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ABSTRACT 

In recent years, the data warehouse industry has witnessed 

decreased use of indexing but increased use of compression and 

clustering of data facilitating efficient data access and data 

pruning in the query processing area. A classic example of data 

pruning is the partition pruning, which is used when table data is 

range or list partitioned. But lately, techniques have been 

developed to prune data at a lower granularity than a table 

partition or sub-partition. A good example is the use of data 

pruning structure called zone map. A zone map prunes zones of 

data from a table on which it is defined. Data pruning via zone 

map is very effective when the table data is clustered by the 

filtering columns.  

The database industry has offered support to cluster data in tables 

by its local columns, and to define zone maps on clustering 

columns of such tables. This has helped improve the performance 

of queries that contain filter predicates on local columns. 

However, queries in data warehouses are typically based on 

star/snowflake schema with filter predicates usually on columns of 

the dimension tables joined to a fact table. Given this, the 

performance of data warehouse queries can be significantly 

improved if the fact table data is clustered by columns of 

dimension tables together with zone maps that maintain min/max 

value ranges of these clustering columns over zones of fact table 

data. In recognition of this opportunity of significantly improving 

the performance of data warehouse queries, Oracle 12c release 1 

has introduced the support for dimension based clustering of fact 

tables together with data pruning of the fact tables via dimension 

based zone maps. 

1. INTRODUCTION 
Data warehouses (DWs) typically contain large fact tables 

connected to various dimension tables in a star or snow flake 

formation [1]. Naturally, a typical DW query joins a fact table to 

one or more dimension tables in the form of a star or snowflake 

with filter predicates usually specified on one or more dimension 

table columns. Since there are no direct joins between different 

dimension tables (apart from joins between tables of normalized 

dimensions in the case of snowflake schema) but only to the fact 

table, one straightforward strategy would be to join the fact table 

to a dimension table and then join to the remaining dimension 

tables. Since the fact table is typically orders of magnitude larger 

than dimension tables, the size of intermediate results produced 

by this strategy will usually be large making the subsequent joins 

quite expensive. An alternate strategy would be to postpone 

joining the fact table to the end of join order but this leads to the 

formation of Cartesian products between different dimension 

tables, again making the intermediate join results usually large. 

1.1 Star Transformation Technique 
The database industry has historically used star transformation 

technique using semi-joins [2] [4] [5] for star or snowflake 

queries to avoid producing large intermediate results yet joining 

the fact table toward the end of join order. This technique is used 

when B-tree or bitmap indexes exist on foreign key columns of 

the fact table. Since the index size is much smaller compared to 

the fact table size each generated semi-join subquery that joins a 

foreign key index to a dimension table (or tables within a 

normalized dimension) that has filter predicates tends to be 

efficient to execute. The result of a semi-join subquery is a list or 

bitmap of qualified fact table rowids. If multiple semi-join 

subqueries are used the resulting lists or bitmaps are intersected to 

produce a final list or bitmap, which is then used as a filter when 

fetching rows from the fact table. The qualified fact table rows are 

then joined back to appropriate dimension tables to fetch non-key 

columns referenced by the query. Star transformation strategy is 

quite efficient when the semi-joins are able to filter out a large 

majority of the fact table rows thereby making the subsequent join 

backs to some of the dimension tables relatively inexpensive. 

1.2 Right-Deep Joins with Bloom Filters 
A Bloom filter [3] built along with hash table by the left (i.e. 

build) side of a hash join serves as a semi-join filter for the table 

scanned by the right (i.e. probe) side. Similarly, a Bloom filter 

built by the left side of a sort-merge join serves as a semi-join 

filter for the table on the right side. A right-deep joins query tree 

[6] processes a series of left sides before the table on right side is 

 

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of 

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any 

use beyond those covered by this license, obtain permission by emailing 

info@vldb.org.  

 

Proceedings of the VLDB Endowment, Vol. 10, No. 12 

Copyright 2017 VLDB Endowment 2150-8097/17/08.  

 

1622



 

fetched. Therefore, an optimized plan for a star query could be a 

series of right-deep hash or sort-merge joins with a dimension 

table on each left side and the fact table on the right side. When a 

left side involves a dimension table with filter predicates it creates 

a Bloom filter on the join key. Thus Bloom filters built by one or 

more left sides are then used to filter out unqualified fact table 

rows fetched by the right side thereby boosting the performance of 

joins. Similar to a transformed star/snowflake query with semi-

joins, a right-deep joins query tree accomplishes the goal of 

joining the fact table at end while producing intermediate results 

of manageable size. 

1.3 Data Clustering and Data Pruning 
Recent trend in DWs has been away from indexing and more 

toward better compression (e.g. columnar format) [20] and 

clustering of data. Data clustering when properly utilized can lead 

to significant improvement in the query performance because of 

the avoidance of unnecessary data access from the disk, and when 

the data is already cached in memory by avoiding the processing 

of unnecessary rows or groups of rows. Data clustering can also 

aid in better compression. 

The technique of recognizing certain chunk of data as unnecessary 

for query processing and thus skipping over such data is called 

data pruning. A data chunk could be a table partition, or a set of 

contiguous data blocks or rows, so data pruning can operate at 

different granularity levels. 

Partition pruning is a classic data pruning technique employed 

when the table data is horizontally partitioned by the ranges or list 

of partitioning key values [7] [8]. The range or list partitioning of 

tables represents strict clustering of data because given a 

partitioning key value the associated table rows can only be 

located in a designated partition. In contrast, table data could be 

naturally clustered by some columns such as order_create_date 

and order_ship_date of a table storing customer orders that are 

created in chronological order. Obviously, this form of data 

clustering is not strict but incidental. Thus data in a table can be 

strictly clustered using a data partitioning scheme, and within 

each partition data can be either implicitly clustered by columns 

that are correlated to the partitioning key (e.g. range partitioning 

by order_create_date and implicit clustering by order_ship_date) 

or explicitly clustered by some columns (e.g. range partitioning by 

order_create_date and explicit clustering by order_status). 

Explicit clustering of table data is cost effective when it is 

performed during bulk operations such as bulk data loads and 

bulk data moves. 

In the context of the star transformation technique or right-deep 

joins query tree, data clustering of fact table data can be exploited 

by applying data pruning in addition to regular row filtering via 

bitmaps or Bloom filters [3]. For example, a fact table could 

contain orders that are created and inserted with their 

order_create_date and order_ship_date values appearing in a 

rough chronological order. If the fact table is partitioned by 

ranges of order_create_date, classic partition pruning technique is 

used when a query contains a filter predicate on the partition key 

column. What if the query has a filter predicate on non partition 

key column such as order_ship_date that is correlated to the 

partition key column? Classic partition pruning is not possible in 

this situation unless an auxiliary access structure known as zone 

map [11] or storage index [12] exists for the fact table. 

1.4 Zone Maps 
A zone map is like a coarse index that maintains min/max value 

ranges of one or more specified columns over contiguous sets of 

data blocks or rows called zones of a table. Thus a zone map is a 

table that contains rows made up of min/max value ranges of 

specified columns per zone of table data. A zone is an arbitrarily 

defined unit of data, which can be equal to a table partition but 

usually it is much smaller. With zones smaller than table 

partitions, a zone map can still maintain min/max value ranges per 

zone and per partition of the table data. Now, if a zone map is 

maintaining min/max values ranges for order_ship_date column of 

a fact table partitioned by value ranges of order_create_date and a 

query contains a range predicate on order_ship_date then partition 

pruning can be performed using the zone map. Specifically, a 

table partition can be pruned if the order_ship_date value range 

specified in the query filter predicate doesn't intersect with the 

min/max value range of order_ship_date present in the zone map 

for that partition. Similarly, data pruning can be performed at a 

lower granularity level of zones of table data. 

A storage index is like a zone map on a single table. It is an access 

structure that is built and maintained within the storage sub-

system separated from the RDBMS. A good example is the 

storage sub-system consisting of storage cells in the Oracle 

Exadata Database Machine [9]. Storage cells are active 

components that can perform simpler query tasks such as 

expression evaluation, and filtering and pruning of table rows. For 

example, storage cells can filter out unqualified table rows 

by evaluating a Bloom filter pushed to the storage sub-system. 

Like a zone map a storage index maintains min/max value ranges 

for a set of table columns over contiguous chunks of the table data 

called regions. Therefore, storage cells can perform data pruning 

with the help of a storage index using appropriate pushed-in filter 

predicates. 

The left side of a hash or sort-merge join can easily compute 

min/max value range of the join key in addition to the Bloom 

filter. Using the join key min/max value range RDBMS (storage 

cells) operating on the right side table can perform data pruning 

provided a zone map (storage index) exists on the join key. This is 

join key min/max range based pruning or simply join pruning. It 

is effective when the right side table data is clustered around the 

join key, and the join key is correlated with the filtering column. 

Several commercial database vendors offer data pruning 

techniques using zone maps and storage indexes. IBM Netezza 

Data Warehouse Appliance [10] offers zone map based data 

pruning. Amazon Redshift allows for sorting data upon loads and 

creating min/max zone maps [21]. Oracle Exadata Database 

Machine system offers storage index based data pruning by the 

storage cells [12]. The storage indexes are created and maintained 

automatically by the storage cells on a set of table columns 

determined by the monitoring of pushed-in predicates. In Oracle 

RDBMS 12c Release 2, table data can be cached in Oracle 

Database In-Memory columnar store [13]. The column data 

pertaining to contiguous sets of table rows is stored compressed in 

columnar format in memory units called In-Memory Compression 

Units (IMCUs) [14]. Thus each column is stored separately in a 

series of IMCUs. Each IMCU maintains min/max value range of 

the column data it stores, thus it can be pruned if its range doesn’t 

intersect with the value range represented by a query filter 

predicate. 
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DW queries usually contain filter predicates on dimension table 

columns thus a significant data pruning opportunity is missed 

when the fact table data is clustered by its local columns and not 

by the dimension table columns. So we argue and show in this 

paper that it is quite significant to cluster the fact table data by 

columns of one or more dimension tables, or by a combination of 

fact and dimension columns. Realizing this significant data 

pruning benefit, Oracle 12c release 1 is the first commercial 

database product to offer dimensions based data clustering of 

tables and data pruning via dimensions based zone maps. 

Rest of the paper is organized as follows. We first introduce 

dimensions based data clustering in section 2, and dimensions 

based zone map in section 3. We explain different types of data 

pruning methods employed using a zone map in section 4. In 

section 5 we describe the experiments we performed using the 

Star Schema Benchmark (SSB) [15] to measure the benefit of 

dimensions based data pruning on query performance. We 

conclude this paper in section 6 with a summary plus a discussion 

of possible future enhancements. 

2. DIMENSIONS BASED DATA 

CLUSTERING 
A majority of DW queries contain filter predicates on dimension 

table columns, and a few contain filter predicates on fact and 

dimension table columns. For this reason, query performance of 

DW queries can be improved significantly if fact table data can be 

clustered by dimension columns or when necessary a combination 

of dimension and fact columns, together with a zone map that 

maintains min/max values ranges of clustered columns on zones 

of fact table data. 

2.1 Dimensions Based Clustering of Fact Data 
Table data can be explicitly clustered by a combination of 

columns of other related tables. For example, in data warehouses 

that typically have star schema relationships, fact table data can be 

clustered by the columns of one or more dimension tables. This 

can be accomplished by joining the fact table to the dimension 

tables and ordering the fact table data by the specified dimension 

columns. In fact, multi-dimensional clustering such as the 

ordering produced by Z-curve or Hilbert curve fitting [19] can be 

used to cluster fact table data by columns of multiple dimensions. 

When the fact table is partitioned, which is usually the case in 

data warehouses, multi-dimensional clustering applies to data 

within each fact table partition. 

Dimensions usually contain data hierarchies such as (c_region, 

c_nation, c_city) in the customer dimension and (p_mfgr, 

p_category, p_brand1) in the part dimension of the Star Schema 

Benchmark (SSB) [15]. The fact table data can be explicitly 

clustered in linear manner along the columns of each dimension 

hierarchy and then in interleaved (i.e. multi-dimensional) manner 

along hierarchies themselves. For example, we can cluster the 

lineorder table of SSB in linear manner along customer dimension 

so that rows belonging to same c_region are grouped together, 

and within each c_region rows belonging to same c_nation are 

grouped together, and within each c_nation rows belonging to 

same c_city are grouped together. Similar linear grouping of 

lineorder rows can be applied along the part dimension hierarchy. 

Finally, lineorder rows can be grouped in interleaved manner 

along customer and part hierarchies. This type of clustering based 

using a combination of linear and interleaved grouping can be 

notationally described as INTERLEAVED( LINEAR(c_region, 

c_nation, c_city), LINEAR(p_mfgr, p_category, p_brand1) ). 

In Oracle RDBMS release 12c, table data can be cached in the In-

Memory Columnar store in compressed columnar format. The 

data for a contiguous set of table rows is stored separately in 

memory chunks called In-Memory Compression Units (IMCUs) 

[14]. Thus the data for each column is stored separately in a series 

of IMCUs. It is important to note that data cached in IMCUs is in 

the same order as the order of rows stored on disk, which means 

any clustering of the table data is also preserved in IMCUs. 

Therefore, incidental or explicit clustering of table data in IMCUs 

can be exploited to identify and prune unnecessary IMCUs. 

2.2 Data Clustering Operations 
We will use the Star Schema Benchmark (SSB) and the published 

Oracle syntax for table clustering to illustrate the operations 

performed to define explicit clustering on tables, two forms of 

data clustering, and conditions under which to perform automatic 

clustering of table data. Further, we will assume that the lineorder 

table of SSB is partitioned by yearly ranges of lo_orderdate 

column. The simplest form of clustering of a table is by its local 

columns. The following statement defines clustering of lineorder 

table by its lo_quantity and lo_discount column. 

CREATE TABLE lineorder ( ... ) 

  CLUSTERING BY ORDER (lo_quantity, lo_discount); 

Explicit clustering can be defined for an existing table but its data 

is not immediately clustered 

ALTER TABLE lineorder 

  ADD CLUSTERING 

    BY ORDER (lo_quantity, lo_discount); 

In Oracle, the clustering of data is performed upon bulk load and 

bulk data move operations. The latter are typically partition 

maintenance operations, such as move partition. In fact, the 

clustering definitions listed above have these options by default. 

The following statement modifies clustering to turn off clustering 

of data upon bulk loads. 

ALTER TABLE lineorder 

  MODIFY CLUSTERING 

    BY ORDER (lo_quantity, lo_discount) 

    NO ON LOAD YES ON DATA MOVEMENT; 

After defining clustering for an existing table, its data can be 

clustered by performing bulk data move operations as follows. 

ALTER TABLE lineorder 

  MOVE PARTITION lineorder_part1; 

ALTER TABLE lineorder 

  MOVE PARTITION lineorder_part2; 

.... 

The partition move causes the data at the original location to be 

read and ordered according to the clustering definition before it is 

moved to its new location. 

If YES ON LOAD option is specified or it is simply omitted then 

upon each bulk load operation the source data is clustered before 

it is bulk loaded into the table. The following statement bulk loads 

data from lo_source_data into lineorder table with defined 

clustering. In Oracle RDBMS, the hint /*+ APPEND */ indicates 

to perform bulk insert (i.e. bulk load) instead of normal 

conventional insert operation. 
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INSERT /*+ APPEND */ INTO lineorder 

  SELECT * FROM lo_source_data; 

COMMIT; 

Two forms of data clustering are supported. One is linear and the 

other is interleaved. Linear clustering means order table rows by 

specified columns in major to minor column order, similar to the 

ordering of table rows in a multi-column index. Interleaved 

clustering means order table rows by specified columns in multi-

dimensional manner such as the ordering produced by well known 

Z-curve or Hilbert curve fitting [19]. Since linear is the implicit 

default, so interleaved needs to be explicitly specified as 

illustrated below. 

ALTER TABLE lineorder 

  MODIFY CLUSTERING 

  BY INTERLEAVED ORDER (lo_quantity, lo_discount); 

The statement above modifies the clustering definition but does 

not re-cluster the table data until it is bulk moved. Interleaved 

clustering orders the table rows equally well by specified columns 

so data pruning using filter predicate on one, or other, or both 

columns will be effective. Oracle RDBMS uses Z-ordering 

technique for interleaved clustering. 

All examples above deal with clustering of a table by its local 

columns. Clustering of data especially of fact tables can be made 

dimensions based. In this case, fact table needs to be joined to the 

dimension tables so its rows can be ordered by dimension 

columns. For this, the dimension join keys need to be unique. The 

following statement modifies clustering of lineorder table to be 

dimensions based. 

ALTER TABLE lineorder 

  MODIFY CLUSTERING 

    lineorder LEFT JOIN customer 

                ON (lo_custkey = c_custkey) 

              LEFT JOIN part 

                ON (lo_partkey = p_partkey) 

  BY INTERLEAVED ORDER (c_region, p_mfgr); 

The left outer joins specified in the clustering definition preserve 

all lineorder rows in the joined result. The joined result is then 

ordered interleaved by c_region and p_mfgr columns. 

In SSB, customer and part dimensions contain (c_region, 

c_nation, c_city) and (p_mfgr, p_category, p_brand1) data 

hierarchies respectively. This means, the lineorder table data can 

be ordered interleaved by these hierarchies. This maximizes the 

data pruning opportunity since queries will likely have filter 

predicates on any columns of these hierarchies in different 

combinations. Dimension hierarchies based clustering can be 

specified as shown below. 

ALTER TABLE lineorder 

  MODIFY CLUSTERING 

    lineorder LEFT JOIN customer 

                ON (lo_custkey = c_custkey) 

              LEFT JOIN part 

                ON (lo_partkey = p_partkey) 

    BY INTERLEAVED ORDER 

      ( (c_region, c_nation, c_city), 

        (p_mfgr, p_category, p_brand1) ); 

Here, lineorder table rows are ordered linearly along the columns 

of two dimension hierarchies, and then ordered interleaved by 

these two hierarchies. As stated before, effective data pruning 

occurs when queries contain filter predicates on any combination 

of these hierarchy columns, such as (p_category = 'MFGR#12’ 

AND c_region = 'ASIA’). 

3. DIMENSIONS BASED ZONE MAPS 
In Oracle, you can create either a basic or join zone map on a 

table. The table on which a zone map is defined is called fact 

table. There are no joins in a basic zone map definition so it has 

only the fact table. A join zone map is a dimension based zone 

map. It contains a fact table plus one or more dimension tables 

joined to the fact table in a star formation. A basic zone map 

maintains min/max value ranges on columns of the fact table, 

whereas a join zone map usually maintains min/max value ranges 

on columns of the dimension tables although it can also maintain 

min/max value ranges on columns of the fact table. Oracle 

RDBMS allows only one zone map per fact table, which is 

adequate for the purpose of data pruning of fact table. However, a 

table can appear as a dimension in multiple zone maps. This 

allows for defining zone maps on different fact tables that share 

same dimensions. 

Basic or join zone map is nothing but materialized aggregation of 

fact table data, wherein minimum and maximum aggregates of 

certain columns are formed on well defined chunks of the fact 

table data. Further, join zone map also represents materialization 

of joins between the fact table and dimension tables. In other 

words, zone map is a materialized view. 

Min/max aggregates are difficult to refresh incrementally using 

the change delta when deletes or updates to min/max columns 

occur. Thus classic incremental refresh method using the change 

data logs of base tables cannot be used. In section 3.2, we explain 

how zone maps are maintained and refreshed in efficient manner 

without the use of change data logs. 

3.1 Zone Map Operations 
The following statement creates a basic zone map that maintains 

min/max value ranges of lo_quantity and lo_discount columns per 

zone of lineorder table. 

CREATE MATERIALIZED ZONEMAP lineorder_zmap AS 

  SELECT SYS_OP_ZONE_ID(rowid), 

         MIN(lo_quantity), MAX(lo_quantity), 

         MIN(lo_discount), MAX(lo_discount) 

  FROM lineorder 

  GROUP BY SYS_OP_ZONE_ID(rowid); 

The function SYS_OP_ZONE_ID() maps the lineorder table rows 

stored in sets of contiguous data blocks on disk  into different 

zones. Given the rowid (i.e tuple id) of a fact table row this 

function computes a unique zone identifier. This function takes an 

optional second argument representing zone map scale that 

determines the size of each zone.  The default value of zone map 

scale is for each zone to encompass up to 1024 contiguous data 

blocks. The lineorder_zmap will have as many rows as the 

number of zones of lineorder data. If lineorder table is partitioned, 

say, with 10 partitions then lineorder_zmap will have additional 

10 rows each storing min/max value ranges of lo_quantity and 

lo_discount for a partition. 

If the data in lineorder table is clustered by the customer and part 

dimension hierarchies then a join zone map should be 

created. The following statement defines a join zonemap on 

lineorder table. Since only one zone map can exist on a table we 

first drop the previously created one before creating a new one. 
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CREATE MATERIALIZED ZONEMAP lineorder_zmap AS 

SELECT SYS_OP_ZONE_ID(lineorder.rowid), 

       MIN(c_region), MAX(c_region), 

       MIN(c_nation), MAX(c_nation), 

       MIN(c_city), MAX(c_city), 

       MIN(p_mfgr), MAX(p_mfgr), 

       MIN(p_category), MAX(p_category), 

       MIN(p_brand1), MAX(p_brand1) 

FROM lineorder LEFT JOIN customer 

                 ON (lo_custkey = c_custkey) 

               LEFT JOIN part 

                 ON (lo_partkey = p_partkey) 

GROUP BY SYS_OP_ZONE_ID(lineorder.rowid); 

A DESCRIBE command for above join zone map shows the 

following columns present in lineorder_zmap. 

DESCRIBE lineorder_zmap; 

Name                     Null?     Type 

-----------------------  --------  -------------- 

ZONE_ID$                 NOT NULL  NUMBER 

MIN(C_REGION)                      VARCHAR2(20) 

MAX(C_REGION)                      VARCHAR2(20) 

MIN(C_NATION)                      VARCHAR2(20) 

MAX(C_NATION)                      VARCHAR2(20) 

MIN(C_CITY)                        VARCHAR2(20) 

MAX(C_CITY)                        VARCHAR2(20) 

MIN(P_MFGR)                        VARCHAR2(20) 

MAX(P_MFGR)                        VARCHAR2(20) 

MIN(P_CATEGORY)                    VARCHAR2(20) 

MAX(P_CATEGORY)                    VARCHAR2(20) 

MIN(P_BRAND1)                      VARCHAR2(20) 

MAX(P_BRAND1)                      VARCHAR2(20) 

ZONE_LEVEL$                        NUMBER 

ZONE_STATE$                        NUMBER 

ZONE_ROWS$                         NUMBER 

ZONE_AJ_ROWS$1_CUSTOMER            NUMBER 

ZONE_AJ_ROWS$2_PART                NUMBER 

Column ZONE_ID$ stores the zone identifiers computed by 

SYS_OP_ZONE_ID(). This is followed by pairs of columns 

created to store min/max value ranges as specified in the SELECT 

list. In Oracle, additional zone map columns are transparently 

created to store other zone related information. ZONE_LEVEL$ 

indicates the granularity (i.e. zone or partition) of min/max value 

ranges. ZONE_STATE$ is used to store the staleness state of 

min/max value ranges pertaining to a zone or partition. 

ZONE_ROWS$ stores the number of fact table rows in that zone 

or partition. Columns ZONE_AJ_ROWS$1_CUSTOMER and 

ZONE_AJ_ROWS$2_PART capture the referential integrity state 

of the set of fact rows belonging to a zone (partition) with respect 

to dimension tables customer and part respectively. Specifically, 

these columns store the count of orphan fact table rows within a 

zone (partition) not joining with any row in the respective 

dimension table. This information is used for the purpose of 

staleness tracking of a join zone map upon DML operations to 

respective dimension tables, which is described in section 3.2.2.2. 

The state and properties applicable to entire zone map are stored 

in the data dictionary (aka database catalog). The properties 

include zone map type (i.e. basic or join), zone map scale, refresh 

mode (i.e. when to refresh - upon bulk data load, upon bulk data 

move, upon DML transaction commit, or on demand). The zone 

map states include zone map being invalid, stale, and disabled 

(i.e. zone map use disabled by the user). The following command 

disables the use of zone map. 

ALTER MATERIALIZED ZONEMAP lineorder_zmap DISABLE 

PRUNING; 

3.2 Zone Map Maintenance 
Zone map maintenance consists of tracking the state of the zone 

map itself as well as the state of min/max value ranges stored per 

zone (and per partition) upon changes to the fact table and 

changes to the dimension tables in the case of a join zone map. A 

second aspect of zone map maintenance consists of refresh 

operations using full and incremental refresh methods. 

3.2.1 Validity Checking 
Certain DDL operations on tables on which a zone map depends 

necessitate a re-validation of the zone map definition and marking 

its validity state accordingly. For example, dropping a table or a 

column on which a zone map depends makes its definition 

invalid. Changing column data type on which a zone map depends 

keeps the zone map definition valid but the min/max value ranges 

corresponding to the changed column require re-computation thus 

necessitating a full refresh of the zone map. Certain other DDL 

operations on tables on which a zone map depends do not 

invalidate the zone map. For example, adding a new column or a 

constraint to an underlying table leaves the zone map definition 

and its content intact. 

3.2.2 Staleness Tracking of Zone Map 
DML operations on tables on which a zone map is defined make 

either none, or some, or entire content of the zone map stale 

depending on the nature of change. Thus zone map staleness state 

is maintained at different granularity levels of zone, partition (if 

fact table is partitioned) and the entire zone map. Staleness 

tracking of a basic zone map is straightforward since there are no 

joins to worry about. Staleness tracking methodology is same 

when the fact table of a basic or join zone map is changed. In 

contrast, staleness tracking methodology is more complicated 

when dimension table of a join zone map is changed. Below we 

describe separately the staleness tracking actions performed upon 

fact table DML, and upon dimension table DML. 

3.2.2.1 Fact Table DML 
Insert of a fact table row belonging to an existing zone (and 

partition) makes the min/max value ranges of that zone (and 

partition) stale. Subsequent inserts affecting the same zone 

(partition) simply skip staleness tracking. Observe that an inserted 

row may belong to a zone that is currently not present in the zone 

map, in which case no staleness tracking occurs. Instead of 

staleness marking, an alternate strategy would be to check the 

column values of inserted row with corresponding min/max value 

ranges and update them as necessary. However, using alternate 

strategy for a join zone map will require joins to the dimension 

tables thus rendering it impractical. 

Delete of a fact table row doesn’t affect the validity of min/max 

value ranges of corresponding zone (and partition) since data 

pruning will continue to work albeit with potential for reduced 

efficiency. So on deletes corresponding min/max value ranges are 

not marked as stale but they are marked as needing refresh. 

Fact table row updates that neither modify min/max columns nor 

modify join key columns are ignored. Update of a fact table row 

belonging to an existing zone (and partition) that modifies 

min/max columns (i.e. min/max columns chosen from fact table) 

or in the case of join zone map update that modifies join keys (i.e. 

foreign keys joining to dimension tables) makes the min/max 

value ranges of corresponding zone (and partition) stale.  As 
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noted before, an alternative strategy of directly updating the 

affected min/max value ranges incurs excessive overhead upon 

join key changes since it requires joining to the corresponding 

dimension tables. 

3.2.2.2 Dimension Table DML 
Before we discuss in detail the staleness tracking methodology for 

DML operations on dimension tables, we need to consider the 

referential integrity state of the fact table with respect to each 

dimension table. 

A DML operation on a dimension table of a join zone map usually 

requires joining the dimension table to the fact table to identify all 

affected zones and partitions. Because joining to the fact table is 

impractical, so the main challenge here is to identify a set of zones 

(and partitions) affected by dimension table DML without doing 

the join. The join can be avoided if referential integrity between 

the fact and dimension tables is declared and enforced within the 

RDBMS. Referential integrity guarantees that no orphan rows 

exist in the fact table except the ones with NULL foreign keys. 

Our focus here is on fact orphan rows with non NULL foreign 

keys. So from here on, when we refer to an orphan fact row it 

means a fact row with non NULL foreign key without a matching 

key in the corresponding dimension table. Without referential 

integrity, there is always a possibility that a newly inserted 

dimension row will join with one or more orphan fact rows. Most 

of the data warehouses do not declare and enforce referential 

integrity due to performance reasons. However, referential 

integrity usually exists and it is maintained in the application layer 

via data flow logic. This is good news because it implies that fact 

table will not contain orphan rows. For the purpose of staleness 

tracking, referential integrity state of the fact table is captured at 

the time a join zone map is created or refreshed. In Oracle, 

referential integrity state of a fact table with respect to each of the 

dimension tables is captured by computing the count of orphan 

fact rows in each zone (and partition). This is stored in the anti-

join columns of a join zone map (see DESCRIBE command in 

section 3.1). 

At first glance, it seems we can ignore dimension table row delete. 

But it can result in fresh orphan fact rows. So if a dimension row 

delete is followed by a dimension row insert using the same join 

key it can potentially affect the min/max values ranges of many 

zones (and partitions). Can we find the set of zones (and 

partitions) potentially affected by a dimension row delete without 

joining to the fact table? Yes, they are the ones with min/max 

value ranges encompassing the corresponding min/max values 

being deleted. We refer to them as “potentially stale” zones. It is 

important to note that because of the clustering of fact table data 

by min/max columns the set of zones (and partitions) becoming 

potentially stale is usually small. More importantly, zones (and 

partitions) marked as potentially stale are handled as follows: 

1. They can continue to be used for data pruning. 

2. They can become stale on subsequent dimension row inserts. 

3. They are candidates for zone map refresh. 

A newly inserted dimension row, as observed earlier, can join 

with orphan fact rows including the ones made orphan by prior 

delete operations. But also, a newly inserted dimension row with a 

duplicate join key can potentially join with non-orphan fact rows. 

Therefore, if dimension key is not declared to be unique then 

zones (and dimensions) with min/max value ranges not 

encompassing the corresponding new values are marked as stale. 

The good news is that join keys of dimension tables are usually 

declared with unique or primary key constraints in the RDBMS. 

So when dimension key is unique then zones (and partitions) with 

min/max value ranges excluding the corresponding new values are 

marked as stale provided they were previously marked as 

potentially stale or they have corresponding anti-join count > 0. 

Because of the latter condition, usually none or small set of zones 

(and partitions) become stale in unique join key case. 

Dimension row updates that neither modify min/max columns nor 

modify join key columns are ignored. A dimension row update 

modifying the join key columns is equivalent to a dimension row 

delete with old key followed by a dimension row insert with new 

key. The following staleness tracking actions are performed upon 

dimension row update modifying column(s) of the join key: 

1. Mark zones (and partitions) with min/max value ranges 

encompassing the corresponding values in the dimension row 

as potentially stale. 

2. If the join key is unique, mark zones (and partitions) with 

min/max value ranges not encompassing the corresponding 

values in the dimension row as stale if they were previously 

marked as potentially stale or they have corresponding anti-

join count > 0. 

3. If the join key is not unique, mark zones (and partitions) with 

min/max value ranges encompassing the corresponding 

values in the dimension row as stale. 

A dimension row update not modifying the join key but 

modifying min/max column values has potential to make stale the 

set of zones (and partitions) with min/max value ranges 

encompassing the corresponding old values but not encompassing 

the corresponding new values. This set can be reduced by joining 

to the fact table but this is not really necessary based on the 

following observation. Since fact table data is clustered by 

min/max columns the potential set of zones (and partitions) 

becoming stale is usually small. 

3.2.2.3 Additional Staleness Tracking Notes 
The enhanced staleness tracking strategy based on the uniqueness 

of dimension join keys and the capture of orphan fact row counts 

works very well in practice because referential integrity mostly 

exists whether or not it is declared and enforced in the RDBMS. 

This staleness tracking strategy based on chunks (i.e. zones) of 

fact table data enables the incremental refresh of zone maps to 

work without requiring the data change logs of underlying base 

tables. 

It is important to point out that zone maps are automatically 

refreshed upon bulk operations (data loads, data moves) unless it 

is explicitly turned off. When refresh upon bulk operations is 

disabled only the affected portion of the zone map is marked stale 

or left with missing zones. For example, without automatic refresh 

fact table data moved from an old partition to a new partition will 

result in missing zones for the newly moved data. Without 

automatic refresh bulk data load generally causes minimal number 

of existing zones to go stale since data is loaded into new extents 

mostly forming new zones. 

With automatic zone map refresh upon bulk operations being the 

default, it is the conventional DML operations that entail the 

staleness of zone map data. Since conventional DML operations 
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are typically infrequent in DWs most of the zone map data tends 

to stay fresh especially when the dimension join keys are unique 

and referential integrity of the fact table data mostly exists. 

3.2.3 Refresh Methods 
A basic or join zone map can be refreshed to incorporate changes 

that may have occurred to the underlying tables since the time it 

was created or last refreshed. There are two refresh methods: full 

(aka complete) and incremental (aka fast) [18]. A full refresh is 

used when the entire zone map is marked as stale or it is explicitly 

chosen; otherwise an incremental refresh is used. Any queries that 

were using a zone map before its refresh operation started will 

continue to use it due to the default isolation level of read 

consistency (i.e. READ COMMITED) mode in Oracle. In read 

consistency mode read operations are never blocked by the DML 

operations and vice versa. 

Zone map refresh operations also use the default read consistency 

mode, which means they read a consistent snapshot of the table 

data while concurrent DML operations could be committing 

changes to the tables. This concurrency between refresh and DML 

operations can lead to scenarios of refresh computing min/max 

value ranges based on the table data that has already grown stale. 

This requires identifying the newly computed min/max value 

ranges impacted by concurrent DML activity and leaving them as 

stale at the end of refresh. To accomplish this, we can first mark 

the min/max value ranges to be re-computed as "pending refresh" 

and commit this change. A concurrent DML operation that 

commits changes to the underlying tables will clear the “pending 

refresh” mark of affected zones (and partitions) thus indicating 

that corresponding re-computed min/max value ranges have 

already grown stale. The refresh sub-system at the end of re-

computation will check for cleared “pending refresh” ones and 

leave them as stale. An upshot of concurrent DML activity is that 

the zone map after refresh may still contain stale zones but it will 

be a lot fresher than before. Also, if the entire zone map was stale 

before the refresh operation, it will no longer be fully stale after 

refresh but only parts of it may remain stale. This is an important 

outcome. In contrast, classic refresh methods [18] such as ones 

refreshing materialized joins lack DML activity tracking by data 

chunks (e.g. zones). Instead, they usually track concurrent DML 

activity at either object or object partition level, which means 

entire materialized object or object partitions may remain stale at 

the end of refresh. Such classic refresh methods perform retries to 

avoid leaving entire or large parts of the materialized result stale. 

A zone map being refreshed could have missing zones due to 

newly added data to its fact table since it was created or last 

refreshed. Refresh should compute min/max value ranges for the 

missing zones but concurrent DML activity can occur on newly 

added data so we first need to insert rows in the zone map 

corresponding to missing zones and mark them also as “pending 

refresh”. Missing zones can be found by scanning the fact table 

and using the zone map itself to prune away all fact table data 

except new data forming the missing zones. Here is a case of zone 

map helping in its own refresh cause! 

3.2.3.1 Full Refresh 
The full refresh method is a straightforward method of re-

populating the zone map table with freshly computed min/max 

value ranges using all of the data from table or tables on which it 

is defined. In preparatory stage, all rows from the zone map table 

are deleted. This helps to get rid of obsolete zones that were based 

on permanently deleted data from the fact table. Next, fact table is 

fast-scanned and zones are identified and inserted into the zone 

map with stale and “pending refresh” mark. For fast-scan, it is 

enough to scan first data block and skip rest of the blocks of each 

zone. After the preparatory stage, full refresh re-computes the 

min/max value ranges and merges them into corresponding zones 

that still remain as "pending refresh" in the zone map, and 

clearing both stale and “pending refresh” marks. 

3.2.3.2 Incremental Refresh 
The incremental refresh method involves computing min/max 

value ranges only for zones marked as stale or “potentially stale” 

or zones missing from the zone map. Classic incremental refresh 

method usually requires change logs that record row activity on 

underlying tables to identify and compute change delta. But 

incremental zone map refresh requires no such logs because 

staleness states are maintained per zone (and partition) within the 

zone map. We can use the staleness states stored in the zone map 

to prune away the fact table data belonging to fresh zones so that 

only the fact table data pertaining to stale or missing zones is read 

and min/max value ranges are computed. This is an example of 

zone map helping to make its own refresh operation as efficient as 

possible! 

To account for concurrent DML activity during refresh operation, 

incremental refresh method also uses a preparatory stage. In this 

stage, fact table is scanned to identify missing zones while 

pruning away fact table data belonging to zones that currently 

exist in the zone map. Identified missing zones are added to the 

zone map. Missing and “potentially stale” zones are marked as 

stale, and then all stale zones are marked as “pending refresh”. 

After the preparatory stage, incremental refresh re-computes 

min/max value ranges for stale zones while pruning away fact 

table data belonging to fresh zones. Re-computed min/max value 

ranges are merged into corresponding zones that still remain as 

"pending refresh" in the zone map, and clearing both stale and 

“pending refresh” marks. 

3.2.3.3 Additional Refresh Notes 
For a partitioned fact table, full or incremental refresh will 

compute partition level min/max value ranges by rolling up the 

zone level min/max value ranges belonging to each partition. 

Partition level min/max value ranges inherit the staleness of any 

zone level min/max value range during the rollup operation. 

Under read consistency mode, queries that execute during the time 

a zone map is being refreshed will have their execution plans built 

using this zone map unless it is fully stale. When a fully stale zone 

map is refreshed the query execution plans built without this zone 

map are invalidated so that they can be rebuilt to take advantage 

of the newly refreshed zone map. 

4. DIMENSION BASED DATA PRUNING 
A zone map is used when a query selects from a fact table and 

contains proper filter predicates on columns for which it is 

maintaining min/max value ranges by zones (and partitions) of the 

fact table. A proper filter predicate is one that specifies a value 

range using <, <=, =, =>, >, or BETWEEN operator, or it 

specifies an IN list of values or a LIKE operator comparing to a 

pattern with constant prefix. For such a query, zone map can be 

used to prune fact table data at appropriate granularity levels of 

partitions (if fact table is partitioned), extents (i.e. allocation units 
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of contiguous blocks on disk), and data block zones for disk based 

fact table, or IMCUs for in-memory based fact table. When fact 

table is accessed via an index then zone map can still be used to 

prune individual rowids thus avoiding row fetches that entail 

random IO. Various pruning methods are explained in the 

following sections. The query shown below is Q1.1 from SSB. 

SELECT SUM(lo_extendedprice * lo_discount) 

FROM lineorder, dwdate 

WHERE lo_orderdate = d_datekey AND 

      d_year = 1993 AND 

      lo_discount BETWEEN 1 AND 3 AND 

      lo_quantity < 25; 

To begin with, assume lineorder is not partitioned and no zone 

map defined. Following is a possible execution plan for above 

query. 

------------------------------------ 

|Id|Operation            |Name     | 

------------------------------------ 

| 0|SELECT STATEMENT     |         | 

| 1| SORT AGGREGATE      |         | 

|*2|  HASH JOIN          |         | 

| 3|   JOIN FILTER CREATE|:BF0000  | 

|*4|    TABLE ACCESS FULL|DWDATE   | 

| 5|   JOIN FILTER USE   |:BF0000  | 

|*6|    TABLE ACCESS FULL|LINEORDER| 

------------------------------------ 

Plan steps 3 and 5 indicate the creation and use of Bloom filter 

named BF000 based on the filter predicate d_year = 1993 on 

dwdate table, which is on the left side of the hash join. 

4.1 Join Pruning 
Pruning of fact table data can be performed based on the join to a 

dimension table with proper filter predicate provided a zone map 

is created to maintain min/max value ranges of the join key (i.e. 

foreign key). The join pruning is made possible by the 

construction of min/max value range of the join key when Bloom 

filter is built. Join pruning is a dimension based pruning method 

even though the zone map is basic. Let us create a basic zone map 

on lo_orderdate of lineorder, which is a join key to dwdate. The 

execution plan for Q1.1 changes to the following. 

------------------------------------------------- 

|Id|Operation                         |Name     | 

------------------------------------------------- 

| 0|SELECT STATEMENT                  |         | 

| 1| SORT AGGREGATE                   |         | 

|*2|  HASH JOIN                       |         | 

| 3|   JOIN FILTER CREATE             |:BF0000  | 

|*4|    TABLE ACCESS FULL             |DWDATE   | 

| 5|   JOIN FILTER USE                |:BF0000  | 

|*6|    TABLE ACCESS FULL WITH ZONEMAP|LINEORDER| 

------------------------------------------------- 

At plan step 3, the min/max value range created with Bloom filter 

is passed down to the operation at plan step 6 to perform join 

pruning. Join pruning is effective if fact data is clustered by the 

join key lo_orderdate and hence d_datekey, which in turn is 

correlated to the filter predicate column d_year. 

4.2 Block Pruning 
Join pruning does not work well in practice because it requires the 

join key to be correlated to the filter predicate column. We can get 

much better pruning if fact data is explicitly clustered by the filter 

predicate column of the dimension, and a join zone map is 

defined. So, instead of a basic zone map let us define a join zone 

map on lineorder joined to dwdate with min/max value ranges on 

dimension column d_year, and re-execute Q1.1. The execution 

plan remains the same as shown in previous section but the 

underlying mechanism changes from join pruning to block 

pruning. In other words, filter predicate d_year = 1993 is directly 

used to compare with min/max value ranges in the join zone map 

and perform data block pruning zone by zone. 

4.3 Partition Pruning 
Partition pruning via zone map applies when the fact table is 

partitioned. So let us make lineorder table partitioned by yearly 

ranges of lo_orderdate. The execution plan for Q1.1 will change 

to the following. 

----------------------------------------------------- 

|Id|Operation             |Name     |Pstart |Pstop  | 

----------------------------------------------------- 

| 0|SELECT STATEMENT      |         |       |       | 

| 1| SORT AGGREGATE       |         |       |       | 

|*2|  HASH JOIN           |         |       |       | 

| 3|   JOIN FILTER CREATE |:BF0000  |       |       | 

|*4|    TABLE ACCESS FULL |DWDATE   |       |       | 

| 5|   JOIN FILTER USE    |:BF0000  |       |       | 

| 6|    PARTITION RANGE   |         |       |       | 

|  |          ITERATOR    |         |KEY(ZM)|KEY(ZM)| 

|*7|     TABLE ACCESS FULL|         |       |       | 

|  |          WITH ZONEMAP|LINEORDER|KEY(ZM)|KEY(ZM)| 

----------------------------------------------------- 

Plan steps 6 and 7 showing KEY(ZM) indicate that partition 

pruning is occurring based on the zone map min/max key (i.e. 

d_year). In this example, all but one partition belonging to 1993 

are pruned away. Note that block pruning still applies to partitions 

that are not pruned away, which is important because predicate 

value range may partially cover a partition. Thus this example 

shows the use of zone map to perform partition as well as zone 

level block pruning. 

4.4 IMCU Pruning 
When a table is cached in Oracle In-Memory Columnar store, 

each column is cached in a series of in-memory compression units 

(IMCUs). Each IMCU has well defined boundary in terms of 

contiguous data blocks on disk it covers, and it carries a min/max 

value range computed from the column data it contains. If a query 

contains a proper filter predicate, IMCUs storing data of that 

predicate column can be pruned by comparing the filter predicate 

value range against the min/max value range carried in each 

IMCU. But what if the proper filter predicate is on a column of 

the dimension table joined to the in-memory fact table? IMCUs 

can still be pruned provided a join zone map is created. Using the 

well defined contiguous block boundaries, each IMCU can be 

mapped on to zones in the join zone map. If min/max value ranges 

in mapped zones do not intersect with the filter predicate value 

range then corresponding IMCUs can be pruned. 

Assume lineorder is cached in In-Memory Columnar store. The 

execution plan for Q1.1 will be as shown below. 

---------------------------------------------------- 

|Id|Operation            |Name     |Pstart |Pstop  | 

---------------------------------------------------- 

| 0|SELECT STATEMENT     |         |       |       | 

| 1| SORT AGGREGATE      |         |       |       | 

|*2|  HASH JOIN          |         |       |       | 

| 3|   JOIN FILTER CREATE|:BF0000  |       |       | 

|*4|    TABLE ACCESS FULL|DWDATE   |       |       | 

| 5|   JOIN FILTER USE   |:BF0000  |       |       | 

| 6|    PARTITION RANGE  |         |       |       | 

|  |       ITERATOR      |         |KEY(ZM)|KEY(ZM)| 

|*7|     TABLE ACCESS    |         |       |       | 

|  |       INMEMORY FULL |         |       |       | 

|  |       WITH ZONEMAP  |LINEORDER|KEY(ZM)|KEY(ZM)| 

---------------------------------------------------- 
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Note the keyword INMEMORY shown on plan step 7. Since 

lineorder is partitioned the zone map is also used to do partition 

pruning, which means all IMCUs belonging to pruned partitions 

are skipped. This example illustrates data pruning taking place at 

different granularity levels of partitions and individual IMCUs. 

4.5 Extent Pruning 
In Oracle, a table is stored on disk in a series of storage extents, 

each made up of a contiguous set of blocks allocated together. 

When a table is scanned its extent map is read and multi-block IO 

is issued for a fixed number of blocks from the current extent. 

When all blocks in current extent are fetched then next extent is 

processed. Similar to IMCU mapping, each extent can be mapped 

on to zones in the zone map. Therefore, extent pruning works very 

much like IMCU pruning except that it is used for a fact table 

stored on disk as opposed to being cached in In-Memory 

Columnar store. Currently extent pruning using a basic or join 

zone map is performed during the generation of data granules (i.e. 

data units of work for parallel processes) by the parallel query 

plans but extent pruning can be easily extended to serial query 

plans. 

4.6 Index Rowid Pruning 
If the query optimizer chooses an index to access rows from fact 

table on which a basic or join zone map is defined, rowids from 

index scan can be pruned before they are used to fetch the table 

rows. The idea is to map each rowid to a zone identifier and 

compare the value range represented by a proper filter predicate in 

the query to the corresponding min/max value range in the 

identified zone and pruning the rowid when no intersection is 

found. Following is the execution plan for Q1.1 using index to 

access data from lineorder as shown at plan step 2. 

-------------------------------------------------------- 

|Id|Operation                | Name    |Pstart | Pstop | 

-------------------------------------------------------- 

| 0|SELECT STATEMENT         |         |       |       | 

| 1| SORT AGGREGATE          |         |       |       | 

|*2|  TABLE ACCESS BY        |         |       |       | 

|  |     LOCAL INDEX ROWID   |         |       |       | 

|  |     BATCHED WITH ZONEMAP|LINEORDER|       |       | 

| 3|   NESTED LOOPS          |         |       |       | 

|*4|    TABLE ACCESS FULL    |DWDATE   |       |       | 

| 5|    PARTITION RANGE      |         |       |       | 

|  |       ITERATOR          |         |KEY(ZM)|KEY(ZM)| 

|*6|     INDEX RANGE SCAN    |LO_INDEX |KEY(ZM)|KEY(ZM)| 

-------------------------------------------------------- 

Zone map is first used at plan steps 5 (indicated by KEY[ZM]) to 

prune partitions, and later at plan step 2 it is used again to prune 

index rowids batched from index scans of un-pruned partitions. 

5. EXPERIMENTAL RESULTS 
We conducted performance experiments to measure the benefit of 

data pruning resulting from dimension based clustering and the 

dimension based zone map using Star Schema Benchmark (SSB) 

[15]. This benchmark contains one fact table (lineorder) and four 

dimension tables (dwdate, customer, supplier, part), and four sets 

of related queries called query flights: QF1 (Q1.1, Q1.2, Q1.3), 

QF2 (Q2.1, Q2.2, Q2.3), QF3 (Q3.1, Q3.2, Q3.3, Q3.4), and QF4 

(Q4.1, Q4.2, Q4.3). 

We used SSB with scale factor = 1000 (approximately 1 TB size) 

with lineorder table containing 6 billion rows. It was partitioned 

on yearly ranges of lo_orderdate. There were no indexes on the 

lineorder table but unique indexes on the join keys of dimension 

tables. Our experiments were conducted using Oracle 12c 

RDBMS running on a single node Exadata system [9] with 64 

cores. We performed three different experiments: (1) query 

performance experiment with lineorder table data clustered by two 

and three dimensions with corresponding two and three 

dimensional zone maps, (2) performance cost measurement of 

bulk loading data into lineorder table with two and three 

dimensional clustering, and (3) performance cost measurement of 

creating and refreshing join zone map with two and three 

dimensions. 

All original benchmark tables as well as lineorder tables with two 

and three dimensional clustering were created using Oracle’s 

patented hybrid columnar compression [22] that is typically used 

in DWs. Two flavors of query performance experiments were 

conducted by running the queries in QF2, QF3, and QF4 with all 

tables on disk, and then with all tables cached in Oracle Database 

In-Memory Columnar store [13]. 

5.1 Query Performance 
Two Dimensional Clustering: Supplier and customer dimensions 

appear in QF2, QF3 and QF4. We clustered the lineorder data by 

the hierarchies of these two dimensions into lineorder_sc as 

shown below. 

CREATE TABLE lineorder_sc ( . . . ) 

  CLUSTERING 

    lineorder LEFT JOIN supplier 

                ON (lo_suppkey = s_suppkey) 

              LEFT JOIN customer 

                ON (lo_custkey = c_custkey) 

    BY INTERLEAVED ORDER 

     ( (s_region, s_nation, s_city), 

       (c_region, c_nation, c_city) ); 

We bulk loaded the empty lineorder_sc table partition by 

partition, and then created a corresponding two dimensional join 

zonemap as follows. 

CREATE MATERIALIZED ZONEMAP lineorder_sc_zmap AS 

SELECT SYS_OP_ZONE_ID(lo.rowid), 

       MIN(s_region), MAX(s_region), 

       MIN(s_nation), MAX(s_nation), 

       MIN(s_city),   MAX(s_city), 

       MIN(c_region), MAX(c_region), 

       MIN(c_nation), MAX(c_nation), 

       MIN(c_city),   MAX(c_city) 

FROM lineorder LEFT JOIN supplier 

                 ON (lo_suppkey = s_suppkey) 

               LEFT JOIN customer 

                 ON (lo_custkey = c_custkey) 

GROUP BY SYS_OP_ZONE_ID(lo.rowid); 

Three Dimensional Clustering: Supplier and customer 

dimensions appear in QF2, Q3F and QF4, and part dimension 

appears in QF2 and QF4. We clustered lineorder data by the 

hierarchies of these three dimensions into lineorder_scp as shown 

below. 

CREATE TABLE lineorder_scp 

  CLUSTERING 

    lineorder LEFT JOIN supplier 

                ON (lo_suppkey = s_suppkey) 

              LEFT JOIN customer 

                ON (lo_custkey = c_custkey) 

              LEFT JOIN part 

                ON (lo_partkey = p_partkey) 

    BY INTERLEAVED ORDER 

     ( (s_region, s_nation, s_city), 

       (c_region, c_nation, c_city), 

       (p_mfgr, p_category, p_brand1) ); 

1630



 

We bulk loaded data into lineorder_scp partition by partition, and 

then created a corresponding three dimensional join zone map 

lineorder_scp_zmap. This zone map is similar to two dimensional 

zone map but with an additional join to part table and additional 

min/max aggregates on the part dimension hierarchy columns. 

Table 1 shows the performance improvement of QF2, QF3, and 

QF4 queries due to clustering and join zone map pruning with 

respect to query performance using original schema tables. In this 

experiment, both the original schema tables and the clustered 

tables (lineorder_sc and lineorder_scp) were on disk. All queries 

were run using a degree of parallelism of 64 matching the number 

of cores. The x-times performance improvement is shown in term 

of query run times. The run time units are not disclosed for 

competitive reasons. 

Table 1: X-times query performance improvement using disk 

resident tables 

Query 2-Dim Clustering 3-Dim Clustering 

Q2.1 2.37 x 10.61 x 

Q2.2 2.32 x 8.18 x 

Q2.3 2.45 x 8.41 x 

Q3.1 2.91 x 2.95 x 

Q3.2 4.68 x 4.38 x 

Q3.3 5.23 x 4.56 x 

Q3.4 26.82 x 6.06 x 

Q4.1 3.36 x 4.60 x 

Q4.2 15.14 x 22.77 x 

Q4.3 6.80 x 38.04 x 

AVG 4.27 x 6.67 x 

 

The last line in table 1 shows improvement factors designated as 

AVG are based on the arithmetic sum of all query run times. 

Run time improvements were proportional to the improvements in 

the CPU time and disk IOs. For example, table 2 shows these 

numbers for Q3.2 without and with two dimensional clustering 

and zone map pruning. 

Table 2: Improvements in CPU time, IOs, etc. for Q3.2 

2-Dimensional 

Clustering and 

Join Zone Map 

CPU IO Read 

Requests 

Read 

Bytes 

No 2506 30223 551 K 534 GB 

Yes 383 2651 56 K 51 GB 

 

The table 3 shows the performance improvement of QF2, QF3, 

and QF4 when the original schema tables and the clustered tables 

(lineorder_sc and lineorder_scp) were cached in Oracle Database 

In-Memory Columnar store. Because the run times were 

significantly shorter we had to reduce the degree of parallelism to 

16 to control the rounding error in the reported times. 

As in table 1, the last line in table 3 shows improvement factors 

designated as AVG are based on the arithmetic sum of all query 

run times. 

Table 3: X-times query performance improvement using in-

memory tables 

Query 2-Dim Clustering 3-Dim Clustering 

Q2.1 1.58 x 4.21 x 

Q2.2 1.48 x 3.91 x 

Q2.3 1.41 x 3.67 x 

Q3.1 4.39 x 3.83 x 

Q3.2 6.81 x 5.27 x 

Q3.3 5.57 x 4.07 x 

Q3.4 1.84 x 1.73 x 

Q4.1 4.43 x 5.82 x 

Q4.2 2.24 x 2.46 x 

Q4.3 2.29 x 2.27 x 

AVG 2.63 x 3.61 x 

 

Improvement factors shown in table 1 and table 3 confirm that 

effective data pruning helps in reducing the query run times 

whether the table data is on disk or cached in memory. The 

improvement factors are more dramatic in the case of disk resident 

tables because data pruning eliminates redundant IO as well as 

CPU processing. 

5.2 Cost of Clustering Fact Data 
The cost of clustering of fact data is significant. The costs are due 

to the following factors. 

 Data needs to be sorted and this may involve spilling of sort 

segments to disk. 

 Fact table needs to be joined to dimension tables. Joins will 

be typically hash outer joins. With parallel query execution, 

data distribution occurs unless plans are pipelined. However, 

pipelined plans require broadcast of left side of the join that 

is suitable for small tables like dwdate. With large dimension 

tables the data on both sides of hash join is usually hash 

distributed, and it could spill to disk. 

We performed the bulk loading of data into different versions of 

the lineorder table (original lineorder, lineorder_sc, lineorder_scp) 

partition by partition. Table 4 shows relative run time 

performance of loading data into the table with two and three 

dimensional clustering in comparison to loading data into the 

original table. 

Table 4: Relative cost of clustering compared to simple load 

2- Dim Clustering Load 3-Dim Clustering Load 

2.83 x 3.24 x 

 

For bulk data loading with two and three dimensional clustering 

the following was percentage of activities. 
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Table 5: Cost of SQL operations for data loads with clustering 

SQL Operations % of activity for 

2-Dim clustering  

% of activity for 

3-Dim clustering 

Scan of original 

lineorder 

5.02% 3.32% 

Outerjoin to supplier 

(+ distribution) 

34.12% 30.77% 

Outerjoin to customer    

(+ distribution) 

33.97% 20.89% 

Outerjoin to part       

(+ distribution) 

NA 22.54% 

Sort 12.17% 10.15% 

Load to target  1.17% 1.07% 

 

5.3 Cost of Join Zone Map 
The cost of creating join zone maps was significantly lower than 

the cost of clustering. Some optimization techniques, for example, 

pushing partial GROUP BY below joins [4] were helpful here. 

Table 6 shows the percentage of run time taken to create two and 

three dimensional join zone maps compared to two and three 

dimensional clustering of data respectively. 

Table 6: Cost of join zone map creation relative to data clustering 

2- Dim Join Zone Map 3-Dim Join Zone Map 

9.22 % 13.23 % 

 

We also conducted experiments by making some percentage of 

join zone map stale by updating some of the data in lineorder_sc 

and lineorder_scp tables, and then performing incremental refresh 

of the join zone map. In another scenario we rendered entire join 

zone map stale and then performed full refresh. Table 7 shows the 

percentage of two and three dimensional join zone map that was 

stale and the run time it took to incrementally refresh it relative to 

the time it took to fully refresh it. 

Table 7: Cost of incremental refresh relative to full refresh of join 

zone map 

Percent 

Stale 

2-Dim Join 

Zone Map 

Percent 

Stale 

3-Dim Join 

Zone Map 

6.0% 4..12% 8.66% 5.50% 

19.5% 12.57% 21.75% 12.40% 

 

The first two columns show for a two dimensional join zone map 

the percent stale and the percent time it took for incremental 

refresh compared to a full refresh, respectively The next two 

columns show similar information for a three dimensional join 

zone map. This experiment proves the point of zone map itself 

being used to skip over the fact data corresponding to fresh zones 

when performing incremental refresh. 

6. CONCLUSION 
Zone map or storage index on single tables have been offered in 

several commercial products, in particular IBM® Netezza® 

system [10], Amazon Redshift [21], Oracle Exadata system [9], 

and Oracle Database In-Memory Columnar store [14]. 

The IBM Netezza system automatically creates zone maps [10] 

stored in internal system tables, and refreshes existing zone maps 

upon insert, update, load data into table, or generate statistics. For 

every column in a user table with date, timestamp, byteint, 

smallint, integer, bigint data type, it maintains the minimum and 

maximum values per data extent. Deletions do not have immediate 

effect on zone maps. We note that Netezza maintains a zone map 

on every insert, update, and load while we maintain on every bulk 

data load and bulk data move operation.  Zone maps in Netezza 

are used for extent pruning based on the predicates on the 

columns on which zone maps are maintained. This is a subset of 

our pruning methods where in addition to extent pruning we 

perform IMCU pruning, join pruning, partition pruning, and index 

rowid pruning. 

In Amazon Redshift, user can create a table with one or more 

columns as the sort keys. When data is loaded, it is stored on disk 

in sorted order. Further, Redshift stores columnar data in 1MB 

disk blocks. For each disk block it creates min/max value ranges 

on sort key columns. If a query uses range-based filter predicates 

on sort key columns, the query processor uses the min/max value 

ranges to skip over unqualified disk blocks during the table scan. 

Oracle Exadata system [9] consists of RDBMS servers processing 

general SQL operations (e.g. joins, aggregations), and storage 

servers processing disk accesses and evaluation of expressions 

and filter predicates. Exadata storage servers support a construct 

analogous to zone map on a single table called Storage Index 

[12]. Storage index maintains min/max value ranges of a column 

and a flag indicating if any nulls exist there. It is provided for up 

to 8 different columns of a table within each 1MB disk region. 

Storage indexes reside in the memory of the storage servers and 

they eliminate unnecessary I/O by pruning irrelevant data regions 

based on filter predicates.  Storage indexes are automatically 

created and maintained after a storage server receives disk scan 

requests with repeated predicates on the same columns.  

Efficiency of storage index relies on the clustering of data and for 

its effectiveness it is recommended to order data on loads possibly 

using the clustering clause presented in this paper. Storage 

indexes can perform join pruning using min/max value range 

created along with a Bloom filter on the left side of the hash join 

and pushed to the storage servers. 

Similar to the Oracle Exadata system storage index, Oracle 

Database In-Memory Column store index maintains min/max 

value range of the column data held in each IMCU, and performs 

IMCU pruning. 

One of the inspirations for the dimensions based data clustering 

and dimension based zone maps was the concept of invisible join 

proposal [16], which is very similar to a semi-join or a late 

materialized hash join [17] in star schemas. In the proposed 

scheme, semi-join produces an array (or a bitmap) of fact table 

join keys obtained after filtering the dimension table. If the join 

key on fact table was correlated with the filtering column of 

dimension table then Between Predicate Rewriting [16] could be 

applied. The authors observed that even though in many cases 

there is no such correlation, it can be introduced by common 

dictionary encoding of both the fact join key and dimension join 

key. It was our observation that this would particularly be the case 

if dictionary encoding on the dimension table was correlated with 
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dimension hierarchy in the table. We experimented with adding 

dictionary encoding to the dimension table that was correlated 

with dimension hierarchy and enforcing the same dictionary 

encoding on the foreign key of the fact able. The experiments 

showed significant improvements in pruning in case of semi-join. 

Following that result, rather than using a coordinated hierarchy 

based dictionary encoding scheme, we used multi-dimensional 

clustering based on the joins between dimension tables and the 

fact table to achieve similar pruning advantage via join zone 

maps. 

The experiments we conducted show significant improvement in 

the performance of star queries when the fact data is clustered by 

dimension hierarchies in conjunction with join zone maps on 

clustered fact data. 

Possible future enhancements to the dimension based clustering 

and zone maps include extending full support for snowflake 

queries. Observe that snowflake queries can still benefit from the 

current support for star queries with pruning based on filter 

predicates on normalized dimension tables that are directly joined 

to the fact table. Other possible enhancements include adding the 

support for discovering the clustering of data in existing tables by 

its local columns as well as by columns in other tables via joins, 

and support for breaking down bulk data load into a table with 

defined clustering into a series of loads such that spilling of data 

during joins and sort used for clustering is minimized yet 

achieving good clustering effect. 
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