
SAP HANA Adoption of Non-Volatile Memory
Mihnea Andrei

Christian Lemke
Günter Radestock

Robert Schulze
Carsten Thiel

Rolando Blanco
Akanksha Meghlan

Muhammad Sharique
Sebastian Seifert
Surendra Vishnoi

SAP SE
Dietmar-Hopp-Allee 16

69190 Walldorf, Germany
{first_name}.{last_name}@sap.com

Thomas Willhalm
Intel Deutschland GmbH

thomas.willhalm@intel.com

Daniel Booss
Thomas Peh
Ivan Schreter

Werner Thesing
Mehul Wagle

ABSTRACT
Non-Volatile RAM (NVRAM) is a novel class of hardware
technology which is an interesting blend of two storage
paradigms: byte-addressable DRAM and block-addressable
storage (e.g. HDD/SSD). Most of the existing enterprise
relational data management systems such as SAP HANA have
their internal architecture based on the inherent assumption that
memory is volatile and base their persistence on explicit handling
of block-oriented storage devices. In this paper, we present the
early adoption of Non-Volatile Memory within the SAP HANA
Database, from the architectural and technical angles. We discuss
our architectural choices, dive deeper into a few challenges of the
NVRAM integration and their solutions, and share our
experimental results. As we present our solutions for the NVRAM
integration, we also give, as a basis, a detailed description of the
relevant HANA internals.
1. INTRODUCTION
The SAP HANA data platform [5] (hereafter referred to as
‘HANA’) is a next-generation database, built from scratch by
SAP. Its architecture was originally based on the advent of
modern hardware, as large main memory capacities and high core
counts. Continuous early adoption of game changing hardware
innovation, like new vector instructions or hardware transactional
memory, remains a powerful driver of HANA’s technical
roadmap. The Persistent or Non-Volatile or Storage Class
Memory (hereafter referred to as ‘NVM’ or ‘NVRAM’) is one
such game-changing new hardware technology that promises to
combine the best of both worlds, namely memory and storage.
As seen in Figure 1, computing applications so far have been
organizing their data between two storage tiers: memory and disk.

With the advent of NVRAM technologies like 3D XPoint [7],
PRAM [3], MRAM [1], Memristors [19], the dichotomy between
memory and storage is about to change with the introduction of a
third tier.

Figure 1: Dichotomy of storage
NVRAM is an emerging class of memory storage devices
offering a DIMM form-factor. Hence, it can be treated by the CPU
as RAM, not as a block device: it is byte-addressable, directly
accessible using load/store instructions, and covered by CPU
cache-line handling, including cross-socket cache coherency. The
device latency is expected to be close to that of DRAM and its
bandwidth lower than that of DRAM. The density, durability and
economic characteristics however match that of existing block-
based storage media. Due to these attributes, NVRAM can
potentially benefit applications that deal with big data analytics,
in-memory databases, high availability systems, etc.
Most of the existing relational DBMSs have their internal
architecture based on the assumption that memory is volatile and
that memory is a scarcer resource than disk is. If such DBMSs
properly amend this assumption, they can vastly benefit from the
offerings of NVM. The specific features of HANA and NVM
make this adoption both promising and challenging. In this paper,
we present the salient elements of the early adoption.
In-memory DBMSs such as HANA have always dealt with the
trade-off between in-memory vs. durable storage as shown in
Figure 2. Having data in DRAM provides faster read and write

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

1754

performance, but all DRAM data is lost once the power is turned
off. In order to offer ACID transactions and data durability,
HANA relies on write-ahead redo logging and writes data to a
non-volatile storage device which supports slow bulk data
transfer as blocks.
Likewise, as an in-memory database, HANA is bound by the per-
node available memory limit and scales-out to go beyond it. A
technology promising a substantial increase of per-node memory
volume at a reasonable price, such as NVRAM, is thus
specifically interesting.
Finally, as most of the data structures are processed in DRAM,
restarting an in-memory DBMS involves reloading the
tables/columns and rebuilding the auxiliary data structures. This
strong correlation with the data volume results in a substantial
restart time for the DBMS . For instance, it may take up to an hour
to load Terabytes of data into main memory, thus increasing the
system downtime. As NVRAM is byte-addressable and writes to
NVRAM are durable, a database designed to exploit that can
access data directly in NVRAM after a restart, without having to
reload it from disk into DRAM. From the end-user perspective,
such a system can significantly boost its operational performance
in terms of quickly bringing the business critical relational tables
online after an unplanned down time or even after planned system
upgrades. Note that one hour of down-time per year reduces
system availability below 99,99% ([12]). Such use of NVRAM
is thus a step forward to increase the system availability.

Figure 2: HANA’s usage of main memory vs disk storage

However, the adoption of NVM by a relational DBMS has quite
a few open questions and challenges. Whether to use the DIMM
form factor, i.e. NVRAM, as a larger and persistent RAM, as
opposed to using the SSD form factor of NVM, i.e. as a faster
disk. And how actually to do that, i.e. how to handle NVRAM
mixed with DRAM in the DBMS virtual memory address space.
What data structures to place in NVRAM. How to handle their
persistent lifecycle. What abstraction to expose to the DBMS
when integrating the NVRAM technology. Note that the above
challenges are not specific to HANA. Other in-memory DBMS
will also face them in adopting NVRAM.
To address such questions, this paper has the following
contributions:
 a discussion of using the DIMM form-factor of NVRAM as

preferable then the SSD one, and an architecture to adopt
that in an in-memory DBMS like HANA

 an in-memory format for column data which is directly
stored and used in NVRAM blocks

 the integration of NVRAM blocks and their stored items
within the column store

 the integration of NVRAM blocks within the lower
persistency layer

 and the experimental data to test our assumptions before the
NVRAM final DIMMs are available.

Each contribution is summarized at the end of the section
presenting it. Moreover, the sections describing the detailed
NVRAM integration have the further contribution of describing
in sufficient detail HANA’s relevant internal structures and
processing. We also stress where the contributions apply to a
more general class of in-memory DBMSs, beyond HANA.
The paper has the following structure: in section 2, we present the
HANA database. Then, we introduce the relevant features of the
NVRAM technology in section 3. Section 4 gives the high level
architectural elements of HANA’s adoption of NVRAM. The
following sections, 5, 6, and 7, dive into deeper details of the
NVRAM impact on the column data format, column store, and
persistency layer. We give our experimental results in section 8.
We present the related work in section 9. Finally, section 10
concludes the paper.
2. THE SAP HANA DATABASE
The goal of HANA is the integration of transactional and
analytical workloads within the same data management system.
To achieve this, a columnar engine exploits modern hardware
(multi-processing cores, SIMD, large main memory and
processor caches), compression of database content, maximum
parallelization in the database kernel, and database extensions
required by enterprise applications (specialized data structures for
hierarchies or support for domain specific languages).
As seen from Figure 3, in the transactional workload of the SAP
business applications, more than 80% of all statements are read
accesses [10]. The remaining data write operations consists
mainly of inserts, a few updates, and very rare deletes. The
analytical workloads are even more dominated by reads. This
distribution is extracted from customer database statistics. In
contrast, the TPC-C benchmark, that has been the foundation for
optimizations over the last decade, has a higher write ratio (46%).

Figure 3: DBMS workload characteristics [10]
HANA’s relational in-memory columnar store is tuned for such
enterprise workloads. In-memory processing reconciles the
traditionally row-oriented transactional database design with the
innovative column-oriented design that is optimal for analytics.
This allows both types of workloads to be executed on the same
operational data. The trade-off favors the large majority of read
accesses through the choice of a columnar database. The
performance impact on the row-oriented smaller transactional
workload is acceptable due to the fast in-memory access.

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100%

OLTP OLAP

Wo
rkl

oad

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

TPC-C

Wo
rkl

oad

Select

Insert
Modification
Delete

Write:

Read:

Lookup
Table Scan
Range Select

Insert
Modification
Delete

Write:

Read:

1755

HANA optimizes its utilization of the available memory by
implementing extensive compression technologies within its
columnar store. Each column is at least dictionary-compressed
whereas the value identifiers are again compressed using N-bit
encoding. Depending on the data distribution, advanced
compression techniques may be further applied as seen in Figure
4 (e.g. prefix, run-length, etc.).
Compression pays off best when data does not change, in which
case the computational effort spent to compress data is leveraged
over a longer duration. The data structures optimal for storing and
processing compressed data are however not update-friendly. As
an example, let us consider the dictionary. On one hand, a sorted
dictionary is friendly to both query processing and memory
consumption: it supports direct binary search, and does not
require the overhead of a dictionary index. Also, range queries
can execute directly on the integer value encodings, and thereby
avoid the actual domain’s value lookup. On the other hand, a
sorted dictionary is not friendly to inserting new values since they
do not come in order and the dictionary needs to be re-sorted/re-
organized all the time. This example highlights a typical data
processing dilemma seen as a conflict when optimizing for both
the analytical and the transactional workloads.

Figure 4: Data stores in SAP HANA
HANA resolves this conflict by using two Table Fragments per
columnar table, with different store organizations: Main and
Delta. Each Table Fragment has a Column Fragment for each
table column. The Main fragment is reader-friendly: it contains
most of the data, and it changes rarely; it uses sorted dictionaries,
N-bit and other compression techniques. The Delta fragment is
writer-friendly: it contains the remaining, smaller part of the data,
uses only non-sorted dictionaries and N-bit compression.
For both the Main and the Delta fragments, snapshot isolation is
implemented separately of the data, using dedicated MVCC
structures. Queries access both the Delta and Main fragments. All
new data is inserted into the Delta fragment, and the MVCC
structures are modified accordingly. The deletion is logical; it
affects only the MVCC structures. There are no in-place updates,
they are implemented as insert plus delete.
When the Delta fragment becomes too large, it is merged into the
Main fragment and a new empty Delta is created. The Delta
Merge process is non-blocking to readers and writers, except
during two short windows at the beginning and at the end.
Large tables are physically partitioned (hash, range, etc.). If a
table is composed of n partitions, then each column has 2n
Column Fragments, two for each partition, n Delta Column
Fragments and n Main Column Fragments. If this table has m
columns, then it has in all 2mn Column Fragments.

3. RELEVANT NVM FEATURES
We discuss here the NVRAM features relevant to its integration
in HANA.
As discussed in the next section, we focus in this paper on the
DIMM form-factor of NVM, that we call hereafter NVRAM, to
stress the “random access” part of it. Although the SSD form-
factor has itself a lot of merit, this is not the avenue that we have
chosen in HANA. We discuss in section 4.1 the reasons of our
choice.
In the DIMM form-factor, the next-generation of NVRAM ([7])
will have impressive qualities. It will provide performance that is
close to what only DRAM can achieve today. Furthermore, it will
exceed the capacity of DRAM devices at a lower price per GB.
Attached to a CPU socket memory channel, its use is transparent
(except for its persistency): it is directly accessible using
load/store instructions, byte-addressable, and covered by CPU
cache line handling, including cross-socket cache coherency.
Applications can access it directly without additional copies in
DRAM. Likewise, the NVRAM data transfers, similar to DRAM
data transfers, are fine-grained at the size of a cache line instead
of blocks. Last but not the least, NVRAM being non-volatile, its
contents will not be lost on system restart.
However, there are several limitations of this new type of
memory. The access latency is expected to be higher than that of
DRAM, while the bandwidth is expected to be lower. An
asymmetry is expected between reading and writing, i.e. writing
will be slower than reading. Alas, beyond the qualitative
characteristics listed above, the final quantitative characteristics
of NVRAM DIMMs are not available at the point this paper was
written. The experimental method used later in this paper copes
with this by measuring with several latency scenarios.
4. NVRAM ADOPTION IN HANA
The problem at hand is how an in-memory database like HANA
can take advantage of NVRAM while minimizing the negative
impact of its drawbacks. We have focused on an early adoption,
where HANA consumes NVRAM without heart surgery on the
core relational engine. In this section, we discuss our choices,
present the NVRAM adoption architecture, and list the challenges
faced by the implementation of the chosen architecture.
4.1 Architecture choices
A first architectural question is whether to adopt the NVM
technology as a faster persistent block device (i.e. using the SSD
form-factor) or as a larger and persistent RAM (i.e. using the
DIMM form-factor). Although the block access of the SSD form-
factor might be well-suited for a traditional, disk-oriented DBMS,
where the page buffer cache is the natural integration point, we
took a different avenue in HANA. HANA is an in-memory
database and does not handle disk blocks in a buffer cache. It
operates on in-memory data and the Column Fragment is the unit
of loading into and offloading from RAM. We have chosen thus
to investigate an architecture where the in-memory Column
Fragment is likewise the unit of placement in NVRAM, i.e. to use
the DIMM form-factor NVM, which is part of the process’
address space. We are leveraging thus both the promise of larger
RAM capacity and the immediate availability of NVRAM data at
system restart, where reading data from disk is not needed. Last
but not least, HANA’s memory-oriented algorithms simply work
as such, without the need for substantial changes to obtain an
NVRAM-enabled binary. Indeed, NVRAM is to the CPU another
kind of RAM. We have likewise chosen to leverage both the

1756

larger size of and the persistency of NVRAM, even if each of
them is by itself interesting to HANA.
A further practical consideration comes from our scope: NVRAM
early adoption for productive use, not only for prototyping, and
not involving a full system redesign. HANA has grown into a
mature DBMS, with datacenter-ready features, such as advanced
backup and recovery, system replication, HA and DR support,
etc. Many of these features are implemented based on the existing
persistency layer: on-disk data and redo log volumes. For
instance, one of the HA techniques supported by HANA is based
on a standby node acquiring the disks of a failing node. Likewise,
data backup accesses directly disk pages; etc. Re-implementing
all these features based on NVRAM, as part of the early adoption,
would have been a huge effort and would have diluted our focus.
Discontinuing them would not be an option for productive use.
We have thus decided to keep the disk-based persistency, and
adopt NVRAM beside it. This gave us also the choice to place
only a sub-set of the data in NVRAM.
Our next question was what to place into NVRAM. For this, we
noticed that the Main Column Fragment data structures are
natural candidates, for several reasons. From the perspective read
accesses, sequential scans fare better in NVRAM than point
reads: the cache line pre-fetch is expected to mitigate the higher
latency. Within the Column Fragment data structures, the column
vector data is sequentially scanned in many cases, more often
within analytical workload. Conversely, point reads are more
likely to produce cache line misses, thus exposing the higher
latency of NVRAM. And point reads also occur within Column
Fragment data, mainly in OLTP queries. However, an OLTP
query touches few rows, and little column vector and dictionary
data is accessed; most of the processing is done on intermediate
data structures. We have decided to place in NVRAM only the
very large Column Fragment data structures, i.e. the backing
arrays of the column vector, dictionary, etc., and to keep the
column store’s smaller granularity in-memory objects and the
query plan’s intermediate results in DRAM.
As for the write access, the relevant factor is the integration of the
NVRAM’s different persistent behavior into HANA. Here,
frequent NVRAM writes would be problematic. When only part
of the column store data is persisted in NVRAM, HANA needs to
explicitly keep in-sync, through some mechanism, the traditional
HANA persistency layer and the NVRAM structures. Luckily,
updates of the Main Column Fragment data are infrequent;
actually the only writer is the Delta Merge process. Conversely,
the write-frequent Delta Column Fragments and the MVCC
structures, if placed in NVRAM, would exercise frequently this
sync-up mechanism and thus expose its overhead. We have
decided thus to place only Main Column Fragment data structures
in NVRAM.
4.2 The NVRAM adoption architecture
To summarize, the early adoption architecture is thus for
NVRAM to replace DRAM for the Main Column Fragment
structures having the larger footprint. The large memory
allocations of Main Column Fragments are placed directly in
NVRAM, notably the dictionary and column vector backing
arrays. Each Main Column Fragment has an associated NVRAM
block containing them. As illustrated in Figure 5, smaller
intermediate data structures of Main Column Fragments are still
allocated in DRAM. Likewise, all Delta and MVCC data
structures are allocated in DRAM. The intermediate results of
query processing also continue to be allocated in DRAM.

Figure 5: Usage of NVRAM for columnar data

 When a Main Column Fragment is loaded into memory, its large
data structures are not allocated in DRAM and initialized from
disk anymore. Instead, each Main Column Fragment locates its
associated NVRAM block and points directly to its column vector
and dictionary backing arrays.
4.3 Challenges
However, implementing this architecture is not straight forward;
a few challenges must be overcome.
A difficulty when placing data structures designed for DRAM
into NVRAM, is the handling of the pointer values. Each time
HANA starts, all the memory allocations (including NVRAM
blocks) are mapped to different virtual memory addresses. Any
pointer persisted in NVRAM therefore will need to be remapped.
Our solution, discussed in section 5, is not to place any pointers
in NVRAM. This solution is a natural fit since the large memory
allocations are the leaves of the HANA column store data
structures and hold no pointers.
The other difficulty is to integrate the NVRAM blocks, whose
persistency has a different life cycle, into an existing transactional
store which persists its in-memory contents to disk pages and
implements ACID transactions based on checkpoints and
REDO/UNDO logging. Our solution, discussed in section 6, is for
the Main Column Fragments, whose lifecycle is driven by Delta
merges and DDLs (as adding/dropping of column), to drive the
lifecycle of their associated NVRAM blocks. Notably, they create
and logically delete them as needed. In HANA, the checkpoint
(which truncates the REDO log) will also physically destroy
logically deleted NVRAM blocks: without this delayed
destruction, replaying the REDO log might recreate a Main
Column Fragment with dangling NVRAM references.
Finally, there are filesystem-specific challenges. The SNIA
NVRAM Programming model extends the semantics of file
systems for persistent memory [12]. The NVRAM technology on
Linux will be based on DAX (“Direct Access”) which avoids any
filesystem caching [11]. Linux filesystems often create files with
holes by default (also called “sparse” files). The advantage of this
approach is obviously that storage is physically allocated only at
the time of actual writes to the file. With the DAX-based
architecture, NVRAM relies on user-space flushing (using
hardware instructions, e.g., CLFLUSH, MFENCE, etc.), which
may not work if HANA does a store to a location in a DAX file
with a “hole”, since the store causes a page fault so the file system
can fill the hole with a new allocation. The file system metadata
that gets updated by that fault may not be flushed to persistence
until msync() is called. So, if we just relied on hardware
primitives to flush the store, HANA could crash before the
metadata changes are written and the stores would be lost, even

1757

though the flushes had been performed. Hence, extra care will
need to be taken to guarantee that filesystem metadata gets
flushed.
4.4 Contributions of the architecture
The main architectural contribution of this paper is the specific
placement in either NVRAM or DRAM of the different classes of
data structures, for an in-memory DBMS running on a mix of both
kinds of RAM. We discuss the reasons behind our approach, and
highlight its advantages and challenges. In the next sections, we
add specific contributions on how we have overcome some of
these challenges.
Note that this architectural contribution is not limited to HANA,
it is of a general nature. It also applies to other in-memory DBMS,
such as Hyper [8].
5. COLUMN DATA FORMAT
We describe here the impact of NVRAM adoption to the in-
memory columnar data format, as the changes done to the column
vector and dictionary data layout.
5.1 Main column data persistence format
HANA Main column data consists of the dictionary, the column
vector and optional additional data structures like indexes from
dictionary value ids to the positions of the column vector using
the id. Each of the column’s data structures typically consists of
some small descriptive data, the size of which is independent of
the column size, and content data, which heavily depends on the
column size. Examples for descriptive data are the number of
rows or the number of distinct values of the column. Examples
for content data are the content of the column vector, and the list
of distinct column values in the dictionary.
Different implementations of the column’s data structures are
available depending on the column’s data type or other table or
column characteristics.
Since Main Column Fragments are only created during Delta
merge, and are never changed after the merge, the Main Column
Fragments only need to be written once and completely into
persistence at the end of the merge.
HANA stores the Main column data in sequential files within an
internal file system provided by the HANA persistence. To persist
column data, the file is created and the column data is serialized
into it. At load time, the file is deserialized, its content is copied
to memory blocks allocated from DRAM.
Serialization writes the column data in a file format, which is
closely related to the memory representation of the data. It
consists of a format version number, the serialized dictionary, the
serialized column vector, and optionally of the serialized
additional data structures. Different implementations of the data
structures define the specific format of the corresponding file
section. They may also write a format version number specific for
the corresponding section.
Typically format version numbers and the small amount of
descriptive data are stored by value, while the large amount of
content data is stored as a binary memory dump of the
corresponding memory representation.
5.2 Format adjustments for NVRAM
representation
With the availability of NVRAM storage we do not change the
process of data creation for a new Main Column Fragment. The
data is initially created in memory allocated from DRAM. This is

because this data is frequently changed during the Delta merge
till the data creation is finished.
When using NVRAM storage, we use the existing persistence
format with only small adjustments to write the column data into
the NVRAM block associated with the Main Column Fragment.
This happens at the end of the merge before the new Main
Column Fragment is accessible to other transactions.
The adjustments of the persistence format for writing into
NVRAM consist of:
 Add alignment to memory blocks that need to be aligned in

the virtual address space; conversely, the existing file
serialized format has no alignment requirements.

 Prefer exact copies from memory rather than a format that
allows simpler read on different platforms or is more
efficiently compressed (see e.g. fixed-sized dictionaries
below); conversely, the existing file serialized format is
both multi-platform and further compressed.

The persistence format used for persisting the column data is not
affected by these adjustments.
Before creating the NVRAM block, we do a “dry run” of the
serialization to determine the required size of the NVRAM block.
This is achieved by calling the serialization functions of the data
structures with a special serializer instance, which just sums up
the size of all data elements including alignments, but does not
copy any data, and thus is extremely fast. This way we reduce the
fragmentation and do not need to move the memory block to a
different location when serialization ends.
During the write of a Column Fragment into NVRAM, only
descriptive data and pointers to content data are kept in DRAM,
the pointers are switched from DRAM addresses to the
corresponding addresses within the mapped NVRAM block, and
the previous DRAM memory used for content data is freed. When
writing of the NVRAM block is finished, we keep the NVRAM
block mapped in the virtual address space and access the data
directly from the NVRAM block during all subsequent column
accesses.
As a consequence of this design, we need to keep all of the
NVRAM column mapped to memory, including the parts that we
do not access after deserialization. This does not present a
problem because the overhead is usually small and constant in
size (not depending on the number of rows).
When loading a column, which had been written into NVRAM,
we deserialize the column data from the mapped NVRAM block
instead from the persistence file. We only copy descriptive data
into DRAM, while pointers to content data are assigned to the
corresponding addresses within the mapped NVRAM block.
We currently cannot update parts of a column without creating a
new NVRAM block that contains copies of the data we do not
need to update, e.g. the dictionary in case it is unaffected by the
change. This is not a new restriction however, and we decided
against optimizing in that direction before in the past, for reasons
that still exist like it would require to manage more than one file
per Column Fragment, adding overhead for that data and the files
life cycle management.
5.3 Format adjustments for dictionaries
HANA stores the distinct values of a column in a dictionary.
Dictionary data consists of a small amount of descriptive data,
e.g. the number of values, and the list of distinct values.

1758

Depending on the column’s data type all column values may have
the same byte length (numerical types, data/time types, etc.) or
may have variable byte lengths (strings, binary data of variable
length). Different dictionary implementations are used in HANA
to handle these two cases.
5.3.1 Fixed-sized dictionaries
Fixed-sized dictionaries are used in case all column values have
the same byte length. These dictionaries use an array
implementation for the list of distinct column values. This array
is the only content data of the dictionary.
In the persistence format the values traditionally are converted
into compressed strings to be agnostic to data type, platform, or
software changes and have small robust code at the same time.
Since access to any value in this format requires a re-conversion,
the format was adjusted for writing into NVRAM blocks:
 Add alignment to the start address of the value array within

the NVRAM block.
 Write the value array as memory dump into NVRAM.
During deserialization, a pointer to the value array residing in
DRAM data is just assigned to the start address of the array within
the mapped NVRAM block.
5.3.2 Variable-sized dictionaries
Variable-sized dictionaries are used in case the column values
may have different byte lengths. These dictionaries use more
complex implementations for the list of distinct column values.
Typically, the values are encoded as a sequence consisting of the
number of bytes and the bytes themselves. But additionally, an
index structure is used, which stores the start address of each n-th
value, where n is some small constant, e.g. 16. This is needed to
access values of a given index quickly. Only a limited memory
range containing at most n values must be searched.
This additional index may contribute to a considerable percentage
of the memory consumption of the whole dictionary in particular,
if the values have small byte length on average. The additional
index cannot be stored in NVRAM, if it consists of absolute
memory addresses.
In order to also store this additional index in NVRAM, and to use
it from the mapped NVRAM block after deserialization, we
changed its internal format to use memory offsets instead of
absolute memory addresses.
5.4 Contributions of the NVRAM column
data format
The main contribution to column data format is the choice of a
layout which allocates in NVRAM the large memory blocks, as
the column vector and dictionary backing arrays. Also, our layout
does not place in NVRAM any pointer.
As a further contribution, we have described in sufficient detail
HANA’s in-memory columnar data format.
Beyond the detailed HANA design, these principles have
sufficient generality to be applied to other in-memory DBMS.
6. COLUMN STORE
We describe here the impact of NVRAM adoption to the column
store, as the association of an NVRAM block to its corresponding
Column Fragment and the driving of the NVRAM block lifecycle.

6.1 Lifecycle of NVRAM blocks
In HANA, Column Fragments are created and destroyed by the
Delta merge (all Column Fragments of the relevant Table
Fragments) and by DDL (all Column Fragments of the relevant
columns).
Irrespectively of Delta merge or DDL, the creation of a new Main
Column Fragment must trigger the creation of a new NVRAM
block and the removal of a Main Column Fragment must trigger
the removal of its NVRAM block. Transactional guarantees with
regards to creation and removal of each Main Column Fragment
must also be provided for the associated NVRAM block.
In HANA, a Main Column Fragment is represented by a
persistent descriptor and a paired transient object. The persistent
descriptor contains the Column Fragment’s persisted state (i.e.,
the persisted column data and metadata), offers limited
functionality, and refers to other metadata persistent descriptors
through persistent pointers. The paired transient object points to
the persistent column descriptor, enriches the persistent
descriptor’s functionality and state, and refers to other metadata
transient object through handles.
To support persistence of data in NVRAM blocks, the persistent
column descriptor has been extended with an NVRAM block id,
a numeric identifier, used to determine the NVRAM block
associated to the Column Fragment. NVRAM blocks in HANA
are identified by a string key (see section 0). A Column Fragment
NVRAM block key is constructed based on the table, fragment,
and column identifiers and suffixed with the Column Fragment’s
NVRAM block id. On column load, the column transient object
provides functionality to obtain its corresponding NVRAM block
resulting in the mapping of the NVRAM block to a memory
address in HANA’s memory space.
The logical lifecycle of an NVRAM block is dependent on its
Main Column Fragment. When a Main Column Fragment is
created its NVRAM block is created as well. At this point in time
this newly created NVRAM block is not marked as committed
and thus it will be removed on system restart or failure by the
operation (e.g., DDL or Delta merge) for which the Main Column
Fragment is being created.
A consistent change (CCH) is a mechanism used in HANA to
block the database checkpoint. The checkpoint cannot run while
there is an active CCH. Within a single CCH an undo log record
(‘undoCreateNVMBlock’) is written containing the NVRAM
block, column, fragment, and table ids. Also within the same
CCH the NVRAM block is NVRAM-committed by the NVRAM
Block Provider and the NVRAM block id value in the persistent
descriptor for the column is updated to the value used to construct
the NVRAM block key for the NVRAM block. An NVRAM
block will be NVRAM-committed at most once, and once
committed it will never be modified again. From this point
onwards, we must guarantee the NVRAM block will exists for the
life of the Main Column Fragment or until it is replaced by a new
NVRAM block if the data representation of the Column Fragment
changes (more on this below).
HANA’s NVRAM Block Provider (see Section 7) guarantees
NVRAM-committed NVRAM blocks that exist at checkpoint
time persist after a restart of HANA (i.e., each NVRAM-
committed and checkpointed block exists and its contents are the
same as at the time the NVRAM block was NVRAM-committed).
Similarly blocks that have been created but not committed, and
blocks that have been committed but not have been covered by a

1759

checkpoint are physically removed by the HANA NVRAM Block
Provider when recovering after a crash.
When a Main Column Fragment is removed (for example because
the column is dropped) the associated NVRAM block is logically
removed. The removal of the NVRAM block is done via a HANA
callback mechanism that is invoked for each structure owned by
the Main Column Fragment at the time the Column Fragment is
about to be removed. The actual removal of the NVRAM block
is logical: only until a checkpoint occurs NVRAM blocks that
have been requested to be removed get physically removed. Main
Column Fragments are removed at: cleanup of the transaction that
has removed the column (e.g., alter table drop column); or, at
cleanup of the transaction that has removed the Table Fragment
where the Main Column Fragment is contained (e.g., removal of
the old Main Table Fragment after a Delta-to-Main merge); or at
undo, when the transaction that created the Column Fragment is
rolling back.
Cleanup is an asynchronous process in HANA, in charge of
physically removing persisted structures, both in disk and
NVRAM. Operations (e.g., dropping of a column) schedule
actions (e.g., physical removal of the Column Fragments) that
must occur at cleanup. When it is guaranteed that there are no
transactions in the system that can still view the affected object
(e.g., the dropped column), the cleanup actions that were
scheduled are executed. The HANA cleanup process therefore
advances as transactions complete. The changes (both on disk and
NVRAM) performed by cleanup are only persisted (i.e., made
permanent) at checkpoint.
When an NVRAM block has been logically removed and the
server crashes before the logical removal is checkpointed,
HANA’s NVRAM Block Provider guarantees the block is not
removed during recovery and the logical delete operation is
discarded.
NVRAM Blocks can also be deleted even if the owning Main
Column Fragment is not removed. In other words, a Column
Fragment may be associated to different NVRAM blocks
throughout its life. An example of this situation in HANA is when
the data of the Main Column Fragment is reorganized for better
compression. In this case, no new Main Column Fragment is
created: the current NVRAM block associated to the Column
Fragment is deleted and a new NVRAM block is created. In this
case: the Column Fragment is repopulated (its data representation
changes); a new NVRAM block key string is constructed by using
the current NVRAM block id for the Column Fragment plus one;
a new NVRAM block is created and populated based on this
NVRAM key; within a single CCH we write the
‘undoCreateNvmBlock’ as previously described. The old
NVRAM block is scheduled to be deleted by HANA’s cleanup
mechanism. Within the same CCH, the NVRAM block is
NVRAM-committed and the NVRAM block id in the Column
Fragment descriptor is updated.
6.2 Recovery Considerations
From this point onwards it is guaranteed: if the transaction is
committed, the old NVRAM block is deleted and the new
NVRAM block will exist for the life of the Column Fragment or
until it is replaced. The removal of the old NVRAM block is
guaranteed by HANA’s cleanup mechanism previously
described. If the transaction rollbacks, the new NVRAM block is
discarded, the old NVRAM block is re-established as the
NVRAM block for the Column Fragment. The re-establishment

of the old NVRAM block is guaranteed by HANA’s undo
mechanism.
We now illustrate error and crash recovery handling for the
creation and population of the Main attribute NVRAM blocks and
their association with their corresponding Column Fragment. The
Main Column Fragment and its associated NVRAM block can be
created independently. Only the writing of the
‘undoCreateNvmBlock’ undo, the NVRAM-commit and the
association of NVRAM block to the Column Fragment need to
occur within a single CCH. Let’s assume a Main Column
Fragment and what will be its NVRAM block have been created.
The NVRAM block has been allocated but it has not yet been
populated: if a crash occurs at this point, the HANA NVRAM
Block Provider reclaims the NVRAM block as part of the
recovery. Specifically, the HANA NVRAM Block Provider
guarantees an NVRAM block that has not been NVRAM-
committed is deallocated in case of a crash. If the operation that
created the Main Column Fragment and its NVRAM block needs
to abort, for example due to an exception: the NVRAM block is
destroyed as part of the exception handling without ever been
NVRAM-committed.
Within the CCH cleanup is scheduled such that the NVRAM
block being replaced (if any) is removed after the operation that
triggered the creation of the new NVRAM block commits. If we
crash at this point, the undo log record was not checkpointed and
HANA’s NVRAM Block Provider will simply take care of
reclaiming the NVRAM block. Because changes to the Column
Fragment were not persisted by a checkpoint the Column
Fragment will still be associated with the NVRAM block prior to
the creation of the new NVRAM block. If the crash happens after
the CCH and the actions executed within the CCH were
checkpointed, the processing of the undo reverts the change to the
Column Fragment’s NVRAM block id and logically deletes the
new NVRAM block. If the transaction that caused the creation of
the Main Column Fragment and NVRAM block rollbacks, undo
for the transaction is acted upon. Specifically undo reverts the
change to the Column Fragment’s NVRAM block id and logically
deletes the new NVRAM block.
Logical deletion of NVRAM blocks is not done as part of the
execution of an operation (e.g., drop column). This is because
there might be old readers which may be reading the old NVRAM
block. If the block is logically deleted, and the block deletion is
checkpointed, the NVRAM block will be lost and the operation
cannot rollback. Hence the logical deletion of Column Fragment
NVRAM blocks is done at cleanup or undo of the operation.
If the creation and population of a Main Column Fragment is
redone during recovery, the recreation of the NVRAM block is
done as well with no further NVRAM-specific redo required.
6.3 Column store requirements for the
NVRAM Block Provider
We now describe the NVRAM Block Provider’s features that are
critical at the column store level for providing database
transactional properties for the lifecycle of NVRAM blocks.
NVRAM blocks that have not been NVRAM-committed do not
persist after a crash. This guarantees allocated NVRAM blocks
not yet committed are not leaked after a crash. NVRAM blocks
that have been NVRAM-committed but the NVRAM-commit has
not been covered by a checkpoint are deleted during the recovery
after a crash. This guarantees we do not leak NVRAM blocks
when a high-level operation (e.g., add column, merge) creates an
NVRAM block but the undo of the operation is not persisted.

1760

In HANA, the Delta merge is not durable unless all the
modifications made by the merge and the commit of the merge
transaction are checkpointed. The merge is a physical data
reorganization, neutral to transactional visibility, is not redo
logger, and not replayed by the recovery. Actions performed by a
Delta merge are therefore lost after a crash if the commit of the
merge was not followed by a checkpoint prior to the crash. When
an NVRAM block has been logically deleted and this logical
delete has not been checkpointed, and assuming the NVRAM-
commit of the NVRAM block has been checkpointed, the
NVRAM block persists after a crash and the request to delete the
NVRAM block is discarded by HANA’s NVRAM Block
Provider. This guarantees Column Fragments contained in the re-
established Main fragment after the undo of the merge will have
valid NVRAM blocks.
Similarly, if the NVRAM-commit of a block has been
checkpointed, then the NVRAM block persists after a crash. To
keep or not to keep the NVRAM block will be decided during
recovery based on whether the transaction is undone (i.e., if not
to be kept, the logical removal will be triggered by the undo
handling executed for the transaction). If a logical remove of an
NVRAM block has been checkpointed, then the NVRAM block
does not persist after a crash. This a requirement because, due to
the checkpoint, there is no way to redo the logical remove.
6.4 Contributions of the column store
integration
The main contribution of the store integration is the alignment of
the NVRAM block lifecycle with the lifecycle of column store
persistent artefacts, which is itself driven by Delta merge and
DDL.
As a further contribution, we describe the relevant HANA column
store durability mechanisms, as the CCH, checkpointing,
undo/redo logging, transaction cleanup, etc.
Beyond the HANA specifics, the solution can be applied to any
DBMS whose persistence is based on write-ahead redo logging
and checkpointing dirty data pages.
7. PERSISTENCY LAYER
We describe here the impact of NVRAM adoption on the
persistency layer, which provides the underlying mechanisms of
handling NVRAM blocks.
7.1 Need for consistent management of data
In some situations, the operating system may expose persistent
memory as a memory-mapped file, but an application would not
want simply such a raw form of access. As the memory is now
persistent, we not only need to have heap functions like
malloc/free but also a way of keeping the data consistent across
system failures. For example, if a process/program terminates due
to an error after a persistent memory allocation call, then this will
leave a persistent memory leak which is more dangerous than in
case of volatile memory, where the termination itself cleans all
such leaks. So, in order to have a correctly and efficiently
operational DBMS which uses NVRAM, it is important to have a
sound and consistent management of the physical memory
regions on the NVRAM DIMMs. As outlined in the next sections,
our solution is to provide interfaces and building blocks to exploit
the underlying hardware primitives for flushing the data and
guaranteeing consistent and durable write operations.

7.2 Introduction to NVRAM Block Provider
The NVRAM Block Provider of HANA is a module consistent
persistent memory management so that the upper layers of DBMS
can seamlessly exploit the persistent memory space without
having to worry about factors like allocation, deallocation, data
durability, persistent memory leaks, and recovery of data after a
restart. The NVRAM Block Provider library sits between the
OS/hardware and the upper layers of HANA, and uses a directory
on a mounted filesystem, where NVRAM blocks are stored as
files and mapped into memory. Currently, the following storage
types are supported:
1. DAX-enabled filesystem backed by real NVRAM DIMMs
2. Traditional file system backed by SHM/SSD/HDDs

(Simulation)
The programming model is based upon memory-mapped files,
and hence the NVRAM Block Provider not only leverages the
load/store capabilities of persistent memory, but can also work
correctly with any other storage technology (e.g. SSDs).
7.3 Design of the NVRAM Block Provider
The implementation model of NVRAM Block Provider stores
NVRAM blocks as files into a root directory of the mounted
filesystems. When working with real hardware, this should be the
location where one has mounted the persistent memory devices
(or DIMMs). We expect the physical location to be DAX-
enabled, which is a Linux feature added for persistent memory
storage [11]. If supported, the DAX bypasses the kernel page
cache which is usually used to buffer reads/writes into files. For
file-based mappings, the persistent memory space is mapped
directly into user space. For simulated mode of testing, the root
directory could be any path under your file system. We store all
the NVRAM-resident blocks under this root directory and at
startup load all the blocks from the same fixed directory. As we
are dealing with memory management which is persistent, the
NVRAM physical block lifecycle management is kept consistent
with HANA’s checkpoint logic of data persistency and is thus
driven by a checkpoint/restart/crash at any point in time. For
supporting database backups and recoverability, we keep another
copy of the data in a standard persistence on disk, and also log to
normal log files on the disk. This design may be optimized in the
future. NVRAM Block Provider keeps track of the checkpoint
version of the system at the time of creation of a new NVRAM
block and uses the information to handle blocks during every
other event (i.e. checkpoint/restart/crash) which helps to
immensely simplify the work of the upper layers (referred as
‘client modules’) of HANA. For every NVRAM block allocation
request, NVRAM Block Provider takes as input a key (or name)
that uniquely identifies a block along with the requested size of
allocation. The block management module maintains the
following types of blocks based upon the three possible lifecycle
states of a block (state transitions are illustrated in Figure 6):
Data block: Stores the actual data of relational tables. This is a
closed (a.k.a. NVM-committed) and persisted block (in fact
marked as “read-only”), flushed using the processor’s persistency
instructions/primitives provided by the hardware vendor.
Tombstone block: Stores metadata for transient delete operations.
This is created when a data block that belongs to an earlier
checkpoint version is requested for deletion. This block is created
to persist the information that a block is marked for deletion so
that we can handle such blocks even in case of system crash
before actual deletion.

1761

Temporary block: An uncommitted data block, that was created
but the system crashed before it could be written and flushed (i.e.
NVM-committed) to persistent memory space. The information
is persisted in the block’s name so that it can be differentiated
from the valid set of blocks that survive after a crash. This is
generally pruned at checkpoint/restart time.

Figure 6: State transition diagram of NVRAM blocks
To ensure efficient access and cleanup of these blocks, the
NVRAM Block Provider maintains three key data structures in
DRAM:
Data Block Map: A sorted multi-map of the NVRAM data blocks
to ensure easy access to the blocks. On every successful creation
of a NVRAM block, an entry is added into the map. Each block
entry maintains the vital information regarding a data block state
(‘NVM-committed’ or ‘marked for deletion’), file size, a handle
to its virtual address mapping and path location.
Tombstone Block Map: A map of tombstones. A checkpoint
ensures that the system’s state is consistent till that timestamp. If
blocks belonging to earlier checkpoint versions are requested for
deletion, an entry for such blocks is added into this map. The
cleanup of such blocks happens as part of the next checkpoint.
This map essentially helps in faster lookups of such blocks. If the
system crashes before such a cleanup can be performed, this map
is re-created upon startup using the earlier mentioned tombstone
blocks persisted on NVRAM.
Temporary Block Map: A list of uncommitted and unhandled
blocks. The list is processed upon server restart during
checkpoints to clean-up these transient blocks.
We next explain the various APIs provided by NVRAM Block
Provider and how they help to drive the lifecycle of a block. This
is illustrated through the flow diagram in Figure 7 depicting a few
possible scenarios. Upon every system startup, due to normal
restart or crash, the following operations will take place:
1. NVRAM Block Provider is initialized with a root directory.
2. The root directory is traversed for persistent memory

(NVRAM) blocks which are classified into the 3 categories
mentioned before, and the three data structures (Data Block
Map, Tombstone Block Map, Temporary Block Map) are
subsequently populated.

3. A valid and consistent checkpoint based upon HANA’s
persistency state is fixed and installed globally.

4. All temporary blocks are cleaned up which helps to avoid
‘persistent leak’ situations as illustrated in Figure 8

5. Additionally, based upon the current checkpoint version:
 All data blocks created at a later (or higher) checkpoint

version are deleted

 All tombstones created at a later (or higher) checkpoint
version are deleted and the corresponding data blocks
are marked as valid and NVM-committed

 All tombstones created at an earlier (or lower)
checkpoint version are deleted along with the
corresponding data blocks

Figure 7: Life cycle management of NVRAM blocks

Figure 8: NVRAM Provider avoids persistent memory leaks
7.4 Contributions of the NVRAM block
management
Our block handling scheme provides a consistent management of
persistent memory space that appreciates the functioning of an In-
Memory Data Management system such as SAP HANA. It
maintains lookup maps for fast and efficient block searches of
committed, uncommitted and defer-deleted blocks. We follow a
unique and simple approach to persist a blocks’ state information,
necessary for recovery and to handle persistent memory leaks.
The underlying directory structure maintained by NVRAM Block
Provider is distinctive in a way that helps to retain/destroy blocks
based upon their checkpoint versions. The NVRAM block
management layer is responsible for management of a block’s
physical state across system checkpoints/restarts/crashes.
Furthermore, the NVRAM Block Provider is designed keeping in
mind the requirements of HANA, but is completely independent

1762

of its storage architecture i.e. Row-based or Column-based. The
APIs allow clients to create arbitrary sized persistent memory
blocks with resizable characteristics. We maintain statistical
information like count of successfully created blocks, deleted
blocks, loaded blocks, pruned blocks, etc. along with total size
per block.
8. EXPERIMENTAL DATA
For evaluating the performance of our implementation before
hardware availability, we are using the same custom setup as in
[6]. This special processor and BIOS has the capability to add
memory latency to certain memory regions. The system is
equipped with 2 Intel Xeon processors E5-4620 v2 with 8 cores
each, running at 2.6 GHz without Hyper-Threading. Two of the
four memory channels are treated as “persistent memory” where
the additional latency is applied. The remaining memory is
untouched and can be used as DRAM. Our system was equipped
with 256GB of memory, with 128GB configured as PMEM and
128GB as DRAM
8.1 Evaluation of runtime impact on OLTP
and OLAP workloads
We first evaluated the impact of additional persistent memory
latency on OLTP. The first experiments consist of random inserts
in a table with 4M rows and 500 columns. All data in the table
resides in Main store, which was allocated in persistent memory.
The total running time 100,000 inserts is shown in Figure 9. As,
by design of HANA, inserted data is stored in the Delta store,
increasing the latency for persistent memory does not have a
significant impact on performance. This can be seen as a best-case
scenario in respect to memory latency for the Main store.
We then evaluated “single selects” in Main store, which is
probably the worst-case scenario in this respect. The same table
was merged and kept in Main store during the test. Figure 10
shows the running time for different persistent memory latencies.
In case of the column orientation, the individual cells of a row
reside in different memory locations. Reading a complete row
therefore reads (at least) one cache line for each cell. Since the
table does not fit in the processor cache and the lines are read
randomly, this results in at least one cache line miss per cell,
which is fully impacted by the latency of persistent memory.
In order to evaluate the impact of higher latencies on OLAP
workloads, we compare the throughput for a variation of the TPC-
H workload. The tables in the benchmark have been widened to
better reflect the tables sizes observed in typical SAP systems [5].
Furthermore, the queries were modified to better mimic the
interactive data exploration, which is common in today’s in-
memory solutions. During the tests, all tables are allocated in
NVRAM, whereas DRAM is used for the remaining data
structures. Figure 11 shows the average throughput depending on
the latency of the NVRAM region. The leftmost data point
reflects the measurement with not additional latency applied, i. e.
the DRAM latency for this setup. The impact on throughput with
increasing latency is very small, as the access pattern for OLAP
workloads is very predictable and the hardware prefetchers can
easily hide the additional latency.

Figure 9: "insert" performance

Figure 10: Worst case scenario of "single selects”

Figure 11: Throughput vs. latency for OLAP

Figure 12: Bandwidth requirements for DRAM and NVRAM
Figure 12 depicts the memory bandwidth that is used during the
benchmark run for the different memory tiers. As the Main is not
updated during the benchmark run, there is only read traffic from
the persistent memory region. Furthermore, by the nature of how

1763

HANA processes data in aggregation, there are many more reads
and writes to the DRAM region. In particular, the bandwidth
requirements for persistent memory are significantly lower than
for DRAM.

Figure 13: Response time per OLAP query
The impact of additional latency for individual queries is shown
in Figure 13. Each data point is the average response time for a
complete benchmark run. Again, the latency for the persistent
memory region was varied, whereas data structures in DRAM
region are not affected. One can observe that some of the queries
are more sensitive to the latency of the persistent memory than
others. This can be explained by multiple factors:
1. Does the query exhibit a memory access pattern that can

easily prefetch by the hardware prefetchers? 2. Is the working set of queries small enough to fit in CPU
cache and hence agnostic to persistent memory latency? 3. Is processing of the query compute or latency bound?

8.2 Evaluation of DBMS restart times and
Memory footprint
The set of experiments mentioned below are focused on
evaluating the potential benefits in terms of Database availability
and TCO provided by HANA’s architectural adoption of
NVRAM. As mentioned in earlier sections, most of the large
memory intensive data structures will now be stored on NVRAM.
These structures are mapped into memory from NVRAM-based
filesystems upon first access of a table, instead of copying them
into DRAM from disk as was done earlier. This approach is
expected to benefit HANA in two unique ways. Firstly, after a
DBMS server crash or restart, the data can be made available near
instantly. Secondly, as most of the heavy data structures are
resident in NVRAM, the allocations in DRAM would reduce
substantially. This should help to lower the overall system cost
since customers can operate on sizable business data with a much
smaller DRAM requirement. The system we use for conducting
the experiment is Intel(R) Xeon(R) CPU E7-8880 v2 @ 2.50GHz
with 1TB Main Memory capacity. We use a columnar table of
size of approximately 5 GB with 4 million records and 100
columns that span different flavor of data types (e.g. integer,
decimal and strings). The strategy is to use mmap-based
filesystem simulation on Linux Shared Memory (i.e. /dev/shm) in
the absence of real NVRAM hardware. We believe the “SHM”-
based simulation approach is closest to the execution behavior of
NVRAM-optimized HANA on real persistent memory DIMMs.
The DRAM-based HANA is persisted on fast SSDs (Solid-State
Drives) providing an aggregate read bandwidth of ~1200 MB/s.
The strategy for NVRAM-based HANA is to use mmap-based
filesystem simulation on Linux Shared Memory (i.e. /dev/shm) in

the absence of real NVRAM hardware. We believe the “SHM”-
based simulation approach is closest to the execution behavior of
NVRAM-optimized HANA on real persistent memory DIMMs.
The Figure 14 illustrates the experiment where we vary the table
size from 400 rows all the way to 4 million rows (i.e. 10,000x) in
steps of 10x and calculate the time to “preload” the table
immediately after a server restart. For in-memory databases like
HANA, the “preload” operation is responsible for bringing the
entire table into system memory thereby making it ready for
online operations like queries. The figure shows that for
increasing table size, the NVRAM-based HANA approach shows
a flat trend with preload time being nearly constant. On the other
hand, the preload speed with traditional approach based on
DRAM is linearly dependent on the size of the table.

Figure 14: Table preload cost after server restart
We further perform an experiment to measure the TCO benefits
of NVRAM storage by studying the change in DRAM
consumption with increasing data populated in the target table.
For this purpose, we vary the tabular data from 400 rows to 4
million rows and measure the DRAM consumption after table is
pre-loaded as explained earlier. As seen from Figure 15, the
results indicate that in case of NVRAM, the graph is nearly flat
with a nominal increase in memory consumption with increasing
data scales, unlike the DRAM case where all data structures are
copied into Main Memory upon pre-loading of table.

Figure 15: DRAM consumption upon data loading
The above set of experiments were additionally verified using
several diagnostic tools provided by HANA. For the NVRAM-
aware HANA case, we could see ~5GB being allocated from
NVRAM based on Shared Memory (i.e. /dev/shm) when all 4
million rows of the table are loaded. Also, using CPU profilers,
we observed that in DRAM case, majority of CPU cost is being
spent in disk-based reads whereas for NVRAM, the disk reads are
absent since we map data directly into process address space.

1764

8.3 Contributions of the experimental data
Below are the salient takeaways based on the various experiments
conducted with our NVRAM-based HANA approach: The "insert" performance of HANA is totally unaffected by

simulation-based latency costs of NVRAM The simulation-based NVRAM latency cost also has a
marginal impact on OLAP throughput The table “preload” operation with NVRAM-based HANA
is tremendously faster than DRAM-based HANA. It shows
a flat trend in response time and the gains are seen to
accelerate with increasing growth of tables The NVRAM-based HANA shows a flat trend in memory
consumption immediately after table preload with
increasing growth of tables

The previous two points suggest that HANA can leverage
NVRAM to go online and be available for business much faster
especially with a negligible Main Memory footprint
9. RELATED WORK
At our best knowledge, there is no prior publication describing
the adoption of NVRAM by a productive DBMS.
Many recent papers focus on specific data structures, specific
system modules, experiments, prototypes, architectural
proposals, etc. See for instance [13], [15], [16], [17], [9], [2].
Testing software based on NVM is a novel domain. Although
relevant to the HANA adoption of NVRAM, we do not cover it
in this paper. Such a testing framework is described in [14].
In terms of physical block management for the NVM space, the
only other persistent memory block manager at our best
knowledge is NVML [6]. NVML is shipped as a 3rd party library
(named ‘libpmem’) which provides basic helper APIs to manage
and use NVM/NVRAM. The functionality includes mapping the
memory chunks from the NVRAM space, flushing the memory
stores, and other assisting toolbox libraries:
a. maintain a transactional object store (‘libpmemobj’).
b. cache fixed-size objects in pmem (‘libpmemblk’)
c. do writes to a persistent log file (‘libpmemlog’)
d. use NVRAM as a pool of volatile memory (‘libvpmem’)
Although NVML covers a lot of functionality, it does not cover
HANA’s requirements: support for variable-sized block creation (‘libpmemblk’

cannot be used).
 support for very big blocks (‘libpmemobj’ cannot be used).
 exploit NVM/NVRAM not only as an extension to DRAM,

but also for its persistency (‘libvpmem’ cannot be used).
It may be noted that block-based structures have their own
overheads in terms of increased fragmentation of space and
higher random access costs due to page-granular operations.
HANA tries to avoid these pitfalls.
10. CONCLUSION
In this paper, we describe the direction and technological
challenges of the NVRAM early adoption within the SAP HANA
DBMS. We have found the original HANA architecture and data
structures well suited for NVRAM. Heart surgery is not needed
for a very effective early NVRAM adoption. The main reason is
that HANA is a new generation database, designed from scratch
for in-memory access, and optimized for CPU cache efficiency,
which is the main optimization for both DRAM and NVRAM.

This early adoption paper is however only scratching the surface,
the problem space is enormous: placing other structures in
NVRAM (Delta, MVCC, REDO/UNDO …), NVRAM vs.
DRAM placement policies, etc. At the same time, we are
investigating this larger solution space of the more radical
integration of NVRAM (see for instance [13], [15], [16]).
11. REFERENCES
[1] Apalkov, D. et al. Spin-transfer torque magnetic random

access memory (stt-mram). ACM J. Emerg. Technol.
Comput. Syst., 9(2), 2013.

[2] Arulraj, J., Pavlo, A., and Dulloor, S. R. Let's talk about
storage & recovery methods for non-volatile memory
database systems. In SIGMOD (2015), ACM, pp. 707-722.

[3] Burr, G. W. et al. Phase change memory technology. Journal
of Vacuum Science & Technology B, 28(2), 2010.

[4] Dulloor, S. et al. System software for persistent memory. In
EuroSys (2014).

[5] Färber, Franz et al.: The SAP HANA Database - An
Architecture Overview. IEEE Data Engineering Bulletin,
Volume 35, Number 1, March 2012. 28-33.

[6] Intel’s NVML library http://pmem.io/nvml/
[7] Intel and Micron Produce Breakthrough Memory

Technology (3D XPoint). https://newsroom.intel.com/news-
releases/intel-and-micron-produce-breakthrough-memory-
technology/

[8] Kemper, Alfons and Neumann, Thomas. HyPer: A hybrid
OLTP&OLAP main memory database system based on
virtual memory snapshots. ICDE 2011: 195-206

[9] Kimura, H. FOEDUS: OLTP engine for a thousand cores
and NVRAM. In SIGMOD (2015), ACM, pp. 691-706.

[10] Krueger, Jens et al. 2011. Fast updates on read-optimized
databases using multi-core CPUs. Proc. VLDB Endow. 5, 1
(September 2011), 61-72.

[11] Linux DAX
https://www.kernel.org/doc/Documentation/filesystems/dax
.txt

[12] Number of nines availability of systems
http://tanejagroup.com/files/Compellent_TG_Opinion_5_N
ines_Sept_20121.pdf

[13] Oukid, Ismail et al.: Instant Recovery for Main Memory
Databases. CIDR 2015

[14] Oukid, Ismail et al.: On testing persistent-memory-based
software. DaMoN 2016: 5:1-5:7

[15] Oukid, Ismail et al.: FPTree: A Hybrid SCM-DRAM
Persistent and Concurrent B-Tree for Storage Class
Memory. SIGMOD Conference 2016: 371-386

[16] Oukid, Ismail and Lehner, Wolfgang: Towards a Single-
Level Database Architecture on Non-Volatile Main
Memory. To be published

[17] Pelley, S. et al. Storage management in the NVRAM era.
PVLDB 7, 2 (2013), 121-132.

[18] SNIA NVM Programming Model V1.1. Technical report,
2015.http://www.snia.org/sites/default/files/NVMProgram
mingModel_v1.1.pdf.

[19] Yang, J. J. and Williams, R. S. Memristive devices in
computing system: Promises and challenges. ACM J.
Emerg. Technol. Comput. Syst., 9(2), 2013.

1765

