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ABSTRACT
We vocalize query results for time series data. We describe
a holistic approach that integrates query evaluation and vo-
calization. In particular, we generate only those parts of the
query result that are relevant for voice output.

We exploit the fact that voice output has to be concise and
simple to be understandable for listeners. Hence, the prob-
lem of generating voice output reduces to choosing between
several coarse-grained alternatives. To make that choice, it
is sufficient to evaluate the time series at a few carefully
chosen locations. We use techniques from the area of opti-
mal experimental design to choose optimal sampling points.
Our algorithm is iterative and generates in each iteration a
set of promising voice description candidates. We consider
multiple metrics when generating voice descriptions, includ-
ing the accuracy of description as well as its complexity and
length. Then, we choose a near-optimal batch of sampling
points to refine our choice between promising candidates.

We compare this algorithm experimentally against several
baselines, demonstrating superior performance in terms of
execution time and output quality. We also conducted a
user study, showing that it enables users to execute simple
exploratory data analysis via voice descriptions alone. We
also compare against visual interfaces and sonification (i.e.,
non-speech sound) interfaces in terms of user performance.
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1. INTRODUCTION
Imagine you are blind and want to become a data scien-

tist. The problem of presenting data (e.g., query results)
to users has received significant attention in the database
community. However, prior work focuses nearly exclusively
on visual interfaces. In this paper, we focus on the comple-
mentary problem of presenting data via voice output. We
use the term Vocalization in the following.
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Supporting visually impaired users is only one out of mul-
tiple reasons to consider voice output. The communication
between user and computer is more and more shifting to-
wards voice-based interfaces. This is evidenced by devices
and services such as Google Home, Amazon Echo, or Apple’s
Siri. Voice interfaces, specifically for generic data analysis,
are currently under development [5, 19]. In all those cases,
recent research has rather focused on improving the capa-
bility of the system to understand voice queries by the user.
We focus on the complementary problem of transmitting
query results via voice output. While such mechanisms are
required for any voice query interface, their applicability is
not restricted to this scenario. Even if queries are submitted
via traditional interfaces, voice output can still be required
for certain users (or useful to complement visual output).

We have recently proposed an approach for vocalizing
small relational tables, containing several tens of rows [31].
Here, we vocalize query results that correspond to (poten-
tially very large) time series. We specifically selected time
series data for two reasons. First, this type of data is ex-
tremely popular and arises in many scenarios. Second, even
large time series seem quite amenable for vocalization: it
is typically possible to decompose a time series into coarse-
grained patterns that capture the high-level developments.
Based on a coarse-grained description of the entire time se-
ries, users can always “zoom in” and obtain more detailed
descriptions for parts of a time series in an iterative process.

Voice output is subject to extreme constraints in terms of
length and complexity. Reading text on screen allows users
to quickly re-read passages and to adapt their reading speed
for difficult parts. Also, users can quickly skim written text
to identify relevant parts. None of that is easily possible via
voice output. We conducted an initial user study to assess
the limits within voice output is convenient for users. Our
results corroborate prior claims [4, 20] and show that voice
output has indeed to be short, simple, and coarse-grained.
Otherwise, it exceeds the capabilities of typical listeners in
terms of short-term memory and cognitive load.

This means that generating voice output is in certain ways
more difficult than generating visualizations. The amount of
information that can be transmitted to users is very limited.
Hence, we need to be extremely thoughtful in selecting which
aspects of a data set to transmit and which ones to neglect.
We model vocalization as an optimization problem in which
we optimize the accuracy of a description under constraints
on length and complexity. While the limitations of typical
listeners create challenges, they create at the same time op-
portunities to reduce processing overheads. If detailed query
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results cannot be transmitted due to the inherent limitations
of voice output, it is wasteful to generate them at all.

Hence, we evaluate queries only partially. We “sample”
the query result, a time series, by producing result subsets
for small time intervals. Our goal is to collect just enough
information to determine the best, coarse-grained voice de-
scription that complies with all constraints. Note that we
assume that we can efficiently generate parts of the query re-
sult at specific time points. We discuss the conditions under
which this assumption holds in more detail in Section 2.

We could select the “sampling points” at which we gener-
ate the query result randomly. However, some points may
be more informative than others (e.g., points where alter-
native voice descriptions predict very different behavior are
particularly helpful to determine the best alternative). At
the same time, sampling creates computational overheads.
Hence, we want to minimize the required number of samples.
Collecting required information with minimal overhead is
the general goal of methods proposed in the research area
of optimal experimental design [27]. Our scenario maps to
the scenario addressed by the latter research: sampling the
query result is an “experiment” by which we gain informa-
tion, the time points at which the query result is sampled
are the “experimental parameters”, finding the most appro-
priate voice description is the “experimental goal”. Active
learning and reinforcement learning are most closely related
to optimal experimental design [29] since they also propose
principled methods to choose what information to collect.
They focus however on learning classifiers or policies which
applies less to our scenario. Methods from the area of op-
timal experimental design have been shown to reduce in-
formation gathering overheads in various scenarios [26, 27].
Altogether, this justifies using such methods as base for se-
lecting sampling points. Nevertheless, previously proposed
methods need to be adapted to the particularities of our
scenario (as discussed in more detail in Section 5).

We could collect samples first and generate the voice de-
scription that seems most appropriate, based on all samples,
in a second step. However, this two-step approach misses
opportunities: considering a subset of samples might allow
us to select more informative points for the remaining sam-
ples. This motivates an iterative algorithm. The algorithm
proposed in this paper iterates the following steps. First, it
generates samples from a time series at time points chosen in
the last iteration (or chosen randomly in the first iteration).
Second, it uses bootstrap sampling to generate multiple re-
samples. Doing so allows us to evaluate uncertainties asso-
ciated with the current sample. Third, it generates for each
bootstrap sample an optimal vocalization. A vocalization is
optimal if it describes the corresponding bootstrap sample
as accurately as possible under constraints on length and
complexity. Finally, we select a batch of near-optimal sam-
pling points at which to evaluate the time series in the next
iteration. To choose sampling points, we compare vocaliza-
tions generated for different bootstrap samples. We select
points that are likely to narrow down our choice between
those candidates.

We consider voice descriptions of a simple structure. We
describe time series as a sequence of patterns, describing
the evolution over parts of the time interval. During opti-
mization, we consider a library of pattern templates, char-
acterized by functions and associated text templates. We
instantiate patterns by scaling them to a specific time in-

terval and to a specific value range. We exploit the par-
ticularities of voice output and restrict scaling to time and
value ranges that are easy to pronounce. For instance, our
preliminary user study (see Section 7.1) indicates that recall
increases significantly when limiting output values to only
one significant digit. Also, the fact that we have to read out
time intervals narrows down our choices significantly. For
instance, the interval from 11:57:06 PST to 14:11:28 PST
may be easy to write or to visualize but should be avoided
for voice output (instead, we would rather approximate and
say “from noon to 2 o’clock”).

Example 1. Consider the following description of a fi-
nancial time series: “The price is $400 from January to
February. The price spikes to $600 in March. Finally, the
price falls from $400 to $300 in April.” Here, we have com-
posed three simple patterns (one per sentence). The descrip-
tion rounds values to the most significant digit and rounds
time interval bounds to entire months.

Hence, when generating voice output for a time series cov-
ering a certain time interval, we only consider a relatively
small set of time interval decompositions. We focus on de-
compositions into sub-intervals whose boundaries are quick
to pronounce. Within each interval, we only need to con-
sider an equally restricted set of pattern instantiations (i.e,.
we instantiate a pattern by fixing a time and value range),
referring to values that are easy to pronounce and to re-
member. We use dynamic programming to find an optimal
pattern sequence for voice output. We associate time ranges
with Pareto-optimal vocalizations, i.e. vocalizations that re-
alize optimal tradeoffs between the metrics precision, length,
and complexity. We start by generating the set of Pareto-
optimal vocalizations for smaller time intervals. Later, we
compose Pareto-optimal patterns for smaller intervals into
potentially optimal pattern sequences for larger intervals.
We show that this approach results in optimal vocalizations
within the search space we consider. Searching for an opti-
mal pattern sequence might be expensive if output could be
long and complex. However, for the specific case of vocal-
ization, output length and complexity is inherently limited
by the abilities of the listener. This guarantees that the
aforementioned approach is computationally efficient.

We compare the performance of our main algorithm against
multiple baselines in diverse scenarios. We consider time se-
ries from different domains, generated via different types of
SQL queries or retrieved via remote service calls. We also
conducted a user study in which we compare different types
of interfaces for an open-ended data analysis task. We com-
pare vocalization against visual interfaces as well as against
sonification methods (i.e., non-speech sound output to de-
scribe data). As expected, visual interfaces perform best in
terms of user time investment and answer quality. Still, au-
dio interface come relatively close according to those metrics,
making them a reasonable choice in scenarios where visual
output is not available. Among the two audio interfaces,
most users had a clear preference for vocalization and used
this method more frequently when being able to choose. Our
performance results show that our main algorithm realizes
the most practical tradeoff between output quality and com-
putational overheads when generating vocalizations.

We summarize the original scientific contributions:

• We present a sampling-based algorithm that efficiently
generates voice descriptions for large time series.
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• We formally analyze the complexity and output qual-
ity of this algorithm.

• We evaluate our algorithm experimentally against sev-
eral baselines. We compare vocalization against soni-
fication and visual interfaces in a user study.

The reminder of this paper is organized as follows. We
introduce our problem model in Section 2. In Section 3, we
give an overview of our algorithm. Sections 4 and 5 describe
in detail how the algorithm generates optimal voice output
based on samples, and how it selects optimal time points
for sampling. Section 6 analyzes our algorithm formally and
Section 7 presents experimental results.

2. FORMAL MODEL
A vocalization is a voice description of a time series in

the following. We consider vocalizations that are composed
from atomic patterns, defined next.

Definition 1. A Pattern p is characterized by a piecewise
linear function fp : [0, 1]→ [0, 1]. Each pattern is associated
with a text template tp used for voice output. The text
template contains placeholders for specific times and values
(defined by a point on the pattern function) that become
available once the pattern is instantiated. The text template
may also contain placeholders for value units or value types.

We instantiate patterns to use them for vocalizations.

Definition 2. A Pattern Instance i is derived from a
pattern p by fixing a time interval [x1, x2], and a value in-
terval [y1, y2]. We scale the pattern function fp to cover
those intervals. We say that the pattern instance predicts
values in the time interval [t1, t2], predictions are the values
of the scaled function. A pattern instance is also associated
with a text snippet that is derived from the pattern template
tp by substituting each placeholder.

We consider vocalizations of the following type.

Definition 3. A Vocalization is a sequence of pattern in-
stances. Those pattern instances describe consecutive time
intervals without overlap and without gaps, pattern instances
are ordered by time. A vocalization is associated with a
speech text. This text is formed by concatenating text asso-
ciated with each pattern instance. Let t be a time point in
the time interval covered by a vocalization. The vocalization
contains a single pattern instance whose interval contains t.
We say that the vocalization predicts the value for t that is
predicted by the latter pattern instance.

Throughout the paper, we also use the terms Voice De-
scription or Speech as synonyms for vocalization. Fur-
thermore, we refer to the pattern instances that a vocal-
ization is composed of also as Speech Fragments. We
compare vocalizations according to the following metrics.

Definition 4. Vocalization Length is the number of char-
acters in the text associated with a vocalization.

Definition 5. Vocalization Complexity is the number
of pattern instances included in a vocalization.

Collect
Samples

Bootstrap
Sampling

Generate
Vocalizations

Optimal
Exp. Design

M
ultiple Resamples
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sSampling Points
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Figure 1: Overview of iterative algorithm.

Definition 6. Vocalization Error, with regards to a spe-
cific time series, is the mean squared error between actual
and predicted values. More precisely, denote by T = {〈xi, yi〉}
the points of a time series and by v(x) the value predicated
by vocalization v for time x. Then, the vocalization error
with regards to T is defined as

∑
i(yi − v(xi))

2/|T |.

We associate a vocalization with a Cost Vector, contain-
ing values for all three metrics. A cost vector ~c1 dominates
vector ~c2, denoted as ~c1 � ~c2, if ~c1 has lower or equivalent
cost than ~c2 according to all three metrics.

Definition 7. An instance of Optimal Time Series Vo-
calization is characterized by a database D, a query q (the
result of executing q on D must be a time series), and user
preferences P.~c, capturing upper bounds on speech length
and complexity in a cost vector. An optimal solution is
a vocalization with minimal vocalization error among all
vocalizations satisfying length and complexity bounds (i.e.,
among all vocalizations with cost ~c such that ~c � P.~c).

We generally consider SQL queries whose result consists
of a time and a value column. The approach presented next
assumes that all result rows for a given time interval can be
generated efficiently (i.e., generating results for small time
intervals is significantly cheaper than generating the entire
query result). This is for instance possible for select-project
queries on single tables for which an index on the time col-
umn is available. It is also possible for queries calculating
aggregates and using the time column in the group-by clause
(e.g., the query calculating daily crime counts in Chicago,
used in our experimental evaluation, is of that form). The
approach can be used for join queries as well, as long as the
query properties allow to retrieve results for restricted time
ranges efficiently (e.g., select-project-join queries with equi-
joins on star schemata with time-indexed fact table, where
dimension tables are indexed by the join column).

3. ALGORITHM OVERVIEW
We give an overview of an algorithm that efficiently gen-

erates voice output to describe a large time series. The al-
gorithm is iterative and continuously improves the accuracy
of voice output until a timeout is reached. Then, the final
version is read out to the user.

Algorithm 1 is the main function of our algorithm. The
input is a database, D, together with a query q on that
database. Parameter C represents several tuning param-
eters that we discuss in more detail later. Parameter P

1565



1: // Generate best possible vocalization for result of
2: // query q on database D within time limit.
3: // Use configuration C and user preferences P.
4: function Vocalize(D, q, C,P)
5: // Initialize query result samples
6: S ← random samples from q(D)
7: // Iterate until timeout
8: while Time limit C.τ not reached do
9: // Generate vocalization candidates

10: for i← 1, . . . , C.ν do
11: // Re-sample sample with replacement
12: B ←BootstrapSample(S)
13: // Best vocalization for bootstrap sample
14: vi ←BestVocalization(q, C,P, B)
15: end for
16: // Sample optimally to distinguish candidates
17: S ← S∪ OEDsamples(D, q, C, {vi})
18: end while
19: // Return best vocalization based on full sample
20: return BestVocalization(q, C,P, S)
21: end function
Algorithm 1: Generate a vocalization for a query result by
interleaving optimization and sampling.

encapsulates several parameters capturing user preferences
with regards to voice output. The algorithm returns an ap-
proximate voice description of the result when evaluating
the query on the database.

We assume that the query result is a time series, i.e. scalar
values that are associated with time points. The query may
simply retrieve parts of an existing time series or the query
may generate a time series from other data. The algorithm is
applicable in both cases, as long as the following assumption
holds: we assume that we can efficiently generate parts of
the time series around specific time points (we formalize the
term “efficiency” in this context later).

Generating the entire query result may be prohibitively
expensive. Furthermore, voice output needs to be concise in
general. This allows only to output a high-level description
of the time series, focusing on the most important tenden-
cies. It would be wasteful to generate the entire result as
no details can be transmitted to the user. Because of that,
Algorithm 1 aims at generating only those parts of the time
series that are absolutely necessary in order to decide what
voice output describes the data most accurately.

The algorithm is iterative. Iterations continue until a
timeout, specified as one of the configuration parameters,
is reached. Each iteration entails the following three steps.
First, generate multiple bootstrap samples from the set of
samples that we have collected so far from the query result
(variable S). Second, generate for each of the bootstrap
samples the most accurate voice description that is possible,
under constraints imposed on voice output (e.g., the max-
imal length of the voice output, encapsulated as user pref-
erence in P). Finally, we compare voice output candidates,
generated based on different bootstrap samples. Based on
that comparison, we select the time points at which to collect
samples before the next iteration. After the final iteration,
a last voice description is generated based on all samples
collected so far. This description is read out to the user.

Figure 1 illustrates the primary steps of the algorithm.
The algorithm is inspired by prior approaches from the do-

main of optimal experimental design. The focus in prior
work was to select, among multiple candidates, a hypothesis
that optimally describes a certain domain. Experiments can
be executed to help narrowing down the choice between al-
ternatives. By judiciously choosing the parameters of those
experiments to make them as informative as possible (“opti-
mal experimental design”), a decision can be reached much
faster than via random experiments.

In our scenario, competing hypothesis correspond to com-
peting high-level voice descriptions. Experiments correspond
to partial query evaluations. The parameter for those exper-
iments are the time points around which the query result is
examined. We want to evaluate the time series at points that
give us as much information as possible to help choosing
between alternative voice descriptions. Unfortunately, the
space of voice descriptions is typically prohibitively large.
Hence, we do not consider all possible voice descriptions in
our choice of sampling points. Instead, we consider only
a few voice description candidates that seem promising ac-
cording to the current data sample.

To generate multiple vocalization candidates, we could
of course take separate samples from the time series. Each
sample requires however typically to access the database and
to read data from hard disc (or may potentially involve ex-
pensive data processing). It is typically much cheaper to
re-sample, with replacement, the samples that we already
have acquired before (and which are stored in main mem-
ory). Such bootstrap samples yield an inexpensive method
to gain insights about the sensitivity of the voice descrip-
tions towards different samples.

The next two sections describe two sub-functions of Algo-
rithm 1 in more detail. Section 4 describes how we generate
optimal voice descriptions for a given data sample (func-
tion BestVocalization). Section 5 describes how we select
the next time points to sample (function OEDsamples).

4. FINDING OPTIMAL VOCALIZATIONS
Algorithm 2 generates an optimal vocalization, given a set

of samples from a time series. An optimal vocalization mini-
mizes vocalization error among all alternatives. Vocalization
error is measured by comparing the approximate time series,
described by the vocalization speech, against the actual data
sample. We use the sum of squares error for comparison
(which is equivalent to the mean squared error for a fixed
number of samples).

Function BestVocalization is invoked by Algorithm 1
(presented in the last section). The input is a query q, al-
gorithm configuration settings, encapsulated in parameter
C, and user preferences (parameter P). Finally, we provide
a set of samples S from a time series as input. The func-
tion returns a vocalization that describes the samples in S
as precisely as possible among all vocalizations that satisfy
constraints. For instance, the length of voice output and the
number of sentences is typically restricted.

Algorithm 1 is based on dynamic programming. We de-
compose the problem of generating an optimal voice descrip-
tion for a certain interval into sub-problems, associated with
sub-intervals. To make this approach viable, we require the
vocalization error function to satisfy the principle of opti-
mality. If that is the case, replacing a speech fragment de-
scribing a sub-interval by a more precise description, can
only improve the entire speech. The mean squared error
and many other metrics satisfy that property.
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1: // Insert vocalization v into Pareto-optimal
2: // vocalizations V ∗ if admissible according to
3: // user preference P, prune dominated entries.
4: procedure Prune(P, V ∗, v)
5: // Check if new vocalization is admissible
6: if v.~c � P.~c then
7: // Check if new vocalization dominated
8: if @v∗ ∈ V ∗ : v∗.~c � v.~c then
9: // Prune vocalizations dominated by new one

10: V ∗ ← V ∗ \ {v∗ ∈ V ∗ : v.~c � v∗.~c}
11: // Insert new vocalization
12: V ∗ ← V ∗ ∪ {v}
13: end if
14: end if
15: end procedure

16: // Vocalize result of query q with minimal error w.r.t.
17: // sample S, using configuration C and considering
18: // user preferences P.
19: function BestVocalization(q, C,P, S)
20: // Divide into easily pronounceable intervals
21: 〈to, . . . , tg〉 ←TimeGrid(q.interval)
22: for 0 ≤ i < j ≤ g do
23: V ∗i−j ← ∅
24: end for
25: // Consider intervals of increasing size
26: for w ← 1, . . . , g do
27: // Iterate over time interval start
28: for s← 0, . . . , g − w do
29: e← s+ w
30: // Instantiate single patterns
31: for p ∈ C.patterns do
32: i←Instantiate(p, [s, e], S)
33: Prune(P, V ∗s−e, i)
34: end for
35: // Consider composite patterns
36: for d← s+ 1, . . . , e− 1 do
37: for v1 ∈ V ∗s−d do
38: for v2 ∈ V ∗d−e do
39: i←Compose(v1, v2)
40: Prune(P, V ∗s−e, i)
41: end for
42: end for
43: end for
44: end for
45: end for
46: // Return complete vocalization with minimal error
47: return arg min[v ∈ V ∗0−g](v.error)
48: end function
Algorithm 2: Find most precise voice description for given
data sample under constraints on length and complexity.

Focusing on vocalization error alone is however insuffi-
cient. Voice output needs to be concise and easy to remem-
ber. We therefore restrict the length of speech output (e.g.,
measured as the number of characters) by an upper bound.
Also, we restrict the number of atomic elements (typically
associated with single sentences) that the voice description
contains. Replacing a speech fragment by a more precise
description can only decrease the vocalization error of the
entire speech. However, if the replacement is longer or more
complex than the original fragment, the resulting speech
may violate constraints. This means that we need to take
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Figure 2: Illustrating dynamic programming (left)
and multi-objective pruning (right) of Algorithm 2.

Table 1: Example patterns with text templates.

Patterns

Text
Tem-
plate

rises
from y1
to y2

falls
from y1
to y2

remains
at y

spikes to
ymax

into account all relevant metrics, error, length, and com-
plexity (measured by the number of atomic elements), at
the same time, when comparing speech fragments that de-
scribe the same time interval.

Algorithm 2 takes those considerations into account. Ini-
tially, the time range to which the query refers is divided
into a grid. We choose grid points that can be easily pro-
nounced. The granularity of the grid is chosen as a function
of the query time range. For instance, we consider time in-
tervals at the granularity of months if the query time range
is between two months and one year. We switch to a granu-
larity of quarters after that. We only consider a single time
unit (e.g., months, quarters, or years) to keep output simple.

Next, Algorithm 2 iterates over time ranges of increasing
length (loop in line 26). We consider time intervals that start
and end at some of the previously chosen grid points. We
start with single sub-intervals and consider finally the entire
time range described by the query. Then, for each interval
length (measured by the number of grid points between start
and end), we iterate over all intervals of that length (loop in
line 28). In each iteration, we collect speech fragments that
optimally describe the current interval.

As justified before, we must consider multiple metrics to
decide whether a given speech fragment is optimal. Hence,
we are dealing with an instance of multi-objective optimiza-
tion. In the pseudo-code, we denote by v.~c the cost vec-
tor associated with a speech fragment (vocalization) v. We
consider the three cost metrics approximation vocalization
error, length, and complexity. We write v1.~c � v2.~c if vocal-
ization v1 dominates vocalization v2 in terms of cost. This
is the case, if v1 has lower or equivalent cost according to all
three metrics. If we compare two alternative vocalizations v1
and v2, referring to the same time interval, and v1.~c � v2.~c,
then we can safely discard v2 during optimization.

We use variables V ∗a−b to store all Pareto-optimal vocaliza-
tions for the time interval ranging from grid point gx to gy.
Being initially empty, those variables are filled in ascending
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order of interval size. We consider two ways of generating a
vocalization for a given interval. First, we try instantiating
all patterns from a library of pattern templates (C.patterns).
This yields vocalizations that consist of a single element.
Second, we try dividing the current intervals into two parts
and to cover each part by a speech fragment. This yields a
composite vocalization that consists of at least two elements.

We discuss the first possibility, pattern instantiation, in
more detail. A pattern is generally defined by several con-
nected line fragments within a rectangle, together with an
associated text template. We assume that patterns can be
stretched along the time and value axis (y axis). Instanti-
ating a pattern means to decide on scaling factors and to
“position” the pattern by fixing coordinates for all corners
of the associated rectangle. The extend on the time axis
is determined by the time interval that we are considering.
The extend on the value axis is determined by the sample
data in the time range. We optimally match the pattern to
the sample data under the constraint that all coordinates
must be values that are quick to pronounce and easy to
remember. More precisely, we only consider values with
a single significant digit (we conducted a preliminary user
study showing that users remember such numbers more eas-
ily). Function Instantiate encapsulates the instantiation
of a pattern, it generates a corresponding text description
and calculates all associated cost metrics. Table 1 shows the
patterns that we use in our current implementation.

When combining patterns, we consider all possibilities to
divide the current interval into two parts. We consider inter-
vals in ascending length order. Hence, dividing the current
interval yields two intervals for which optimal vocalizations
are already available. We combine those vocalizations via
the Compose function. It concatenates the text descrip-
tions of the two component vocalizations, and calculates all
three cost metrics for the new vocalization by adding up the
cost vectors of the components. Figure 2(a) illustrates de-
pendencies in dynamic programming: an arrow from a first
time interval to a second indicates that vocalizations for the
first are composed to form vocalizations for the second.

Example 2. Assume we describe data from February to
September at month granularity. We first generate Pareto-
optimal vocalizations for each of the eight months. Next,
for each pair of consecutive months, we combine optimal
single-month vocalizations and compare against single pat-
terns newly instantiated for the two-month interval. Next,
we treat three-month intervals, then four-month intervals
and so on. Algorithm 2 performs eight iterations in total.

Each newly generated vocalization is compared against all
previously generated vocalizations for the same time inter-
val. Based on that comparison, sub-optimal vocalizations
are removed. Function Prune compares alternative vocal-
izations. First, it prunes out voice descriptions that violate
length or complexity constraints (line 6, P.~c denotes upper
bounds for all cost metrics determined via user preferences).
Then, it checks whether any of the previously inserted vocal-
izations dominate the new one. If so, the new vocalization
can be safely discarded. Otherwise, the new vocalization is
inserted into the Pareto set, after pruning old vocalizations
dominated by the new one. After iterations finish, variable
V ∗0−g contains all Pareto-optimal vocalizations for the entire
query time range. Figure 2(b) illustrates the area dominated
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Figure 3: Promising sampling points (red) for com-
paring three vocalizations of the same time series.

by one cost vector in the cost space (the figure uses only two
metrics while we generally consider three metrics).

Finally, we return the vocalization with minimal error
among all Pareto optima (line 47).

5. SELECTING SAMPLING POINTS
The algorithm described in the previous section generates

an optimal vocalization based on a small sample of the query
result. We avoid generating the entire query result and col-
lect result samples instead. As discussed in Section 2, we
assume that we can generate result samples efficiently for
given time points. In this section, we describe how to select
the most informative time points to sample.

We choose a set of sampling points in each iteration of
our main function (Algorithm 1). We pick sampling points
based on a comparison of a set of candidate vocalizations,
generated in the previous iteration. Our decision criterion
is inspired by prior work in the area of optimal experimen-
tal design [26]: we pick sampling points where the develop-
ments described by different vocalizations diverge the most.
To amortize database access and reasoning overheads, we
select multiple sampling points in each iteration. Hence,
intuitively, we choose a set of sampling points that offers
a chance to prune out the maximal number of vocalization
candidates. The following example gives a first intuition
before we describe our method in detail.

Example 3. Figure 3 shows the developments described
by three candidate vocalizations of the same time series (e.g.,
vocalization one is associated with the text “The price rises
from $10 to $15 from January to March. Then, the price
spikes to $30 in March. Finally, the price rises from $15
to $20 until December.”). Vocalizations one and two di-
verge maximally in April (May for vocalizations one and
three, and December for vocalizations two and three). Hence,
those months (marked in red) constitute interesting sampling
points. If we have to choose two sampling points, picking
April and May is sub-optimal as we cannot distinguish well
between vocalizations two and three. Selecting April and De-
cember is better as it has the potential to prune any of the
three vocalizations based on additional samples.

Algorithm 3 selects an optimal set of sampling time points
and returns a set of corresponding samples. It follows the
principles that were discussed before. It takes as input a
database D, a query q on that database, configuration pa-
rameters C, and a set of promising vocalizations V .

The algorithm executes two steps. First, we determine a
set of candidate time points for sampling (Function Time-
Candidates). Second, we select a near-optimal subset of
those time points to collect samples (Function GreedyP-
ick). Samples for those points are returned. Note that the
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1: // Collect candidate time points for sampling
2: // to compare vocalizations in V .
3: function TimeCandidates(V )
4: T ← ∅
5: for v ∈ V do // Over vocalizations
6: for p ∈ v.patterns do // Over patterns
7: for s ∈ p.lsegs do // Over line segments
8: T ← T ∪ {s.x1, s.x2}
9: end for

10: end for
11: end for
12: return T
13: end function

14: // Greedily select sampling points from T to
15: // compare vocalizations V using configuration C.
16: function GreedyPick(T, V, C)
17: S ← ∅
18: // Select sampling points one by one
19: for i← 1, . . . , C.β do
20: // Pick point with maximal utility gain
21: s∗ ← arg max[s ∈ T ](U(V, S ∪ {s})− U(V, S))
22: // Add that point into set
23: S ← S ∪ {s∗}
24: end for
25: return S
26: end function

27: // Using configuration C, sample result of query q
28: // on database D to optimally compare vocalizations V .
29: function OEDsamples(D, q, C, V )
30: // Select candidate time points for sampling
31: T ←TimeCandidates(V )
32: // Select optimal bounded cardinality subset
33: S ←GreedyPick(T, V, C)
34: // Return samples from selected locations
35: return {q(D, s)|s ∈ S}
36: end function
Algorithm 3: Retrieve samples for time points selected via
optimal experimental design.

resolution at which time points are considered depends not
only on data but also on query properties. For instance, if
a query calculates aggregates and groups by date, extracted
from a time column with higher temporal resolution, then
time points correspond to specific days.

We discuss the generation of candidate sampling times
first. As discussed before, a sampling point becomes inter-
esting if different vocalizations predict very different values
for that time. Some sampling points might only be inter-
esting to distinguish a subset of vocalizations (i.e., there is
a subset of vocalizations predicting very different values for
the given point while other promising vocalizations agree on
a common value). We ultimately select sample batches and
might combine sampling points that yield information on
complementary subsets. Hence, we collect sampling point
candidates that include for each pair of promising vocaliza-
tions the points of maximal difference.

Function TimeCandidates generates a set of potential
sampling points, based on a set V of promising vocaliza-
tions. We compose voice descriptions from a fixed set of
text templates. Each template describes a pattern from a
pattern library. Each pattern is a piecewise linear function
(i.e, connected line segments). Hence, each vocalization es-

sentially describes a piecewise linear function. We collect
the segment boundaries for each input vocalization. The
points of maximal difference for each vocalization pair must
be contained within. We prove this statement in Section 6.

We reduced the choice of sampling points from a continu-
ous domain to a choice between discrete values. From those
values, we select a near-optimal subset with bounded car-
dinality (defined by tuning parameter C.β). We often want
to pick more than one sampling point for performance rea-
sons: data access is often associated with constant overheads
and can be amortized over multiple queries when evaluat-
ing them in a batch. On the other side, we do not want
to take samples for all candidate points. Doing so may be
expensive and exceed the timeout (specified as input pa-
rameter to Algorithm 1) significantly. Also, taking samples
yields additional information that can be used to select more
informative sampling points for the next batch. Hence, pa-
rameter C.β must be chosen to realize a good compromise
between the two extremes.

Function GreedyPick selects an optimal subset of sam-
pling points for a given cardinality. We aim to maximize the
following utility function U :

U(V, S) =
∑

v1,v2∈V

max
s∈S
|v1(s)− v2(s)| (1)

. Here, V is a set of vocalizations and we denote by v(s)
the value implied by vocalization v for time point s. The
utility function sums over all pairs of vocalizations the max-
imal distance over all sampling points. This function is an
adaption of the total separation metric [26] which compares
single sampling points. The original metric considers for a
single point the absolute distances in predicted values over
all hypothesis. We use the maximum operator to generalize
that metric to sets of sampling points. The intuition behind
choosing the maximum operator (as opposed to a sum for
instance) is that we want to obtain a set of sampling points
that is diverse in the following sense. We want to choose
sampling points that help to distinguish as many pairs of
vocalizations as possible. Hence, the utility value should
not increase when selecting multiple sampling points that
help to compare the same two vocalizations.

We show in Section 6 that this utility function has the sub-
modularity property. This means, intuitively, that adding
more sampling points tends to increase utility less and less.
Furthermore, the function is nonnegative and monotone (i.e.,
adding more points cannot decrease utility). For functions
with that property, the simple greedy algorithm (imple-
mented in Function GreedyPick) is guaranteed to produce
near-optimal solutions [22]. We analyze those quality guar-
antees as well as the complexity of sampling in Section 6.

6. FORMAL ANALYSIS
We first analyze the output quality of Algorithm 2. This

algorithm shares some similarities with prior algorithms for
constructing optimal histograms [17]. It differs however, in
particular as it considers one additional cost metric (length
of the verbal description) as opposed to approximation error
and approximation size (i.e., speech complexity) alone.

Theorem 1. Algorithm 2 produces an admissible vocal-
ization with minimal error with regards to the input sample.

Proof. Without pruning, the algorithm would produce
all vocalizations that can be formed with the given pattern
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library. The final statement (line 47) selects the vocaliza-
tion with minimal error among the ones satisfying bounds
on length and complexity. Hence, we only need to show that
pruning does not discard any speech fragments that would
be required to form the optimal vocalization in the entire
search space. The optimal vocalization is the one minimiz-
ing error while satisfying all constraints. During pruning, a
speech fragment is discarded if it violates bounds on length
and complexity. As both metrics are monotone, the cost of
a speech fragment lower-bounds the cost of any vocalization
it is a part of. Hence, speech fragments pruned for bound vi-
olations cannot be part of an optimal speech. Also, a speech
fragment v is pruned if there is another speech fragment v∗

with lower or equivalent cost according to all three metrics
(error, length, complexity). All three cost metrics are addi-
tive (i.e., the cost of a composite speech is the sum of the
cost of its components). Hence, for any speech that contains
v as a fragment, we can form a speech with equivalent or
better cost by replacing v by v∗. Hence, discarding domi-
nated speech fragments does not prevent the algorithm from
producing an optimal vocalization.

The next two theorems refer to Algorithm 3 which chooses
sampling points and collects corresponding samples.

Theorem 2. For each vocalization pair, a time point max-
imizing their distance is among the sampling candidates.

Proof. The sampling candidates consist of the end points
of all line segments that are part of pattern sequences de-
scribed by vocalizations. We conduct a proof by contradic-
tion. Assume that a time point t∗ of maximal distance is
not contained in the sampling candidates for two specific
vocalizations v1 and v2. Denote by l1 the line segment de-
scribed by v1 at t∗ and by l2 the corresponding line segment
associated with v2. Further, denote by ∆1 the slope of l1
and by ∆2 the slope of l2. If ∆1 = ∆2 then both line
segments are parallel and their distance is constant (hence,
the candidate set contains a point of maximal distance). If
∆1 < ∆2 and l1 lies below l2 then distance between the two
line segments increases with increasing time t. Hence, there
is a t > t∗ maximizing distance and thereby leading to a
contradiction. Similar contradictions are obtained for the
remaining cases.

Theorem 3. The set of sampling points picked by the
greedy algorithm realizes a utility value within factor 1−1/e
of the optimum.

Proof. Consider the previously introduced utility func-
tion U(V, S) =

∑
v1,v2∈V maxs∈S |v1(s)− v2(s)|. This func-

tion is nonnegative as it adds up nonnegative terms. It is
monotone in S as the maximum is a monotone operator.
Also, it has the property that U(V, S ∪ {s}) − U(V, S) ≥
U(V, S̃ ∪ {s}) − U(V, S̃) for sets S and S̃ with S ⊆ S̃ and
element s. In other words: the utility function is sub-
modular in S. This can be seen as follows. First, the
function F (S) = maxs∈S |v1(s) − v2(s)| is sub-modular in
S for fixed vocalizations since having more elements in S
can only decrease the marginal gain when adding one new
element. Second, the utility function is therefore a sum over
sub-modular functions with nonnegative coefficients (which
implies sub-modularity in general). The postulated bound
follows immediately from the bounds of the greedy algorithm
by Nemhauser and Wolsey [22] for maximization of functions
that are nonnegative, monotone, and sub-modular.

Next, we analyze time complexity. We denote by n the
size of the input data set, by m the number of patterns in
the library, and by g the number of grid points into which we
divide the query time range when generating voice descrip-
tions (line 21 in Algorithm 2). Furthermore, denote by l the
maximal speech length measured in characters and by c the
maximal complexity as measured by the number of patterns
(parameter P.c in Algorithm 2). We first bound the number
of entries per interval maintained by Algorithm 2.

Lemma 1. Algorithm 2 stores at most O(c·l) vocalizations
per time interval.

Proof. A vocalization is composed of patterns. Each
pattern increases complexity by one and length by at least
one (as the associated text template must be non-empty).
Hence, vocalizations can only realize admissible length val-
ues between one and l, and complexity cost values between
one and c. The pruning function discards all vocalizations
exceeding the bounds before storing them. For a fixed in-
terval, it also discards vocalizations that are dominated by
previously generated ones. Hence, we store for each combi-
nation of length and complexity values at most one vocal-
ization with minimal error.

Next, we calculate time complexity of Algorithm 2. In
addition to the notations introduced before, we denote by d
the number of samples provided as input for Algorithm 2.

Theorem 4. Generating an optimal vocalization has time
complexity in O(g2 · (m · (d+ c · l) + g · (c · l)3)).

Proof. The algorithm iterates over O(g2) intervals. For
each interval, we consider vocalizations that can be formed
using a single pattern and composite vocalizations. There
are m vocalizations that can be formed from single patterns
and O(g · (c · l)2) composite vocalizations per interval (since
we consider O(g) interval splits, and O(c · l) Pareto-optimal
vocalizations for each of the two sub-intervals). The most
expensive operation when instantiating a pattern is to de-
termine the value range within a given time interval. This is
achieved in O(d). Composing two patterns only requires to
concatenate their text and to calculate the cost vector for
the resulting speech (which requires constant time as the
number of cost metrics is constant). Algorithm 2 invokes
the pruning function for each generated vocalization. The
pruning function compares the newly generated vocalization
against all Pareto-optimal vocalizations for the same inter-
val. Pruning complexity is in O(c · l) (using Lemma 1).

We analyze the time complexity of Algorithm 3. The com-
plexity of taking a single sample may vary depending on the
properties of data, query, and storage engine. We assume
in the following that data is indexed by time and that the
time complexity for taking one sample is in O(log(n)). Let
ν be the number of vocalizations that Algorithm 3 receives
as input and λ the maximal number of line segments per vo-
calization. Parameter β is the number of sampling points.

Theorem 5. Collecting samples has time complexity in
O(β · (log(n) + νλ)).

Proof. Selecting candidates sampling points is in time
O(ν · λ). Greedily selecting a subset of candidates is in
O(β · ν · λ). Sampling time is in O(β · log(n)).
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Figure 4: Percentage of values and times remem-
bered by users after listening to voice output.

The latter two theorems imply the complexity of our al-
gorithm for vocalization of large time series (Algorithm 1)
as a function of the number of iterations i.

Theorem 6. Algorithm 1 has time complexity in O(i ·(ν ·
g2 · (m · (i · β + c · l) + g · (c · l)3) + β · (log(n) + νλ))).

Proof. This is an immediate implication of the latter
two theorems as sampling and optimization are the sub-
functions with dominant time complexity. We also exploit
that the number of samples in iteration i is bounded by the
number of samples i · β collected in prior iterations.

The complexity of the algorithm is polynomial in the in-
put parameters. Furthermore, its complexity grows only
logarithmically in the data set size.

7. EXPERIMENTAL EVALUATION
In Section 7.1, we summarize the results of a preliminary

user study that motivates the type of vocalization we con-
sider. In Section 7.2, we compare our vocalization algorithm
against multiple baselines in terms of output quality and
computational overheads. Section 7.3 describes the results
of a crowd user study, comparing visualization, vocalization,
and sonification in a simple data analysis scenario.

7.1 Preliminary User Study
We performed an initial user study to compare different

types of voice descriptions. We recruited five participants
among the computer science students undergraduate stu-
dents at our institution. We played computer-generated
voice descriptions (based on manually generated text) of
time series to participants, testing out alternative descrip-
tions for similar test series. We varied the length of the
description (e.g., the number of time points and values), the
type of information given (e.g., times and values or values
alone for equally spaced time intervals), and the text tem-
plates used to describe trends and tendencies. We compare
alternative descriptions in terms of user preferences and in
terms of retention by the listener. We measured the latter
by asking users to write down times and values they re-
membered after listening to voice output. Each study took
around one hour and we payed $10 to each participant.

Figure 4 shows an extract from our results. The left chart
describes the results of a user study where we read out only
values for equally spaced time intervals. The chart on the
right side describes results for voice descriptions that contain
both time points and values. We performed two separate
test series in both cases: in the first one, we read out val-
ues with two significant digits. In the second, we restricted
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Figure 5: Impact of tuning parameters.

precision to one significant digit. On the x axis, we vary the
number of data points read out to the user. On the y axis,
we see the percentage of time points and values remembered
by users (averaging over all participants).

Long voice descriptions are hard to remember. We ob-
serve a sharp drop in recall already starting from more than
three elements. This corroborates prior research on short-
term memory capabilities [4, 20]. Also, the number of value
digits has a significant impact on retention. We obtained
near-perfect recall for up to three elements when using one
significant digit. Removing time points and focusing on val-
ues alone (for equally spaced time intervals) does not seem
to significantly increase the acceptable length. Hence, we
opted for an output space with varying time interval lengths
while restricting the output precision to one significant digit.

7.2 Performance Comparisons
We compare different algorithms and configurations ac-

cording to two metrics. First, we consider the vocalization
error of the generated vocalization. We measure the mean
squared error between the actual query result (a time series)
and the development described in the vocalization (see Sec-
tion 2 for a formal definition). Second, we consider the run
time required to generate the vocalization.

The algorithm described in Section 3 has two parame-
ters: the number of vocalization candidates generated per
iteration (parameter C.ν in Algorithm 1) and the number of
samples taken per iteration (parameter C.β in Algorithm 3).
Figure 5 illustrates the impact of those parameters using a
representative query (a range query retrieving the BitCoin
price at the Bitstamp exchange over a twelve month period).
In Figure 5(a), we retrieve 10 samples but vary the number
of iterations over which those samples are retrieved (from
10 samples in a single iteration to 10 samples over 10 it-
erations). Retrieving samples sequentially decreases result
error since we can integrate information gained from prior
iterations to choose sampling points for the following iter-
ations. Performing less iterations decreases however execu-
tion time as it reduces non-sampling overheads. Figure 5(b)
varies the number of vocalization candidates generated per
iteration. Generating more candidates allows to choose more
informative sampling points while it increases run time.

We compare proposed algorithm against two baselines.
The first baseline (“No Sampling” in the following plots)
generates the entire query result first. Then, it uses the
algorithm from Section 4 to generate the best possible vo-
calization. The second baseline (“Random Sampling”) gen-
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Figure 6: Performance when vocalizing results of
range queries on the Bitcoin price data.

erates a vocalization based on a query result sample. Sam-
pling points are selected with uniform random distribution
from the query time interval. The algorithm that forms the
main contribution of this paper (“OED Sampling” in the
following plots) compares candidate vocalizations and uses
optimal experimental design to select sampling points.

We implemented all algorithms in Java 1.8, the two base-
lines share the same code with our main algorithm whenever
possible. We tune the algorithm from Section 3 as follows:
we generate five candidate vocalizations per iteration and
collect samples for three time points. We use the patterns
described in Table 1 and set the following constraints on out-
put properties. Output length, measured by the number of
characters (where we write out numbers as words instead of
counting digits), is upper-bounded by 300 characters. This
complies for instance with the guidelines of the Google As-
sistant service for voice output [11]. We use at most three
patterns in our voice description and round numbers to the
most significant digit (as motivated by the results described
in Section 7.1). Wherever the same tuning parameters apply
to multiple baselines, we use the same settings.

Next, we report performance results obtained when vo-
calizing different queries on different data sets. Each data
point represents arithmetic averages from 10 runs. We var-
ied the length of the query time range. The start time is
chosen with uniform random distribution across the entire
time period covered by the corresponding data sets. The ex-
periments were executed on a MacBook Pro with 16 GB of
main memory, featuring a 2.8 GHz Intel Core i7 CPU. We
used the Postgres 10.1 database management system [23]
to store and access data. Each data set had a time-related
column on which we created a clustered tree index.

Figure 6 reports performance results when vocalizing the
evolution of the Bitcoin course on the Bitstamp exchange.
This data set has a size of 2123 MB and covers the time
period from 2011 to January 2018. We vocalize the result
of range queries of the form SELECT Time, Price FROM
[Data] WHERE [Lb] <= Time <= [Ub]. On the x axis,
we vary the number of iterations for the two baselines that
use sampling (“OED Sampling” and “Random Sampling”).
Each of those baselines reads the same number of samples
per iteration, i.e. we compare them for the same amount
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Figure 7: Performance when vocalizing results of
group-by/range queries on Chicago crime data.

of data read from the database. Note that data points as-
sociated with different iteration counts were generated in
independent runs (i.e., the output quality may occasionally
decrease even though the number of iterations increases).
We also report values for the third baseline which is not it-
erative (hence, the corresponding plot lines are constant).
The left side of Figure 6 reports scaled mean squared error
of the generated vocalizations. We scale errors to the one
obtained by the “No Sampling” baseline. The right side of
Figure 6 reports time required for generating vocalizations.
Each row corresponds to a different time interval covered by
the query (time difference between [Ub] and [Lb]).

Clearly, generating the entire time series yields optimal
voice descriptions. However, the time required to generate
the entire query result is prohibitive for exploratory data
analysis. It also increases in the query result size (i.e., in the
length of the query time interval). On the other side, ran-
dom sampling and OED sampling are able to perform multi-
ple iterations with sub-second latency. Optimal experimen-
tal design adds some overheads in terms of run time (due to
the more sophisticated candidate selection method). Those
overheads are however moderate and both algorithms seem
suitable for iterative analysis in terms of their latency. Using
optimal experimental design to select samples improves out-
put quality significantly. The voice descriptions generated
by uniform random sampling show a high variance and are
occasionally very far from the optimum. Output quality is
more stable via optimal experimental design sampling and
converges quickly towards the optimum.

We performed additional experiments to corroborate those
tendencies. Figure 7 reports performance results for queries
on a data set containing crime reports in Chicago from 2001
to 2017 [16]. This data set has a size of 2 GB. We generate
crime statistics from data by running queries of the form SE-
LECT Time, COUNT(*) FROM [Data] WHERE [Lb]
<= Time <= [Ub] GROUP BY DAY(Time). Those
queries generate time series containing the number of crimes
per day over the time range between [Lb] and [Ub]. Fig-
ure 7 uses the same layout as Figure 6 which was described
in detail before. The ranking between the three algorithms,
in terms of run time and output quality, is the same as
before. However, run time increases for the two sampling-
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Table 2: Comparison against PLA.

Data Scaled MSE Time (ms)

This PLA This PLA
S-Uniform 5.04 6.60 789 447
S-OED 2.09 6.17 816 517
Full 1 5.93 5873 123430

based algorithms. This is explained by the properties of the
query: retrieving a sample is more expensive as before as
it requires counting multiple elements (instead of accessing
values directly). The algorithm using OED always generates
near-optimal voice descriptions within less than two seconds.

Next, we consider a scenario in which data is retrieved at
specific time points via a remote service invocation. We use
the historical weather service at https://darksky.net/dev.
An invocation costs 0.01 cents. Figure 8 compares the base-
lines in terms of approximation precision and monetary fees.
Again, sampling-based vocalization realizes a good tradeoff
between monetary fees and approximation precision.

So far, all compared algorithms use the method from Sec-
tion 4 to generate an optimal vocalization for given input
data. The problem of generating an optimal voice descrip-
tion from piecewise linear patterns resembles the problem of
finding the best piecewise linear approximation (PLA) for a
time series. PLA methods do however not take into ac-
count the particularities of our scenario (e.g., constraints on
speech length) when choosing an approximation. We com-
bine all three sample generation methods used so far with
the pwlf library [14] to generate piecewise linear approxima-
tions. We translate those approximations into speech out-
put using the same speech templates as for our approach.
The PLA library allows to restrict the number of line seg-
ments (which corresponds to speech complexity) but not
to restrict speech length. If the PLA approximation with
three segments translates into a speech that violates speech
length bounds, we reduce the number of segments by one
and regenerate the PLA until speech length is acceptable.
Table 2 compares run times and scaled mean squared error
(MSE), averaging over range queries on the BitCoin data set
described before. We average over 50 runs for four queries
covering 12 month periods from 2012 to 2016. PLA is very
efficient for small input data sets (for large data, its perfor-
mance suffers since it does not restrict line segment bound-
aries to easily pronounceable ones). The output quality of
PLA is relatively low. Even if PLA has access to the full

query result (“Full Data” in Table 2) while our approach has
only access to a small result sample (“S-OED”), the PLA er-
ror is significantly higher. The PLA problem model does not
consider speech length when selecting line segments. Hence,
the PLA using three line segments violates speech length
constraints in 80% of cases. In those cases, we need to re-
duce the number of line segments which increases error.

7.3 Crowd User Study
We performed a usability study with crowd workers. Our

goal was to find out whether vocalization enables user to
perform simple, exploratory analysis of time series data. We
compare against two baselines. First, we used a visual inter-
face showing the evolution of a time series over a time range
chosen by the user. Second, we tested a sonification [12]
interface that translates time series data into non-speech
sounds. The latter approach is similar to the one proposed
by Ramloll et al. [24] and to approaches used by state-of-
the-art sonification tools [28]. We translate data points into
notes: the higher the value, the higher the frequency. We
generate equally spaced samples for sonification and visual-
ization. For vocalization, we select samples via OED.

We use the price development of the Bitcoin course from
2011 to 2018 as a test case, we used the same data set as
in the previous section. We gave crowd workers the fol-
lowing task: propose within a given time range an optimal
time to buy and to sell a Bitcoin. More precisely, we asked
workers to maximize their monetary gain by the transaction.
The Bitcoin price is publicly available via many interfaces.
To avoid interference by the use of other interfaces or prior
knowledge, we did not reveal the nature of the analyzed
time series (we used the generic term “price development of
a financial asset” consistently in our task description).

We selected this task as a representative of simple ex-
ploratory analysis tasks according to the following criteria.
First, it is based on a popular data set and loosely connects
to real use cases (i.e., analyzing financial time series to max-
imize gains). Second, it is open-ended and leaves users the
choice about which and how many queries to ask. Third,
it allows to measure the quality of the worker replies, and
thereby, implicitly, the quality of different user interfaces.

We recruited crowd workers on the Amazon Mechanical
Turk platform [1]. We did not restrict access to our tasks in
any way (e.g., we did not impose any restrictions on worker
acceptance rate) to obtain representative results for aver-
age workers. We paid a base reward of 25 cents per task
and promised workers an additional reward of 25 cents if
their reply was within 50% of the optimal gain achieved by
any crowd worker for the same task. We created 120 tasks
(half of them for visual interfaces and half of them for audio
interfaces), receiving 99 replies over a 24 hours time range.

We made all baselines accessible online, separating the vi-
sual interface from the two audio interfaces. For the audio
interfaces, users can select themselves between the two out-
put modes: vocalization and sonification. All interfaces are
identical except for the output method. Users choose a time
range and click on a corresponding button to generate either
a visualization, voice description, or sonification describing
price evolution in the selected time interval.

Table 3 compares the two audio interfaces against the vi-
sual interface. We report average gain, the average task
duration, and the average number of queries asked per user.
As expected, the visual interface performs slightly better
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Table 3: Comparison of visual versus audio inter-
faces for analysis of financial time series.

Criterion / Interface Visual Audio Delta

Gain $6,002 $5,051 -16%

Time (s) 278 335 +21%

# Queries 8 12 +50%

100 101

100

101

# Vocalizations

#
S
o
n
ifi

ca
ti

o
n
s

(a) Ratio of vocalization
to sonification queries run
per crowd worker (blue).

32%
43%

23%
2%

Voc++

Voc+

Neutral

Sound+

(b) Percentage of crowd
workers with strong (++) or

some preference (+) for
vocalization/sonification.

Figure 9: Comparison of alternative audio interfaces
for data analysis: vocalization (speech output) vs.
sonification (non-speech sounds).

according to all metrics. Our goal is merely to show that
the audio interface performs reasonable for this simple task,
compared to a visual interface. This seems justified based
on the relatively similar results. The highest relative devi-
ation of 50% is obtained for the average number of queries
asked by users. This is partially due to the fact that vo-
calizations are “fleeting” (i.e., users need to query again to
refresh their memory) as opposed to a visualization. We
found that 19% of queries are duplicates of prior queries
by the same user, 12% are immediate repetitions (i.e., no
other query between two duplicates). We derived an up-
per bound of 7% of queries that are immediate repetitions
within short-term memory duration (assuming a high du-
ration of 30 seconds). Hence, we are typically successful in
transmitting data into the user’s short-term memory.

Our goal is not to replace visual interfaces as the primary
means of data analysis. Instead, we want to make the best
out of situations where visual interfaces are not available.
Figure 9 compares the two audio interfaces. Figure 9(a)
show the number of vocalization and sonification queries ex-
ecuted by each crowd worker (represented by a blue cross).
Clearly, most workers tend to generate more voice descrip-
tions than sonifications. Out of 30 workers who had tried
both, sonification and vocalization, at least once, 20 gener-
ated finally more voice descriptions than sonifications, three
generated the same number, and only seven generated more
sonifications. While the number of executed queries is only
a proxy for preferences, Figure 9(b) reports user preferences
directly. Three quarters of workers report preferences for
vocalization over sonification. One third of them express
strong preferences, describing vocalization as “much clearer”
or “much easier to understand”. 23% did not answer or in-
dicated no preferences. Only 2% of workers expressed some
preference for sonification.

8. RELATED WORK
We optimally vocalize small relations in prior work [31].

Our prior work differs from the current one as follows. First,
our algorithm interleaves query evaluation and vocalization
(i.e., the input is a query and a database). Our prior work
presents a pure vocalization strategy (i.e., the input is a
query result). Hence, our prior work requires generating the
entire query result which is impractical for large data sets.
Second, we minimize vocalization error for bounded speech
length and complexity. Our prior work minimizes speech
length for bounded error. Third, our current work focuses on
time series where high-level patterns can summarize many
data points. Our prior work focuses on general relational
data. It outputs at least one key value for each output tuple
and is therefore impractical to large result sets.

The problem of translating a time series into a textual
descriptions has been studied previously [3, 9, 13, 10, 30,
33, 32]. Our work is particular since we focus on exploratory
analysis of large time series. We focus on scenarios where
the computational cost of merely accessing (or generating)
the entire time series is already prohibitive for a responsive
interface. This motivates our iterative sampling strategy.
Also, we focus specifically on voice output, imposing tight
constraints on output length and complexity. This motivates
an approach based on optimization to transmit the maximal
amount of information under all applicable constraints.

Our work is similar in intent to prior work in the database
community on visualizing time series data [2, 21, 25, 34].
Specifically, we propose an approach for interleaved data
processing and output generation which exploits particular-
ities of the output format to minimize processing overheads.
This connects our work to prior work aimed at minimizing
processing overheads when generating visualizations [15, 18].
However, our work is complementary as we present query re-
sults via voice output as opposed to visualizations. Our work
is also complementary to prior work from the area of soni-
fication and auditory display [12, 24] which uses primarily
non-speech sounds to transmit data.

Our work relates to prior work on generating approximate
representations of data such as histograms [8]. Size and ap-
proximation error have been used as metrics for histogram
construction as well. However, we consider additionally the
length of the verbal description which influences our prun-
ing function and the interval bounds we consider. Sampling
has been used for histogram construction [6]. The criterion
by which we select samples is however very specific (i.e., to
narrow down the choice between voice descriptions). In a
similar way, our work differs from prior work on approxi-
mating time series via linear segments [7].

9. CONCLUSION
We presented an algorithm that summarizes query results

via concise voice descriptions. It avoids full query evalua-
tion and generates only result fragments that are helpful to
determine optimal voice output. We have shown that users
can perform simple data analysis tasks via voice interfaces,
producing analysis results of slightly lower but still compa-
rable quality to users accessing visual interfaces. Further, we
have shown that users tend to prefer voice data descriptions
over non-speech sounds. We focused on time series while we
plan to extend our approach to different data types in the
future. We also plan to consider new query types.
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