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ABSTRACT
Recent advancements in high-performance networking intercon-
nect significantly narrow the performance gap between intra-node
and inter-node communications, and open up opportunities for dis-
tributed memory platforms to enforce cache coherency among dis-
tributed nodes. To this end, we propose GAM, an efficient dis-
tributed in-memory platform that provides a directory-based cache
coherence protocol over remote direct memory access (RDMA).
GAM manages the free memory distributed among multiple nodes
to provide a unified memory model, and supports a set of user-
friendly APIs for memory operations. To remove writes from crit-
ical execution paths, GAM allows a write to be reordered with the
following reads and writes, and hence enforces partial store or-
der (PSO) memory consistency. A light-weight logging scheme
is designed to provide fault tolerance in GAM. We further build a
transaction engine and a distributed hash table (DHT) atop GAM
to show the ease-of-use and applicability of the provided APIs. Fi-
nally, we conduct an extensive micro benchmark to evaluate the
read/write/lock performance of GAM under various workloads, and
a macro benchmark against the transaction engine and DHT. The
results show the superior performance of GAM over existing dis-
tributed memory platforms.
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1. INTRODUCTION
Shared-nothing programming model has been widely used in

distributed computing for its scalability. One popular example is
distributed key-value store [6, 21, 33, 36, 44], which uses key-value
APIs (e.g., Put and Get) to access remote data. In compari-
son, the shared-memory model that is able to accss remote data
via memory semantics renders a unified global memory abstraction
very attractive for distributed computing, since it not only uni-
fies global data access, but also, more importantly, enables users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236209

to view distributed computing nodes as a powerful server with a
single unified memory space and hence develop distributed appli-
cations in the same way as they do multi-threaded programming. In
addition, the skewness in data access, which can cause overloaded
nodes to be bottleneck in shared-nothing systems, can be gracefully
handled in such a unified model by transparently redirecting access
requests to less loaded nodes.

There have been many DSM (Distributed Shared Memory) sys-
tems [4, 7, 26, 40] proposed to combine physically distributed mem-
ory together to enforce a unified global memory model. These sys-
tems typically employ a cache to buffer remote memory accesses.
To maintain a consistent view on cached data, they use synchro-
nization primitives to propagate dirty writes and clear cached read,
which incurs a significant overhead at synchronization points. In
addition, requiring programmers to manually call the synchroniza-
tion primitives to ensure data consistency makes it difficult to pro-
gram and debug with the memory model.

The emergence of RDMA (Remote Direct Memory Access) fur-
ther strengthens the attraction of a unified memory model by en-
abling network I/O as remote memory access. As shown in Table 1,
the throughput of current InfiniBand RDMA technology (e.g., 200
Gb/s Mellanox ConnectX@-6 EN Adapter [31]) is almost approach-
ing that of local memory access, and can be even better than NUMA
(Non-Uniform Memory Access) inter-node communication chan-
nels (e.g., QPI [34]). Thus, several RDMA-based systems [14,
24, 30, 35] have been proposed to leverage RDMA to enable a
unified memory abstraction from physically distributed memory
nodes. However, they still require users to manually call synchro-
nization primitives for cache consistency, and hence suffer from the
same problems as the traditional DSM systems [4, 7, 26, 40].

A natural way to avoid the above problems is to simply abandon
the cache such that each operation (e.g., Read/Write) is routed
to the node where the requested data resides. However, even with
RDMA, fine-grained remote memory access still incurs a prohibitively
high latency. As shown in Table 1, while the throughput of recent
RDMA technology is approaching that of local memory access, its
latency still lags farther behind.

This paper presents GAM, which adopts an alternative approach
to the unified global memory model by reserving the cache to ex-
ploit locality in data accesses and leveraging RDMA to employ an
efficient cache coherence protocol to guarantee data consistence
and hence facilitate programming and debugging. The contribu-
tions made in this paper are summarized below:

• We propose a distributed in-memory computing platform –
GAM, based on RDMA. GAM manages the distributed mem-
ory to provide a unified global memory model, and provides
a set of APIs for global memory operation. GAM employs
PSO memory consistency by adopting a programming model
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Table 1: Communication Performance Comparison [32, 19, 37, 38], where QDR, FDR, EDR and HDR respectively represent Quad,
Fourteen, Enhanced and High Data Rate.

Metrics Local Memory QPI IB QDR IB FDR IB EDR IB HDR 10GbE(4 channels DDR3-1600) 4× 12× 4× 12× 4× 12× 4× 12×
Throughput (GB/s) 51.2 16 5 12 7 21 12.5 37.5 25 75 1.25

Latency (µs) <0.1 0.2-0.3 1.3 0.7 0.5 <0.5 5-50

of synchronous reads and asynchronous writes. A set of dis-
tributed synchronization primitives, such as lock and mem-
ory fence, are provided to enforce stronger consistency.
• We add another level of distributed cache on top of the global

memory to exploit data locality and hide the latency of re-
mote memory accesses. An efficient distributed cache coher-
ence protocol is also designed based on RDMA to enforce
the memory consistency model provided by GAM. Various
special features of RDMA (e.g., one-sided direct memory ac-
cess, pure header notification, packet inlining) are exploited
for an efficient protocol implementation. In addition, we also
design a logging scheme to support failure recovery.
• We build two applications: a transaction engine and a dis-

tributed hash table (DHT), by using the APIs provided by
GAM, to demonstrate how GAM can be used for building
high-level applications.
• We conduct an extensive micro benchmark to profile the per-

formance of GAM from various perspectives, and a macro
benchmark to show the superior performance of GAM over
L-Store [27], FaRM [14], Tell [30], Grappa [35] and Argo
[24] in terms of distributed transaction processing and DHT.
The results illustrate the feasibility of implementing an effi-
cient global memory model on modern RDMA network.

The rest of the paper is structured as follows. Sections 2 and 3
respectively present the system design and the RDMA-based im-
plementation and optimization of GAM. Section 4 discusses the
programming model and memory consistency of GAM. A logging
scheme is designed in Section 5 to support failure recovery in GAM.
Section 6 presents two applications delivered using GAM APIs. A
performance study of GAM is given in Section 7. We present re-
lated work in Section 8, and finally conclude the paper in Section 9.

2. SYSTEM DESIGN
In this section, we introduce the system architecture of GAM.

Based on the partitioned global addressing model, GAM provides a
set of APIs for memory operations, and maintains cache coherence
among distributed nodes to exploit data locality in applications.

2.1 Addressing Model and APIs
GAM adopts the partitioned global address space (PGAS) ad-

dressing model [10, 48], which provides a logically unified address
space and hence simplifies the development of distributed applica-
tions by enabling them to be implemented as multi-threaded pro-
grams. At the hardware level, PGAS is realized by memories of
many machines interconnected by RDMA network such that each
node is responsible for one partition of the global address space.

A set of APIs listed in Table 2 are provided in GAM for the
manipulation of the global memory space. These APIs can be clas-
sified into two categories: global memory access, which contains
the first four APIs: Malloc/Free and Read/Write, and syn-
chronization, to which the remainder APIs belong. We shall only
discuss the APIs of the first category in this section, and defer the
discussion of synchronization APIs to Section 4.
Malloc/Free is analogous to malloc/free in the standard

library, except that it manipulates global memory instead of local
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Figure 1: Overview of GAM

memory. If a base global address gaddr is provided to Malloc
by the user as a hint of affinity, we shall allocate the memory in the
same node with gaddr. Alternatively, users can also give some hints
(e.g., local/remote) on the allocation, which will guide GAM to do
the allocation accordingly (e.g., locally/remotely). By default, we
first try to allocate locally; however, if the local node faces memory
pressure, we then forward the allocation request to the node that
has the most free memory, based on the global memory allocation
statistics that are synchronized periodically. As we can see, GAM
APIs are self-explanatory, and straightforward to use for building
high-level applications on top of GAM.

2.2 Cache Coherence Protocol
Although the throughput and latency of RDMA networking have

improved significantly, almost approaching those of QPI intercon-
nect, there is still around 10× gap between local memory access
and remote memory access. Given the locality property of most
applications [13], the best practice to relieve the latency gap is to
rely on the hierarchical memory architecture, i.e., multiple layers
of caches/memory, to reduce the trips to the lower memory layers.
In this regard, we add an extra level of DRAM resident cache atop
the global memory to absorb remote memory accesses.

We decide not to use the snoop-based cache coherence protocol
since broadcasting in RDMA network is unreliable, and building
reliable broadcasting is costly and can easily overwhelm the net-
work. Thus, we rely on the directory-based protocol by maintain-
ing meta-data to keep track of data distribution in the cluster. In this
way, we can have full knowledge of the data cached in each node,
and keep the cache consistent by point-to-point communication.

The extra level of cache atop the global memory gives rise to
three levels of cache coherence protocol in GAM as shown in Fig-
ure 1, i.e., the snoop-based protocol within a NUMA node, the
directory-based protocol across NUMA nodes, and the distributed
directory-based protocol we design. As the upper two levels of
cache coherence are already enforced by hardware, we only focus
on the lowest level of cache coherence protocol, which achieves a
consistent view on global memory.

For each piece of data, there are five types of nodes: home/remote
node, request node, sharing/owner node, depending on data loca-
tion and access permission. The home node is the node where the
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Table 2: GAM APIs

API Input Description
Malloc/Free size, gaddr, flag allocate/free memory in the global space, with affinity to gaddr and hints from flag

(e.g., remote/local)
Read/Write gaddr, size, buf read/write the data from/to [gaddr, gaddr+size) to/from the local buffer
Atomic gaddr, func, args perform atomic function func on the global address gaddr
MFence - issue mfence synchronization
RLock/WLock gaddr, size lock (shared/exclusive) the global address [gaddr, gaddr+size)
TryRLock/TryWLock gaddr, size try-lock versions of RLock/WLock
UnLock gaddr, size unlock the global address
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Figure 3: Workflows of Read Protocol (D, C and M stand for Directory entry, Cache line and
Memory line)

physical memory of the data resides, and all other nodes are remote
nodes. The request node is the node requesting share/exclusive
(i.e., read/write) access to the data. The sharing/owner node is the
node that has share/exclusive permission of the data. For the sake
of expression, we also say the owner node owns the data.

Initially, the home node owns the data, and is hence both the
sharing node and the owner node. Upon receiving an access request
for the data, the home node grants the respective permission to the
request node, which is in turn promoted to either a sharing node
or the owner node. Each data can be shared by multiple sharing
nodes simultaneously, but has at most one owner node at a time.
In addition, the owner node and the sharing nodes cannot co-exist,
unless the owner node is the only sharing node. Data locality can
be exploited when the request node has already been granted with
the respective access permission.

Similar to the caching mechanisms in hardware, we also adopt
the granularity of a cache line1 to exploit the locality of data ac-
cess, except that the cache line used in the distributed cache is con-
figurable and much larger than the hardware cache to alleviate the
high transmission cost for small packets2.

The directory state of a cache line on the home node can be
“Shared” (shared by some remote nodes that have read permission),
“Dirty” (owned by a remote node that has write permission) and
“UnShared” (owned by the home node). The transition between
these three states is shown in Figure 2. Similarly, the cache state of
a cache line on a remote node can be “Shared” (read-only), “Dirty”
(writable) and “Invalid” (invalidated), depending on the data access
permission held by that remote node. In addition, due to network
delay, the transitions between states are not atomic, and thus we in-
troduce an in-transition state for each possible state transition (e.g.,
“SharedToDirty”). As we shall see in Section 2.5, in-transition
states are necessary to ensure the correctness in the processing of
concurrent requests.

1Unless otherwise specified, “cache line” mentioned in this paper
is by default referred to our software cache line.
2We are using 512 bytes as the default cache line size since it
achieves a good balance between network bandwidth and latency.

2.3 Read
There are two types of reads in GAM, depending on the loca-

tion of the request node. We term the reads whose request node is
also the home node as local reads, and other reads as remote reads.
In this section, we detail the workflow of both types of reads sep-
arately. Figure 3 gives a graphical illustration of read workflow.
Each action of the workflow is associated with a major number and
an optional minor number such that an action must be executed and
completed before those with a higher major number, while two ac-
tions with the same major number can be executed simultaneously
by different nodes.

2.3.1 Local Read
When a local Read is issued, if there is no remote node holding

the ownership, the data either only resides in local memory (“Un-
Shared”) or is in read-only mode (“Shared”). In both cases, the data
is supplied directly from local memory, without incurring any net-
work communication. However, if there is a remote node owning
the data (“Dirty”), the workflow becomes much more complex as it
involves data transmission and cache state transition, both of which
require inter-node communication. The detailed communication
workflow is illustrated in Figure 3a. The home node nh, which is
also the request node nr , first reads the corresponding directory en-
try (D) to obtain the information about the owner node no (1) and
then sends a READ request to no (2), which in turn responds back
with its own copy (3) and changes the state of the respective cache
line (C) to “Shared” (4.1). Upon receiving the data, the home node
nh will update its memory (M) and the directory entry accordingly
by changing the flag to “Shared”(4.2).

2.3.2 Remote Read
For a remote READ where the request node is different from the

home node, if the requested data is already cached by the request
node, then the cached copy can be directly used to service this read
request without incurring any communication. Otherwise, depend-
ing on the cache directory state, there are two different workflows,
which respectively correspond to the “UnShared/Shared” case (i.e.
Non-Dirty) and the “Dirty” case.
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Figure 4: Workflows of Write Protocol.(D, C and M stand for Directory entry, Cache line and Memory line)

Figure 3b shows the situation where the requested data is “Un-
Shared”, and hence the home node is also the owner node. The
request node nr first notifies the home node nh of the read request
(1). After reading the cache directory (2) and finding itself holding
the latest version of the requested data, the home node replies nr

with that data (3), and then accordingly updates the cache directory
and share list (4.1). Finally, the request node nr updates its cache
with the received data (4.2). For the “Shared” case, although there
are additional sharing nodes, the workflow is exactly the same as
Figure 3b, as those sharing nodes do not need to participate.

In the second case where the requested data is owned by a remote
node, the state of the respective cache line needs to be changed
from “Dirty” to “Shared”. As shown in Figure 3c, after realizing
the requested data is dirty, the home node nh needs to forward the
read request to the owner node no (3). no will then send a copy of
the cache line to both the request node nr (4.1) and the home node
nh (4.2), and finally mark that cache line as “Shared” (5.1). Upon
receiving the cache line copy, nh will update the cache directory
and write that copy into its memory (5.2), and nr will put the copy
in its cache in the hope of absorbing further read requests (5.3).

2.4 Write
Likewise, we also divide write requests into two categories: local

writes and remote writes, and illustrate the respective workflow in
Figure 4.

2.4.1 Local Write
For a write request issued by the home node, if there is no shar-

ing or owner node, the home node can safely write the data without
incurring any communication. Otherwise, the data is either shared
(“Shared”) or owned by a remote node (“Dirty”). In the first case,
as shown in Figure 4a, the request node nr , which is also the home
node nh, will issue an INVALIDATE request for each sharing node
(2). Upon receiving the INVALIDATE request, each sharing node
will acknowledge this request (3) and then invalidate its local copy
(4.1). The acknowledgement (3) is necessary because it allows nr

to decide when to pass the memory fence, which will be discussed
in Section 4. After collecting all acknowledgements from the shar-
ing nodes, nh will remove the directory entry of that data, and write
new data to memory (4.2). In order to support failure recovery, nh

will also perform a DLOG to log the new data before it is actually
written. The second case is similar to the first one, where the re-
quest node (i.e., the home node) will also instruct the owner node
to invalidate the cache line and wait for the acknowledgement. The
only difference is that the owner node need to piggyback the most
recent cache line copy along with the acknowledgement in order
for the request node to update its local memory.

2.4.2 Remote Write
A remote Write operation can be immediately fulfilled if the re-

quest node is also the owner node. Otherwise, there are three cases

for the workflow, depending on the directory state of the cache line,
which can be “Shared”, “UnShared” or “Dirty”.

The workflow of the first case is shown in Figure 4b. Upon re-
ceiving a write request from the request node nr (1), the home
node nh checks its directory to obtain information about the shar-
ing nodes(2), and then invalidates the cached copies on the sharing
nodes (3). After receiving acknowledgements from all the sharing
nodes (4), nh performs an OLOG to log the ownership transfer of
the respective cache line and updates the cache directory accord-
ingly (5.2), after which an up-to-date version of the data is returned
to the request node nr (6). The second case, where the directory
state of the cache line is “UnShared”, is similar to the first case.
The difference is that the home node nh can now skip the step 3
and 4 in Figure 4b and grant the write permission to the request
node immediately, since there are no sharing nodes.

Figure 4c illustrates the last case where the cache directory is
“Dirty”. After receiving the request from the request node nr (1),
the home node nh first checks the cache directory to find the owner
node no (2) and then forwards the request to no (3). Then, no sends
the respective cache line to nr (4.1), acknowledges the ownership
transfer to nh (4.2), and invalidates its local copy of that cache
line (5.1). After receiving the ownership transfer message from the
owner node no (4.2), the home node nh is now able to grant the
ownership to the request node nr (6). But before that, it first needs
to log that ownership by performing an OLOG, and update the dirty
list as well (5.2). The acknowledgements from both no (4.2) and
nh (6) are necessary, because we have to keep the directory of the
home node updated via the ownership transfer message (4.2) even
in some scenarios (e.g., TryLock) where the forward request (3)
is denied. After receiving both the reply from the owner node (4.1)
and the acknowledgement from the home node (6), the request node
nr can now proceed by logging the new data, updating the cache
line and setting its state as “Dirty” (7). It should be noted the oper-
ations of (7) can be performed only after both messages, i.e., (4.1)
and (6), have been received. Otherwise, if the request node nr

were to perform (7) immediately after receiving (4.1), it may give
up the ownership (e.g., due to an eviction) before the home node
nh receives the ownership transfer message from the owner node
no (4.2), in which case the home node will believe the request node
gets the ownership when in fact it no longer has the ownership.

2.5 Race Condition
Races can happen during the work flow discussed in the previ-

ous two subsections. For example, when a remote Read/Write
operation is submitted and waiting for its reply, another remote
Read/Write operation targeted at the same address is performed
from another thread in the same node. This causes repeated re-
quests and wasted network bandwidth. We avoid such situations
such that during the processing of a request, each involved node
considers the requested cache line is in an in-transition state, and
blocks the processing of subsequent requests for the same cache
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line until the current request is fulfilled. Hence, the in-transition
states help to guarantee the atomicity of each primitive operation
(e.g., read and write) within a cache line,

However, the in-transition states can cause deadlock. Suppose a
request node with read permission wants to be promoted to write
permission by issuing a WRITE PERMISSION ONLY message to
the home node, while, in the mean time, the home node also wants
to write to the same data and thus sends INVALIDATE message to
this request node. In this case, both nodes need to wait for each
other to acknowledge the respective message, which, as mentioned
above, will be blocked due to the in-transition state of the requested
cache line. To handle it, we require the request node to back off as if
it was in the previous state, and leave the home node to resolve the
inconsistency. Specifically, the home node will first set the corre-
sponding directory as “UnShared” when issuing the INVALIDATE
request. Upon receiving the WRITE PERMISSION ONLY mes-
sage, it will be aware of the inconsistency caused by the back-off
strategy and thus handle this request as if it were a WRITE request.

2.6 LRU-based Caching
GAM adopts the least recently used (LRU) cache replacement

policy to manage the software cache. Each node maintains a lo-
cal hashtable that maps global memory addresses to the respective
cache lines. With more and more global memory accesses, new
cache lines keep being added to the hashtable. Once the hashtable
size exceeds a predefined threshold, the cache replacement module
chooses a least recently used cache line to evict.

Since using only a single LRU list can incur a huge overhead
when multiple threads are concurrently updating the list, we opti-
mize for this case by introducing multiple LRU lists to trade the
LRU accuracy for better performance. For each global memory
access, the parallel threads randomly choose one LRU list to up-
date; for each cache line eviction, one LRU list is randomly cho-
sen to guide the cache line replacement. The eviction workflow
depends on the cache line state, which can be either “Shared” or
“Dirty”. For the eviction of a “Shared” cache line, an eviction re-
quest is sent directly to the home node, after which the cache line
can be re-allocated for other data immediately. For the eviction of a
“Dirty” cache line, the owner node attaches a cache line copy to the
eviction request, and waits for an acknowledgement from the home
node before erasing the cache line. Thus, that cache line can still be
used to service requests issued before receiving the acknowledge-
ment.

2.7 Discussion
Although GAM significantly augments the memory area that can

be accessed by applications, it may still be the case that the total
memory consumption exceeds the global memory offered in GAM.
We leave this out-of-global-memory case as a future work of GAM,
and explore how recent advances in RDMA, such as ODP (On-
Demand Paging), can be leveraged for handling it.

3. RDMA-BASED IMPLEMENTATION
In this section, we describe how we take advantage of RDMA

networking to realize the cache coherence protocol described in
Section 2.2. The architecture of GAM is shown in Figure 5, where
the main module is the GAM coordinator, which implements the
cache coherence protocol, and is used to coordinate local and re-
mote memory accesses. There is one GAM master in the whole
system, which is only used for initialization and status tracking.
A unified memory model is exposed to upper-layer applications,
which can access the entire memory in the cluster without knowing
the actual location of the data.
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Figure 5: Architecture of GAM

3.1 Protocol Implementation
RDMA provides an efficient data transmission mechanism that

can bypass the CPU and OS to access remote memory directly.
However, a completely different transmission model (e.g., different
APIs, one-sided transmission) and explicit communication buffer
management, make it nontrivial to be employed effectively and ef-
ficiently. Basically, there are two sets of RDMA verbs that can
be used to initiate data transmission, i.e., READ and WRITE, and
SEND and RECEIVE. The READ/WRITE verbs are one-sided oper-
ations where only the requester is involved. The SEND verb, how-
ever, requires receiver side to post a RECEIVE verb to its receive
queue beforehand. Generally, the one-sided READ and WRITE
verbs perform better than the two-sided SEND/RECEIVE versions.
since the former involves no CPU or OS at the receiver side, while
the latter requires the receiver side to post RECEIVE verbs before-
hand, and get notified after receiving the messages. However, for
one-sided verbs, since the receiver does not get any notification, it
is difficult to figure out the completion of a data transmission.

To utilize the features of RDMA for various needs, we design
separate communication channels for control messages and data
transmission, respectively. The rationale behind is that control mes-
sages (e.g., READ/WRITE requests) are relatively small and require
instantaneous notification to the receiver, while data is transmit-
ted in large units (i.e., cache line). For control channels, we avoid
using RDMA WRITE verb and busy memory polling as in [14,
21], but resort to two-sided RDMA SEND/RECEIVE verbs. This
is because, busy polling will consume huge amount of CPU re-
sources in contrast to event-based mechanisms (e.g., epoll and se-
lect), and per-pair (sender/receiver) communication buffer would
take up much memory. In addition, our communication does not
always follow the request/reply pattern like key-value store, and
hence the updates on the communication buffer ring at the receiver
are difficult to be piggybacked to the sender. However, for the data
transmission with larger transmission volume, we adopt one-sided
RDMA WRITE to construct data channels. It allows to write di-
rectly to the final destination address, which is different from the
usage of a dedicated communication buffer [14, 21] that always
requires additional data copy between local memory and the regis-
tered communication buffer.

In addition, a special notification channel is implemented by us-
ing the RDMA WRITE_WITH_IMM with/without payload. For
pure notification communication, only the request identifier is em-
bedded into the header as the immediate value (32 bits) without
any payload, which is more efficient in both requester and receiver
sides [23]. If payload is also needed, the data channel and the notifi-
cation channel will be combined together such that the receiver will
get notified upon receiving the data. In most cases, the data channel
is combined with the notification channel to achieve both large data
transmission and efficient notification. We do not use READ verb
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as it is known to have worse performance than WRITE [21], and it
is difficult to guarantee data consistency in an efficient way [14].
For all communication channels, We use RC (reliable connection)
transport type, since we require reliable transmission and strict or-
derings of the messages.

The workflows described in Sections 2.3 and 2.4 are implemented
with the above three communication channels. The short control
messages, i.e., “request”, “forward” and “invalidate” messages, are
transferred over the control channel (RDMA SEND/RECEIVE),
while the “reply” and “writeback” messages are delivered over the
combined data and notification channel (RDMA WRITE_WITH
_IMM with payload). In addition, since the acknowledgements
(e.g., “ack” and “transfer”) only deliver success information, the
notification channel solely (RDMA WRITE_WITH_IMM without
payload) suffices for this purpose. Error replies still require the
control channel since the requester needs more feedback informa-
tion than a 32-bit immediate value.

3.2 Optimizations
We introduce below optimizations which exploit special features

of RDMA to further improve GAM’s performance.
Due to the limited size of the on-NIC cache, it is important to

keep, as small as possible, the data needed by RDMA NIC, which
typically include the page table, queue pairs and receive queues. To
that end, we first organize the memory exposed for remote access
as huge pages to reduce page table entries and in turn TLB (trans-
lation lookaside buffer) misses. In addition, all threads within one
node share the same set of RDMA connections (i.e., queue pairs),
which reduces the total number of queue pairs to n2 (where n is the
number of nodes in the cluster) in contrast to n2×t2 (t is the num-
ber of threads in each node), if every thread is connected directly
with each other. This reduction in the number of queue pairs does
not impair the throughput. As we have measured, one queue pair
for each node suffices to saturate the RDMA NIC. Furthermore, for
each node, we use only one shared receive queue which is shared
among all associated queue pairs. This way, we not only reduce
the state information that the NIC has to maintain, but also reduce
the RDMA RECEIVE verbs that need to be posted beforehand.

To reduce the CPU overhead, selective signaling technique is
used for the notification of completion. In particular, RDMA verbs
are signaled every r requests, reducing the number of completion
notifications and cleanup routines (e.g., free the send buffer) by
r×, which, as tested, leads to a significant performance improve-
ment. To further reduce the network communication overhead, we
use RDMA inline technique to send small payload directly via PIO
(Programmed Input/Output) whenever possible to eliminate the ex-
tra DMA round trip via PCIe. The buffers used for inlined requests
do not need to be registered beforehand, and can be re-used imme-
diately after posting. This especially benefits the control channel,
since its payload size is usually small enough to be inlined.

To exploit sharing opportunities among requests, we merge mul-
tiple small packets into one large packet while keeping the strict
packet ordering. What is more, as mentioned in Section 2.5, in
order not to send duplicated requests, we add all requests for the
same cache line to a pending list, and process them one-by-one in
the order they were issued.

4. MEMORY CONSISTENCY MODEL
There are a wide spectrum of memory consistency models, rang-

ing from the strong consistency models (e.g., strict consistency and
sequential consistency) to some relaxed ones (e.g., total store order
(TSO), partial store order (PSO) and release consistency). Basi-
cally, the consistency models depend on the degree to which the

order of global memory accesses is relaxed. Since there are only
two types of memory access: Read and Write, there are totally four
memory access orderings3: Read-After-Read, Read-After-Write,
Write-After-Read, Write-After-Write, and relaxing different order-
ing leads to different memory consistency. For example, relax-
ing Read-After-Write to allow reads to return earlier than older
writes leads to TSO, and further relaxing Write-After-Write results
in PSO. Allowing reordering all four memory access orders yields
release consistency.

Stronger consistency makes it easier to reason about memory
access and decrease the programming complexity and debugging
difficulty. Ideally, we can minimize the burden on users in pro-
gramming with the unified memory model by enforcing strong con-
sistency, such as sequential consistency or even strict consistency.
However, although RDMA has already made network latency much
less of a concern than before, enforcing strong consistency still in-
curs an unaffordable remote memory access latency as it requires
both reads and writes to be performed synchronously. We hence
first relax the Read-After-Write ordering to allow asynchronous
Write and remove the Write from the critical path of program
execution.

Our next decision is to further relax the Write-After-Write or-
dering. If we were to keep this ordering and hence provide TSO
consistency, we need to issue the background write requests such
that each write request can be issued only after all earlier requests
have been completed, which means that the request node has been
granted with all necessary write permissions. This substantially re-
duces the opportunity of write request coalescing and in turn incurs
higher network overhead. Moreover, in this case, an overloaded
node would block the following write requests to other nodes and
slow down the entire system. As such, we relax the Write-After-
Write ordering to permit a write request to be made visible before
the earlier write requests.

Although the relaxation on the Read-After-Write and Write-After-
Write ordering also relaxes the memory consistency of GAM, the
programming complexity and program correctness do not get much
affected as most programmers are familiar with the programming
model of asynchronous writes (e.g., file IO), and the correctness of
most programs does not rely on writes. Further relaxing the other
two ordering, however, would result in a completely asynchronous
programming model, which significantly increases the complexity
and difficulty of programming.

Therefore, GAM provides PSO consistency by relaxing the Read-
After-Write and Write-After-Write ordering, and hence employs a
programming model of synchronous read and asynchronous write
that most programmers are familiar with. To do so, a worker thread
is dedicated to handling all requests from application threads. After
issuing a Read request, the application thread will be blocked until
the worker thread has fetched requested data into the given buffer.
On the other hand, after issuing a Write request, the application
thread immediately returns without waiting for that request to com-
plete. Stronger consistency can be easily enforced, by using the ex-
plicit synchronization primitives (e.g., MFence, Lock/UnLock)
that will be discussed in the next section. For example, sequential
consistency can be easily achieved by inserting MFence follow-
ing each Write operation. Lock primitives also facilitate the re-
alization of application-level serializability (e.g., transactional se-
rializability achieved by our transaction engine illustrated in Sec-
tion 7.2).

3In the context of GAM, the memory access order is exactly the
program order that the Read/WriteAPIs are called; the compiler
will not reorder these calls as GAM is provided as a library which
is linked to upper-level applications during runtime.
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4.1 Synchronization Operations
In order to achieve a stronger consistency for higher-level ap-

plications, we provide two sets of explicit synchronization opera-
tions – memory fence (i.e., MFence), an operation analogous to
the MFence operation in x86 instruction set, and distributed Lock
operations, including shared lock, exclusive lock and their try-lock
variants. A Lock operation is an implicit memory fence. For
each Lock and MFence operation, its following operations will
be pended until all previous operations have been completed by
the worker thread. In addition, GAM also provides Atomic op-
erations, which perform a given function against a global address
atomically. For each Atomic operation, the worker thread con-
siders it as an implicit write operation to the given address and
hence tries to grasp the respective write permission. Thereafter,
the worker thread calls the given function against that address.
Lock operations provide a natural synchronization mechanism

for programmers to coordinate the data accesses in the shared mem-
ory environment. In our current design, lock and data are cou-
pled together, and distributed locks across nodes hence have the
same granularity as data sharing, i.e., a cache line, meaning that
data in the same cache line shares the same lock. A Lock op-
eration prefetches the requested cache lines into local cache and
makes the request node become either a sharing node (in the case of
RLock) or the owner node (in the case of WLock), making subse-
quent Read/Write or Unlock operations on the same cache lines
free from extra network communication. Similarly, if the request
node has already been granted with appropriate permission for the
requested cache lines, the Lock operation can then be serviced
locally. In this sense, Lock operations, like their Read/Write
counterparts, can also be cached.

In addition, blocking Lock operations are implemented in a queue-
based manner rather than repeated requesting over RDMA, which
may overflow the network. By queue-based locking scheme, after
the Unlock operation, we will choose the head node of the lock-
waiting queue to grant the lock permission. However, TryLock
operations are not queued; instead lock failure will be returned im-
mediately if others are holding mutually exclusive locks. Some
undo procedure and special handling are needed upon lock failure
in order to maintain a consistent state, as it may involve multiple
nodes, and it is possible that only one node rejects to grant the lock
while others agree. We omit the description of the communication
workflows for the shared or exclusive Lock operations, as they
are similar to their corresponding Read (Figure 3) or Write (Fig-
ure 4) counterparts, respectively, except that some lock semantics
are needed after acquiring the data.

Notice that the data in the same cache line share the same lock
across nodes, so the blocking Lock operations may cause unex-
pected deadlock in, for example, some complex transaction pro-
cessing applications. So non-blocking lock primitives are recom-
mended in these applications, unless it is guaranteed to follow a
certain order in the lock acquisition phase in all the processes. We
intend to provide a fine-grained locking mechanism by decoupling
the lock and data in the future.

5. LOGGING AND FAILURE RECOVERY
In this section, we design a logging scheme for GAM and show

how it can be used for failure recovery.
There are two types of logging: DLOG and OLOG, which re-

spectively log data writes and ownership transfers. As shown in
Figure 4, DLOG is called by request nodes before writing data to
memory/cache, and OLOG is called by home nodes before each
ownership transfer. In addition, when acquiring an exclusive lock,

the request node also calls DLOG to log the cache line which is
prefetched along with the lock acquisition. We avoid logging data
writes resulted from read requests which simply copy a cache line
from the owner node; this helps reduce logging overhead, and does
not affect failure recovery, as shown below. In addition, each log
entry also includes a counter which is incremented upon each own-
ership transfer. In order to minimize the performance degradation
incurred by logging, we rely on a NVRAM to accommodate the
in-memory log, and asynchronously spill the content to SSDs/hard
disks when the log is about to be full.

We shall now explain how the log can be used for failure recov-
ery. We first consider the single failed node case, and then discuss
the case of multiple failed nodes. For the sake of discussion, we
assume each data write overwrites an entire cache line, and hence
each DLOG entry also logs an entire cache line, which allows to
recover the content of a cache line from a single DLOG entry. This
assumption can be relaxed in the implementation without much en-
gineering effort.

When detecting nf fails, all non-failed nodes would remove nf

from all share lists where nf appears such that nf would not be
a sharing node of any cache line. Thus, the data recovery only
needs to process the data for which nf is the home node or the
owner node. We logically divide data recovery into two phases,
which in practice can be performed in parallel. In the first phase, nf

recovers the data for which it is the home node, and in the second
phase, each of those non-failed nodes recovers its dirty cache lines
that are owned by nf . During the recovery process, the locks that
are currently held by non-failed nodes should be reserved in order
for the applications running on those nodes to proceed. After data
recovery, we shall show how to restore the directory for the cache
lines of nf that are currently locked by other nodes.

In the first phase of data recovery, nf performs a reverse log
scan, and makes use of each log entry that corresponds to an unre-
covered cache line. For each such entry e, if it is logged by DLOG,
nf will directly use the content of e to restore the corresponding
cache line c. Otherwise, nf will ask the owner node of c to vali-
date whether the counter of its most recent write of c is same as the
value recorded in e. If yes, then nf will promote that node as the
owner of c, and accordingly update the cache directory. Otherwise,
nf logs an UNDO entry to invalidate e. This happens when, for ex-
ample, in the scenario of Figure 4c, the home node nh crashes after
OLOG. In this case, failing to receive the acknowledgement, the
request node nr will never perform DLOG, leading to mismatched
counters between nr and nf . It should be noted that each cache
line will experience at most two recovery trials, since its second to
last undone log entry is always valid.

The second phase is similar to the first one. For each dirty cache
line owned by nf , a non-failed node asks nf to validate whether
its most recent write of that cache line is consistent with the current
counter. Depending on the validation result, this node will either
promote nf as the owner node or resort to the second to last undone
log entry which it logged for that cache line.

After the data have been recovered, the cache lines of nf that
were previously “Shared” before the failure of nf have been changed
to “Dirty” or “UnShared”, which means the shared locks on those
cache lines acquired by other nodes have been implicitly released.
As a result, we need to restore the directory for those cache lines.
To that end, after data recovery, each non-failed node notifies nf

of the cache lines that nf previously shared with it. For each such
cache line, nf will read the content from the current owner node (if
possible), change its status to “Shared”, and finally update its share
list accordingly. We do not need to recover the exclusive locks,
since as mentioned, each exclusive lock acquisition corresponds to
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a DLOG entry, and hence the lock holder will always be promoted
as the owner of the respective cache line.

The above recovery process can be applied to the case where
multiple nodes fail simultaneously. In that case, the recovery pro-
cess is deferred until all failed nodes become online and then per-
formed for each of them in parallel. The process is analogous to
the case of single node failure. Specifically, each failed node first
recovers cache lines for which it is the home node from itself and
non-failed nodes. This leaves unrecovered the cache lines whose
home node and owner node are two different failed nodes. We
defer their recovery to the second phase during which each failed
node recovers its owned cache lines and hence restores the cache
structure.

6. APPLICATIONS
In this section, we demonstrate how to develop applications us-

ing GAM via two examples: a transaction engine and a distributed
hash table (DHT).

6.1 Transaction Engine
The shared memory model makes it easier to implement a dis-

tributed transaction engine by hiding the complicated network com-
munication, and hence allows developers to focus only on the core
single-node transaction processing logic. Basically, every transac-
tion processing node has a root entry for the global index whose
pointers are global addresses, so that it can access all tables by
traversing the global index using the Read and Write APIs. For
transaction processing protocol, we simply adopt the traditional
two-phase locking (2PL) by using TryRLock/TryWLock APIs.
We do not rely on two-phase commit (2PC) like protocol to achieve
distributed consensus, since at the time a transaction is ready to
commit, data is already acquired by the request node. By utilizing
the Lock synchronization primitives, which issues MFence im-
plicitly, we can achieve serializability easily under the PSO consis-
tency model provided by GAM. Our transaction engine can avoid
the 2PC overhead naturally, as a result of the unified memory model
provided by GAM, and completely eliminates the complexity of
data transmission in the application layer.

6.2 Distributed Hash Table
Based on the shared memory model provided by GAM, a DHT

can be implemented as a distributed array of buckets wrapped across
multiple nodes. Specifically, each GAM node is responsible for a
subset of 64-bit key space, and the mapping between a key and its
resident node is determined by the highest bits. In each bucket,
there are multiple 12-byte entries and an overflow pointer to handle
hash conflicts and enhance occupancy of the hash table. Each hash
table entry contains a 12-bit tag extracted from the lowest 12 bits
of the key to distinguish between keys in the same bucket, a 20-bit
integer recording the size of the indexed key-value pair, and a 64-
bit pointer pointing to the global address where the key-value pair
is stored. In this way, unlike traditional DHT where hash tables
and their indexed key-value pairs are collocated within the same
physical node, our DHT implementation decouples key-value pairs
from their indexing entries, and hence is able to not only reduce
the cost of DHT updates (can re-allocate locally regardless of the
original mapping), but also automatically balance the load of nodes
in GAM.

7. PERFORMANCE EVALUATION
This section presents a performance study of GAM. We first in-

troduce the settings for the experiments, and then conduct a micro
benchmark and a macro benchmark to thoroughly profile GAM.

Table 3: Workload parameters

name definition
read ratio the percentage of Read/RLock

remote ratio the percentage of remote accesses
spatial locality the probability of an operation accessing

a same cache line as the previous one
sharing ratio the percentage of operations that

access data shared across all nodes

The experiments are conducted on a cluster of 20 Supermicro 6018R-
MiT 1U servers, each of which is equipped with a 3.5GHz quad-
core Intel Xeon E5-1620 V3 CPU, 32 GB DDR3 memory and
a 40 Gbps Mellanox MCX353A-QCBT InfiniBand adapter con-
nected to a 40 Gbps Intel True Scale Fabric 12300 switch. These
servers run an x86 64 Ubuntu 14.04 with a linux 3.13.0 kernel. The
InfiniBand adapters are driven by Mellanox OFED 3.2-2.0.0.0. We
also enabled the IPoIB Protocol which we rely on to run experi-
ments for systems built atop traditional TCP/IP protocol stack.

7.1 Micro Benchmarks
We deploy GAM on 8 nodes. Each node contributes its free

memory to the global space, and employs a LRU cache which is
configured to accommodate roughly half of its own working set
(i.e., the objects accessed in the workload). For benchmark, each
node launches a process to independently generate three types of
workload: R/W, RL/WL and RL+R/WL+W. The R/W and RL/WL
workloads respectively consist of Read/Write and RLock/WLock
operations. The RL+R/WL+W workload is a combination of the
other two workloads where each Read/Write is issued after ac-
quiring the corresponding lock. Each operation in the workloads
accesses an 8-byte object in the global memory. For the two lock
workloads, each accessed object is unlocked at the end of the re-
spective operation. The access pattern of the workloads is con-
trolled via four parameters: read ratio, remote ratio, data locality,
and sharing ratio, whose definitions are given in Table 3. Basically,
the remote ratio and data locality jointly control how the accessed
objects are distributed among the entire global memory space. The
sharing ratio determines the confliction between 8 benchmark pro-
cesses. By default, the objects accessed by each benchmark pro-
cess are randomly distributed among the whole global space (i.e.,
remote ratio = 7/8 and data locality = 0), and do not overlap with
those of other processes (i.e., sharing ratio = 0).

For comparison, we use two baselines, Argo [24] and GAM-
TSO. GAM-TSO is a variant of GAM which appends a MFence
operation to each write to disable write reorder and hence enforce
TSO consistency model. We compare GAM against Argo [24]
and GAM-TSO in terms of the throughput achieved under different
workloads. Since GAM-TSO only affects the processing of write
requests, its lock throughput is the same as GAM, and hence omit-
ted. For each system, we run the benchmark four times for each
workload parameter configuration. The first run is used to warm up
the cache, and the result of the other runs is averaged for report.

7.1.1 Read Ratio
We first study how the read ratio affects the performance. As

shown in Figure 6a, when there is no remote access, i.e., remote
ratio is 0%, read ratio has no effect on the performance of GAM and
GAM-TSO. The performance gap between the R/W workload and
the lock workload of the two GAM systems is due to the additional
overhead incurred by lock operations to enforce lock semantics.

When there are full of remote accesses (remote ratio = 100%),
due to the limited cache size, some of the read/write requests can-
not be absorbed by the cache layer of the two GAM systems, which
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Figure 6: Read Ratio
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Figure 7: Remote Ratio

hence leads to inter-node communications and significantly reduces
the throughput of GAM and GAM-TSO. However, unlike the case
of 0% remote ratio, GAM now performs much better (60%) than
GAM-TSO when write requests are majority. This can be attributed
to two features enabled by the PSO consistency model: 1) each
GAM node can have multiple write requests being processed si-
multaneously, which improves the utilization of network resource
and reduces CPU idle time, compared with TSO consistency, and
2) PSO allows a cache-hitting write request to be completed before
an earlier cache-missing write request, which can improve cache
hit ratio by effectively avoiding evicting cache lines that will be ac-
cessed in near future. As we observed, in the write workload, GAM
achieves a cache hit ratio of 80%, which is 60% higher than that
of GAM-TSO. When read requests start to dominate, the perfor-
mance gap between GAM and GAM-TSO gradually shrinks due to
the synchronous processing of read requests, and finally vanishes at
100% read ratio where the read/write performance of both systems
converges to the lock performance.

For global memory allocation, Argo interleaves the physically
allocated memory among all nodes, but provides no support for al-
tering this behavior. Hence, the working set of each node is always
evenly distributed among the cluster, However, since Argo does
not allow to configure the cache size, each Argo node will cache
all the working set after the first warming-up run, and is thus able
to process each read/write request without incurring network com-
munication in the following runs. Therefore, it makes little sense
to compare the read/write throughput between Argo and GAM, and
we thus omit the discussion of this comparison throughout the en-
tire section. For the lock workload, Argo’s performance is four or-
ders worse than that of GAM and GAM-TSO. This evidences that
Argo is only suitable for data-race-free applications, but will result
in significant performance issues when applied to applications with
medium-to-high data race, as will be shown in Section 7.3.

7.1.2 Remote Ratio
Figure 7 gives the throughput that GAM and GAM-TSO achieve

under various remote ratios. Argo’s result is not available since it

is unable to adjust the remote ratio of the workloads for Argo. As
shown in Figure 7, for both GAM and GAM-TSO, the performance
of each workload only slightly degrades when the remote ratio in-
creases from 0 to 50%, and then drop significantly thereafter. This
is because as mentioned, the cache at each node can hold roughly
half of its working set, and thus, when the remote ratio ≤ 50%,
each node is able to cache all remote data in its working set after the
warming-up run. Therefore, the initial slight performance degrada-
tion is due to increasing accesses of cache-related data structures,
and the following sharp degradation is because of cache misses and
their incurred inter-node communications.

For the write workload (Figure 7a), the cache miss incurred per-
formance degradation of GAM is much smaller than that of GAM-
TSO. As explained before, this is because the PSO consistency al-
lows parallel, reordered processing of write requests. The write and
the lock performances of GAM-TSO keep overlapping with each
other since the remote ratio exceeds 50%. This is because both
types of requests are processed sequentially in GAM-TSO, and in-
cur additional overhead to respectively enforce memory fence and
lock semantics. Without memory fences involved, read workloads
are processed in exactly the same way for both GAM and GAM-
TSO, and hence the same performance is achieved.

7.1.3 Data Locality
In this experiment, we study how data locality, which is the key

performance booster for systems with caching, affects the perfor-
mance of GAM and the two baseline systems. The result is shown
in Figure 8, where the effect of temporal locality is omitted since it
is similar to that of spatial locality.

With higher data locality, both of the read/write and the lock per-
formance of the two GAM systems can be substantially improved
due to higher global cache hit ratio. Argo’s read/write performance
also benefits from higher locality. Unlike GAM, Argo’s perfor-
mance improvement results from higher utilization of CPU cache,
as Argo can always cache the entire working set after the initial
warming-up run, and hence achieve a 100% global cache hit ratio.
The lock performance of Argo is bottlenecked by costly synchro-
nizations, and is thus insensitive to data locality.

The performance gap between the write and the lock workloads
of GAM exhibits an interesting trend with respect to data locality:
it gradually diminishes until vanishing at 60% data locality, and
starts to enlarge since then. This is because, as aforementioned, for
the write workload, the PSO consistency enables GAM to achieve
a high cache hit ratio even in low-locality cases. Hence, the write
workload cannot benefit as much as the lock workload from im-
proved data locality, which explains the initial diminishing of their
performance gap. From 60% onwards, GAM achieves the same
cache hit ratio for both the write and the lock workloads. However,
since the write workload can exploit CPU cache more effectively
than the lock workload, it can benefit more from further increase of
data locality. For GAM-TSO, its write performance is similar to the
lock performance, which can also be observed in the remote ratio
experiment, and attributed to the same reasons mentioned therein.

7.1.4 Sharing Ratio
Sharing ratio is one of the most sensitive factors to the perfor-

mance of GAM, as data accesses (especially write-related opera-
tions) to the shared data may cause frequent inter-node commu-
nications, which will offset the performance gain drawn from the
distributed cache. In this experiment, we set the read ratio to 50%
to stress the GAM systems since there will be a lot of invalidations
generated.

1612



GAM R/W GAM RL/WL TSO R/W Argo R/W Argo RL/WL

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 0  20  40  60  80  100

T
o
ta

l 
T

h
ro

u
g
h
p
u
t 
[M

/s
]

Spatial locality

(a) Read ratio = 0%

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 0  20  40  60  80  100

T
o
ta

l 
T

h
ro

u
g
h
p
u
t 
[M

/s
]

Spatial locality

(b) Read ratio = 100%

Figure 8: Data Locality
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Figure 9: Sharing Ratio

For Argo, its read/write performance is not influenced by the
sharing ratio, since Argo is able to cache the entire working set
locally and incurs no synchronization while performing the R/W
workload. Due to added cache invalidations, one may expect the
performance of the two GAM systems to constantly deteriorate
with higher sharing ratio. Interestingly, this is not the case. As
shown in Figure 9a, the performance of the two systems experi-
ences an obvious improvement during the initial increase of the
sharing ratio. This is because of improved cache exploitation. Specif-
ically, in the cases of small sharing ratios, the shared cache lines are
less frequently accessed than other cache lines, and thus are better
candidates for eviction. As a result, when those shared cache lines
are invalidated by conflicting write operations, the cache efficiency
is essentially improved!

In order to verify the above claim, we increase the cache size of
GAM nodes such that the cache can hold the entire working set.
As shown in Figure 9b, for the two GAM systems, the through-
put now, as expected, constantly decreases with higher sharing ra-
tio, due to more incurred invalidations. By comparing Figure 9a
and 9b, we can also estimate how cache size affects GAM’s per-
formance. When there is no sharing access, the performance of
the GAM systems is very sensitive to cache size: compared to the
default case (Figure 9a), doubling the cache size can improve the
performance of GAM and GAM-TSO by 4x and 6x, respectively.
However, when the sharing ratio is high (e.g., ≥ 40%), the perfor-
mance of the GAM systems is bottlenecked by the invalidations,
and cannot be improved by larger cache space.

7.1.5 Scalability
For this experiment, we investigate how the performance of each

system varies with the number of nodes involved in global memory.
As in previous experiments, the working set of each node is uni-
formly distributed among the entire global memory. Consequently,
in the default setting of cache size, the remote ratio, (N − 1)/N ,
varies with the number of nodes N . In order to exclude the effect
of the changing remote ratio, we configure the cache size such that

GAM R/W GAM RL/WL TSO R/W Argo R/W Argo RL/WL
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Figure 10: Scalability

each node is able to cache its entire working set locally. The read
ratio is set to 50%, and two sharing ratio configurations are chosen:
0% for invalidation-free case and 50% for invalidation-heavy case.

Figure 10 presents the performance of different systems under
the above workload configurations. As shown in this figure, the
two GAM systems can scale almost linearly when there is no shar-
ing access, which is obvious since no invalidation is generated,
and each node can have all its working set locally cached after
warming-up. Strangely, Argo does not scale well in this case, al-
though each node can also cache the entire working set and incur
little overhead for cache coherence. In the case of 50% sharing ra-
tio, the performance of the GAM systems does get impaired due
to frequent read/write confliction and the incurred invalidation. On
the other hand, the degree of performance degradation of the GAM
systems is slightly alleviated as more and more nodes are added.
This is because a home node, upon receiving a remote write re-
quest, can send the invalidations to all the sharing nodes simultane-
ously, which improves network utilization.

7.2 Distributed Transaction Processing
In this experiment, we use TPC-C benchmark suite [43] to com-

pare the transaction engine of GAM against L-Store [27], FaRM [14]
and Tell [30]. L-Store tries to transfer all the data required by
a transaction to the request node to avoid the two-phase commit
(2PC), which has shown better performance than H-Store [22];
FaRM also provides the global memory, but only supports transac-
tional memory accesses that are based on 2PC; Tell uses an RDMA-
aware storage system, RAMCloud [36]), as the underlying dis-
tributed store, and is hence able to natively exploit fast RDMA
networking.

For this experiment, all data, including tables and indices, are
uniformly distributed in the global memory space of GAM, and the
transaction engine is UNAWARE of the underlying data distribu-
tion. But in order to study the distribution ratio in the experiment,
the transaction engine enables all the clients in the same warehouse
to issue transactions to the same server node and access the data in
other server nodes with a probability controlled by the distribution
ratio. It should be noted that we do not use this extra application
knowledge to optimize the transaction processing of GAM, such as
co-partitioning data and index, or replicating read-only data4.

We only run the new-order and payment transaction procedures
of the TPC-C benchmark suite, as all the other three transaction
procedures are local. We deploy all the systems on 8 nodes, with
4 threads in each node. For Tell, the cluster setups are: 5 proces-
sor nodes, 2 storage nodes and 1 node for the commit manager.
For FaRM, we implement their protocol in our GAM code base,

4Unless otherwise specified, we also do not employ these optimiza-
tions in the transaction layer for other systems.
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Figure 11: TPC-C Benchmark

as their source code is not available5; for L-store and Tell, we run
their open-sourced codes to obtain the performance results. As we
can see, GAM performs the best under different distribution ratios,
but its performance converges to that of FaRM when the distribu-
tion ratio is high (e.g., more than 70%). Actually, we find that
the default TPC-C workload represents the worst case for GAM,
since TPC-C benchmark is write-intensive, and most of the work-
ing set will be shared due to its non-uniform access pattern, which,
as shown in Section 7.1.4, would lead to a lot of cache invalidation,
especially in cases with a high distribution ratio.

FaRM does not perform well when distribution ratio is low, which
is mainly due to the fact that there is still some data (e.g., ITEM ta-
ble) that cannot be co-partitioned with other tables (e.g., STOCK
table) , even though we have already manually co-partitioned the
index for FaRM6. L-Store performs well when there are few dis-
tributed transactions, but its performance drops significantly even
when there are only a small amount of distributed transactions,
which is mainly because of the network overhead in L-Store. Specif-
ically, L-Store uses traditional TCP/IP sockets for message deliv-
ery, and in order to make it work with our InfiniBand network
adapters, we run L-Store over the IPoIB protocol, which, however,
incurs a lot of protocol overhead. We do not modify L-Store to use
native RDMA verbs due to the completely different APIs between
TCP/IP sockets and RDMA verbs. The performance of Tell does
not change with distribution ratios, since its storage is decoupled
with the transaction engine, leading to each data access to be ful-
filled via RDMA networking.

We further analyze the performance on TPC-C with the varied
read ratio and temporal locality. The read ratio is set as the prob-
ability to change a write on a record to a read in the running pro-
cedures; the temporal locality is set as the probability to access a
data item in the last transaction when generating the access item set
for the current transaction. As shown in Figure 12a, when we in-
crease the read ratio, the performance of GAM is improved gradu-
ally. When all transactions are read-only, the performance remains
almost unchanged with increased distribution ratios. In contrast,
larger read ratio leads to a much less improvement in the perfor-
mance of FaRM than that of GAM, and does not change the per-
formance of L-Store at all since L-Store has the same strategy for
both read and write operations. A similar trend is also observed
for temporal locality, which is more beneficial to GAM than oth-
ers, as shown in Figure 12b. Even though L-Store adopts similar
“caching” idea as GAM and eliminates the 2PC overhead, its per-
formance cannot be improved significantly with increasing tempo-
ral locality in the presence of distributed transactions, as a result

5The performance results are consistent with the published re-
sults [15] with a larger cluster of higher-end servers.
6This is the extra bonus to FaRM, as we do not optimize for GAM.
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Figure 12: TPC-C Benchmark – Analysis

of its inefficient network communication7. We do not show the re-
sult for Tell, as its performance does not change with these factors.
In conclusion, with these cache-friendly characteristics (i.e., high
read ratio and temporal Locality) in the workload, GAM performs
significantly better than others.

7.3 Distributed Hash Table
We compare our GAM-based DHT implementation with the DHT

implementations built on top of other RDMA-based shared mem-
ory frameworks, including Grappa [35] and Argo [24]. We use
these DHTs to run the YCSB benchmark [12] over 8 nodes. The
Zipfian distribution parameter of the YCSB benchmark is set to the
default value, 0.99. The results with varied get ratios and number
of threads8 are shown in Figure 13.

It is obvious that GAM-based DHT is superior to Grappa-based
DHT in all scenarios. For update-heavy workloads, GAM-based
DHT performs 0.4-2.2x better than Grappa-based DHT. With in-
creasing get requests in the workload, thanks to the existence of
cache in GAM and its elimination of remote accesses, the through-
put of GAM-based DHT is significantly improved. In contrast,
since Grappa does not employ any cache mechanism, the major
cost for both types of requests (i.e., get and put), is spent in remote
accesses, leading to the same throughput for both the update-heavy
and read-heavy workloads. Consequently, the performance gap be-
tween the two DHTs enlarges substantially with the increase of the
get ratio, and approaches 22x in the scenario with four threads run-
ning pure get workloads.

As shown in the figure, Argo-based DHT performs not so well in
all scenarios. This is because Argo optimizes for data-race-free ap-
plications and exploits coarse-grained synchronization primitives
in the critical sections which incur a huge overhead at synchro-
nization points. Specifically, when acquiring or releasing a lock,
Argo will invoke a heavy-weight acquire/release procedure
that updates the status of all the cached data. Since each node of
Argo maintains a read list and a write list for each cache line for
which it is the home node, a request node, upon acquire, will
instruct each home node to remove itself from all respective read
lists. For release, as we have mentioned, each node needs to
write back the dirty cache lines to the home nodes. Since DHT is a

7Even at 100% temporal locality, there are still some remote data
accesses as the temporal locality is based on the last transaction, if
the current transaction has a larger item set than the last one, it can
introduce new data items.
8Since Grappa is single-threaded, we increase the number of in-
stances per node using MPI rather than the number of threads inside
one instance.
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Figure 13: Single-node DHT performance with varying number of
threads

data-race-frequent application which requires locking for each key
lookup, the high overhead incurred by the synchronization signif-
icantly impairs the performance of Argo. Compared with Argo,
GAM is efficient to implement such applications because of its
fine-grained synchronization primitives which support locking op-
erations on object level, and are more light-weight by avoiding the
node-wide synchronization in Argo.

8. RELATED WORK
Providing a unified memory model abstracted from physically

distributed memory has long been researched. Due to slow network
access, traditional systems [4, 7, 26, 40] typically employed re-
lease consistency [1] to amortize network latency with larger mes-
sage size at synchronization points by requiring dirty data to be
made visible only at the next release. An efficient implementa-
tion of release consistency is given in [26] for loosely coupled net-
worked clusters. TreadMarks [4] presented a lazy release consis-
tency model to reduce the cost of synchronization by flushing dirty
cache in an on-demand manner, while Cashmere-2L [40] relied on
a customized network to achieve the same purpose. Munin [7] al-
lowed more flexibility on the enforcement of the consistency model
at a cost of manual annotations. The release consistency employed
in these systems renders them more appropriate for data race free
applications due to the high synchronization cost, while GAM, by
exploiting RDMA to enforce cache coherence, is suitable for a
much wider range of applications. Some other works [16, 17]
organize the distributed memory as a cache layer of local disk to
reduce slow disk accesses, which is different from the global mem-
ory model as provided in GAM. In addition, there were several
works [3, 8, 9, 11, 49] providing the global memory abstraction at
the language level, which however imposes a burden of learning a
new language on users.

There are recent interests in distributed memory management
with RDMA [39, 24, 14, 2, 35, 30, 5]. DSPM [39] is an RDMA-
aware distributed shared memory which leverages non-volatile mem-
ory (NVM) to provide data persistence. Argo [24] designed a set of
relaxed cache coherence protocols based on RDMA-aware MPI [29]
to reduce the synchronization overhead of enforcing release consis-
tency in global memory space. Both of DSPM [39] and Argo [24]
still require users to manually call synchronization primitives for
data consistency, which can incur a significant overhead in the pres-
ence of data contention, as we have shown in Section 7.3. Sinfo-
nia [2] and FaRM [14] used two-phase commit protocol to pro-
vide transaction support for global memory operations. GAM does
not provide such a support, but provides a set of synchronization
primitives to allow users to build transactional applications. As
we show in 7.2, transaction engines on top of GAM can bene-
fit from the cache coherence protocol and convert the distributed
transactions into a local transaction, thus exhibiting better perfor-

mance than 2PC based protocols. Grappa [35] was designed for a
latency-tolerance tasking framework and a shared memory abstrac-
tion for irregular data-intensive applications with poor locality such
as graph analytics, and hence did not employ any caching mecha-
nism. In contrast, GAM is designed to be applicable to a variety
of applications with performance guarantee by exploiting data lo-
cality. Tell [30] and NAM [5] also proposed RDMA-based shared-
memory architectures. They decoupled query processing and data
storage into two separate layers, so that (1) each layer can scale out
independently and (2) there is no need to handle load imbalance
of data. However, like many other shared-nothing databases [22,
42, 41], such design is unable to exploit the data locality. GAM
addresses this limitation via an RDMA-optimized cache coherence
protocol, which can help to improve the performance for various
workloads as shown in Section 7.

RDMA has been used to improve the performance of various
distributed systems, such as distributed file systems [20, 47], by
enabling RDMA in the communication substrate. There have also
been many works on using RDMA to boost the performance of
database systems [25, 18, 46, 45]. The first two works [25, 18] used
RDMA to combine distributed memory together to augment mem-
ory budget for database systems. DrTM [46] combines RDMA
and HTM (Hardware Transactional Memory) to boost the perfor-
mance of distributed transaction processing. An RDMA-aware data
shuffling operator was designed in [28] for parallel database sys-
tems. Query Fresh [45] used RDMA to accelerate the shipment of
log records between the master and backup servers. In addition,
RDMA was also heavily exploited for key/value store [21, 33, 36].
RAMCloud [36] followed the classic design such that two-sided
Send verbs are used for request processing, which involves both
the client and the server. Pilaf [33] relieved the server from being
involved in processing of get requests by allowing clients to read
key/value pairs using one-sided RDMA Read verbs, and designed
a self-verifying data structure to avoid read-write race condition.
HERD [21] adopted a different design such that the server han-
dles all requests by polling pre-determined memory address where
incoming request will be written by clients via one-sided RDMA
Write verbs. These systems exploited RDMA for a single ap-
plication, whereas GAM is a generic distributed memory platform
which allows various applications to be built atop.

9. CONCLUSIONS
In this paper, we propose GAM, a distributed memory manage-

ment platform which provides a unified memory model abstracted
from the distributed memory interconnected with RDMA network.
Enabled by RDMA, an efficient distributed cache coherence pro-
tocol is designed and employed in GAM to exploit the locality
in global memory access. Based on the PSO consistency model,
Write operations are made asynchronous and pipelined, hiding
most of the latency incurred in the complicated write protocol. A
logging scheme is designed for GAM to survive node failures with-
out incurring much overhead. The transaction engine and DHT
built on top of GAM have demonstrated its strengths in terms of
programming simplicity, applicability and performance. With in-
creasingly faster networking, distributed memory sharing may hold
the key to future distributed computing.
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