
HomeRun: Scalable Sparse-Spectrum Reconstruction of
Aggregated Historical Data

Faisal M. Almutairi
University of Minnesota

Minneapolis, MN

almut012@umn.edu

Fan Yang
University of Pittsburgh

Pittsburgh, PA

fay28@pitt.edu

Hyun Ah Song
Carnegie Mellon University

Pittsburgh, PA

hyunahs@cs.cmu.edu

Christos Faloutsos
Carnegie Mellon University

Pittsburgh, PA

christos@cs.cmu.edu

Nicholas Sidiropoulos
University of Virginia
Charlottesville, VA

nikos@virginia.edu

Vladimir Zadorozhny
University of Pittsburgh

Pittsburgh, PA

vladimir@sis.pitt.edu

ABSTRACT
Recovering a time sequence of events from multiple aggregated
and possibly overlapping reports is a major challenge in historical
data fusion. The goal is to reconstruct a higher resolution event
sequence from a mixture of lower resolution samples as accurately
as possible. For example, we may aim to disaggregate overlapping
monthly counts of people infected with measles into weekly counts.
In this paper, we propose a novel data disaggregation method,
called HOMERUN, that exploits an alternative representation of
the sequence and finds the spectrum of the target sequence. More
specifically, we formulate the problem as so-called basis pursuit
using the Discrete Cosine Transform (DCT) as a sparsifying dic-
tionary and impose non-negativity and smoothness constraints.
HOMERUN utilizes the energy compaction feature of the DCT by
finding the sparsest spectral representation of the target sequence
that contains the largest (most important) coefficients. We lever-
age the Alternating Direction Method of Multipliers to solve the
resulting optimization problem with scalable and memory efficient
steps. Experiments using real epidemiological data show that our
method considerably outperforms the state-of-the-art techniques,
especially when the DCT of the sequence has a high degree of
energy compaction.

PVLDB Reference Format:
F.Almutairi, F.Yang, H.Song, C.Faloutsos, N.Sidiropoulos, V.Zadorozhny.
HomeRun: Scalable Sparse-Spectrum Reconstruction of Aggregated His-
torical Data. PVLDB, 11 (11): 1496-1508, 2018.
DOI: https://doi.org/10.14778/3236187.3236201

1. INTRODUCTION
Gathering and analyzing information from multiple historical

data sources requires reconstructing the time sequences in finer
scale. For example, given multiple monthly sums of patient counts,
how can we recover the weekly patient counts? This is so-called
data disaggregation problem [26].
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236201

Notable challenges of historical data disaggregation are: 1) each
data source may report the aggregated sums on different scales
(e.g., one data source may report the weekly number of patients
while another source reports on monthly scale), 2) the time periods
covered by different data sources may or may not overlap (e.g.,
one source may report the number of patients for years 1920-1930,
and another for 1940-1950, resulting in missing information for
years 1930-1940), and 3) the reports may have conflicts (e.g., one
data source may report 100 patients while another may report 80
patients for the same time period). Our informal problem definition
is given as follows:

INFORMAL PROBLEM 1 (DISAGGREGATION).

1. Given: the multiple reports of the aggregated sums of the
time sequence (e.g., monthly sums)

2. Recover: the time sequence in finer scale (e.g., weekly sums)

The prevailing approach is to formulate the problem as linear
Least Squares (LS), however, as we will explain in more details
later, this problem is usually under-determined in practice. In
cases where the number of available reports is much smaller
than the length of the target sequence, the LS approach becomes
inefficient. There have been previous works for solving the disag-
gregation problem that add different regularizers to the LS, such
as smoothness and periodicity in the data. Enforcing smoothness
and periodicity in the time domain is a reasonable approach since
many of the time sequences that we observe are smooth and quasi-
periodic in nature. The main issue with smoothness and periodicity
regularized LS is the lack of identifiability, especially when the
time series is not exactly smooth, nor exactly periodic.

In this work, we propose HOMERUN – an efficient algorithm
for solving the disaggregation problem in which we exploit an
alternative representation of the target time sequence. More
specifically, we search for the coefficients that best represent the
sequence in a fixed dictionary of cosine basis, i.e., we solve for
the coefficients of the Discrete Cosine Transform (DCT) of the
sequence we are seeking. As we will explain in the following
section, DCT with few non-zeros represents a sum of few cosines,
i.e., few dominant periodicities. Therefore, DCT transformation
is a good basis for quasi-periodic historical data. Moreover, ex-
pressing the time sequence using the DCT basis functions provides
a sparse representation as most of the energy is compacted in the
coefficients of low frequencies.

We formulate the data disaggregation in the form of the so-
called Basis Pursuit (BP) where we enforce sparsity in the DCT

1496

(a) More accurate reconstruction (b) HOMERUN wins (c) Linear scalability

Figure 1: HOMERUN is effective and scalable: (a) visible improvement of HOMERUN over the baseline method H-FUSE; (b) performance
of HOMERUN versus H-FUSE across different number of reports; (c) HOMERUN is memory efficient and scales linearly with the length of
the target sequence.

coefficients of the target sequence. We call the resulting BP
formulation HOMERUN-0, which is the basic version of our
proposed method. One significant advantage of our approach is that
it automatically detects the prominent periodicities in the data, as
opposed to the methods in related works, which assume that there is
only one or few known periodicities. In addition to the periodicity,
other common domain knowledge properties of the time sequences
are non-negativity and smoothness over timestamps. We also
propose HOMERUN-N method that improves HOMERUN-0 by
enforcing non-negativity constraint on the time domain sequence.
We further extend our method by imposing smoothness in the time
sequence in addition to non-negativity, resulting in the final version
of the proposed method: HOMERUN. We derive the steps of the
Alternating Direction Method of Multipliers (ADMM) algorithm
that can solve the optimization problem after adding non-negativity
and smoothness constraints. Finally, we derive a scalable and
memory efficient implementation of HOMERUN.

We apply HOMERUN to the epidemiological data from the Tycho
project [27]. Our dataset contains the number of cases for major
epidemic diseases (hepatitis A, measles, mumps, pertussis, polio,
rubella, and smallpox) in the US over 100 years. We demonstrate
that HOMERUN helps to recover the time sequences much better
than the competing baseline methods, H-FUSE [21] and LS.

Figure 1 shows an example of the results of HOMERUN when
reconstructing the weekly counts of measles, given multiple aggre-
gated reports. We observe in Fig. 1 (a) that HOMERUN is closer to
the true sequence compared to the baseline H-FUSE, HOMERUN
estimates the number of patients with Root Mean Square Error
(RMSE = 20.30), while the RMSE of H-FUSE is 104.23. In
data analysis, e.g., studying the impact of vaccination, not only the
average error matters, but also the weekly single error. We can see
that for several weeks, H-FUSE underestimates (or overestimates)
the counts by the order of hundreds, while HOMERUN is very
close to the true value. Fig. 1 (b) shows the percentage of
improvement/diminishment in the RMSE between HOMERUN and
the baseline H-FUSE with various numbers of given aggregated
reports – HOMERUN always improves the RMSE, ‘70’ means
HOMERUN reduces the RMSE of H-FUSE by 70%, and so on. Fig.
1 (c) compares the running time of HOMERUN with the baselines.
It shows how HOMERUN is memory efficient and scales linearly
in time with the sequence length (up to 2 million) – note the log
scales. In summary, the contributions of our work are as follows:

• Formulation and Algorithm: we propose to formulate the
data disaggregation problem in the form of so-called Basis
Pursuit (BP), add domain knowledge constraints, and derive
the iterative updates of the ADMM algorithm to solve the
resulting optimization problem.
• Effectiveness: our HOMERUN method recovers the time

sequences with up to 94% improvement in the accuracy of
the best of baseline methods.
• Scalability: we derive an efficient accelerated implementa-

tion of HOMERUN that scales linearly with the length of the
target sequence.
• Adaptability: HOMERUN is parameter-free and it adapts

to the input signal and automatically detects the prominent
periodicities in the data.

Reproducibility: The Tycho dataset is publicly available [27]; we
plan to release the code upon publication of the paper.

The paper structure is as follows. We explain the necessary
background and the related work in section 2, and introduce our
proposed method in section 3. Then, we explain our experimental
setup in section 4 and show the experimental results in section 5.
We conclude in section 6.

2. BACKGROUND
In this section, we provide background on both the problem of

historical data disaggregation and the techniques we employ in
the proposed approach to solve this problem. We also review the
related work relevant to both the problem and the proposed method.

Notation: bold capital letters (e.g., A) denote matrices; bold small
letters (e.g., x) denote column vectors; A† is the Moore-Penrose
pseudo-inverse of a matrix A; AT denotes the transpose of A. xn
is the nth element in vector x. (a)+ is the non-negative projection
of a vector a, performed by zeroing out the negative elements in a.
Table 1 summarizes the symbols we use frequently.

2.1 Historical Data Disaggregation
Data disaggregation considered in this work is a special case of

data fusion as we aim to reconstruct an unknown time sequence
from multiple aggregated observations with possible overlaps. For
example, consider reconstructing the weekly counts of infection
incidents (e.g., by measles) in the United States from reports
aggregated over multiple weeks. In general, those aggregated

1497

Table 1: Symbols and Definitions

Symbol Definition
y ∈ RM vector contains the known measurements
x ∈ RN the target time sequence
s ∈ RN sparse presentation of x in fixed basis
O ∈ RM×N observation matrix
D matrix of DCT basis functions
RD report duration
shift difference between the starts of adjacent reports

H ∈ R(N−1)×N smoothness matrix

reports could have overlaps, gaps or conflicts between them. Figure
2 shows an illustrative example of each case, respectively.

Formally, we want to reconstruct a detailed time sequence x =
{xn}Nn=1, given the aggregated observations y = {ym}Mm=1,
where ym corresponds to the sum of multiple elements in x. Thus,
we specify a linear system y = Ox, where each row of an
observation matrix O ∈ RM×N is a binary vector that has ones
for the elements of x that contribute in ym (see Example in Eq. 1).
We refer to the number of timeticks covered by a report as Report
Duration (RD), i.e., ones in the mth row of O, and the difference
between the starting points of two successive reports as shift
(marked in blue in Eq. 1). Observed reports may have differentRD
values, e.g., we may have one report covering a month and another
covering two weeks. In any case, we can sort the reports according
to their starting points. Below is an illustrative example containing
three reports with RD = 4, 4, and 2, and shift = 1 between
the first two reports and shift = 2 between the 2nd and 3rd

ones. Note that the reports in the example have overlaps (marked
in green), however they could have gaps if the shift between two
reports is larger thanRD of the first one. Moreover, conflict occurs
when two rows of O are identical, but with different ym values.

1 1 1 1 0

0 1 1 1 1

0 0 0 1 1


︸ ︷︷ ︸

O

×


x1

x2

x3

x4

x5


︸ ︷︷ ︸

x

=

y1y2
y3


︸ ︷︷ ︸

y

(1)

If O is square (i.e., N = M) and full rank, then the solution
is trivial and error free. In practical settings, the resulting system
of linear equations is under-determined (number of reports �
number of timeticks in the target sequence). In this case, the
linear system has many solutions and Least Square (LS) solution
finds x with minimum norm (min ‖x‖22). However, there is no
special reason why the best reconstructed sequence would have
the minimum norm for this problem, which led researchers to
add domain knowledge penalty terms to the linear system [21] to
improve the LS solution.

Instead of solving for x directly, as it is common in the literature
for this problem, we exploit an alternative signal representation and
propose to solve for the DCT representation of the target sequence
(as formulated in Section 3). We define the DCT in the next section
before proceeding to the proposed methods.

2.2 Discrete Cosine Transform
Discrete Cosine Transform (DCT) transforms a finite-length

discrete-time data sequence from the time (or spatial) domain into
the frequency domain. In particular, DCT represents the finite-

Figure 2: Historical data examples: overlap; gap; conflict (from top
to bottom).

length sequence in terms of a sum of basis sequences. These basis
are cosines oscillating at different frequencies [1, 22]. We focus
here on one-dimensional DCT since the problem of our interest
is the reconstruction of one-dimensional sequence. Formally, the
most common DCT definition of a data sequence x of length N is
as follows [19]:

sk =

N−1∑
n=0

xn α(k)cos

(
πk(2n+ 1)

2N

)
︸ ︷︷ ︸

φ(k,n)

=

N−1∑
n=0

xnφ(k, n) (2)

for 0 ≤ k ≤ N − 1, where α(k) is a coefficient factor defined as
follows:

α(k) =


√

1
N
, k = 0,√

2
N
, 1 ≤ k ≤ N − 1.

(3)

Similarly, the original finite-length sequence can be uniquely
recovered from its DCT using the inverse DCT (iDCT) defined as:

xn =

N−1∑
k=0

skφ(k, n) (4)

for 0 ≤ n ≤ N − 1.
To facilitate concisely formulating the problem, we define a DCT

matrix D ∈ RN×N whose entries are the cosine basis functions:

D =


φ(0, 0) . . . φ(0, N − 1)

...
. . .

φ(N − 1, 0) . . . φ(N − 1, N − 1)

 =


dT0

...
dTN−1


(5)

where, as it is clear from (2), φ(k, n) = α(k)cos(πk(2n +
1)/2N). The inner product of any row dn with itself is 1, while the
inner product of any two different rows is 0. Thus, D is orthogonal
(and DCT is an orthogonal transform [22]), i.e., D−1 = DT .
Equations (2) and (4) can be written as:

s = Dx (6)

x = DT s (7)

Since cosines are periodic and even symmetric, the DCT trans-
form imposes periodicity in the time domain signal [22]. An
important property of DCT is energy compaction, which is the
reason why DCT is widely used in many data compression appli-
cations, such as image compression [25]. Specifically, the DCT
of a signal is usually concentrated in the coefficients of the low

1498

Figure 3: NYC measles data in time domain, x (left) and its
spectrum, s (right).

Figure 4: CA hepatitis data in time domain, x (left) and its
spectrum, s (right).

frequencies and the remaining coefficients can be discarded without
a significant impact [22]. The degree of DCT energy compaction
depends on how correlated the original signal is in time (or spatial)
domain. For example, in image processing, the DCT energy
compaction of an image relies on the correlation degree between
its pixels. We demonstrate this phenomenon by showing New York
(NYC) measles and California (CA) hepatitis weekly counts and
their DCT in Figure 3 and 4, respectively. We can see that CA
hepatitis sequence is less correlated (less smooth) in time domain,
and therefore its DCT has high frequency components that are
larger than in the case of NYC measles (relative to their maximum
values) as clear in the zoomed parts.

If we discard the small coefficients of DCT, the DCT repre-
sentation of the signal becomes sparse. In other words, although
the reports of those diseases do not have zero values across all
timeticks, most of their DCT coefficients are small, and the few
large coefficients carry most of the energy and capture most of
the information. We show an illustrative example by keeping only
the largest 10% of the DCT coefficients of NYC measles and CA
hepatitis weekly counts sequences and set the rest to zero, i.e., we
pick the largest 10% elements in s and zero out the rest. In Figure
5, we show the time sequence of both data sets recovered from this
10% (using Equation (7)). It is clear that NYC measles has a better
recovery since its DCT is sparser (compact and has less significant
components). Finally, we should note that the ability of accurately
estimating the DCT coefficients (s) of a sequence enables us to
recover this sequence in time-domain (x). In the following section,
we explain the basics of sparse reconstruction since it is essential
to our methods.

2.3 Sparse Signal Recovery
The goal of sparse reconstruction and compressive sensing [5]

is to find a sparse approximate solution s of an under-determined
linear system As = y, where A ∈ RM×N , s ∈ RN ,y ∈ RM ,

Figure 5: Data recovered from the largest 10% coefficients of their
DCT – NYC measles (left) and CA hepatitis (right).

Figure 6: Recovery withL1 norm (left) and recovery withL2 norm
by replacing L1 by L2 in (8) (right).

withM < N . Then, s could be recovered by solving the following
convex problem known as BP [8]:

min
s

‖s‖1

s.t. As = y
(8)

where ‖s‖1 =
∑N
n=1 |sn| is the L1 norm which promotes sparsity

in the solution. In general, A may be a matrix containing the
elements of an over-complete dictionary [13] and we seek to
solve for the sparsest coefficient vector s to represent the observed
measurements y.

Now we will consider a more practical scenario: suppose we
have a (non-sparse) signal in time-domain x ∈ RN under-sampled
in such a way that we have fewer linear measurements y ∈ RM
about x in the form y = Φx, where Φ ∈ RM×N . Thus, we are
interested in solving for the unknown signal x given the observed
measurements y. In the case of M � N where there are much
fewer measurements than the unknowns, solving the linear problem
may appear too challenging. However, if x can be compressed
(accurately represented as sparse coefficients on some fixed basis)
such that the number of the non-zero coefficients that carry most
of the energy is less than N (the size of x), then this changes
the problem radically, making the search for solutions feasible [5].
In particular, suppose we have a sparse vector s that contains the
coefficients of a time (spatial)-domain signal x in an orthonormal
basis Ψ, i.e., x = Ψs. For example, x is the vector containing
pixels of an image, s is the coefficient sequence of x in the wavelet
basis, and Ψ is an N × N matrix containing the wavelet basis
functions as its entries [7]. In this case, we would recover the
coefficient sequence s with the minimum L1 norm that satisfies
As = y, where A = ΦΨ in problem (8).

As mentioned above, BP is often used as a heuristic algorithm for
finding a sparse solution to an under-determined system of linear
equations and L1 promotes sparsity in the solution. In Figure 6, we

1499

illustrate the advantage of using L1 norm by showing the solution
we get from (8) and when replacing the L1 norm by L2 norm.
In this example, we try to recover the DCT representation of NYC
measles data (shown in Figure 3) from 29 measurements in the time
domain (each measurement has the sum of counts over 21 weeks
with overlaps). We can see that the two solutions are different. The
L2 solution does not give a good approximation as it has spikes
where the original signal is almost zero.

Alternating Direction Method of Multipliers: problem (8) can be
recast as a linear program. However, we propose to use the ADMM
algorithm as it is well suited for large-scale problems. ADMM
solves the convex optimization of the following form

min
s,z

f(s) + g(z)

s.t. As + Ez = c.
(9)

by iteratively updating the following blocks

s← argmin
s
f(s) + (ρ/2)‖As + Ez− c + u‖22, (10a)

z← argmin
z
g(z) + (ρ/2)‖As + Ez− c + u‖22, (10b)

u← u + (As + Ez− c) (10c)

where u is a scaled version of the dual variable corresponding to the
equality constraint in (9), and ρ > 0 is the augmented Lagrangian
parameter specified by the user.

Problem (8) can be reformulated as follows after introducing the
auxiliary variable z ∈ RN :

min
s,z

I{As=y} + ‖z‖1

s.t. s− z = 0
(11)

where I{As=y} is an indicator function such that:

I{As=y} =

{
0 if As = y

∞ otherwise.

We will skip the derivation of the algorithm for brevity – refer to
[4] for more comprehensive review of the ADMM algorithm. The
solution to (8) is provided by the following iterative updates:

sk+1 ← (I−AT (AAT)−1A)(zk − uk) + AT (AAT)−1y

zk+1 ← (sk+1 + uk − 1/ρ)+ − (−sk+1 − uk − 1/ρ)+

uk+1 ← uk + (sk+1 − zk+1)

2.4 Related Work
Disaggregation: The aggregation of the data vector can be

seen as representing or summarizing the data vector using linear
transform. In [10, 9], the idea of sketches has been introduced as
means of data aggregation or summarization. With the advance of
the data collection technologies, we have been gaining more access
to various sources of historical data in aggregated form. This has
led to an increasing interest in data integration and fusion including,
in particular, disaggregation of the data sources [3, 12, 24, 21, 29,
15]

The disaggregation problem is of interest in various domains. In
the image and signal processing communities, for example, there
have been works on solving under-determined problems for various
applications, such as super-resolution reconstruction of image data
[23], or information recovery from noisy or missing data [6].

In recent work [21], the authors proposed an algorithm called
H-FUSE that enforces smoothness and periodicity constraints for
the reconstruction of the historical data. The authors show that the
proposed algorithm improves the reconstruction compared to the
minimum-norm linear LS formulation, which is the most common
formulation for solving the disaggregation problem. We will use
this algorithm as our main baseline.

DCT and Sparse reconstruction: DCT is one of the most
commonly used compression techniques in the signal processing
community. It has been shown to be an effective transformation for
compressing the data in large networks [20]. DCT is widely used
especially for image compression [28] due to its energy compaction
property, and for image denoising [16, 14]. DCT has been also used
in databases community for answering queries in compressed form
via DCT transform [17], representing the time series in spectral
domain [11], etc.

The principle of finding a sparse signal representation in a
basis dictionary has been used in various applications, such as
denoising [8] and information recovery from incomplete and/or
noisy measurements [6]. Basis Pursuit (BP) formulation is used to
obtain such a sparse solution to the ill-posed problem. Expressing
a signal in a proper basis (dictionary), where it is sparse for the
purpose of recovering this signal from fewer linear measurements
has been used in compressive sensing [5]. As an example, wavelet
basis has been considered in order to sparsely represent an image
to recover it from fewer measurements [7]. In [14], DCT is used
as a dictionary for sparse representation of a noisy image for the
purpose of removing the noise from the image.

To our knowledge, the application of DCT and sparse representa-
tion has not been exploited in historical data fusion domain. Table
2 summarizes our proposed HOMERUN method compared to the
related approaches.

Table 2: HOMERUN satisfies all properties listed above.

Property LS H-F
USE

HOM
ERUN

Overlapping reports ! ! "

Smoothness reconstruction ! "

Periodicity reconstruction ! "

Multiple periods (quasi-periodic) "

Automatically detects periodicity "

Non-negativity "

3. PROPOSED METHOD: HOMERUN
In this section, we explain our proposed method HOMERUN and

the algorithmic solutions associated with it. Recollect, that the
objective of reconstruction methods is finding the disaggregated
sequence x that minimizes the following problem:

min
x

‖y −Ox‖22 (12)

where O,x,y have the same definition as in Section 2.1. More
advanced methods are proposed to infuse domain knowledge, such
as smoothness and periodicity, by penalizing (12) [21]. The role of
this penalty is to make the under-determined linear system (that has
infinite number of solution) an over-determined one, constraining
the solution to adhere to some domain knowledge. All these
methods solve the problem directly by the closed form of LS using
Moore-Penrose pseudo-inverse. However, LS solution does not

1500

always give a good approximation, especially when the number of
observations is much less than the number of unknown variables.

The main idea behind our proposed method is to deal with
the under-determinacy of the linear system by solving for the
coefficient vector s that represents the target sequence x in the
DCT basis as the number of non-zero coefficients is much less than
the length of the sequence. The accuracy of this reconstruction
hinges on the degree of DCT energy compaction feature explained
in Section 2.2. Moreover, DCT involves implicit assumptions of
periodicity which makes it a good dictionary for this problem as
the time sequence exhibits some degree of periodicity. A significant
advantage of the proposed approach is that it automatically detects
the prominent periodicities in the data, as opposed to assuming that
there is only one or few known periodicities by constraining the
LS as in [21]. In the rest of this section, we explain our proposed
method in the order as it was derived.

• HOMERUN-0: the basic version of our method.

• HOMERUN-N: with added non-negativity constraint.

• HOMERUN: the final and complete version of the pro-
posed method.

3.1 HOMERUN-0: The Basic Version
DCT matrix (defined in Equation (5)) offers a convenient way

to compute the transform and its inverse as follows: s = Dx
(Equation (6)) is the DCT of the time sequence x, and x =
DT s (Equation (7)) reconstructs the time sequence from s. The
following Insight shows the formulation of our HOMERUN-0
method.

INSIGHT 1. The historical data disaggregation problem can be
formulated in the form of Basis Pursuit as follows:

min
s

‖s‖1

s.t. As = y
(13)

RATIONALE 1. Given Ox = y, we want to find the sparse
vector that contains the DCT of the target sequence x. Since
minimizing the L1 norm promotes sparsity in the solution, we look
for the minimum ‖s‖1 that satisfies Ox = y. Replacing x by DT s,
we get the problem in the following form:

min
s

‖s‖1

s.t. ODT s = y
(14)

Note that (14) is similar to (13) with A = ODT .

We solve the above problem using the ADMM algorithm with
the iterative updates presented in Section 2.3. After we get the
solution to s, the approximate solution of the target sequence is
obtained as xHOMERUN-0 = DT s.

Conflicting reports: if there is a conflict between the reports (as
explained in Fig. 2), then the linear system Ox = y is inconsistent.
As a result, the constraints in (14) can not be satisfied. We resolve
this issue by the following preprocessing step: if O ∈ RM×N is
full row rank (i.e., rank(O) = M), then there is no conflict and
we proceed with the algorithm to solve (14). If the rows of O
have some linear dependency (i.e., rank(O) < M), then we have
one of two cases: a) if y ∈ span(O) (column space of O), then
the system is consistent (there is no conflict) and we proceed with
the algorithm; b) if y 6∈ span(O), then we have an inconsistent

linear system. In this case, we replace y with its projection onto
the span(O), y as follows

y = projO(y) = O(OTO)−1OTy (15)

This orthogonal projection results in the nearest vector (set of
reports) to y that is free of conflict. Previous methods for
this problem (H-FUSE and LS) provide solutions that minimize
the squared error in case of conflicts. Assuming that flawed
reports are rare (correct reports are the norm), we would normally
want to satisfy as many equations as possible, instead of using
an inconsistent solution that minimizes the squared norm of the
violations but could violate all equations. This turns out to be NP-
hard however [2]. The advantage of our projection approach is that
the solution satisfies all the equations in the linear system with y,
which is the closest vector to y that belongs to the column space of
O. Note that this applies to the coming optimization formulations
(HOMERUN-N, and HOMERUN).

3.2 HOMERUN-N: The Non-Negative Ver-
sion

In the applications of our interest, the target sequence x is always
non-negative. Therefore, we exploit this domain knowledge by
adding the constraint x ≥ 0 ⇔ DT s ≥ 0 to (14). The resulting
formulation becomes:

min
s
‖s‖1

s.t. ODT s = y, DT s ≥ 0
(16)

STATEMENT 1. The ADMM algorithm can be adapted to solve
the optimization formulation of HOMERUN-N in Equation (16).

PROOF. Problem (16) is convex and we reformulate it by
introducing the auxiliary variables r, z ∈ RN as follows

min
r,s,z

I{r≥0} + ‖s‖1

s.t. ODT z = y, DT z = r, z = s
(17)

where, again, I is an indicator function of {r ∈ RN : r ≥ 0}
defined as:

I{r≥0} =

{
0 if r ≥ 0

∞ otherwise.

To facilitate concise notation and precisely present the algorithm
using only matrix algebra, we define the following (components of
u are defined and used later):

B :=

ODT

DT

I

 ; b :=

y

r

s

 ; u :=

u1

u2

u3

 , (18)

where I ∈ RN×N is the identity matrix. By concatenating the
constraints as Bz−b = 0, it is straightforward to see that problem
(17) above is in the form of the ADMM form defined in Equation
(9) with g(z) = 0, and f(r, s) = I{r≥0} + ‖s‖1. Thus, we
can derive the ADMM iterative updates, starting by forming the
augmented Lagrangian of (17):

Lρ(r, s, z,u) = ‖s‖1 + I{r≥0} +
ρ

2

(
‖ODT z− y + u1‖22

+ ‖DT z− r + u2‖22 + ‖z− s + u3‖22
)

(19)
where u1 ∈ RM , u2,u3 ∈ RN are scaled versions of the dual
variables, and ρ is the augmented Lagrangian parameter. We solve
for z, s, r, and u by minimizing Lρ in terms of one variable while
fixing the rest in an alternating optimization fashion. We let z be

1501

the first block update, (s, r) is the second block update, and u is the
third block update. Note that s and r can be updated independently
since they do not appear together in one term in Lρ (hence the
parenthesis below). The solution to each block update is provided
by solving the following optimization subproblems

z← argmin
z
Lρ(r, s, z,u), (20a)s← arg min

s
Lρ(r, s, z,u),

r← arg min
r
Lρ(r, s, z,u),

(20b)

u← u + (Bz− c) (20c)

where the solution to z is the closed form solution of least squares
via Moore-Penrose pseudo-inverse. The solutions to s, and r are
cases of the so-called proximity operator (see [18] for details),
where s is solved using the soft-thresholding and the solution to
r boils down to non-negative projection (.)+ by zeroing out the
negative values. Algorithm 1 states all these updates using linear
algebraic notations.

Algorithm 1 : HOMERUN-N (16)

Initialization: set k = 1 and zk, sk, rk, and uk to all zero
vectors; bk as defined in (18); compute the pseudo-inverse of B
and save it (i.e., R = B†)
Repeat

• zk+1 = R(bk − uk)

• sk+1 = (zk+1 + uk3 − 1/ρ)+ − (−zk+1 − uk3 − 1/ρ)+

• rk+1 = (DT zk+1 + uk2)+

• update bk+1 as defined in (18) using sk+1 and rk+1

• uk+1 = uk + (Bzk+1 − bk+1)

• Set k := k + 1.

Until maximum number of iterations K is reached (K = 3000)

Since the same pseudo-inverse (B†) is used throughout the
iterations in Algorithm 1, we compute it once in the initialization
step and cache it in a variable we call R to save computation. After
s is obtained, the approximate solution of the target sequence is
xHOMERUN-N = DT s.

3.3 HOMERUN: The Final version
The main idea here is to exploit the domain knowledge of

smoothness as for most cases the solution sequence x = DT s
should be smooth. Thus, we penalize the large differences be-
tween adjacent timeticks by adding the smoothness penalty to
HOMERUN-N, resulting in the formulation of HOMERUN as fol-
lows:

min
s
‖s‖1 + 1/2‖HDT s‖22

s.t. ODT s = y, DT s ≥ 0
(21)

where H ∈ R(N−1)×N is a smoothness matrix with the nth row
has −1 and 1 in the nth and (n + 1)th columns, respectively.
One could add a regularization (weighting) parameter λ with the
smoothness penalty above, however, we observe that λ = 1 gives
optimal or near-optimal performance.

Although both HOMERUN and H-FUSE in [21] have the same
regularizer (smoothness constraint), their approach to the problem
is very different (i.e., same domain knowledge constraint is added

to different optimization cost functions). Again, the approach in
[21] penalizes the under-determined LS system and solve for the
sequence using the closed form solution. HOMERUN solves for s,
the sparse DCT representation of the sequence using the L1 norm.

We propose to solve Equation (21) in a similar manner as
HOMERUN-N model in the previous section. Thus, we reformulate
(21) as follows:

min
r,s,z

I{r≥0} + ‖s‖1 + 1/2‖HDT z‖22

s.t. ODT z = y, DT z = r, z = s
(22)

where r, z ∈ RN are auxiliary variables. The augmented La-
grangian of (22) is:

Lρ(r, s, z,u) = ‖s‖1 + I{r≥0} + 1/2‖HDT z‖22
+
ρ

2

(
‖ODT z− y + u1‖22

+ ‖DT z− r + u2‖22 + ‖z− s + u3‖22
) (23)

For the same reason as λ, we set the augmented Lagrangian
parameter to ρ = 1 as it gives optimal or near-optimal performance,
resulting in a parameter-free model. Recall the variables defined in
(18), and similarly we define:

Q :=


ODT

DT

I

HDT

 ; q :=


y

r

s

0

 ; v :=

[
u

0

]
, (24)

where 0 ∈ RN−1 is a vector of all zeros. Similarly, we solve for z,
s, r, and u by minimizing Lρ in (23) in terms of one variable while
fixing the rest. We describe the implementation of HOMERUN in
what follows.

3.3.1 Direct Implementation of HOMERUN

In Algorithm 2, we present the iterative updates that solve the
optimization problem of HOMERUN with direct implementation.
These steps provide a convenient way to understand HOMERUN us-
ing simple vector and matrix operations. Similarly, after we obtain
s, the approximate solution of the target sequence is xHOMERUN =
DT s.

Algorithm 2 : HOMERUN (21) (direct implementation)

Initialization: set k = 1 and zk, sk, rk, and uk to all zero
vectors; bk as defined in (18); qk, vk as defined in (24); compute
the pseudo-inverse of Q and save it (i.e., W = Q†)
Repeat

• zk+1 = W(qk − vk)

• sk+1 = (zk+1 + uk3 − 1)+ − (−zk+1 − uk3 − 1)+

• rk+1 = (DT zk+1 + uk2)+

• update bk+1 as defined in (18) using sk+1 and rk+1

• update qk+1 as defined in (24) using sk+1 and rk+1

• uk+1 = uk + (Bzk+1 − bk+1) (B as defined in (18))

• update vk+1 as defined in (24) using uk+1

• Set k := k + 1.

Until maximum number of iterations K is reached (K=3000)

1502

3.3.2 Accelerated Implementation of HOMERUN

In this section, we analyze the complexity of Algorithm 2, and
derive a fast and memory efficient implementation of HOMERUN.

The steps in Algorithm 2 provide a convenient way to implement
HOMERUN using simple vector and matrix operations. These
steps involve a one time Moore-Penrose pseudo-inverse in the
initialization step which have a complexity of O(N3), and the
iterative updates consist of matrix-vector multiplications, vector
additions, and element-wise vector updates with complexity domi-
nated byO(nnz(O)N), where nnz(O) is the number of non-zero
in the observation matrix O. Implementing these steps directly
may be acceptable with small to moderate-size data since the
matrix inversion need to be done only once. However, the direct
implementation is not recommended for large data sets. Thus, we
propose accelerated steps of HOMERUN explained in what follows.

Computing the pseudo-inverse of Q is the most time consuming
step, which is used in the update of z. We can state the update of z
as

z = Q†(q− v)

= (QTQ)−1QT (q− v)

= (QTQ)−1D
(
OT (y − u1) + (r− u2) +

g∈RN︷ ︸︸ ︷
DT (s− u3)

)︸ ︷︷ ︸
p∈RN

= (QTQ)−1Dp

=
(
DOTODT + DDT + I + DHTHDT)−1

Dp

=
(
D(OTO + 2I + HTH)DT)−1

Dp

= D(OTO + 2I + HTH︸ ︷︷ ︸
Z∈RN×N

)−1 DTD︸ ︷︷ ︸
I

p

= DZ−1p

(25)

multiplying both side by DT , we get:

DT z︸ ︷︷ ︸
t∈RN

= Z−1p (26)

where the second equality in (25) is by the pseudo-inverse equation
for Q (since it is tall with linearly independent columns due to I;
Eq. (24)); the third and fifth equalities follow from the definition
of Q, q, and v; the sixth equality is because D is orthogonal,
i.e., DDT = DTD = I; and the seventh equality is because
(ABC)−1 = C−1B−1A−1 and D−1 = DT .

The goal of the above derivation is to reduce the computational
cost of updating z. Note that the left side of (26) (called t) is the
inverse DCT of z – denoted as iDCT (z). Fortunately, Z has a
nice structure, it is a banded symmetric positive-definite matrix
with bandwidth = 2RDmax − 1, where RDmax is the duration
of the report with the maximum length. Thus, we exploit its
structure to efficiently compute the matrix inversion needed to get
t as follows. We use Cholesky decomposition, i.e., Z = LLT ,
where L is a lower triangular matrix with the same bandwidth as Z.
Then, at every iteration, we perform forward substitution and back
substitution steps to get t, i.e., t = (LT)−1L−1p. Moreover, we
reduce the complexity by computing the required DCT and iDCT
transforms more efficiently using Fast Fourier Transform (FFT)
instead of using the matrix D (Matlab fft(.) function is more
efficient than multiplying by D). The steps of the accelerated
implementation of HOMERUN are presented in Algorithm 3.

Algorithm 3 : HOMERUN (21) (accelerated implementation)

Initialization: set k = 1 and gk, pk, tk, zk, sk, rk, uk1 , uk2 and
uk3 to all zero vectors; compute L from the Cholesky
decomposition of Z
Repeat

1. gk+1 = iDCT (sk − uk3) %using fft in Matlab%

2. pk+1 = OT (y − uk1) + (rk − uk2) + gk+1

3. tk+1 = (LT)−1L−1pk+1 %Matlab: t = L′\(L\p)%
4. zk+1 = DCT (tk+1) % using fft Matlab%

5. sk+1 = (zk+1 + uk3 − 1)+ − (−zk+1 − uk3 − 1)+

6. rk+1 = (tk+1 + uk2)+

7. uk+1
1 = uk1 + Otk+1 − y

8. uk+1
2 = uk2 + tk+1 − rk+1

9. uk+1
3 = uk3 + zk+1 − sk+1

10. Set k := k + 1.
Until maximum number of iterations K is reached (K=3000)

LEMMA 1. For any report setting in the historical disaggrega-
tion problem, if M ≤ N , then the total computational complexity
of HOMERUN (Algorithm 3) is

O(b2N +NlogN) (27)

where b is the bandwidth of OTO and equal to 2RDmax − 1, and
RDmax is the duration of the longest report.

PROOF. The cost of computing Cholesky decomposition of a
banded matrix in the initialization step is O(b2N); performing
the iDCT in step 1 in Algorithm 3 and DCT in step 4 cost
O(NlogN) using FFT; the matrix-vector multiplications in steps
2 and 7 have complexity of O(nnz(O)), where nnz(O) ≤
(RDmax × M); the rest are vector additions and element-wise
updates in (.)+ which are done with cost O(N).
Thus, the final complexity is:

O(b2N +NlogN)

The dominant term in the above final cost depends on whatever is
larger, logN or b2, which depends on the maximum report duration
RDmax.

In addition to reducing the running time, the resulting algorithmic
steps above are very efficient in terms of memory consumption and
can handle very large amounts of data as we demonstrate in Section
5.3.

4. EXPERIMENTAL DESIGN
In this section, we explain the set up of the experiments per-

formed to evaluate the proposed method. Data sets are explained
in Section 4.1, the baselines and metrics are listed in Section
4.2, and Section 4.3 contains description of the input settings and
configuration.

4.1 Data Sets
In order to study the performance of HOMERUN, we apply it

to the data from project Tycho [27], which includes real epidemi-
ological time sequences spanning over more than 100 years. We
select the data about measles in NYC to be our main data set for
analyzing and evaluating the performance of the three proposed
methods. Furthermore, since the effectiveness of the proposed

1503

Figure 7: Disease Time Sequences

method hinges upon the degree of energy compaction of the DCT
of the data (refer to Section 2.2), we explore the performance using
six more data sets with different behavior. We pick the intervals
with the least missing values – the particular weeks used for testing
for each data set are NYC measles (from Week 51 to Week 450),
CA polio from (1659 – 2058), CA rubella (2805 – 3204), CA
smallpox(501 – 900), CA mumps (2756 – 3155), CA hepatitis
(2653 – 3051), CA pertussis (1649 – 2048). The behavior of the
counts of each disease across these weeks is shown in Figure 7
(NYC measles and CA hepatitis are shown earlier in Figures 3 and
4). We can see here that each disease has notably different dynamic,
and, as we observed, they have different DCT with different degree
of sparsity and energy compaction, which provide us with a rich
test to evaluate the performance of our method.

4.2 Baselines and Evaluation Metrics
We compare the performance of our method against two base-

lines, LS in (12) and H-FUSE [21], focusing on H-FUSE since it
is a state-of-the-art for this problem and has better performance
than LS. H-FUSE infuses domain knowledge to improve the recon-
struction accuracy by penalizing large differences between adjacent
timeticks to promote smoothness. Using our notation, H-FUSE can
be written as follows:

min
x

‖y −Ox‖22 + ‖Hx‖22 (28)

where H is the smoothness matrix defined in Section 3.3.
We use the Relative Error Difference (RED) defined below

to compare the performance between the proposed and baseline
methods.

RED =
RMSE(baseline)− RMSE(proposed)

max(RMSE(baseline),RMSE(proposed))
(29)

We use RED with the result figures in Section 5, ranging
between−1 and 1. Clearly, positiveRED means that the proposed
method improves the baseline and vice versa.

4.3 Input Setting
The task is to reconstruct the weekly reports of each disease

sequence. We generate different aggregated reports from the
weekly counts. Each report covers multiple successive timeticks.
As described earlier in Section 2.1, the number of weeks included
in each observation is called Report Duration (RD). The difference
between the starting week of two successive reports is the shift.

For most experiments, we generate reports with the same RD
and shift values and show the results on a wide range (RD spans
from 2 to 52 weeks (1 year) with increment of 10 and the shift
span from 1 to 25 with increment of 2). Specifically, the first report
(y1) includes the weeks from 1 to RD; y2 includes weeks from
(shift+1) to (shift+1+RD) and so on – refer to the example
in Section 2.1. This methodology allows us to study the results for
all , e.g., easy cases where RD and shift are both small, more

(a) HOMERUN-0 (b) HOMERUN-N

Figure 8: Comparing HOMERUN-0 and HOMERUN-N versions
against the baseline H-FUSE with NYC measles data.

challenging cases where RD or/and shift are large, overlapping
reports, and reports with gaps (RD < shift). We also show
results on experiments where each report covers different number
of weeks (different RD) with random starting points, thus they
could be overlapped or having gaps.

5. RESULTS AND ANALYSIS
In this section, we present and analyze the experimental results

in the following order: 1) effectiveness of HOMERUN and its early
versions (HOMERUN-0 and HOMERUN-N), 2) discussion of the
observations and findings about the performance of the proposed
methods, and 3) scalability to demonstrate how HOMERUN scales
in terms of running time with data size.

5.1 Effectiveness
In this section, we show the performance of all three versions

of the proposed method in the same order as we explained them in
Section 3. Presenting results of the earlier versions of HOMERUN
demonstrates the benefit of the added constraints (non-negativity
and smoothness).

5.1.1 Performance of HOMERUN-0
We compare the reconstruction accuracy of HOMERUN-0 with

the baseline H-FUSE using NYC measles data in Figure 8 (a).
We can see that HOMERUN-0 improves the baseline significantly
for most RD values, but only with shift smaller than 3. For
small RD, H-FUSE works better than HOMERUN-0 with a large
difference. This is intuitively understandable as if each report
covers only few timeticks (i.e, each report is highly localized), then
penalizing the large jumps between two adjacent timeticks is good
enough to recover the solution sequence. However, we note that
HOMERUN-0 loses to H-FUSE with smaller difference with larger
RD values (e.g., RD = 52). Larger RD means less available
reports, hence the problem is more difficult. The performance of

1504

Table 3: RMSE of HOMERUN and the baselines (H-FUSE and LS) using NYC measles data.

RD = 2 RD = 22 RD = 42

shift 1 7 13 19 25 1 7 13 19 25 1 7 13 19 25

HOMERUN 20.30 205.96 415.79 609.03 644.38 42.49 191.10 227.03 400.07 894.11 57.28 186.79 305.27 565.85 514.48
H-FUSE 104.23 215.38 425.56 617.27 653.45 128.38 200.22 303.56 429.02 891.49 251.27 231.20 359.86 582.33 595.05

LS 10.60 1242.5 1358.4 1402.7 1391.5 75.45 346.49 559.55 654.32 976.30 230.32 371.29 617.42 768.31 762.65

(a) Against H-FUSE (b) Against LS

Figure 9: HOMERUN wins. Performance of HOMERUN versus the
baselines H-FUSE and LS using NYC measles data.

this basic version needs to be improved, which led to deriving the
more advanced versions.

5.1.2 Performance of HOMERUN-N
In this approach, we leverage the knowledge that the patient

counts in the target sequence is always non-negative. A comparison
between HOMERUN-N and the baseline H-FUSE usin g NYC
measles data is shown in Figure 8 (b). Adding non-negativity
constraint to HOMERUN-0 improves the accuracy significantly as
it is clear from comparing Fig. 8 (a) and (b). HOMERUN-N
makes a significant improvement over the baseline for the majority
of cases with the following remarks. For RD = 22, 32, 42, 52,
HOMERUN-N outperforms the baseline except for few outliers. It
is therefore clear that more improvement occurs with larger RD
values. HOMERUN-N has similar behavior to HOMERUN-0 in
the sense that very large improvement happens with small shift
for all durations. When RD = 2 or 12 and the shift is larger
than RD, HOMERUN-N does not improve the baseline, this is
consistent with results of HOMERUN-0. Although HOMERUN-
N gives encouraging results, we develop the final version of
HOMERUN seeking a consistent improvement.

5.1.3 Performance of HOMERUN

In this section, we show the performance of the final version
of the proposed method (HOMERUN) using NYC measles and the
other six data sets described in Section 4.1. This model reaps the
benefits of both the proposed method and the smooth reconstruc-
tion, thus it improves the estimation error of its earlier versions and
considerably outperforms the competing baseline methods. Figure
9 (a) shows comparison between HOMERUN and the baseline H-
FUSE with NYC measles data, HOMERUN is always superior with
significant improvement. Note here that generally speaking, greater
improvement happens with larger RD, which makes the problem
more difficult as we have fewer observations (reports). Figure 9
(b) compares HOMERUN with the baseline LS, HOMERUN vastly
outperforms LS at all the input settings (RD and shift) except for
one. The reason of LS working better in this scenario is because
each report covers only two weeks (RD = 2) and each variable

(week), xn, is involved in two reports since shift = 1 (except
for the first and last weeks), resulting in an easy problem for LS
solution since O is “almost” square and full rank. To give the
reader an idea about the RED versus the actual RMSE of H-
FUSE and the baselines (H-FUSE and LS), we present Table 3,
showing the RMSE at various RD and shift values (a subset of
the input settings in Fig. 9 (a) and (b), but similar pattern with
other RD values) – again, note that the improvement is higher as
RD increases.

We compare HOMERUN with H-FUSE (since it is the best
baseline) using the other six data sets in Figure 10. Polio data set
has similar results to NYC measles because their time series have
similar shapes, thus are similar in the DCT domain. HOMERUN
significantly improves the baseline when RD is large with rubella
and smallpox data sets. It also shows a large improvement with
small shift for all durations with rubella and smallpox. For data
sets that do not have very smooth time sequence (mumps, hepatitis,
and pertussis), HOMERUN improves the baseline significantly with
shift smaller than 3 and performs similar to it when the shift
is larger. Table 4 highlights the results comparing HOMERUN
with the baseline H-FUSE in Fig. 9 (a) and Fig. 10. It shows
the maximum and average improvement across the different input
settings (RD and shift values) with all the different data sets using
RED percentage (RED(%)). As we observe, the improvement is
considerable and may be up to 94%.

Table 4: HOMERUN wins consistently. Comparing Performance of
HOMERUN and H-FUSE using RED(%).

RED (%)
Data Name Maximum Average

NYC Measle 80.52 13.14
CA Polio 80.77 12.56

CA Rubella 87.20 8.19
CA Smallpox 93.04 9.90
CA Mumps 94.14 5.45

CA Hepatitis 91.25 4.73
CA Pertussis 88.24 4.43

So far, each single point in the result plots (or Table 3) corre-
sponds to solving the problem given aggregated reports that have
the same duration/resolution (i.e., same RD). In Figure 11, we
compare the RMSE of HOMERUN and baselines in recovering the
weekly counts of NYC measles data, given M reports with RD
values randomly drawn from the range (2 − 26) and the starting
week of each report is also random. We test the performance across
different M values ranging from 20 to 380 with increment of 10.
Since the reports are drawn at random, we repeat each experiment
20 times and take the average RMSE with each data set at a given
M . HOMERUN is always better than the baselines with 13%−23%
improvement depending on the data.

1505

(a) CA Polio (b) CA Rubella (c) CA Smallpox

(d) CA Mumps (e) CA Hepatitis (f) CA Pertussis

Figure 10: HOMERUN consistently wins. Performance of HOMERUN vs. the baseline H-FUSE with different data sets (positive=win and
negative=lose).

Figure 11: HOMERUN wins. RMSE of HOMERUN compared to
H-FUSE and LS with reports having different RD.

5.2 Discussion and Observations
In this section, we provide a higher level discussion about the

results, and a detailed analysis of the performance with various
input settings (RD and shift). We also provide observations about
the scope of applicability that can give practitioners insights on
when to expect good reconstruction using the proposed method.

Quality of the disaggregation methods in general is affected by
the report configurations. Note that as the RD and shift increase,
the number of available reports (or equations in the linear system
Ox = y) decreases, resulting in a harder problem. In general,
HOMERUN has greater improvement over the baseline H-FUSE as
the RD increases as can be observed in Fig. 9 (a), Table 3, and
top three data in Fig. 10. Nevertheless, more reports/equations in
the system will constraint the solution of s, bringing it closer to
the actual DCT coefficients of the target sequence in the proposed
method since the optimization problem is constrained by the linear
system (Eq. (21)). This is also the case for the baselines (H-
FUSE and LS), as the number of equations increases, the LS

solution becomes closer to the true sequence. We also have the
smoothness penalty in HOMERUN and H-FUSE to help bringing
the solution closer to the true sequence if the sequence is in fact
smooth. In both models, as the number of equations decreases
(i.e., large shift and/or RD), the degree of freedom of ‖s‖1 in
HOMERUN and ‖y − Ox‖22 in H-FUSE increases, and thus the
quality of the solution relies more on the smoothness penalty. This
is especially notable when shift is larger than RD, resulting in
gaps between reports which leaves some variables xn out of the
constraints. In that case, the solutions produced by HOMERUN and
H-FUSE converge, justifying the similar performance with large
shift especially in the bottom three data in Fig. 10.

For more analysis, we show the performance of HOMERUN
using NYC measles data set with RD spanning from 2 to 52 with
increments of 2, and shift ranging from 1 to 25 with increments
of 2. In order to explain the comparison more clearly, we map the
RED value (Eq. (29)) to the logical value REDlogical as follows:

REDlogical =


1 RED > threshold

−1 RED < −threshold
0 else

(30)

where we empirically set the threshold to 0.015. In Figure
12, we show the REDlogical across the different input settings.
The yellow line shows when x = y, which separates reports
with overlaps (above the line), i.e., shift < RD, from reports
with gaps (below the line), i.e., shift > RD. Blue color means
HOMERUN improves the baseline H-FUSE, light gray means
they perform similarly, and red means the baseline works better.
Figure 12 shows that HOMERUN never loses to the baseline and
the improvement happens in almost all the cells in the upper
area (overlapped reports), while it is not guaranteed in the lower
part. This is because when we have large gaps between the
available reports, reconstructing a higher resolution sequence using

1506

smoothness constraint may give the smallest error. One of the
advantages of HOMERUN is that it reaps the benefits of its own
and the baseline H-FUSE.

Figure 12: HOMERUN almost always wins and sometimes ties.
HOMERUN performance against the baseline H-FUSE using NYC
measles data.

5.2.1 Applicability of HOMERUN

Quasi-periodicity: if the target sequence is known to have
few dominant periodicities, i.e., quasi-periodic (e.g., measles, and
polio), then very few cosine functions are needed to approximate
it. In other words, this sequence can be accurately represented
by few DCT coefficients, i.e., its DCT is very compact and the
sequence is very sparse in the DCT domain, thus HOMERUN
achieves especially good reconstruction.

The sparser the spectrum of the data, the better the performance
of HOMERUN. This is because we optimize for the sparsest spec-
trum representation of the sequence using L1 norm. Empirically,
this can be observed by comparing the performance of HOMERUN
when applied on data sets with different periodicity behavior in the
time domain. When the data set is quasi-periodic, then HOMERUN
improves the baseline H-FUSE significantly (e.g., measles in Fig.
9 (a) and polio in Fig. 10 (a)). With the less periodic sequences
(e.g., hepatitis in Fig. 10 (e)), the accuracy of HOMERUN drops
in comparison to its performance with quasi-periodic sequences,
however, it still has a better performance than the baseline H-FUSE
(significant improvement with small shift).

Smoothness: smoothness penalty has been shown to be effective
for time sequences in many applications (e.g., epidemiological data
from the Tycho project). Since HOMERUN includes smoothness
term, its accuracy increases with data that exhibits higher degree
of smoothness. Similarly, this can be seen by comparing the
smoothness of measles data (Fig. 3) and hepatitis (Fig. 4) in
their time domain, and their performance (Fig. 9 (a) and 10 (e)),
respectively.

Non-negativity: moreover, if the data is non-negative in its nature
(e.g., Tycho data set used in this work), then adding the non-
negativity constraint improves the solution and reduces the error,
as is clear from comparing the performance of HOMERUN-0 and
HOMERUN-N (Fig. 8 (a) and (b), respectively).

It is important to point out that the smoothness and non-
negativity assumptions are flexible in the proposed framework.
For instant, if the target sequence in another application is quasi-
periodic but not smooth (e.g., climate data), then HOMERUN-0 (or
HOMERUN-N if the sequence is non-negative) can be applied and
is expected to perform well.

5.3 Scalability
Experiments were performed using Matlab on a Linux server

with an Intel Core i7− 4790 CPU 3.60 GHz processor and 32 GB
memory. The accelerated implementation of HOMERUN following
Algorithm 3 scales linearly with the length of the time sequence
(see Figure 1 (c)). As clear from the comparison in Figure 1 (c),
HOMERUN is always faster than H-FUSE. The simple LS method
also gets slower than HOMERUN as the sequence size increases,
this is due to the pseudo-inverse step in both LS and H-FUSE.
We should point out here that the accelerated implementation of
HOMERUN dramatically reduces the running time of the direct
implementation, while keeping the same accuracy (Algorithm 2
versus Algorithm 3). Moreover, HOMERUN is very efficient in
terms of memory and can handle very large sequences.

6. CONCLUSIONS
In this paper, we proposed HOMERUN, a novel algorithm for

solving historical data disaggregation problem via DCT-based
sparse reconstruction with non-negativity and smoothness con-
straints. We leverage the ADMM algorithm to solve the resulting
optimization problem. We demonstrated that HOMERUN outper-
forms the baseline methods with real data from the Tycho project.
The contributions of this paper are summarized as follows:

1. Formulation and Algorithm: we formulate the data disag-
gregation problem in the form of Basis Pursuit, add domain
knowledge constraints (non-negative and smoothness), and
derive the steps of the ADMM algorithm that solve HOME-
RUN optimization problem.

2. Effectiveness: HOMERUN improves the competing base-
lines and recovers the time sequences with up to 94%
improvement in the accuracy of the baseline methods.

3. Scalability: We derive accelerated steps of HOMERUN,
which scale well and have a complexity of O((2RDmax −
1)2N +NlogN).

4. Adaptability: HOMERUN is parameter-free, and it adapts to
the input signal, i.e., it automatically detects the prominent
periodicities in the data without the need of assuming any
known periodicity.

Reproducibility: The Tycho dataset is publicly available [27]; We
plan to release the code upon publication of the paper.

7. ACKNOWLEDGE
This work was supported in part by the National Science Foun-

dation under grants IIS-1247489, BCS-1244672, and IIS-1447788,
and by the Army Research Laboratory under Cooperative Agree-
ment Number W911NF-09-2-0053.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation,
or other funding parties. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

8. REFERENCES
[1] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine

transform. IEEE transactions on Computers, 100(1):90–93,
1974.

[2] E. Amaldi and V. Kann. The complexity and approximability
of finding maximum feasible subsystems of linear relations.
Theoretical computer science, 147(1-2):181–210, 1995.

1507

[3] J. Bleiholder and F. Naumann. Data fusion. ACM Computing
Surveys (CSUR), 41(1):1–41, Jan. 2009.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and
Trends R© in Machine Learning, 3(1):1–122, 2011.

[5] E. J. Candès. Compressive sampling. In Proceedings of the
international congress of mathematicians, volume 3, pages
1433–1452. Madrid, Spain, 2006.

[6] E. J. Candes, J. K. Romberg, and T. Tao. Stable signal
recovery from incomplete and inaccurate measurements.
Communications on pure and applied mathematics,
59(8):1207–1223, 2006.

[7] E. J. Candès and M. B. Wakin. An introduction to
compressive sampling. IEEE signal processing magazine,
25(2):21–30, 2008.

[8] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic
decomposition by basis pursuit. SIAM review,
43(1):129–159, 2001.

[9] E. Cohen and H. Kaplan. Bottom-k sketches: Better and
more efficient estimation of aggregates. In ACM
SIGMETRICS Performance Evaluation Review, volume 35,
pages 353–354. ACM, 2007.

[10] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends in Databases,
4(1–3):1–294, 2012.

[11] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and
E. Keogh. Querying and mining of time series data:
experimental comparison of representations and distance
measures. PVLDB, 1(2):1542–1552, 2008.

[12] X. L. Dong and F. Naumann. Data fusion: resolving data
conflicts for integration. PVLDB, 2(2):1654–1655, 2009.

[13] D. L. Donoho and M. Elad. Optimally sparse representation
in general (nonorthogonal) dictionaries via l1 minimization.
Proceedings of the National Academy of Sciences,
100(5):2197–2202, 2003.

[14] M. Elad and M. Aharon. Image denoising via sparse and
redundant representations over learned dictionaries. IEEE
Transactions on Image processing, 15(12):3736–3745, 2006.

[15] C. Faloutsos, H. V. Jagadish, and N. Sidiropoulos.
Recovering information from summary data. PVLDB,
1(1):36–45, 1997.

[16] O. G. Guleryuz. Weighted overcomplete denoising. In
Signals, Systems and Computers, 2004. Conference Record

of the Thirty-Seventh Asilomar Conference on, volume 2,
pages 1992–1996. IEEE, 2003.

[17] M.-J. Hsieh, W.-G. Teng, M.-S. Chen, and P. S. Yu. Dawn:
an efficient framework of dct for data with error estimation.
The VLDB Journal—The International Journal on Very
Large Data Bases, 17(4):683–702, 2008.

[18] K. Huang, N. D. Sidiropoulos, and A. P. Liavas. A flexible
and efficient algorithmic framework for constrained matrix
and tensor factorization. IEEE Transactions on Signal
Processing, 64(19):5052–5065, 2016.

[19] S. A. Khayam. The discrete cosine transform (dct): Theory
and application. department of electrical and computing
engineering, 2003.

[20] J.-H. Lee, D.-H. Kim, and C.-W. Chung. Multi-dimensional
selectivity estimation using compressed histogram
information. In ACM SIGMOD Record, volume 28, pages
205–214. ACM, 1999.

[21] Z. Liu, H. A. Song, V. Zadorozhny, C. Faloutsos, and
N. Sidiropoulos. H-fuse: Efficient fusion of aggregated
historical data. In Proceedings of the 2017 SIAM
International Conference on Data Mining, pages 786–794,
Houston, Texas, USA, April 2017.

[22] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice Hall Press, Upper Saddle River, NJ,
USA, 3rd edition, 2009.

[23] A. Panagiotopoulou and V. Anastassopoulos.
Super-resolution image reconstruction techniques:
Trade-offs between the data-fidelity and regularization terms.
Information Fusion, 13(3):185–195, 2012.

[24] T. Rekatsinas, M. Joglekar, H. Garcia-Molina,
A. Parameswaran, and C. Ré. Slimfast: Guaranteed results
for data fusion and source reliability. In Proceedings of the
2017 ACM International Conference on Management of
Data, pages 1399–1414. ACM, 2017.

[25] S. Saha. Image compression – from dct to wavelets: A
review. Crossroads, 6(3):12–21, Mar. 2000.

[26] C. Sax and P. Steiner. Temporal disaggregation of time
series. The R Journal, 5(2):80–87, 2003.

[27] Tycho. Project tycho: Data for health.
https://www.tycho.pitt.edu, 2013.

[28] A. B. Watson. Image compression using the discrete cosine
transform. Mathematica journal, 4(1):81, 1994.

[29] V. Zadorozhny and M. Lewis. Information fusion for usar
operations based on crowdsourcing. In Information Fusion
(FUSION), 2013 16th International Conference on, pages
1450–1457. IEEE, 2013.

1508

