and using the zone map itself to prune away all fact table data

except new data forming the missing zones. Here is a case of zone

map helping in its own refresh cause!

3.2.3.1 Full Refresh
The full refresh method is a straightforward method of re-

populating the zone map table with freshly computed min/max

value ranges using all of the data from table or tables on which it

is defined. In preparatory stage, all rows from the zone map table

are deleted. This helps to get rid of obsolete zones that were based

on permanently deleted data from the fact table. Next, fact table is

fast-scanned and zones are identified and inserted into the zone

map with stale and “pending refresh” mark. For fast-scan, it is

enough to scan first data block and skip rest of the blocks of each

zone. After the preparatory stage, full refresh re-computes the

min/max value ranges and merges them into corresponding zones

that still remain as "pending refresh" in the zone map, and

clearing both stale and “pending refresh” marks.

3.2.3.2 Incremental Refresh
The incremental refresh method involves computing min/max

value ranges only for zones marked as stale or “potentially stale”

or zones missing from the zone map. Classic incremental refresh

method usually requires change logs that record row activity on

underlying tables to identify and compute change delta. But

incremental zone map refresh requires no such logs because

staleness states are maintained per zone (and partition) within the

zone map. We can use the staleness states stored in the zone map

to prune away the fact table data belonging to fresh zones so that

only the fact table data pertaining to stale or missing zones is read

and min/max value ranges are computed. This is an example of

zone map helping to make its own refresh operation as efficient as

possible!

To account for concurrent DML activity during refresh operation,

incremental refresh method also uses a preparatory stage. In this

stage, fact table is scanned to identify missing zones while

pruning away fact table data belonging to zones that currently

exist in the zone map. Identified missing zones are added to the

zone map. Missing and “potentially stale” zones are marked as

stale, and then all stale zones are marked as “pending refresh”.

After the preparatory stage, incremental refresh re-computes

min/max value ranges for stale zones while pruning away fact

table data belonging to fresh zones. Re-computed min/max value

ranges are merged into corresponding zones that still remain as

"pending refresh" in the zone map, and clearing both stale and

“pending refresh” marks.

3.2.3.3 Additional Refresh Notes
For a partitioned fact table, full or incremental refresh will

compute partition level min/max value ranges by rolling up the

zone level min/max value ranges belonging to each partition.

Partition level min/max value ranges inherit the staleness of any

zone level min/max value range during the rollup operation.

Under read consistency mode, queries that execute during the time

a zone map is being refreshed will have their execution plans built

using this zone map unless it is fully stale. When a fully stale zone

map is refreshed the query execution plans built without this zone

map are invalidated so that they can be rebuilt to take advantage

of the newly refreshed zone map.

4. DIMENSION BASED DATA PRUNING
A zone map is used when a query selects from a fact table and

contains proper filter predicates on columns for which it is

maintaining min/max value ranges by zones (and partitions) of the

fact table. A proper filter predicate is one that specifies a value

range using <, <=, =, =>, >, or BETWEEN operator, or it

specifies an IN list of values or a LIKE operator comparing to a

pattern with constant prefix. For such a query, zone map can be

used to prune fact table data at appropriate granularity levels of

partitions (if fact table is partitioned), extents (i.e. allocation units

1628

of contiguous blocks on disk), and data block zones for disk based

fact table, or IMCUs for in-memory based fact table. When fact

table is accessed via an index then zone map can still be used to

prune individual rowids thus avoiding row fetches that entail

random IO. Various pruning methods are explained in the

following sections. The query shown below is Q1.1 from SSB.

SELECT SUM(lo_extendedprice * lo_discount)

FROM lineorder, dwdate

WHERE lo_orderdate = d_datekey AND

 d_year = 1993 AND

 lo_discount BETWEEN 1 AND 3 AND

 lo_quantity < 25;

To begin with, assume lineorder is not partitioned and no zone

map defined. Following is a possible execution plan for above

query.

|Id|Operation |Name |

| 0|SELECT STATEMENT | |

| 1| SORT AGGREGATE | |

|*2| HASH JOIN | |

| 3| JOIN FILTER CREATE|:BF0000 |

|*4| TABLE ACCESS FULL|DWDATE |

| 5| JOIN FILTER USE |:BF0000 |

|*6| TABLE ACCESS FULL|LINEORDER|

Plan steps 3 and 5 indicate the creation and use of Bloom filter

named BF000 based on the filter predicate d_year = 1993 on

dwdate table, which is on the left side of the hash join.

4.1 Join Pruning
Pruning of fact table data can be performed based on the join to a

dimension table with proper filter predicate provided a zone map

is created to maintain min/max value ranges of the join key (i.e.

foreign key). The join pruning is made possible by the

construction of min/max value range of the join key when Bloom

filter is built. Join pruning is a dimension based pruning method

even though the zone map is basic. Let us create a basic zone map

on lo_orderdate of lineorder, which is a join key to dwdate. The

execution plan for Q1.1 changes to the following.

|Id|Operation |Name |

| 0|SELECT STATEMENT | |

| 1| SORT AGGREGATE | |

|*2| HASH JOIN | |

| 3| JOIN FILTER CREATE |:BF0000 |

|*4| TABLE ACCESS FULL |DWDATE |

| 5| JOIN FILTER USE |:BF0000 |

|*6| TABLE ACCESS FULL WITH ZONEMAP|LINEORDER|

At plan step 3, the min/max value range created with Bloom filter

is passed down to the operation at plan step 6 to perform join

pruning. Join pruning is effective if fact data is clustered by the

join key lo_orderdate and hence d_datekey, which in turn is

correlated to the filter predicate column d_year.

4.2 Block Pruning
Join pruning does not work well in practice because it requires the

join key to be correlated to the filter predicate column. We can get

much better pruning if fact data is explicitly clustered by the filter

predicate column of the dimension, and a join zone map is

defined. So, instead of a basic zone map let us define a join zone

map on lineorder joined to dwdate with min/max value ranges on

dimension column d_year, and re-execute Q1.1. The execution

plan remains the same as shown in previous section but the

underlying mechanism changes from join pruning to block

pruning. In other words, filter predicate d_year = 1993 is directly

used to compare with min/max value ranges in the join zone map

and perform data block pruning zone by zone.

4.3 Partition Pruning
Partition pruning via zone map applies when the fact table is

partitioned. So let us make lineorder table partitioned by yearly

ranges of lo_orderdate. The execution plan for Q1.1 will change

to the following.

|Id|Operation |Name |Pstart |Pstop |

| 0|SELECT STATEMENT | | | |

| 1| SORT AGGREGATE | | | |

|*2| HASH JOIN | | | |

| 3| JOIN FILTER CREATE |:BF0000 | | |

|*4| TABLE ACCESS FULL |DWDATE | | |

| 5| JOIN FILTER USE |:BF0000 | | |

| 6| PARTITION RANGE | | | |

| | ITERATOR | |KEY(ZM)|KEY(ZM)|

|*7| TABLE ACCESS FULL| | | |

| | WITH ZONEMAP|LINEORDER|KEY(ZM)|KEY(ZM)|

Plan steps 6 and 7 showing KEY(ZM) indicate that partition

pruning is occurring based on the zone map min/max key (i.e.

d_year). In this example, all but one partition belonging to 1993

are pruned away. Note that block pruning still applies to partitions

that are not pruned away, which is important because predicate

value range may partially cover a partition. Thus this example

shows the use of zone map to perform partition as well as zone

level block pruning.

4.4 IMCU Pruning
When a table is cached in Oracle In-Memory Columnar store,

each column is cached in a series of in-memory compression units

(IMCUs). Each IMCU has well defined boundary in terms of

contiguous data blocks on disk it covers, and it carries a min/max

value range computed from the column data it contains. If a query

contains a proper filter predicate, IMCUs storing data of that

predicate column can be pruned by comparing the filter predicate

value range against the min/max value range carried in each

IMCU. But what if the proper filter predicate is on a column of

the dimension table joined to the in-memory fact table? IMCUs

can still be pruned provided a join zone map is created. Using the

well defined contiguous block boundaries, each IMCU can be

mapped on to zones in the join zone map. If min/max value ranges

in mapped zones do not intersect with the filter predicate value

range then corresponding IMCUs can be pruned.

Assume lineorder is cached in In-Memory Columnar store. The

execution plan for Q1.1 will be as shown below.

--

|Id|Operation |Name |Pstart |Pstop |

--

| 0|SELECT STATEMENT | | | |

| 1| SORT AGGREGATE | | | |

|*2| HASH JOIN | | | |

| 3| JOIN FILTER CREATE|:BF0000 | | |

|*4| TABLE ACCESS FULL|DWDATE | | |

| 5| JOIN FILTER USE |:BF0000 | | |

| 6| PARTITION RANGE | | | |

| | ITERATOR | |KEY(ZM)|KEY(ZM)|

|*7| TABLE ACCESS | | | |

| | INMEMORY FULL | | | |

| | WITH ZONEMAP |LINEORDER|KEY(ZM)|KEY(ZM)|

--

1629

Note the keyword INMEMORY shown on plan step 7. Since

lineorder is partitioned the zone map is also used to do partition

pruning, which means all IMCUs belonging to pruned partitions

are skipped. This example illustrates data pruning taking place at

different granularity levels of partitions and individual IMCUs.

4.5 Extent Pruning
In Oracle, a table is stored on disk in a series of storage extents,

each made up of a contiguous set of blocks allocated together.

When a table is scanned its extent map is read and multi-block IO

is issued for a fixed number of blocks from the current extent.

When all blocks in current extent are fetched then next extent is

processed. Similar to IMCU mapping, each extent can be mapped

on to zones in the zone map. Therefore, extent pruning works very

much like IMCU pruning except that it is used for a fact table

stored on disk as opposed to being cached in In-Memory

Columnar store. Currently extent pruning using a basic or join

zone map is performed during the generation of data granules (i.e.

data units of work for parallel processes) by the parallel query

plans but extent pruning can be easily extended to serial query

plans.

4.6 Index Rowid Pruning
If the query optimizer chooses an index to access rows from fact

table on which a basic or join zone map is defined, rowids from

index scan can be pruned before they are used to fetch the table

rows. The idea is to map each rowid to a zone identifier and

compare the value range represented by a proper filter predicate in

the query to the corresponding min/max value range in the

identified zone and pruning the rowid when no intersection is

found. Following is the execution plan for Q1.1 using index to

access data from lineorder as shown at plan step 2.

--

|Id|Operation | Name |Pstart | Pstop |

--

| 0|SELECT STATEMENT | | | |

| 1| SORT AGGREGATE | | | |

|*2| TABLE ACCESS BY | | | |

| | LOCAL INDEX ROWID | | | |

| | BATCHED WITH ZONEMAP|LINEORDER| | |

| 3| NESTED LOOPS | | | |

|*4| TABLE ACCESS FULL |DWDATE | | |

| 5| PARTITION RANGE | | | |

| | ITERATOR | |KEY(ZM)|KEY(ZM)|

|*6| INDEX RANGE SCAN |LO_INDEX |KEY(ZM)|KEY(ZM)|

--

Zone map is first used at plan steps 5 (indicated by KEY[ZM]) to

prune partitions, and later at plan step 2 it is used again to prune

index rowids batched from index scans of un-pruned partitions.

5. EXPERIMENTAL RESULTS
We conducted performance experiments to measure the benefit of

data pruning resulting from dimension based clustering and the

dimension based zone map using Star Schema Benchmark (SSB)

[15]. This benchmark contains one fact table (lineorder) and four

dimension tables (dwdate, customer, supplier, part), and four sets

of related queries called query flights: QF1 (Q1.1, Q1.2, Q1.3),

QF2 (Q2.1, Q2.2, Q2.3), QF3 (Q3.1, Q3.2, Q3.3, Q3.4), and QF4

(Q4.1, Q4.2, Q4.3).

We used SSB with scale factor = 1000 (approximately 1 TB size)

with lineorder table containing 6 billion rows. It was partitioned

on yearly ranges of lo_orderdate. There were no indexes on the

lineorder table but unique indexes on the join keys of dimension

tables. Our experiments were conducted using Oracle 12c

RDBMS running on a single node Exadata system [9] with 64

cores. We performed three different experiments: (1) query

performance experiment with lineorder table data clustered by two

and three dimensions with corresponding two and three

dimensional zone maps, (2) performance cost measurement of

bulk loading data into lineorder table with two and three

dimensional clustering, and (3) performance cost measurement of

creating and refreshing join zone map with two and three

dimensions.

All original benchmark tables as well as lineorder tables with two

and three dimensional clustering were created using Oracle’s

patented hybrid columnar compression [22] that is typically used

in DWs. Two flavors of query performance experiments were

conducted by running the queries in QF2, QF3, and QF4 with all

tables on disk, and then with all tables cached in Oracle Database

In-Memory Columnar store [13].

5.1 Query Performance
Two Dimensional Clustering: Supplier and customer dimensions

appear in QF2, QF3 and QF4. We clustered the lineorder data by

the hierarchies of these two dimensions into lineorder_sc as

shown below.

CREATE TABLE lineorder_sc (. . .)

 CLUSTERING

 lineorder LEFT JOIN supplier

 ON (lo_suppkey = s_suppkey)

 LEFT JOIN customer

 ON (lo_custkey = c_custkey)

 BY INTERLEAVED ORDER

 ((s_region, s_nation, s_city),

 (c_region, c_nation, c_city));

We bulk loaded the empty lineorder_sc table partition by

partition, and then created a corresponding two dimensional join

zonemap as follows.

CREATE MATERIALIZED ZONEMAP lineorder_sc_zmap AS

SELECT SYS_OP_ZONE_ID(lo.rowid),

 MIN(s_region), MAX(s_region),

 MIN(s_nation), MAX(s_nation),

 MIN(s_city), MAX(s_city),

 MIN(c_region), MAX(c_region),

 MIN(c_nation), MAX(c_nation),

 MIN(c_city), MAX(c_city)

FROM lineorder LEFT JOIN supplier

 ON (lo_suppkey = s_suppkey)

 LEFT JOIN customer

 ON (lo_custkey = c_custkey)

GROUP BY SYS_OP_ZONE_ID(lo.rowid);

Three Dimensional Clustering: Supplier and customer

dimensions appear in QF2, Q3F and QF4, and part dimension

appears in QF2 and QF4. We clustered lineorder data by the

hierarchies of these three dimensions into lineorder_scp as shown

below.

CREATE TABLE lineorder_scp

 CLUSTERING

 lineorder LEFT JOIN supplier

 ON (lo_suppkey = s_suppkey)

 LEFT JOIN customer

 ON (lo_custkey = c_custkey)

 LEFT JOIN part

 ON (lo_partkey = p_partkey)

 BY INTERLEAVED ORDER

 ((s_region, s_nation, s_city),

 (c_region, c_nation, c_city),

 (p_mfgr, p_category, p_brand1));

1630

We bulk loaded data into lineorder_scp partition by partition, and

then created a corresponding three dimensional join zone map

lineorder_scp_zmap. This zone map is similar to two dimensional

zone map but with an additional join to part table and additional

min/max aggregates on the part dimension hierarchy columns.

Table 1 shows the performance improvement of QF2, QF3, and

QF4 queries due to clustering and join zone map pruning with

respect to query performance using original schema tables. In this

experiment, both the original schema tables and the clustered

tables (lineorder_sc and lineorder_scp) were on disk. All queries

were run using a degree of parallelism of 64 matching the number

of cores. The x-times performance improvement is shown in term

of query run times. The run time units are not disclosed for

competitive reasons.

Table 1: X-times query performance improvement using disk

resident tables

Query 2-Dim Clustering 3-Dim Clustering

Q2.1 2.37 x 10.61 x

Q2.2 2.32 x 8.18 x

Q2.3 2.45 x 8.41 x

Q3.1 2.91 x 2.95 x

Q3.2 4.68 x 4.38 x

Q3.3 5.23 x 4.56 x

Q3.4 26.82 x 6.06 x

Q4.1 3.36 x 4.60 x

Q4.2 15.14 x 22.77 x

Q4.3 6.80 x 38.04 x

AVG 4.27 x 6.67 x

The last line in table 1 shows improvement factors designated as

AVG are based on the arithmetic sum of all query run times.

Run time improvements were proportional to the improvements in

the CPU time and disk IOs. For example, table 2 shows these

numbers for Q3.2 without and with two dimensional clustering

and zone map pruning.

Table 2: Improvements in CPU time, IOs, etc. for Q3.2

2-Dimensional

Clustering and

Join Zone Map

CPU IO Read

Requests

Read

Bytes

No 2506 30223 551 K 534 GB

Yes 383 2651 56 K 51 GB

The table 3 shows the performance improvement of QF2, QF3,

and QF4 when the original schema tables and the clustered tables

(lineorder_sc and lineorder_scp) were cached in Oracle Database

In-Memory Columnar store. Because the run times were

significantly shorter we had to reduce the degree of parallelism to

16 to control the rounding error in the reported times.

As in table 1, the last line in table 3 shows improvement factors

designated as AVG are based on the arithmetic sum of all query

run times.

Table 3: X-times query performance improvement using in-

memory tables

Query 2-Dim Clustering 3-Dim Clustering

Q2.1 1.58 x 4.21 x

Q2.2 1.48 x 3.91 x

Q2.3 1.41 x 3.67 x

Q3.1 4.39 x 3.83 x

Q3.2 6.81 x 5.27 x

Q3.3 5.57 x 4.07 x

Q3.4 1.84 x 1.73 x

Q4.1 4.43 x 5.82 x

Q4.2 2.24 x 2.46 x

Q4.3 2.29 x 2.27 x

AVG 2.63 x 3.61 x

Improvement factors shown in table 1 and table 3 confirm that

effective data pruning helps in reducing the query run times

whether the table data is on disk or cached in memory. The

improvement factors are more dramatic in the case of disk resident

tables because data pruning eliminates redundant IO as well as

CPU processing.

5.2 Cost of Clustering Fact Data
The cost of clustering of fact data is significant. The costs are due

to the following factors.

 Data needs to be sorted and this may involve spilling of sort

segments to disk.

 Fact table needs to be joined to dimension tables. Joins will

be typically hash outer joins. With parallel query execution,

data distribution occurs unless plans are pipelined. However,

pipelined plans require broadcast of left side of the join that

is suitable for small tables like dwdate. With large dimension

tables the data on both sides of hash join is usually hash

distributed, and it could spill to disk.

We performed the bulk loading of data into different versions of

the lineorder table (original lineorder, lineorder_sc, lineorder_scp)

partition by partition. Table 4 shows relative run time

performance of loading data into the table with two and three

dimensional clustering in comparison to loading data into the

original table.

Table 4: Relative cost of clustering compared to simple load

2- Dim Clustering Load 3-Dim Clustering Load

2.83 x 3.24 x

For bulk data loading with two and three dimensional clustering

the following was percentage of activities.

1631

Table 5: Cost of SQL operations for data loads with clustering

SQL Operations % of activity for

2-Dim clustering

% of activity for

3-Dim clustering

Scan of original

lineorder

5.02% 3.32%

Outerjoin to supplier

(+ distribution)

34.12% 30.77%

Outerjoin to customer

(+ distribution)

33.97% 20.89%

Outerjoin to part

(+ distribution)

NA 22.54%

Sort 12.17% 10.15%

Load to target 1.17% 1.07%

5.3 Cost of Join Zone Map
The cost of creating join zone maps was significantly lower than

the cost of clustering. Some optimization techniques, for example,

pushing partial GROUP BY below joins [4] were helpful here.

Table 6 shows the percentage of run time taken to create two and

three dimensional join zone maps compared to two and three

dimensional clustering of data respectively.

Table 6: Cost of join zone map creation relative to data clustering

2- Dim Join Zone Map 3-Dim Join Zone Map

9.22 % 13.23 %

We also conducted experiments by making some percentage of

join zone map stale by updating some of the data in lineorder_sc

and lineorder_scp tables, and then performing incremental refresh

of the join zone map. In another scenario we rendered entire join

zone map stale and then performed full refresh. Table 7 shows the

percentage of two and three dimensional join zone map that was

stale and the run time it took to incrementally refresh it relative to

the time it took to fully refresh it.

Table 7: Cost of incremental refresh relative to full refresh of join

zone map

Percent

Stale

2-Dim Join

Zone Map

Percent

Stale

3-Dim Join

Zone Map

6.0% 4..12% 8.66% 5.50%

19.5% 12.57% 21.75% 12.40%

The first two columns show for a two dimensional join zone map

the percent stale and the percent time it took for incremental

refresh compared to a full refresh, respectively The next two

columns show similar information for a three dimensional join

zone map. This experiment proves the point of zone map itself

being used to skip over the fact data corresponding to fresh zones

when performing incremental refresh.

6. CONCLUSION
Zone map or storage index on single tables have been offered in

several commercial products, in particular IBM® Netezza®

system [10], Amazon Redshift [21], Oracle Exadata system [9],

and Oracle Database In-Memory Columnar store [14].

The IBM Netezza system automatically creates zone maps [10]

stored in internal system tables, and refreshes existing zone maps

upon insert, update, load data into table, or generate statistics. For

every column in a user table with date, timestamp, byteint,

smallint, integer, bigint data type, it maintains the minimum and

maximum values per data extent. Deletions do not have immediate

effect on zone maps. We note that Netezza maintains a zone map

on every insert, update, and load while we maintain on every bulk

data load and bulk data move operation. Zone maps in Netezza

are used for extent pruning based on the predicates on the

columns on which zone maps are maintained. This is a subset of

our pruning methods where in addition to extent pruning we

perform IMCU pruning, join pruning, partition pruning, and index

rowid pruning.

In Amazon Redshift, user can create a table with one or more

columns as the sort keys. When data is loaded, it is stored on disk

in sorted order. Further, Redshift stores columnar data in 1MB

disk blocks. For each disk block it creates min/max value ranges

on sort key columns. If a query uses range-based filter predicates

on sort key columns, the query processor uses the min/max value

ranges to skip over unqualified disk blocks during the table scan.

Oracle Exadata system [9] consists of RDBMS servers processing

general SQL operations (e.g. joins, aggregations), and storage

servers processing disk accesses and evaluation of expressions

and filter predicates. Exadata storage servers support a construct

analogous to zone map on a single table called Storage Index

[12]. Storage index maintains min/max value ranges of a column

and a flag indicating if any nulls exist there. It is provided for up

to 8 different columns of a table within each 1MB disk region.

Storage indexes reside in the memory of the storage servers and

they eliminate unnecessary I/O by pruning irrelevant data regions

based on filter predicates. Storage indexes are automatically

created and maintained after a storage server receives disk scan

requests with repeated predicates on the same columns.

Efficiency of storage index relies on the clustering of data and for

its effectiveness it is recommended to order data on loads possibly

using the clustering clause presented in this paper. Storage

indexes can perform join pruning using min/max value range

created along with a Bloom filter on the left side of the hash join

and pushed to the storage servers.

Similar to the Oracle Exadata system storage index, Oracle

Database In-Memory Column store index maintains min/max

value range of the column data held in each IMCU, and performs

IMCU pruning.

One of the inspirations for the dimensions based data clustering

and dimension based zone maps was the concept of invisible join

proposal [16], which is very similar to a semi-join or a late

materialized hash join [17] in star schemas. In the proposed

scheme, semi-join produces an array (or a bitmap) of fact table

join keys obtained after filtering the dimension table. If the join

key on fact table was correlated with the filtering column of

dimension table then Between Predicate Rewriting [16] could be

applied. The authors observed that even though in many cases

there is no such correlation, it can be introduced by common

dictionary encoding of both the fact join key and dimension join

key. It was our observation that this would particularly be the case

if dictionary encoding on the dimension table was correlated with

1632

dimension hierarchy in the table. We experimented with adding

dictionary encoding to the dimension table that was correlated

with dimension hierarchy and enforcing the same dictionary

encoding on the foreign key of the fact able. The experiments

showed significant improvements in pruning in case of semi-join.

Following that result, rather than using a coordinated hierarchy

based dictionary encoding scheme, we used multi-dimensional

clustering based on the joins between dimension tables and the

fact table to achieve similar pruning advantage via join zone

maps.

The experiments we conducted show significant improvement in

the performance of star queries when the fact data is clustered by

dimension hierarchies in conjunction with join zone maps on

clustered fact data.

Possible future enhancements to the dimension based clustering

and zone maps include extending full support for snowflake

queries. Observe that snowflake queries can still benefit from the

current support for star queries with pruning based on filter

predicates on normalized dimension tables that are directly joined

to the fact table. Other possible enhancements include adding the

support for discovering the clustering of data in existing tables by

its local columns as well as by columns in other tables via joins,

and support for breaking down bulk data load into a table with

defined clustering into a series of loads such that spilling of data

during joins and sort used for clustering is minimized yet

achieving good clustering effect.

7. ACKNOWLEDGMENT
We acknowledge the contributions of other members of our

development team: Rupa Rangaiyengar, Randall Bello, Ananth

Raghavan, Sankar Subramanian and Manish Pratap Singh.

8. REFERENCES
[1] Kimball, R., Ross, M. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling (2nd edition), John

Wiley & Sons, Inc., New York, 2002.

[2] Weininger, A. Efficient execution of joins in a star schema.

SIGMOD, pages 542–545, 2002.

[3] Bloom, B. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Communications of the ACM, 13(7), pp. 422-

426, 1970.

[4] Bellamkonda S., Ahmed R., et al. Enhanced Subquery

Optimizations in Oracle. Proceedings of the VLDB Endowment,

2009.

[5] Bernstein, P. A., Chiu, D. W. Using semi-joins to solve

relational queries. Journal of the ACM, 28(1), pp 25–40, 1981.

[6] Schneider, D. A., DeWitt, D. J. Tradeoffs in processing

complex join queries via hashing in multiprocessor database

machines. Proceedings of the VLDB Endowment, 1990.

[7] Oracle Partitioning with Oracle Database 12c. Oracle White

Paper, Sep 2014.

http://www.oracle.com/technetwork/database/options/partitioning/

partitioning-wp-12c-1896137.pdf

[8] Ceri, S., Negri, M., Pelagatti, G. Horizontal Data Partitioning

in Database Design, SIGMOD, pp 128-136, 1982.

[9] A Technical Overview of Oracle Exadata Database Machine

and Exadata Storage Server. Oracle White Paper, June 2012.

http://www.oracle.com/technetwork/database/exadata/exadata-

technical-whitepaper-134575.pdf

[10] IBM Netezza Data Warehouse Appliance. http://www-

01.ibm.com/software/data/netezza/

[11] Guido MoerKotte, Small Materialized Aggregates: A Light

Weight Index Structure for Data Warehousing. Proceedings of the

VLDB Endowment 1998.

[12] Smart Scans Meet Storage Indexes. Oracle Magazine,

May/June 2011. http://www.oracle.com/technetwork/issue-

archive/2011/11-may/o31exadata-354069.html

[13]Oracle Database In-Memory. Oracle White Paper, July 2015.

http://www.oracle.com/technetwork/database/in-

memory/overview/twp-oracle-database-in-memory-2245633.html

[14] Mukherjee, N., et al. Distributed Architecture of Oracle

Database In-memory. Proceedings of the VLDB Endowment,

2015.

[15] O’Neil, P., O’Neil, B., Chen, X. Star Schema Benchmark.

http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

[16]] Abadi D. J., Madden S. R., Hachem N., ColumnStores vs.

RowStores: How Different Are They Really? SIGMOD, 2008.

[17] Abadi D. J., Myers D.S., DeWitt D. J., Madden S.R.

Materialization Strategies in a Column-Oriented DBMS.

Proceedings of ICDE, 2007.

[18] Bello, R. G., et al. Materialized Views in Oracle,

Proceedings of the VLDB Endowment, 1998.

[19] Warren, H. S. Hacker’s Delight, Addison-Wesley. 2002.

[20] Stonebraker, M., et al. C-Store: A Column-oriented DBMS,

Proceedings of the VLDB Endowment, 2005.

[21] Amazon Redshift. Database Developer Guide (API Version

2012-12-01). Choosing Sort Keys.

http://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html

[22] Hybrid Columnar Compression (HCC) on Exadata. Oracle

White Paper, November 2012.

http://www.oracle.com/technetwork/database/exadata/ehcc-twp-

131254.pdf

1633

http://www.oracle.com/technetwork/database/options/partitioning/partitioning-wp-12c-1896137.pdf
http://www.oracle.com/technetwork/database/options/partitioning/partitioning-wp-12c-1896137.pdf
http://www.oracle.com/technetwork/database/exadata/exadata-technical-whitepaper-134575.pdf
http://www.oracle.com/technetwork/database/exadata/exadata-technical-whitepaper-134575.pdf
http://www-01.ibm.com/software/data/netezza/
http://www-01.ibm.com/software/data/netezza/
http://www.oracle.com/technetwork/issue-archive/2011/11-may/o31exadata-354069.html
http://www.oracle.com/technetwork/issue-archive/2011/11-may/o31exadata-354069.html
http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.html
http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.html
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html

