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ABSTRACT 
Non-Volatile RAM (NVRAM) is a novel class of hardware 
technology which is an interesting blend of two storage 
paradigms: byte-addressable DRAM and block-addressable 
storage (e.g. HDD/SSD). Most of the existing enterprise 
relational data management systems such as SAP HANA have 
their internal architecture based on the inherent assumption that 
memory is volatile and base their persistence on explicit handling 
of block-oriented storage devices. In this paper, we present the 
early adoption of Non-Volatile Memory within the SAP HANA 
Database, from the architectural and technical angles. We discuss 
our architectural choices, dive deeper into a few challenges of the 
NVRAM integration and their solutions, and share our 
experimental results. As we present our solutions for the NVRAM 
integration, we also give, as a basis, a detailed description of the 
relevant HANA internals.  
1. INTRODUCTION 
The SAP HANA data platform [5] (hereafter referred to as 
‘HANA’) is a next-generation database, built from scratch by 
SAP. Its architecture was originally based on the advent of 
modern hardware, as large main memory capacities and high core 
counts. Continuous early adoption of game changing hardware 
innovation, like new vector instructions or hardware transactional 
memory, remains a powerful driver of HANA’s technical 
roadmap. The Persistent or Non-Volatile or Storage Class 
Memory (hereafter referred to as ‘NVM’ or ‘NVRAM’) is one 
such game-changing new hardware technology that promises to 
combine the best of both worlds, namely memory and storage.  
As seen in Figure 1, computing applications so far have been 
organizing their data between two storage tiers: memory and disk. 

With the advent of NVRAM technologies like 3D XPoint [7], 
PRAM [3], MRAM [1], Memristors [19], the dichotomy between 
memory and storage is about to change with the introduction of a 
third tier.  

 
Figure 1: Dichotomy of storage 
NVRAM is an emerging class of memory storage devices 
offering a DIMM form-factor. Hence, it can be treated by the CPU 
as RAM, not as a block device: it is byte-addressable, directly 
accessible using load/store instructions, and covered by CPU 
cache-line handling, including cross-socket cache coherency. The 
device latency is expected to be close to that of DRAM and its 
bandwidth lower than that of DRAM. The density, durability and 
economic characteristics however match that of existing block-
based storage media. Due to these attributes, NVRAM can 
potentially benefit applications that deal with big data analytics, 
in-memory databases, high availability systems, etc. 
Most of the existing relational DBMSs have their internal 
architecture based on the assumption that memory is volatile and 
that memory is a scarcer resource than disk is. If such DBMSs 
properly amend this assumption, they can vastly benefit from the 
offerings of NVM. The specific features of HANA and NVM 
make this adoption both promising and challenging. In this paper, 
we present the salient elements of the early adoption.  
In-memory DBMSs such as HANA have always dealt with the 
trade-off between in-memory vs. durable storage as shown in 
Figure 2. Having data in DRAM provides faster read and write 
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performance, but all DRAM data is lost once the power is turned 
off.  In order to offer ACID transactions and data durability, 
HANA relies on write-ahead redo logging and writes data to a 
non-volatile storage device which supports slow bulk data 
transfer as blocks.  
Likewise, as an in-memory database, HANA is bound by the per-
node available memory limit and scales-out to go beyond it. A 
technology promising a substantial increase of per-node memory 
volume at a reasonable price, such as NVRAM, is thus 
specifically interesting.  
Finally, as most of the data structures are processed in DRAM, 
restarting an in-memory DBMS involves reloading the 
tables/columns and rebuilding the auxiliary data structures. This 
strong correlation with the data volume results in a substantial 
restart time for the DBMS . For instance, it may take up to an hour 
to load Terabytes of data into main memory, thus increasing the 
system downtime. As NVRAM is byte-addressable and writes to 
NVRAM are durable, a database designed to exploit that can 
access data directly in NVRAM after a restart, without having to 
reload it from disk into DRAM. From the end-user perspective, 
such a system can significantly boost its operational performance 
in terms of quickly bringing the business critical relational tables 
online after an unplanned down time or even after planned system 
upgrades. Note that one hour of down-time per year reduces 
system availability below 99,99% ([12]).  Such use of NVRAM 
is thus a step forward to increase the system availability.  

 
Figure 2: HANA’s usage of main memory vs disk storage 

However, the adoption of NVM by a relational DBMS has quite 
a few open questions and challenges. Whether to use the DIMM 
form factor, i.e. NVRAM, as a larger and persistent RAM, as 
opposed to using the SSD form factor of NVM, i.e. as a faster 
disk. And how actually to do that, i.e. how to handle NVRAM 
mixed with DRAM in the DBMS virtual memory address space. 
What data structures to place in NVRAM. How to handle their 
persistent lifecycle. What abstraction to expose to the DBMS 
when integrating the NVRAM technology. Note that the above 
challenges are not specific to HANA. Other in-memory DBMS 
will also face them in adopting NVRAM.  
To address such questions, this paper has the following 
contributions:  
 a discussion of using the DIMM form-factor of NVRAM as 

preferable then the SSD one, and an architecture to adopt 
that in an in-memory DBMS like HANA 

 an in-memory format for column data which is directly 
stored and used in NVRAM blocks 

 the integration of NVRAM blocks and their stored items 
within the column store 

 the integration of NVRAM blocks within the lower 
persistency layer 

 and the experimental data to test our assumptions before the 
NVRAM final DIMMs are available.  

Each contribution is summarized at the end of the section 
presenting it. Moreover, the sections describing the detailed 
NVRAM integration have the further contribution of describing 
in sufficient detail HANA’s relevant internal structures and 
processing. We also stress where the contributions apply to a 
more general class of in-memory DBMSs, beyond HANA.  
The paper has the following structure: in section 2, we present the 
HANA database. Then, we introduce the relevant features of the 
NVRAM technology in section 3. Section 4 gives the high level 
architectural elements of HANA’s adoption of NVRAM. The 
following sections, 5, 6, and 7, dive into deeper details of the 
NVRAM impact on the column data format, column store, and 
persistency layer. We give our experimental results in section 8. 
We present the related work in section 9. Finally, section 10 
concludes the paper.  
2. THE SAP HANA DATABASE  
The goal of HANA is the integration of transactional and 
analytical workloads within the same data management system. 
To achieve this, a columnar engine exploits modern hardware 
(multi-processing cores, SIMD, large main memory and 
processor caches), compression of database content, maximum 
parallelization in the database kernel, and database extensions 
required by enterprise applications (specialized data structures for 
hierarchies or support for domain specific languages). 
As seen from Figure 3, in the transactional workload of the SAP 
business applications, more than 80% of all statements are read 
accesses [10]. The remaining data write operations consists 
mainly of inserts, a few updates, and very rare deletes. The 
analytical workloads are even more dominated by reads. This 
distribution is extracted from customer database statistics. In 
contrast, the TPC-C benchmark, that has been the foundation for 
optimizations over the last decade, has a higher write ratio (46%).  

 
Figure 3: DBMS workload characteristics [10] 
HANA’s relational in-memory columnar store is tuned for such 
enterprise workloads. In-memory processing reconciles the 
traditionally row-oriented transactional database design with the 
innovative column-oriented design that is optimal for analytics. 
This allows both types of workloads to be executed on the same 
operational data. The trade-off favors the large majority of read 
accesses through the choice of a columnar database. The 
performance impact on the row-oriented smaller transactional 
workload is acceptable due to the fast in-memory access.  
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HANA optimizes its utilization of the available memory by 
implementing extensive compression technologies within its 
columnar store. Each column is at least dictionary-compressed 
whereas the value identifiers are again compressed using N-bit 
encoding. Depending on the data distribution, advanced 
compression techniques may be further applied as seen in Figure 
4 (e.g. prefix, run-length, etc.).  
Compression pays off best when data does not change, in which 
case the computational effort spent to compress data is leveraged 
over a longer duration. The data structures optimal for storing and 
processing compressed data are however not update-friendly. As 
an example, let us consider the dictionary. On one hand, a sorted 
dictionary is friendly to both query processing and memory 
consumption: it supports direct binary search, and does not 
require the overhead of a dictionary index. Also, range queries 
can execute directly on the integer value encodings, and thereby 
avoid the actual domain’s value lookup. On the other hand, a 
sorted dictionary is not friendly to inserting new values since they 
do not come in order and the dictionary needs to be re-sorted/re-
organized all the time. This example highlights a typical data 
processing dilemma seen as a conflict when optimizing for both 
the analytical and the transactional workloads.  

 
Figure 4: Data stores in SAP HANA 
HANA resolves this conflict by using two Table Fragments per 
columnar table, with different store organizations: Main and 
Delta. Each Table Fragment has a Column Fragment for each 
table column. The Main fragment is reader-friendly: it contains 
most of the data, and it changes rarely; it uses sorted dictionaries, 
N-bit and other compression techniques. The Delta fragment is 
writer-friendly: it contains the remaining, smaller part of the data, 
uses only non-sorted dictionaries and N-bit compression.  
For both the Main and the Delta fragments, snapshot isolation is 
implemented separately of the data, using dedicated MVCC 
structures. Queries access both the Delta and Main fragments. All 
new data is inserted into the Delta fragment, and the MVCC 
structures are modified accordingly. The deletion is logical; it 
affects only the MVCC structures. There are no in-place updates, 
they are implemented as insert plus delete.  
When the Delta fragment becomes too large, it is merged into the 
Main fragment and a new empty Delta is created. The Delta 
Merge process is non-blocking to readers and writers, except 
during two short windows at the beginning and at the end.  
Large tables are physically partitioned (hash, range, etc.). If a 
table is composed of n partitions, then each column has 2n 
Column Fragments, two for each partition, n Delta Column 
Fragments and n Main Column Fragments. If this table has m 
columns, then it has in all 2mn Column Fragments.  

3. RELEVANT NVM FEATURES  
We discuss here the NVRAM features relevant to its integration 
in HANA.  
As discussed in the next section, we focus in this paper on the 
DIMM form-factor of NVM, that we call hereafter NVRAM, to 
stress the “random access” part of it. Although the SSD form-
factor has itself a lot of merit, this is not the avenue that we have 
chosen in HANA. We discuss in section 4.1 the reasons of our 
choice.  
In the DIMM form-factor, the next-generation of NVRAM ([7]) 
will have impressive qualities. It will provide performance that is 
close to what only DRAM can achieve today. Furthermore, it will 
exceed the capacity of DRAM devices at a lower price per GB. 
Attached to a CPU socket memory channel, its use is transparent 
(except for its persistency): it is directly accessible using 
load/store instructions, byte-addressable, and covered by CPU 
cache line handling, including cross-socket cache coherency. 
Applications can access it directly without additional copies in 
DRAM. Likewise, the NVRAM data transfers, similar to DRAM 
data transfers, are fine-grained at the size of a cache line instead 
of blocks. Last but not the least, NVRAM being non-volatile, its 
contents will not be lost on system restart.  
However, there are several limitations of this new type of 
memory. The access latency is expected to be higher than that of 
DRAM, while the bandwidth is expected to be lower. An 
asymmetry is expected between reading and writing, i.e. writing 
will be slower than reading. Alas, beyond the qualitative 
characteristics listed above, the final quantitative characteristics 
of NVRAM DIMMs are not available at the point this paper was 
written. The experimental method used later in this paper copes 
with this by measuring with several latency scenarios.   
4. NVRAM ADOPTION IN HANA  
The problem at hand is how an in-memory database like HANA 
can take advantage of NVRAM while minimizing the negative 
impact of its drawbacks. We have focused on an early adoption, 
where HANA consumes NVRAM without heart surgery on the 
core relational engine. In this section, we discuss our choices, 
present the NVRAM adoption architecture, and list the challenges 
faced by the implementation of the chosen architecture.  
4.1 Architecture choices 
A first architectural question is whether to adopt the NVM 
technology as a faster persistent block device (i.e. using the SSD 
form-factor) or as a larger and persistent RAM (i.e. using the 
DIMM form-factor). Although the block access of the SSD form-
factor might be well-suited for a traditional, disk-oriented DBMS, 
where the page buffer cache is the natural integration point, we 
took a different avenue in HANA. HANA is an in-memory 
database and does not handle disk blocks in a buffer cache. It 
operates on in-memory data and the Column Fragment is the unit 
of loading into and offloading from RAM. We have chosen thus 
to investigate an architecture where the in-memory Column 
Fragment is likewise the unit of placement in NVRAM, i.e. to use 
the DIMM form-factor NVM, which is part of the process’ 
address space. We are leveraging thus both the promise of larger 
RAM capacity and the immediate availability of NVRAM data at 
system restart, where reading data from disk is not needed. Last 
but not least, HANA’s memory-oriented algorithms simply work 
as such, without the need for substantial changes to obtain an 
NVRAM-enabled binary. Indeed, NVRAM is to the CPU another 
kind of RAM. We have likewise chosen to leverage both the 
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larger size of and the persistency of NVRAM, even if each of 
them is by itself interesting to HANA.  
A further practical consideration comes from our scope: NVRAM 
early adoption for productive use, not only for prototyping, and 
not involving a full system redesign. HANA has grown into a 
mature DBMS, with datacenter-ready features, such as advanced 
backup and recovery, system replication, HA and DR support, 
etc. Many of these features are implemented based on the existing 
persistency layer: on-disk data and redo log volumes. For 
instance, one of the HA techniques supported by HANA is based 
on a standby node acquiring the disks of a failing node. Likewise, 
data backup accesses directly disk pages; etc. Re-implementing 
all these features based on NVRAM, as part of the early adoption, 
would have been a huge effort and would have diluted our focus. 
Discontinuing them would not be an option for productive use. 
We have thus decided to keep the disk-based persistency, and 
adopt NVRAM beside it. This gave us also the choice to place 
only a sub-set of the data in NVRAM.  
Our next question was what to place into NVRAM. For this, we 
noticed that the Main Column Fragment data structures are 
natural candidates, for several reasons. From the perspective read 
accesses, sequential scans fare better in NVRAM than point 
reads: the cache line pre-fetch is expected to mitigate the higher 
latency. Within the Column Fragment data structures, the column 
vector data is sequentially scanned in many cases, more often 
within analytical workload. Conversely, point reads are more 
likely to produce cache line misses, thus exposing the higher 
latency of NVRAM. And point reads also occur within Column 
Fragment data, mainly in OLTP queries. However, an OLTP 
query touches few rows, and little column vector and dictionary 
data is accessed; most of the processing is done on intermediate 
data structures. We have decided to place in NVRAM only the 
very large Column Fragment data structures, i.e. the backing 
arrays of the column vector, dictionary, etc., and to keep the 
column store’s smaller granularity in-memory objects and the 
query plan’s intermediate results in DRAM.  
As for the write access, the relevant factor is the integration of the 
NVRAM’s different persistent behavior into HANA. Here, 
frequent NVRAM writes would be problematic. When only part 
of the column store data is persisted in NVRAM, HANA needs to 
explicitly keep in-sync, through some mechanism, the traditional 
HANA persistency layer and the NVRAM structures. Luckily, 
updates of the Main Column Fragment data are infrequent; 
actually the only writer is the Delta Merge process. Conversely, 
the write-frequent Delta Column Fragments and the MVCC 
structures, if placed in NVRAM, would exercise frequently this 
sync-up mechanism and thus expose its overhead. We have 
decided thus to place only Main Column Fragment data structures 
in NVRAM.  
4.2 The NVRAM adoption architecture 
To summarize, the early adoption architecture is thus for 
NVRAM to replace DRAM for the Main Column Fragment 
structures having the larger footprint. The large memory 
allocations of Main Column Fragments are placed directly in 
NVRAM, notably the dictionary and column vector backing 
arrays. Each Main Column Fragment has an associated NVRAM 
block containing them. As illustrated in Figure 5, smaller 
intermediate data structures of Main Column Fragments are still 
allocated in DRAM. Likewise, all Delta and MVCC data 
structures are allocated in DRAM.  The intermediate results of 
query processing also continue to be allocated in DRAM.  

 
Figure 5: Usage of NVRAM for columnar data 

 When a Main Column Fragment is loaded into memory, its large 
data structures are not allocated in DRAM and initialized from 
disk anymore. Instead, each Main Column Fragment locates its 
associated NVRAM block and points directly to its column vector 
and dictionary backing arrays. 
4.3 Challenges  
However, implementing this architecture is not straight forward; 
a few challenges must be overcome.  
A difficulty when placing data structures designed for DRAM 
into NVRAM, is the handling of the pointer values. Each time 
HANA starts, all the memory allocations (including NVRAM 
blocks) are mapped to different virtual memory addresses. Any 
pointer persisted in NVRAM therefore will need to be remapped. 
Our solution, discussed in section 5, is not to place any pointers 
in NVRAM. This solution is a natural fit since the large memory 
allocations are the leaves of the HANA column store data 
structures and hold no pointers.  
The other difficulty is to integrate the NVRAM blocks, whose 
persistency has a different life cycle, into an existing transactional 
store which persists its in-memory contents to disk pages and 
implements ACID transactions based on checkpoints and 
REDO/UNDO logging. Our solution, discussed in section 6, is for 
the Main Column Fragments, whose lifecycle is driven by Delta 
merges and DDLs (as adding/dropping of column), to drive the 
lifecycle of their associated NVRAM blocks. Notably, they create 
and logically delete them as needed. In HANA, the checkpoint 
(which truncates the REDO log) will also physically destroy 
logically deleted NVRAM blocks: without this delayed 
destruction, replaying the REDO log might recreate a Main 
Column Fragment with dangling NVRAM references.  
Finally, there are filesystem-specific challenges. The SNIA 
NVRAM Programming model extends the semantics of file 
systems for persistent memory [12]. The NVRAM technology on 
Linux will be based on DAX (“Direct Access”) which avoids any 
filesystem caching [11]. Linux filesystems often create files with 
holes by default (also called “sparse” files). The advantage of this 
approach is obviously that storage is physically allocated only at 
the time of actual writes to the file. With the DAX-based 
architecture, NVRAM relies on user-space flushing (using 
hardware instructions, e.g., CLFLUSH, MFENCE, etc.), which 
may not work if HANA does a store to a location in a DAX file 
with a “hole”, since the store causes a page fault so the file system 
can fill the hole with a new allocation.  The file system metadata 
that gets updated by that fault may not be flushed to persistence 
until msync() is called. So, if we just relied on hardware 
primitives to flush the store, HANA could crash before the 
metadata changes are written and the stores would be lost, even 
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though the flushes had been performed. Hence, extra care will 
need to be taken to guarantee that filesystem metadata gets 
flushed. 
4.4 Contributions of the architecture  
The main architectural contribution of this paper is the specific 
placement in either NVRAM or DRAM of the different classes of 
data structures, for an in-memory DBMS running on a mix of both 
kinds of RAM. We discuss the reasons behind our approach, and 
highlight its advantages and challenges. In the next sections, we 
add specific contributions on how we have overcome some of 
these challenges.  
Note that this architectural contribution is not limited to HANA, 
it is of a general nature. It also applies to other in-memory DBMS, 
such as Hyper [8].  
5. COLUMN DATA FORMAT  
We describe here the impact of NVRAM adoption to the in-
memory columnar data format, as the changes done to the column 
vector and dictionary data layout.  
5.1 Main column data persistence format 
HANA Main column data consists of the dictionary, the column 
vector and optional additional data structures like indexes from 
dictionary value ids to the positions of the column vector using 
the id. Each of the column’s data structures typically consists of 
some small descriptive data, the size of which is independent of 
the column size, and content data, which heavily depends on the 
column size. Examples for descriptive data are the number of 
rows or the number of distinct values of the column. Examples 
for content data are the content of the column vector, and the list 
of distinct column values in the dictionary. 
Different implementations of the column’s data structures are 
available depending on the column’s data type or other table or 
column characteristics. 
Since Main Column Fragments are only created during Delta 
merge, and are never changed after the merge, the Main Column 
Fragments only need to be written once and completely into 
persistence at the end of the merge. 
HANA stores the Main column data in sequential files within an 
internal file system provided by the HANA persistence. To persist 
column data, the file is created and the column data is serialized 
into it. At load time, the file is deserialized, its content is copied 
to memory blocks allocated from DRAM. 
Serialization writes the column data in a file format, which is 
closely related to the memory representation of the data. It 
consists of a format version number, the serialized dictionary, the 
serialized column vector, and optionally of the serialized 
additional data structures. Different implementations of the data 
structures define the specific format of the corresponding file 
section. They may also write a format version number specific for 
the corresponding section. 
Typically format version numbers and the small amount of 
descriptive data are stored by value, while the large amount of 
content data is stored as a binary memory dump of the 
corresponding memory representation. 
5.2 Format adjustments for NVRAM 
representation 
With the availability of NVRAM storage we do not change the 
process of data creation for a new Main Column Fragment. The 
data is initially created in memory allocated from DRAM. This is 

because this data is frequently changed during the Delta merge 
till the data creation is finished. 
When using NVRAM storage, we use the existing persistence 
format with only small adjustments to write the column data into 
the NVRAM block associated with the Main Column Fragment. 
This happens at the end of the merge before the new Main 
Column Fragment is accessible to other transactions. 
The adjustments of the persistence format for writing into 
NVRAM consist of: 
 Add alignment to memory blocks that need to be aligned in 

the virtual address space; conversely, the existing file 
serialized format has no alignment requirements.  

 Prefer exact copies from memory rather than a format that 
allows simpler read on different platforms or is more 
efficiently compressed (see e.g. fixed-sized dictionaries 
below); conversely, the existing file serialized format is 
both multi-platform and further compressed. 

The persistence format used for persisting the column data is not 
affected by these adjustments. 
Before creating the NVRAM block, we do a “dry run” of the 
serialization to determine the required size of the NVRAM block. 
This is achieved by calling the serialization functions of the data 
structures with a special serializer instance, which just sums up 
the size of all data elements including alignments, but does not 
copy any data, and thus is extremely fast. This way we reduce the 
fragmentation and do not need to move the memory block to a 
different location when serialization ends.  
During the write of a Column Fragment into NVRAM, only 
descriptive data and pointers to content data are kept in DRAM, 
the pointers are switched from DRAM addresses to the 
corresponding addresses within the mapped NVRAM block, and 
the previous DRAM memory used for content data is freed. When 
writing of the NVRAM block is finished, we keep the NVRAM 
block mapped in the virtual address space and access the data 
directly from the NVRAM block during all subsequent column 
accesses. 
As a consequence of this design, we need to keep all of the 
NVRAM column mapped to memory, including the parts that we 
do not access after deserialization.  This does not present a 
problem because the overhead is usually small and constant in 
size (not depending on the number of rows). 
When loading a column, which had been written into NVRAM, 
we deserialize the column data from the mapped NVRAM block 
instead from the persistence file. We only copy descriptive data 
into DRAM, while pointers to content data are assigned to the 
corresponding addresses within the mapped NVRAM block. 
We currently cannot update parts of a column without creating a 
new NVRAM block that contains copies of the data we do not 
need to update, e.g. the dictionary in case it is unaffected by the 
change.  This is not a new restriction however, and we decided 
against optimizing in that direction before in the past, for reasons 
that still exist like it would require to manage more than one file 
per Column Fragment, adding overhead for that data and the files 
life cycle management. 
5.3 Format adjustments for dictionaries 
HANA stores the distinct values of a column in a dictionary. 
Dictionary data consists of a small amount of descriptive data, 
e.g. the number of values, and the list of distinct values. 
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Depending on the column’s data type all column values may have 
the same byte length (numerical types, data/time types, etc.) or 
may have variable byte lengths (strings, binary data of variable 
length). Different dictionary implementations are used in HANA 
to handle these two cases. 
5.3.1 Fixed-sized dictionaries 
Fixed-sized dictionaries are used in case all column values have 
the same byte length. These dictionaries use an array 
implementation for the list of distinct column values. This array 
is the only content data of the dictionary. 
In the persistence format the values traditionally are converted 
into compressed strings to be agnostic to data type, platform, or 
software changes and have small robust code at the same time. 
Since access to any value in this format requires a re-conversion, 
the format was adjusted for writing into NVRAM blocks: 
 Add alignment to the start address of the value array within 

the NVRAM block. 
 Write the value array as memory dump into NVRAM. 
During deserialization, a pointer to the value array residing in 
DRAM data is just assigned to the start address of the array within 
the mapped NVRAM block. 
5.3.2 Variable-sized dictionaries 
Variable-sized dictionaries are used in case the column values 
may have different byte lengths. These dictionaries use more 
complex implementations for the list of distinct column values. 
Typically, the values are encoded as a sequence consisting of the 
number of bytes and the bytes themselves. But additionally, an 
index structure is used, which stores the start address of each n-th 
value, where n is some small constant, e.g. 16. This is needed to 
access values of a given index quickly. Only a limited memory 
range containing at most n values must be searched. 
This additional index may contribute to a considerable percentage 
of the memory consumption of the whole dictionary in particular, 
if the values have small byte length on average. The additional 
index cannot be stored in NVRAM, if it consists of absolute 
memory addresses. 
In order to also store this additional index in NVRAM, and to use 
it from the mapped NVRAM block after deserialization, we 
changed its internal format to use memory offsets instead of 
absolute memory addresses. 
5.4 Contributions of the NVRAM column 
data format  
The main contribution to column data format is the choice of a 
layout which allocates in NVRAM the large memory blocks, as 
the column vector and dictionary backing arrays. Also, our layout 
does not place in NVRAM any pointer.  
As a further contribution, we have described in sufficient detail 
HANA’s in-memory columnar data format.  
Beyond the detailed HANA design, these principles have 
sufficient generality to be applied to other in-memory DBMS.  
6. COLUMN STORE   
We describe here the impact of NVRAM adoption to the column 
store, as the association of an NVRAM block to its corresponding 
Column Fragment and the driving of the NVRAM block lifecycle.  

6.1 Lifecycle of NVRAM blocks  
In HANA, Column Fragments are created and destroyed by the 
Delta merge (all Column Fragments of the relevant Table 
Fragments) and by DDL (all Column Fragments of the relevant 
columns).  
Irrespectively of Delta merge or DDL, the creation of a new Main 
Column Fragment must trigger the creation of a new NVRAM 
block and the removal of a Main Column Fragment must trigger 
the removal of its NVRAM block. Transactional guarantees with 
regards to creation and removal of each Main Column Fragment 
must also be provided for the associated NVRAM block. 
In HANA, a Main Column Fragment is represented by a 
persistent descriptor and a paired transient object. The persistent 
descriptor contains the Column Fragment’s persisted state (i.e., 
the persisted column data and metadata), offers limited 
functionality, and refers to other metadata persistent descriptors 
through persistent pointers. The paired transient object points to 
the persistent column descriptor, enriches the persistent 
descriptor’s functionality and state, and refers to other metadata 
transient object through handles. 
To support persistence of data in NVRAM blocks, the persistent 
column descriptor has been extended with an NVRAM block id, 
a numeric identifier, used to determine the NVRAM block 
associated to the Column Fragment. NVRAM blocks in HANA 
are identified by a string key (see section 0). A Column Fragment 
NVRAM block key is constructed based on the table, fragment, 
and column identifiers and suffixed with the Column Fragment’s 
NVRAM block id. On column load, the column transient object 
provides functionality to obtain its corresponding NVRAM block 
resulting in the mapping of the NVRAM block to a memory 
address in HANA’s memory space. 
The logical lifecycle of an NVRAM block is dependent on its 
Main Column Fragment. When a Main Column Fragment is 
created its NVRAM block is created as well. At this point in time 
this newly created NVRAM block is not marked as committed 
and thus it will be removed on system restart or failure by the 
operation (e.g., DDL or Delta merge) for which the Main Column 
Fragment is being created.  
A consistent change (CCH) is a mechanism used in HANA to 
block the database checkpoint. The checkpoint cannot run while 
there is an active CCH. Within a single CCH an undo log record 
(‘undoCreateNVMBlock’) is written containing the NVRAM 
block, column, fragment, and table ids. Also within the same 
CCH the NVRAM block is NVRAM-committed by the NVRAM 
Block Provider and the NVRAM block id value in the persistent 
descriptor for the column is updated to the value used to construct 
the NVRAM block key for the NVRAM block. An NVRAM 
block will be NVRAM-committed at most once, and once 
committed it will never be modified again. From this point 
onwards, we must guarantee the NVRAM block will exists for the 
life of the Main Column Fragment or until it is replaced by a new 
NVRAM block if the data representation of the Column Fragment 
changes (more on this below). 
HANA’s NVRAM Block Provider (see Section 7) guarantees 
NVRAM-committed NVRAM blocks that exist at checkpoint 
time persist after a restart of HANA (i.e., each NVRAM-
committed and checkpointed block exists and its contents are the 
same as at the time the NVRAM block was NVRAM-committed). 
Similarly blocks that have been created but not committed, and 
blocks that have been committed but not have been covered by a 
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checkpoint are physically removed by the HANA NVRAM Block 
Provider when recovering after a crash. 
When a Main Column Fragment is removed (for example because 
the column is dropped) the associated NVRAM block is logically 
removed. The removal of the NVRAM block is done via a HANA 
callback mechanism that is invoked for each structure owned by 
the Main Column Fragment at the time the Column Fragment is 
about to be removed. The actual removal of the NVRAM block 
is logical: only until a checkpoint occurs NVRAM blocks that 
have been requested to be removed get physically removed. Main 
Column Fragments are removed at: cleanup of the transaction that 
has removed the column (e.g., alter table drop column); or, at 
cleanup of the transaction that has removed the Table Fragment 
where the Main Column Fragment is contained (e.g., removal of 
the old Main Table Fragment after a Delta-to-Main merge); or at 
undo, when the transaction that created the Column Fragment is 
rolling back. 
Cleanup is an asynchronous process in HANA, in charge of 
physically removing persisted structures, both in disk and 
NVRAM. Operations (e.g., dropping of a column) schedule 
actions (e.g., physical removal of the Column Fragments) that 
must occur at cleanup. When it is guaranteed that there are no 
transactions in the system that can still view the affected object 
(e.g., the dropped column), the cleanup actions that were 
scheduled are executed.  The HANA cleanup process therefore 
advances as transactions complete. The changes (both on disk and 
NVRAM) performed by cleanup are only persisted (i.e., made 
permanent) at checkpoint. 
When an NVRAM block has been logically removed and the 
server crashes before the logical removal is checkpointed, 
HANA’s NVRAM Block Provider guarantees the block is not 
removed during recovery and the logical delete operation is 
discarded. 
NVRAM Blocks can also be deleted even if the owning Main 
Column Fragment is not removed. In other words, a Column 
Fragment may be associated to different NVRAM blocks 
throughout its life. An example of this situation in HANA is when 
the data of the Main Column Fragment is reorganized for better 
compression. In this case, no new Main Column Fragment is 
created: the current NVRAM block associated to the Column 
Fragment is deleted and a new NVRAM block is created. In this 
case: the Column Fragment is repopulated (its data representation 
changes); a new NVRAM block key string is constructed by using 
the current NVRAM block id for the Column Fragment plus one; 
a new NVRAM block is created and populated based on this 
NVRAM key; within a single CCH we write the 
‘undoCreateNvmBlock’ as previously described. The old 
NVRAM block is scheduled to be deleted by HANA’s cleanup 
mechanism. Within the same CCH, the NVRAM block is 
NVRAM-committed and the NVRAM block id in the Column 
Fragment descriptor is updated. 
6.2 Recovery Considerations 
From this point onwards it is guaranteed: if the transaction is 
committed, the old NVRAM block is deleted and the new 
NVRAM block will exist for the life of the Column Fragment or 
until it is replaced. The removal of the old NVRAM block is 
guaranteed by HANA’s cleanup mechanism previously 
described. If the transaction rollbacks, the new NVRAM block is 
discarded, the old NVRAM block is re-established as the 
NVRAM block for the Column Fragment. The re-establishment 

of the old NVRAM block is guaranteed by HANA’s undo 
mechanism. 
We now illustrate error and crash recovery handling for the 
creation and population of the Main attribute NVRAM blocks and 
their association with their corresponding Column Fragment. The 
Main Column Fragment and its associated NVRAM block can be 
created independently. Only the writing of the 
‘undoCreateNvmBlock’ undo, the NVRAM-commit and the 
association of NVRAM block to the Column Fragment need to 
occur within a single CCH. Let’s assume a Main Column 
Fragment and what will be its NVRAM block have been created. 
The NVRAM block has been allocated but it has not yet been 
populated: if a crash occurs at this point, the HANA NVRAM 
Block Provider reclaims the NVRAM block as part of the 
recovery. Specifically, the HANA NVRAM Block Provider 
guarantees an NVRAM block that has not been NVRAM-
committed is deallocated in case of a crash. If the operation that 
created the Main Column Fragment and its NVRAM block needs 
to abort, for example due to an exception: the NVRAM block is 
destroyed as part of the exception handling without ever been 
NVRAM-committed. 
Within the CCH cleanup is scheduled such that the NVRAM 
block being replaced (if any) is removed after the operation that 
triggered the creation of the new NVRAM block commits. If we 
crash at this point, the undo log record was not checkpointed and 
HANA’s NVRAM Block Provider will simply take care of 
reclaiming the NVRAM block. Because changes to the Column 
Fragment were not persisted by a checkpoint the Column 
Fragment will still be associated with the NVRAM block prior to 
the creation of the new NVRAM block. If the crash happens after 
the CCH and the actions executed within the CCH were 
checkpointed, the processing of the undo reverts the change to the 
Column Fragment’s NVRAM block id and logically deletes the 
new NVRAM block. If the transaction that caused the creation of 
the Main Column Fragment and NVRAM block rollbacks, undo 
for the transaction is acted upon. Specifically undo reverts the 
change to the Column Fragment’s NVRAM block id and logically 
deletes the new NVRAM block. 
Logical deletion of NVRAM blocks is not done as part of the 
execution of an operation (e.g., drop column). This is because 
there might be old readers which may be reading the old NVRAM 
block. If the block is logically deleted, and the block deletion is 
checkpointed, the NVRAM block will be lost and the operation 
cannot rollback. Hence the logical deletion of Column Fragment 
NVRAM blocks is done at cleanup or undo of the operation. 
If the creation and population of a Main Column Fragment is 
redone during recovery, the recreation of the NVRAM block is 
done as well with no further NVRAM-specific redo required. 
6.3 Column store requirements for the 
NVRAM Block Provider 
We now describe the NVRAM Block Provider’s features that are 
critical at the column store level for providing database 
transactional properties for the lifecycle of NVRAM blocks. 
NVRAM blocks that have not been NVRAM-committed do not 
persist after a crash. This guarantees allocated NVRAM blocks 
not yet committed are not leaked after a crash. NVRAM blocks 
that have been NVRAM-committed but the NVRAM-commit has 
not been covered by a checkpoint are deleted during the recovery 
after a crash. This guarantees we do not leak NVRAM blocks 
when a high-level operation (e.g., add column, merge) creates an 
NVRAM block but the undo of the operation is not persisted. 
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In HANA, the Delta merge is not durable unless all the 
modifications made by the merge and the commit of the merge 
transaction are checkpointed. The merge is a physical data 
reorganization, neutral to transactional visibility, is not redo 
logger, and not replayed by the recovery. Actions performed by a 
Delta merge are therefore lost after a crash if the commit of the 
merge was not followed by a checkpoint prior to the crash. When 
an NVRAM block has been logically deleted and this logical 
delete has not been checkpointed, and assuming the NVRAM-
commit of the NVRAM block has been checkpointed, the 
NVRAM block persists after a crash and the request to delete the 
NVRAM block is discarded by HANA’s NVRAM Block 
Provider. This guarantees Column Fragments contained in the re-
established Main fragment after the undo of the merge will have 
valid NVRAM blocks. 
Similarly, if the NVRAM-commit of a block has been 
checkpointed, then the NVRAM block persists after a crash. To 
keep or not to keep the NVRAM block will be decided during 
recovery based on whether the transaction is undone (i.e., if not 
to be kept, the logical removal will be triggered by the undo 
handling executed for the transaction). If a logical remove of an 
NVRAM block has been checkpointed, then the NVRAM block 
does not persist after a crash. This a requirement because, due to 
the checkpoint, there is no way to redo the logical remove.  
6.4 Contributions of the column store 
integration  
The main contribution of the store integration is the alignment of 
the NVRAM block lifecycle with the lifecycle of column store 
persistent artefacts, which is itself driven by Delta merge and 
DDL.  
As a further contribution, we describe the relevant HANA column 
store durability mechanisms, as the CCH, checkpointing, 
undo/redo logging, transaction cleanup, etc.  
Beyond the HANA specifics, the solution can be applied to any 
DBMS whose persistence is based on write-ahead redo logging 
and checkpointing dirty data pages.  
7. PERSISTENCY LAYER 
We describe here the impact of NVRAM adoption on the 
persistency layer, which provides the underlying mechanisms of 
handling NVRAM blocks.  
7.1 Need for consistent management of data 
In some situations, the operating system may expose persistent 
memory as a memory-mapped file, but an application would not 
want simply such a raw form of access. As the memory is now 
persistent, we not only need to have heap functions like 
malloc/free but also a way of keeping the data consistent across 
system failures. For example, if a process/program terminates due 
to an error after a persistent memory allocation call, then this will 
leave a persistent memory leak which is more dangerous than in 
case of volatile memory, where the termination itself cleans all 
such leaks. So, in order to have a correctly and efficiently 
operational DBMS which uses NVRAM, it is important to have a 
sound and consistent management of the physical memory 
regions on the NVRAM DIMMs. As outlined in the next sections, 
our solution is to provide interfaces and building blocks to exploit 
the underlying hardware primitives for flushing the data and 
guaranteeing consistent and durable write operations. 

7.2 Introduction to NVRAM Block Provider 
The NVRAM Block Provider of HANA is a module consistent 
persistent memory management so that the upper layers of DBMS 
can seamlessly exploit the persistent memory space without 
having to worry about factors like allocation, deallocation, data 
durability, persistent memory leaks, and recovery of data after a 
restart. The NVRAM Block Provider library sits between the 
OS/hardware and the upper layers of HANA, and uses a directory 
on a mounted filesystem, where NVRAM blocks are stored as 
files and mapped into memory. Currently, the following storage 
types are supported:  
1. DAX-enabled filesystem backed by real NVRAM DIMMs 
2. Traditional file system backed by SHM/SSD/HDDs 

(Simulation)  
The programming model is based upon memory-mapped files, 
and hence the NVRAM Block Provider not only leverages the 
load/store capabilities of persistent memory, but can also work 
correctly with any other storage technology (e.g. SSDs).  
7.3 Design of the NVRAM Block Provider  
The implementation model of NVRAM Block Provider stores 
NVRAM blocks as files into a root directory of the mounted 
filesystems. When working with real hardware, this should be the 
location where one has mounted the persistent memory devices 
(or DIMMs). We expect the physical location to be DAX-
enabled, which is a Linux feature added for persistent memory 
storage [11]. If supported, the DAX bypasses the kernel page 
cache which is usually used to buffer reads/writes into files. For 
file-based mappings, the persistent memory space is mapped 
directly into user space. For simulated mode of testing, the root 
directory could be any path under your file system. We store all 
the NVRAM-resident blocks under this root directory and at 
startup load all the blocks from the same fixed directory. As we 
are dealing with memory management which is persistent, the 
NVRAM physical block lifecycle management is kept consistent 
with HANA’s checkpoint logic of data persistency and is thus 
driven by a checkpoint/restart/crash at any point in time. For 
supporting database backups and recoverability, we keep another 
copy of the data in a standard persistence on disk, and also log to 
normal log files on the disk. This design may be optimized in the 
future. NVRAM Block Provider keeps track of the checkpoint 
version of the system at the time of creation of a new NVRAM 
block and uses the information to handle blocks during every 
other event (i.e. checkpoint/restart/crash) which helps to 
immensely simplify the work of the upper layers (referred as 
‘client modules’) of HANA. For every NVRAM block allocation 
request, NVRAM Block Provider takes as input a key (or name) 
that uniquely identifies a block along with the requested size of 
allocation. The block management module maintains the 
following types of blocks based upon the three possible lifecycle 
states of a block (state transitions are illustrated in Figure 6): 
Data block: Stores the actual data of relational tables. This is a 
closed (a.k.a. NVM-committed) and persisted block (in fact 
marked as “read-only”), flushed using the processor’s persistency 
instructions/primitives provided by the hardware vendor. 
Tombstone block: Stores metadata for transient delete operations. 
This is created when a data block that belongs to an earlier 
checkpoint version is requested for deletion. This block is created 
to persist the information that a block is marked for deletion so 
that we can handle such blocks even in case of system crash 
before actual deletion. 
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Temporary block: An uncommitted data block, that was created 
but the system crashed before it could be written and flushed (i.e. 
NVM-committed) to persistent memory space. The information 
is persisted in the block’s name so that it can be differentiated 
from the valid set of blocks that survive after a crash. This is 
generally pruned at checkpoint/restart time. 

 
Figure 6: State transition diagram of NVRAM blocks 
To ensure efficient access and cleanup of these blocks, the 
NVRAM Block Provider maintains three key data structures in 
DRAM: 
Data Block Map: A sorted multi-map of the NVRAM data blocks 
to ensure easy access to the blocks. On every successful creation 
of a NVRAM block, an entry is added into the map. Each block 
entry maintains the vital information regarding a data block state 
(‘NVM-committed’ or ‘marked for deletion’), file size, a handle 
to its virtual address mapping and path location. 
Tombstone Block Map: A map of tombstones. A checkpoint 
ensures that the system’s state is consistent till that timestamp. If 
blocks belonging to earlier checkpoint versions are requested for 
deletion, an entry for such blocks is added into this map. The 
cleanup of such blocks happens as part of the next checkpoint. 
This map essentially helps in faster lookups of such blocks. If the 
system crashes before such a cleanup can be performed, this map 
is re-created upon startup using the earlier mentioned tombstone 
blocks persisted on NVRAM.  
Temporary Block Map: A list of uncommitted and unhandled 
blocks. The list is processed upon server restart during 
checkpoints to clean-up these transient blocks. 
We next explain the various APIs provided by NVRAM Block 
Provider and how they help to drive the lifecycle of a block. This 
is illustrated through the flow diagram in Figure 7 depicting a few 
possible scenarios. Upon every system startup, due to normal 
restart or crash, the following operations will take place: 
1. NVRAM Block Provider is initialized with a root directory. 
2. The root directory is traversed for persistent memory 

(NVRAM) blocks which are classified into the 3 categories 
mentioned before, and the three data structures (Data Block 
Map, Tombstone Block Map, Temporary Block Map) are 
subsequently populated. 

3. A valid and consistent checkpoint based upon HANA’s 
persistency state is fixed and installed globally. 

4. All temporary blocks are cleaned up which helps to avoid 
‘persistent leak’ situations as illustrated in Figure 8 

5. Additionally, based upon the current checkpoint version: 
 All data blocks created at a later (or higher) checkpoint 

version are deleted 

 All tombstones created at a later (or higher) checkpoint 
version are deleted and the corresponding data blocks 
are marked as valid and NVM-committed 

 All tombstones created at an earlier (or lower) 
checkpoint version are deleted along with the 
corresponding data blocks 

 
Figure 7: Life cycle management of NVRAM blocks 

 
Figure 8: NVRAM Provider avoids persistent memory leaks 
7.4 Contributions of the NVRAM block 
management 
Our block handling scheme provides a consistent management of 
persistent memory space that appreciates the functioning of an In-
Memory Data Management system such as SAP HANA. It 
maintains lookup maps for fast and efficient block searches of 
committed, uncommitted and defer-deleted blocks. We follow a 
unique and simple approach to persist a blocks’ state information, 
necessary for recovery and to handle persistent memory leaks. 
The underlying directory structure maintained by NVRAM Block 
Provider is distinctive in a way that helps to retain/destroy blocks 
based upon their checkpoint versions. The NVRAM block 
management layer is responsible for management of a block’s 
physical state across system checkpoints/restarts/crashes.  
Furthermore, the NVRAM Block Provider is designed keeping in 
mind the requirements of HANA, but is completely independent 
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of its storage architecture i.e. Row-based or Column-based. The 
APIs allow clients to create arbitrary sized persistent memory 
blocks with resizable characteristics. We maintain statistical 
information like count of successfully created blocks, deleted 
blocks, loaded blocks, pruned blocks, etc. along with total size 
per block. 
8. EXPERIMENTAL DATA 
For evaluating the performance of our implementation before 
hardware availability, we are using the same custom setup as in 
[6]. This special processor and BIOS has the capability to add 
memory latency to certain memory regions. The system is 
equipped with 2 Intel Xeon processors E5-4620 v2 with 8 cores 
each, running at 2.6 GHz without Hyper-Threading. Two of the 
four memory channels are treated as “persistent memory” where 
the additional latency is applied. The remaining memory is 
untouched and can be used as DRAM. Our system was equipped 
with 256GB of memory, with 128GB configured as PMEM and 
128GB as DRAM 
8.1 Evaluation of runtime impact on OLTP 
and OLAP workloads 
We first evaluated the impact of additional persistent memory 
latency on OLTP. The first experiments consist of random inserts 
in a table with 4M rows and 500 columns. All data in the table 
resides in Main store, which was allocated in persistent memory. 
The total running time 100,000 inserts is shown in Figure 9. As, 
by design of HANA, inserted data is stored in the Delta store, 
increasing the latency for persistent memory does not have a 
significant impact on performance. This can be seen as a best-case 
scenario in respect to memory latency for the Main store. 
We then evaluated “single selects” in Main store, which is 
probably the worst-case scenario in this respect. The same table 
was merged and kept in Main store during the test. Figure 10 
shows the running time for different persistent memory latencies.  
In case of the column orientation, the individual cells of a row 
reside in different memory locations. Reading a complete row 
therefore reads (at least) one cache line for each cell. Since the 
table does not fit in the processor cache and the lines are read 
randomly, this results in at least one cache line miss per cell, 
which is fully impacted by the latency of persistent memory.  
In order to evaluate the impact of higher latencies on OLAP 
workloads, we compare the throughput for a variation of the TPC-
H workload. The tables in the benchmark have been widened to 
better reflect the tables sizes observed in typical SAP systems [5]. 
Furthermore, the queries were modified to better mimic the 
interactive data exploration, which is common in today’s in-
memory solutions. During the tests, all tables are allocated in 
NVRAM, whereas DRAM is used for the remaining data 
structures. Figure 11 shows the average throughput depending on 
the latency of the NVRAM region. The leftmost data point 
reflects the measurement with not additional latency applied, i. e. 
the DRAM latency for this setup. The impact on throughput with 
increasing latency is very small, as the access pattern for OLAP 
workloads is very predictable and the hardware prefetchers can 
easily hide the additional latency.  

 
Figure 9: "insert" performance 

 
Figure 10: Worst case scenario of "single selects” 

 
Figure 11: Throughput vs. latency for OLAP 

 
Figure 12: Bandwidth requirements for DRAM and NVRAM 
Figure 12 depicts the memory bandwidth that is used during the 
benchmark run for the different memory tiers. As the Main is not 
updated during the benchmark run, there is only read traffic from 
the persistent memory region. Furthermore, by the nature of how 
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HANA processes data in aggregation, there are many more reads 
and writes to the DRAM region. In particular, the bandwidth 
requirements for persistent memory are significantly lower than 
for DRAM. 

 
Figure 13: Response time per OLAP query 
The impact of additional latency for individual queries is shown 
in Figure 13. Each data point is the average response time for a 
complete benchmark run. Again, the latency for the persistent 
memory region was varied, whereas data structures in DRAM 
region are not affected. One can observe that some of the queries 
are more sensitive to the latency of the persistent memory than 
others. This can be explained by multiple factors:  
1. Does the query exhibit a memory access pattern that can 

easily prefetch by the hardware prefetchers? 2. Is the working set of queries small enough to fit in CPU 
cache and hence agnostic to persistent memory latency? 3. Is processing of the query compute or latency bound? 

8.2 Evaluation of DBMS restart times and 
Memory footprint 
The set of experiments mentioned below are focused on 
evaluating the potential benefits in terms of Database availability 
and TCO provided by HANA’s architectural adoption of 
NVRAM. As mentioned in earlier sections, most of the large 
memory intensive data structures will now be stored on NVRAM. 
These structures are mapped into memory from NVRAM-based 
filesystems upon first access of a table, instead of copying them 
into DRAM from disk as was done earlier. This approach is 
expected to benefit HANA in two unique ways. Firstly, after a 
DBMS server crash or restart, the data can be made available near 
instantly. Secondly, as most of the heavy data structures are 
resident in NVRAM, the allocations in DRAM would reduce 
substantially. This should help to lower the overall system cost 
since customers can operate on sizable business data with a much 
smaller DRAM requirement. The system we use for conducting 
the experiment is Intel(R) Xeon(R) CPU E7-8880 v2 @ 2.50GHz 
with 1TB Main Memory capacity. We use a columnar table of 
size of approximately 5 GB with 4 million records and 100 
columns that span different flavor of data types (e.g. integer, 
decimal and strings). The strategy is to use mmap-based 
filesystem simulation on Linux Shared Memory (i.e. /dev/shm) in 
the absence of real NVRAM hardware. We believe the “SHM”-
based simulation approach is closest to the execution behavior of 
NVRAM-optimized HANA on real persistent memory DIMMs. 
The DRAM-based HANA is persisted on fast SSDs (Solid-State 
Drives) providing an aggregate read bandwidth of ~1200 MB/s. 
The strategy for NVRAM-based HANA is to use mmap-based 
filesystem simulation on Linux Shared Memory (i.e. /dev/shm) in 

the absence of real NVRAM hardware. We believe the “SHM”-
based simulation approach is closest to the execution behavior of 
NVRAM-optimized HANA on real persistent memory DIMMs. 
The Figure 14 illustrates the experiment where we vary the table 
size from 400 rows all the way to 4 million rows (i.e. 10,000x) in 
steps of 10x and calculate the time to “preload” the table 
immediately after a server restart. For in-memory databases like 
HANA, the “preload” operation is responsible for bringing the 
entire table into system memory thereby making it ready for 
online operations like queries. The figure shows that for 
increasing table size, the NVRAM-based HANA approach shows 
a flat trend with preload time being nearly constant. On the other 
hand, the preload speed with traditional approach based on 
DRAM is linearly dependent on the size of the table. 

 
Figure 14: Table preload cost after server restart 
We further perform an experiment to measure the TCO benefits 
of NVRAM storage by studying the change in DRAM 
consumption with increasing data populated in the target table. 
For this purpose, we vary the tabular data from 400 rows to 4 
million rows and measure the DRAM consumption after table is 
pre-loaded as explained earlier. As seen from Figure 15, the 
results indicate that in case of NVRAM, the graph is nearly flat 
with a nominal increase in memory consumption with increasing 
data scales, unlike the DRAM case where all data structures are 
copied into Main Memory upon pre-loading of table. 

 
Figure 15: DRAM consumption upon data loading 
The above set of experiments were additionally verified using 
several diagnostic tools provided by HANA. For the NVRAM-
aware HANA case, we could see ~5GB being allocated from 
NVRAM based on Shared Memory (i.e. /dev/shm) when all 4 
million rows of the table are loaded. Also, using CPU profilers, 
we observed that in DRAM case, majority of CPU cost is being 
spent in disk-based reads whereas for NVRAM, the disk reads are 
absent since we map data directly into process address space.  
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8.3 Contributions of the experimental data 
Below are the salient takeaways based on the various experiments 
conducted with our NVRAM-based HANA approach:  The "insert" performance of HANA is totally unaffected by 

simulation-based latency costs of NVRAM  The simulation-based NVRAM latency cost also has a 
marginal impact on OLAP throughput  The table “preload” operation with NVRAM-based HANA 
is tremendously faster than DRAM-based HANA. It shows 
a flat trend in response time and the gains are seen to 
accelerate with increasing growth of tables  The NVRAM-based HANA shows a flat trend in memory 
consumption immediately after table preload with 
increasing growth of tables 

The previous two points suggest that HANA can leverage 
NVRAM to go online and be available for business much faster 
especially with a negligible Main Memory footprint 
9. RELATED WORK 
At our best knowledge, there is no prior publication describing 
the adoption of NVRAM by a productive DBMS.  
Many recent papers focus on specific data structures, specific 
system modules, experiments, prototypes, architectural 
proposals, etc. See for instance [13], [15], [16], [17], [9], [2].  
Testing software based on NVM is a novel domain. Although 
relevant to the HANA adoption of NVRAM, we do not cover it 
in this paper. Such a testing framework is described in [14].  
In terms of physical block management for the NVM space, the 
only other persistent memory block manager at our best 
knowledge is NVML [6]. NVML is shipped as a 3rd party library 
(named ‘libpmem’) which provides basic helper APIs to manage 
and use NVM/NVRAM. The functionality includes mapping the 
memory chunks from the NVRAM space, flushing the memory 
stores, and other assisting toolbox libraries:  
a. maintain a transactional object store (‘libpmemobj’). 
b. cache fixed-size objects in pmem (‘libpmemblk’) 
c. do writes to a persistent log file (‘libpmemlog’) 
d. use NVRAM as a pool of volatile memory (‘libvpmem’) 
Although NVML covers a lot of functionality, it does not cover 
HANA’s requirements:  support for variable-sized block creation (‘libpmemblk’ 

cannot be used). 
 support for very big blocks (‘libpmemobj’ cannot be used). 
 exploit NVM/NVRAM not only as an extension to DRAM, 

but also for its persistency (‘libvpmem’ cannot be used). 
It may be noted that block-based structures have their own 
overheads in terms of increased fragmentation of space and 
higher random access costs due to page-granular operations. 
HANA tries to avoid these pitfalls.  
10. CONCLUSION 
In this paper, we describe the direction and technological 
challenges of the NVRAM early adoption within the SAP HANA 
DBMS. We have found the original HANA architecture and data 
structures well suited for NVRAM. Heart surgery is not needed 
for a very effective early NVRAM adoption. The main reason is 
that HANA is a new generation database, designed from scratch 
for in-memory access, and optimized for CPU cache efficiency, 
which is the main optimization for both DRAM and NVRAM.  

This early adoption paper is however only scratching the surface, 
the problem space is enormous: placing other structures in 
NVRAM (Delta, MVCC, REDO/UNDO …), NVRAM vs. 
DRAM placement policies, etc. At the same time, we are 
investigating this larger solution space of the more radical 
integration of NVRAM (see for instance [13], [15], [16]).  
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