Exploiting Coroutines to Attack the “Killer Nanoseconds”

Christopher Jonathan'"

Umar Farooq Minhas?

Justin Levandoski*

James Hunter?
Gor Nishanov*

fUniversity of Minnesota, *Microsoft
chonathan@cs.umn.edu, i{ufminhas, jahunter, justinle, gorn}@microsoft.com

ABSTRACT

Database systems use many pointer-based data structures, includ-
ing hash tables and B+-trees, which require extensive “pointer-
chasing.” Each pointer dereference, e.g., during a hash probe or
a B+-tree traversal, can result in a CPU cache miss, stalling the
CPU. Recent work has shown that CPU stalls due to main mem-
ory accesses are a significant source of overhead, even for cache-
conscious data structures, and has proposed techniques to reduce
this overhead, by hiding memory-stall latency. In this work, we
compare and contrast the state-of-the-art approaches to reduce CPU
stalls due to cache misses for pointer-intensive data structures. We
present an in-depth experimental evaluation and a detailed analy-
sis using four popular data structures: hash table, binary search,
Masstree, and Bw-tree. Our focus is on understanding the practi-
cality of using coroutines to improve throughput of such data struc-
tures. The implementation, experiments, and analysis presented
in this paper promote a deeper understanding of how to exploit
coroutines-based approaches to build highly efficient systems.

PVLDB Reference Format:

C. Jonathan, U. F. Minhas, J. Hunter, J. Levandoski, G. Nishanov. Ex-
ploiting Coroutines to Attack the “Killer Nanoseconds. PVLDB, 11(11):
1702-1714, 2018.

DOI: https://doi.org/10.14778/3236187.3236216

1. INTRODUCTION

Modern main-memory databases [14, 25, 26] store their data
completely in low-latency volatile DRAM (or non-volatile RAM).
Such a design removes the disk-1/0 bottleneck that has plagued tra-
ditional database systems for decades. However, main memory still
has a higher latency than CPU caches, so main-memory databases
suffer from a memory-access bottleneck [9,20]. The data structures
employed by many in-memory database systems are pointer-based,
e.g., a B+-tree [10, 19, 23] or a hash table. Consider a get(key)
operation on a B+-tree index used by a modern, in-memory key-
value store (KVS). Such an operation dereferences several point-
ers while traversing the B+-tree from root to leaf, resulting in the

*Work performed while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.

Proceedings of the VLDB Endowment, Vol. 11, No. 11

Copyright 2018 VLDB Endowment 2150-8097/18/07... $ 10.00.

DOI: https://doi.org/10.14778/3236187.3236216

1702

well-known issue of pointer chasing [16]. Each of these pointer
dereferences can stall the CPU, if the data being accessed is not al-
ready in the CPU cache. Furthermore, most of a given operation’s
CPU instructions and pointer dereferences are dependent on earlier
pointer dereferences, and thus cannot be issued in parallel. Conse-
quently, CPU memory-access stalls are a significant performance
bottleneck for any system (not just database systems) that relies on
pointer-intensive data structures [18,22]. Our goal is to study an
approach that uses coroutines to address this bottleneck.

Recently, many software-based prefetching techniques have
been proposed [12, 17, 18, 22] to mitigate CPU stalls due to main-
memory accesses. The main idea behind these techniques is simple,
yet very powerful. For multiple independent instruction streams
(e.g., a multi-get operation in an index [22]), one can issue mem-
ory prefetches, in parallel—thus exploiting memory-level hardware
parallelism. When one instruction stream is about to dereference a
memory pointer, it issues a software prefetch of the memory ad-
dress being pointed to and context-switches to the next independent
stream, resuming the original operation later. This effectively cre-
ates a distance between when a memory address is prefetched and
when it is actually dereferenced, making it highly probable that
when the memory is accessed, it will be available in a CPU cache.

To implement the above solution, many proposed techniques [12,
17, 18] require an almost complete rewrite of the existing code,
for example, by requiring the developer to hand-code a state ma-
chine [18]. In many cases, the synchronous version of the code
needs to be transformed into an asynchronous version. The result-
ing code looks very different from the synchronous version of the
same code, which is still the preferred choice [11]. Thus, in order to
get better performance, these approaches sacrifice code simplicity,
understandability, and maintainability.

To address the shortcomings noted above, an even more re-
cent approach to “interleaving” exploits stackless coroutines [22]—
which are also the focus of this work. A stackless coroutine is a
special function that can suspend its execution, returning control to
its caller, before it runs to completion. At a later time, after some
condition has been met, the caller can resume executing the func-
tion from its last suspension point. Stackless coroutines, referred to
as coroutines from this point onwards, provide an extremely light-
weight mechanism for switching contexts, with a suspend or re-
sume overhead comparable to the overhead of an indirect function
call (or return). Further, if a coroutine is inlined, this overhead is
zero. Thus, coroutines prove to be a highly efficient mechanism for
“interleaving.” Also, with coroutines, developers just need to spec-
ify suspension points within their synchronous implementation at
places where a cache miss is likely. The compiler automatically
generates the code needed to suspend and resume the operation—
saving and restoring the state of the operation, respectively. Thus,



in effect, coroutines allow the programmer to hide memory latency
without extensively rewriting code, as is required by existing tech-
niques [12,17,18].

Coroutines are an experimental feature in C++, implemented in
the Clang 6.0.0 [1] and 2017 Microsoft Visual Studio (MSVC) [6]
compilers. Coroutines are currently a Technical Specification; if
they are accepted as part of the upcoming C++ standard [7], they
will be available widely. Therefore, it is important to understand
their performance characteristics and how they apply to building
systems—one of the goals of this work.

We note that one of the key requirements to hide CPU stalls due
to memory accesses is the ability to “batch” (or group) multiple op-
erations against a data structure and issue them at once. Above, we
presented a “multi-get” operation against a B+-tree, or a hash table,
as an example. In [22], the authors present index joins for execut-
ing IN-predicate queries in SAP HANA as another example, where
the values in the IN-predicate list are synonymous to a multi-get
operation against the index. More generally, in multi-tenant cloud
environments, where many modern database systems operate, it is
possible to “batch” requests from multiple users and exploit “inter-
leaving” to improve performance.

We summarize this paper’s contributions as follows. We present
an in-depth experimental evaluation of coroutine-based approaches
to hide memory access latency. We implement multiple data struc-
tures that are commonly used in many systems, using coroutines,
and compare their performance with state-of-the-art techniques.
Specifically, we perform our evaluation on four different case stud-
ies, which can be grouped into two main categories: (1) basic
data structures, which include hash-index and binary search, where
we build on and expand the analyses presented in [18] and [22];
and (2) complex data structures, as used in the state-of-the-art in-
memory databases Masstree [21] and Bw-tree [19], where we be-
lieve we are the first to implement and evaluate these approaches.
Overall, this paper promotes a deeper understanding of how to ex-
ploit coroutines-based approaches to build highly efficient systems.

The rest of the paper is organized as follows: Section 2 pro-
vides background on software-based prefetching techniques. Sec-
tion 3 and Section 4 present an in-depth experimental evaluation
of coroutine-based techniques to hide memory stall latencies for
simple data structures and complex data structures, respectively.
These sections also present our analysis of every approach, both
at a micro-architectural and a macro level. Section 5 summa-
rizes our findings and further discusses the practical applicability
of coroutines-based approaches. Section 6 concludes the paper.

2. BACKGROUND & RELATED WORK

In-memory database systems commonly use pointer-based data
structures, rather than the page-based indirection found in disk-
based systems. These indexes are usually in the form of either hash-
based indexes—e.g., Redis [8] and RAMCloud [24]—or tree-based
indexes—e.g., Bw-tree [19], Masstree [21], and CSB™T-tree [23].
Generally, hash tables are better for point lookups, while trees are
better for range queries. Previous work [16] has shown that CPU
stalls due to main memory accesses are a significant performance
bottleneck for pointer-based data structures, on current hardware.
As aresult, multiple techniques have been proposed, in the last few
years, to address this bottleneck [12,18,22].

The main idea behind these techniques is to execute N opera-
tions on a pointer-based data structure at once (e.g., a multi-get op-
eration on a key-value store). Each operation o;, where 1 < ¢ < N,
issues a software prefetch of the memory that it is going to access.
But before actually accessing that memory (e.g., by dereferencing a
pointer), it does a context-switch to the next operation 0,41, rather

1703

Algorithm 1 GP-based Hash Index Probe

1: struct state { node; }
2: procedure HASH-PROBE-GP(input[], hash)

3: init value[input.length] /* output placeholder */
4 init state[input.length] /* state for each probe */
5 for idx = 0; idx < input.length; idx++ do
6: state[idx].node = hash.get(input[idx])
7. prefetch state[idx].node
8: end for
9: init num_finished = 0
10: while num_finished < input.length do
11: for idx = 0; idx < input.length; idx++ do
12: if state[idx].node == null then
13: continue
14: else if input[idx] == state.node—key then
15: value[idx] = state.node— value
16: state[idx] = null
17: num_finished++
18: else
19: state[idx].node = state[idx].node—next
20: prefetch state[idx].node
21: end if
22: end for
23: end while
24: return value[]

25: end procedure

than waiting for the memory it prefetched to arrive at the CPU
cache. By the time the process returns to o;, with high probabil-
ity, the prefetched memory will be present in CPU caches, and thus
o0; can continue its execution, avoiding a CPU stall.

Throughout the rest of this section, we present state-of-the-art
techniques that are tailored around the main idea of “interleaving”
different execution (or instruction) streams, to avoid CPU stalls. In
particular, we use the example of a hash index probe to show how
each approach tackles the problem.

2.1 Group Prefetching

Group Prefetching (GP) [12] is a loop-transformation approach
that rearranges N identical operations into M predefined code
stages. Then, each operation goes through the same code stage
at the same time, with overall execution interleaving between dif-
ferent operations. Once all /N operations finish executing the first
code stage, all NV operations move to the second code stage, and so
on until all NV operations have executed M code stages.

The main advantage of GP is that the code is written in a
“semi- synchronous” manner: GP code follows an operation’s syn-
chronous model, except that it executes the operation on IV keys in
parallel, rather than on one key at a time. As all /N operations ex-
ecute the same code stage before moving to the next one, GP does
not need to “remember” the stage that each operation is currently
executing. However, GP has two main disadvantages: (1) we need
to know the number of pre-defined code stages (/) in advance,
which is not always possible, and (2) if one of the /N operations ter-
minates early—e.g., because a condition has been met— GP can-
not start another operation in its place, because the new operation
would be executing a different code stage than the others. This
second disadvantage introduces many “no-op” operations into the
GP pipeline, hurting overall performance [18] when the workload
is skewed.

Algorithm 1 shows pseudocode for the GP approach for probing
a hash index. The input to the algorithm is a set of keys to be
probed, i.e., N keys, and the hash index. There are a total of 2



Algorithm 2 AMAC-based Hash Index Probe

1: struct state { key; node; value; stage; }
2: struct circular_buffer {
/* members */
:  function next_state() {...}
t}

3
4
5
6: procedure HASH-PROBE-AMAC(input[|, hash, group_size)
7.
8
9

init result_state[input.length] /* output placeholder */
init buff[group_size] /* circular buffer */
: init num_finished, i, j = 0
10: while num_finished < input.length do

11: state = buff.next_state()

12: if state.stage == 0 then  /* Initialize New Probe */
13: state.key = input[i++]

14: state.node = hash.get(state.key)

15: state.stage = 1

16: prefetch state.node

17: else if state.stage == 1 then  /* Access Node */
18: if state.key == state.node—key then

19: state.value = state.node— value

20: state.stage = 0

21: result_state[j++] = state

22: num_finished++

23: else

24: state.node = state.node—next

25: prefetch state.node

26: end if

27: end if

28: end while

20: return result_state[]

30: end procedure

code stages in hash index probing. In the first stage (Lines 5-8),
the algorithm applies the hash function to get the base node for
all N keys and then prefetches them. As noted earlier, the main
idea is that when we access the base node at a later time, with high
probability it will have been prefetched into the CPU cache. In
the second stage (Lines 10-23), the algorithm compares all IV keys
with the keys of the corresponding prefetched nodes. If a match is
found for a key or if there are no more nodes to be fetched, then
that operation terminates (early exit). For each unmatched key, the
algorithm issues a prefetch for the next node.

The main disadvantage of GP is that when an operation o; has
already found its payload, GP just switches from o; to the next op-
eration 0,41 without initializing a new operation (Lines 12-13). As
aresult, the number of code stages that GP executes for all /N oper-
ations is equal to the longest chain of nodes that an operation needs
to traverse, regardless of whether the other N — 1 operations have
finished. As we show later in the experimental section, GP works
well for data structures which have a regular access pattern, but not
for data structures with irregular (or skewed) access patterns.

2.2 Asynchronous Memory Access Chaining

Asynchronous Memory Access Chaining (AMAC) [18] trans-
forms a set of operations into a set of state machines, storing each
operation’s state in a circular buffer. An operation, right before
it stalls—e.g., after prefetching the next memory address—does a
context-switch to the next operation. By transforming operations
into a set of state machines, AMAC allows different operations to
execute different code stages at the same time. This is because the
circular buffer stores each operation’s current state. Furthermore,
once an operation terminates, we can immediately start another op-
eration, without waiting for other operations to terminate. How-

ever, the main disadvantage of AMAC is that transforming a syn-
chronous operation into a state machine requires a complete rewrite
of the code, and the resulting code does not look anything like the
original, “synchronous” version, hence, sacrificing code readability
and maintainability.

Algorithm 2 shows pseudocode for the AMAC approach for
probing a hash index. The group_size parameter, is the number of
concurrently executing instruction streams (or operations). AMAC
stores the context of each operation in a circular buffer, of size
group_size, where the algorithm loops through every operation in
the buffer and executes the relevant stage of each operation. There
are 2 main stages in the AMAC version of hash index probe. The
first stage (Lines 12-16) initializes a new probe for the next key
that the algorithm is going to probe. In this stage, AMAC applies
the hash function to the key to find the base node, issues a software
prefetch for the base node, and transitions to the next stage. The
second stage (Lines 17-27) compares the key with the prefetched
node’s key. If both keys match, AMAC starts a new probe in the
place of the current operation by transitioning to the first stage of
the algorithm. Otherwise, it issues a software prefetch for the next
node and switches to the next operation in the circular buffer. By
doing so, unlike GP, AMAC does not need to wait for every probe
operation in the circular buffer to finish before it starts a new probe.

2.3 Coroutines

A key requirement for efficient “interleaving” is that a context-
switch must take less time than a memory stall. Otherwise, switch-
ing contexts adds more overhead than originally imposed by the
memory stalls. This requirement renders many existing multi-
threading techniques useless, including light-weight, user-mode
threads, known as fibers [4] or stackful coroutines '.

As shown earlier, GP and AMAC satisfy this requirement by
carefully hand-coding highly-efficient code, which sacrifices devel-
oper productivity. However, synchronous programming is strongly
preferred as it is simpler to understand, hence easier to implement,
maintain, and debug [11].The key question becomes: how can we
achieve the high performance of GP and AMAC, while maintain-
ing high developer productivity? Coroutines, described below, use
the compiler to achieve the same high efficiency as AMAC, at a
fraction of the development cost.

A coroutine [13] is a “resumable function” that can suspend its
execution, returning to its caller before it completes. A coroutine
can be seen as a generalization of a subroutine: a subroutine is just a
coroutine that does not suspend its execution, and that returns to its
caller once it completes. When a coroutine suspends its execution,
it provides its caller a coroutine handle, which the caller can later
use to resume the coroutine’s execution.

A key feature of coroutines is that, by adding a bit of book-
keeping to coroutines’ suspend and resume hooks, the developer
no longer needs to put all code inside a single function. A corou-
tine can be called by another coroutine; and both the callee and the
caller can be suspended and resumed at multiple suspension points.
This feature allows the developer to add coroutines to existing code
quickly and easily, as we show later.

2.3.1 Using Coroutines in C++

While coroutines have been around for more than 50 years, they
are not yet a standard feature of C++. A coroutines specification for
C++ has been published by ISO [2] and is under review to become
part of the C++20 standard. As of this writing, coroutines support

!Stackful coroutines are up to 93% slower than stackless coroutines
on Windows.

1704



Algorithm 3 Coroutines-based Hash Index Probe

1: function HASH-PROBE-CORO(key, hash)
2: node = hash.get(key)
3 prefetch node
4: co_await suspend_always{ }
5: while node do
6: if key == node—key then
7 co_return node—value
8: else
9: node = node—next
10: prefetch node
11: co_await suspend_always{ }
12: end if
13: end while
14: co_return null

15: end function

is available as an experimental feature in the Microsoft Visual C++
2017 (MSVC) and Clang 5.X/6.X (Clang) compilers.

With C++ coroutines enabled, the compiler turns any function
that contains any of the keywords co_yield, co_return, or co_await
into a coroutine; we use only the latter two keywords in this paper.
Keyword co_return is roughly functionally equivalent to return,
and keyword co_await will optionally suspend the coroutine, as
directed by the object being awaited. This is everything the appli-
cation developer needs to know to get started with coroutines.

Behind the scenes, the compiler generates code to allocate and
manage a coroutine frame for each coroutine call, and provides sev-
eral hooks around co_await and co_return, which a library devel-
oper can use to keep track of the coroutine’s state. (Section 4.1
describes a small library we wrote.) Coroutines are stackless, so
they must potentially allocate frames for each coroutine call, which
could be slow; in practice, our experiments show that the cost of
managing coroutine frames can be made insignificant.

In their current form, C++ coroutines provide only minimal lan-
guage support. Library developers need to define coroutine types,
and each coroutine must return an awaitable—an object that can be
co_await-ed. The simplest way to use coroutines is to use the C++
standard future library and co_return a type std::future<type>.
Unfortunately, this is also the least efficient way. We experimen-
tally verified that, when using std::future, excessive heap alloca-
tions significantly degrade performance. However,we expect that
ready-to-use coroutine libraries will be available, in the future.

To get better performance, library developers also need to define
custom awaitable types. In this paper, we define two different types
of awaitables:

- A simple awaitable that returns control to the coroutine’s caller
when the coroutine is suspended. We use this approach for experi-
ments related to existing work [22].

- A task<type> library that supports call chains of tasks, returns
control to the root task’s caller when the leaf task is suspended,
and resumes the entire call chain at the leaf task’s suspension point,
when the root task is resumed. We use this approach to add corou-
tines to an existing software project, Masstree.

An awaitable can choose whether to execute immediately or sus-
pend. Because CPUs currently do not indicate whether a given ad-
dress can be found in cache, we always suspend after prefetching
an address. As suggested in [22], future processors could signifi-
cantly reduce the overhead for addresses already in CPU cache by
providing a conditional CPU branch instruction.

2.3.2 Interleaving with Coroutines

A recent research effort combines the advantages of GP (preserv-
ing the “semi-synchronous” programming model) and AMAC (de-

1705

Table 1: Experimental Setup

Processor Intel Xeon E5-2690 v4

# of Sockets 2

# of Cores 28 @ 2.60 Ghz

L1 I/D Cache (per Core) 32 KB/32 KB

L2 Cache (per Core) 256 KB

L3 Cache (per Socket) 35MB

DRAM 256GB

oS Windows Server 2016 Data Center
Microsoft Visual Studio

Compilers Enterprise 2017 (version 15.4)

Clang version 6.0.0

coupled execution) by using coroutines [22]. With coroutines, de-
velopers only need to add suspend statements to an operation’s syn-
chronous implementation. The compiler then generates context-
switching code—i.e., it generates efficient code to save the corou-
tine’s state at the suspension point and restore that state when the
coroutine is later resumed. (Note that the coroutines defined in [22]
do not call other coroutines, which we show is possible, and is
needed for most practical use cases.) In other words, while GP and
AMAC require the developer to implement a state machine for in-
terleaved operations, coroutines take that significant burden from
the developer and hand it to the compiler.

In general, the coroutines approach is similar to AMAC because
we interleave multiple coroutines at the same time. However, rather
than transforming the operation ourselves into a state machine, with
coroutines we just add a suspension point to the synchronous exe-
cution of the code after every prefetch. Then, the compiler ensures
that the coroutine suspends itself, returning to the caller, which will
resume the next suspended coroutine.

Algorithm 3 shows pseudocode for a coroutine-based implemen-
tation of a hash index probe. The main idea is similar to AMAC,
where we set up a circular buffer to maintain each operation’s state.
In this case, the state is a coroutine, so we do not need to trans-
form the operation into a state machine or manage its stages man-
uvally. Instead, we rely on the compiler to save each operation’s
state when the coroutine suspends itself. On initializing a new key
probe, we initialize a coroutine and store it in the circular buffer.
The coroutine has two suspension points (Lines 4 and 10), where
the coroutine suspends itself and returns back to the caller. When a
coroutine suspends itself, the caller will retrieve the next coroutine
from the circular buffer and resume it. When a coroutine finishes its
execution—i.e., it has found the matching key, or there are no more
nodes to fetch—it returns back to the caller, allowing the caller to
replace it with a new coroutine, for the next key probe.

3. SIMPLE DATA STRUCTURES

In this section, we present our experimental evaluation compar-
ing GP-, AMAC-, and Coroutines-based (Coro) approaches to hide
memory stall latency for two widely-used, simple data structures:
hash table and binary search on a sorted integer array. Our focus is
on a quantitative comparison using throughput as our main metric.
In Section 4, we also comment on gualitative aspects such as the
impact of different approaches on developer’s productivity.

We run all of our experiments on machines running Windows
with identical hardware, as shown in Table 1. As coroutines are
currently an experimental feature in two C++ compilers—MSVC
and Clang—we conduct experiments with both to evaluate com-
piler differences. For all the experiments reported in this paper, we
take an average of at least three runs. We use MM_HINT_NTA for
the prefetch instruction, similar to previous work [18,22]. We ex-



Throughput (Million ops/sec)

Throughput (Million ops/sec)

Naive —— AMAC —&—
GP —*— Coro —e—

Naive —— AMAC —&—
GP —x—  Coro —e—

W

400
350
300
250
200
150

n
=3
S

o
=]

o
1<)

Throughput (Million ops/sec)

R —— 100 Feeen, eI,
50
0 0
5 10 15 20 25 30 5 10 15 20 25 30
Group Size Group Size

(a) Small Uniform Dataset (b) Small Zipf Dataset

Throughput (Million ops/sec)

N

)
[
2
@
1.5 g
Naive —— _5
1 GP —x— =
AMAC —s— =3
Coro —e— 5
Q
0.5 S
3
o
=

0 E oo

5 10 15 20 25 30 5 10 15 20 25 30
Group Size Group Size

(c) Large Uniform Dataset (d) Large Zipf Dataset

Figure 1: Clang Hash Index Probe 1 Thread Varying Group Size

Naive —— AMAC —e— 2 400 Naive —— AMAC —&—
200 GP —<— Coro —e— @2 GP —<— Coro —e—
2 350
o
150 g 300
£ 250
100 x = 200 .
3 150
2
50 .»’\ 2 128
£ IAAAAAAAAARARSSS
0 = 0
5 10 15 20 25 30 5 10 15 20 25 30

Group Size
(a) Small Uniform Dataset

Group Size

(b) Small Zipf Dataset

Throughput (Million ops/sec)

2

o
@
&
?
15 g
Naive —+— s
1 GP —<— =
AMAC —8— =
Coro —e— 5
a
0.5 5
3
3
£

0 =0

5 10 15 20 25 30 5 10 15 20 25 30
Group Size Group Size

(c) Large Uniform Dataset (d) Large Zipf Dataset

Figure 2: MSVC Hash Index Probe 1 Thread Varying Group Size

Table 2: Average Number of Records Per Hash Bucket

Input Size Uniform | Zipf
0.13M keys (small) 0.83 | 0.32
1M keys 633 | 223
5M keys 31.60 | 10.45
10M keys (large) 63.21 | 20.33
S50M keys 316.04 | 95.90

plored other prefetch hints, but found the performance difference
to be insignificant on the simple data structures we examine.

3.1 Hash Table

The hash table is a universal data structure. Specifically, in
database systems, hash tables are used to implement the popular
hash-join and hash-group-by algorithms. Given the importance of
hash tables, we start our experimental evaluation by examining the
performance of probing a hash table under different prefetch-based
(or interleaving) approaches to hide memory latency. For our ex-
periments, we use a canonical implementation of a hash table that
uses open hashing: i.e., we use separate chaining (implemented as
a linked list) to handle collisions.

We use 4 byte integer keys and 100,000 buckets. Table 2 presents
the average size of our collision lists. Note that our hash table does
not store duplicate keys, so the number of keys stored in the hash
table is less than the input size. For these experiments, the payload
size has little effect on performance, since it is fetched only once
per operation, i.e., after the probe finds the matching key. We com-
pare a naive implementation, with no prefetches, to GP, AMAC,
and Coro. Our goal is not simply to reproduce the results in [18],
but rather to expand the analysis from [18] to an additional inter-
leaving technique, coroutines, and a second compiler, Clang.

3.1.1 Single Threaded, Varying Group Size

The goal of our first experiment is to understand how group (or
batch) size affects the performance of prefetch-based approaches
to hash probe. We also study how the distribution of keys used to
build and probe the hash table affects performance, to establish how
database operators like hash-join and hash-group-by will perform
when presented with uniform or skewed workloads—common in
practice. To isolate these effects, we run these experiments on a
single thread. Figures 1 and 2 present results for the Clang and

MSVC compilers, respectively, with group size on the x-axis and
throughput, in million operations per second, on the y-axis.

Figure 1(a) shows throughput for Clang using a small data
set (0.5 MB) that fits entirely in L3 cache. This experiment uses
uniform distribution for the build and probe phases. The results
show that, when the hash table fits entirely in the CPU caches, all
of the interleaving approaches performed worse than the naive ap-
proach. Naive is up-to 2.7x 2.9x, and 5.1x faster than GP, AMAC,
and Coro, respectively. In this case, the extra instructions for
prefetching and interleaving are pure overhead. Of the three in-
terleaving approaches, GP performs the best, because GP has the
lowest overhead, in terms of the state that it needs to maintain for
interleaving, while AMAC outperforms Coro because Coro’s in-
struction overhead is higher than AMAC’s. (Each coroutine has
its own coroutine frame, which, with current compilers, requires
more bookkeeping than an AMAC state.) The optimal group size
is around 3 for AMAC and Coro, and around 12 for GP, roughly
the same as in [18].

Figure 2(a) shows results for the same experiment, using MSVC.
Naive throughput drops by 17%, and Coro performance is also
lower. This illustrates an important point: when the workload is
small enough to avoid memory stalls, the compiler makes a big
difference.

Figures 1(b) and 2(b) show the results with the small dataset,
for Clang and MSVC, respectively, but now using Zipfian (“Zipf™)
distribution to build and probe the hash table, with Zipfian con-
stant = 0.99. A Zipf distribution is skewed, with some keys more
likely to be chosen than others, making the CPU caches much more
effective; thus, we see an increase in the throughput for all ap-
proaches, although the results are otherwise similar to Figures 1(a)
and 2(a). Again, MSVC’s naive performance is significantly lower
than Clang’s.

Figure 1(c) presents the results for uniform distribution with
Clang using a hash table with 10 million integers, which with-
out duplicates is approximately 390 MB in memory—much bigger
than L3 cache. In this case, all the “interleaving” approaches per-
form significantly better than the naive approach. Naive is slower
by up to 7.5x, 8.4x, and 8.2x as compared to GP, AMAC, and Coro,
respectively. Figure 2(c) gives the performance with MSVC com-
piler. From both figures, we can see that the performance is similar
to Clang although MSVC’s Coro is slower than Clang’s.

1706



Naive —— AMAC —&—
—*— Coro —e—

N

o~

4
©

ﬁ

Per Thread Throughput (Million ops/sec)

o o
> o

o
N

o N &~ O

o

5 10 15 20
Number of Threads

(b) Clang, Zipf

5 10 15 20 25

Number of Threads

(a) Clang, Uniform

25

Per Thread Throughput (Million ops/sec)
Per Thread Throughput (Million ops/sec)

Figure 3:
B 400 Naive —— S 1400 Naive ——
© 350 Q AME\;E @ 1200 GP
3 — 8 N
§ 300 § Coro Bzl é' 1000 §
§ 20 N 8 N
S 200 § g 800 §
5 150 § = 600 §
g N g N
S 100 % S 400 %
8 50 § 3 200 § N\
£ N A N —_— [S o N N 3 -
™M 5M 10M 50M ™ 5M oM 50M

Number of Records

(a) Clang, Uniform

Number of Records

(b) Clang, Zipf

Throughput (Million ops/sec)

1.2

0.8
0.6
0.4

Hw

Per Thread Throughput (Million ops/sec)

o

5 10 15 20 25

Number of Threads

(¢) MSVC, Uniform

400
350
300
250
200
150
100

50

Naive ——
GP
AMAC mmmm

50M

M

Throughput (Million ops/sec)

Naive —— AMAC —&—
GP —x— Coro —e—

N T

—
2

5 10 15 20 25

Number of Threads

(d) MSVC, Zipf

Hash Index Probe Varying Number of Threads with 30 Groups, Large Dataset

Naive ——
GP
AMAC wmmm

1400
1200
1000
800
600
400
200

=

Number of Records

Number of Records

(c) MSVC, Uniform (d) MSVC, Zipf

Figure 4: Hash Index Probe Varying Input Size with 30 Groups, 28 Threads

Front-End s
Bad-Speculation s
Memory &=z

Core
Retiring C——
Zipf

Front-End s
Bad-Speculation emzmsa
Memory &=z

Core

Retiring C——

Zipt
N

niform

100 Uniform

I3
S

Percentage of Cycles
Percentage of Cycles

\

& O @ O
S Fo® Fg F°

(b) Large Dataset

& O @ O
Fe Fo® F N

(a) Small Dataset
Figure 5: Hash Probe Microarchitectural Analysis

Although the distribution is uniform, this workload’s access pat-
tern is very skewed, since each hash bucket holds an average of 63
keys. Traversing a hash bucket involves a linear search through a
linked list, so the number of prefetches per operations varies from
1 to 63. This skew hurts GP’s performance, relative to the other
two interleaving techniques, as originally reported in [18]. It also
causes throughput for all three interleaving approaches to continue
to increase with the group size, well beyond a group size of 10.

Inequality 1 from [22] relates optimal group size to computa-
tion, memory-stall, and context-switch durations, while Section
5.4.2 of [22] discusses line-fill buffers. The CPUs we tested have
10 line-fill buffers [5], limiting outstanding memory accesses to
10. We note that Inequality 1 does not apply to our experiment,
since its access pattern is skewed. Further, we observe that perfor-
mance continues to increase even after all 10 line-fill buffers are
used, because although the hash table and the first few buckets in
every chain fit in L3, the remaining buckets do not. This means
that some hash probes are satisfied from L3, while others must ob-
tain one or more buckets from DRAM. Figures 1(c) and 2(c) show
that maximum interleaving performance is reached when there are
> 10 outstanding prefetches, because multiple prefetches from L3
will complete while waiting for one prefetch from DRAM. Using
a large dataset with 10 million integers (120 MB in memory), with
Zipf distribution, shown in Figures 1(d) and 2(d), yields similar
results. The difference is that the skew is now more pronounced,
since the CPU caches now hold buckets for the most popular keys.

In Figures 1 and 2, Coro performs significantly worse on MSVC
than on Clang. We attribute this difference to the differences in
compiler support for generating coroutines code. More specifically,

these results show that Clang compiler generates better optimized
code for Coro, as compared to the MSVC compiler. We believe
MSVC’s coroutines specific optimizations are less mature, at the
time of this writing, and are expected to improve.

To pinpoint the source of overhead for naive, we show a micro-
architectural analysis using Intel VTune for MSVC in Figure 5.
We use a methodology similar to that described in [22]. Figure 5
presents percentage of CPU cycles spent on each stage of the in-
struction pipeline. In particular, “Memory” denotes the percentage
of CPU cycles wasted because the CPU was waiting for data to ar-
rive from main memory. For the large dataset, for both uniform and
Zipf, naive is bounded by main memory accesses. For GP, AMAC,
and Coro, CPU stalls due to main memory accesses were signifi-
cantly less, showing the effectiveness of these approaches.

In summary, this experiment shows that GP, AMAC, and Coro
improve hash probe throughput, under uniform and Zipf distribu-
tions, due to reduced CPU stalls (Figure 5). The GP approach suf-
fers when using Zipf distribution due to the irregular access pattern.
And finally, the Clang compiler generates more efficient code for
the Coro approach. We see this consistently in all the results pre-
sented throughout the paper.

3.1.2  Scalability with Number of Threads

In this next experiment, we want to study the scalability prop-
erties of these different approaches for hash probes. Based on the
results of the previous experiment, we chose a group size of 30,
per thread, for all the prefetch-based approaches. We chose this
group size not because it is optimal, but because Figures 1 and 2
show that performance is insensitive to group size around 30. The
optimal group size depends on the workload, which is generally
not known in advance. We varied the number of threads from 2 to
28 using up-to 14 physical cores, with two hardware threads per
core. We used the large dataset from the previous experiment with
uniform and Zipf distributions.

We present the results in Figure 3. For all these figures, we
present the number of threads on the x-axis, and the per-thread
throughput on the y-axis. These figures show that performance
scales almost linearly with the number of threads, for naive and the
three interleaving approaches, although MSVC, Zipf shows a drop
in AMAC performance between 14 and 16 hardware threads. This

1707



Throughput (Million ops/sec)

Throughput (Million ops/sec)

g Naive —— AMAC —a— g 18 Naive —— AMAC —e— B Naive —— AMAC —&— g
GP —x— Coro —e— o GP —— Coro —e— @ 3 GP —x— Coro —e— @
8 2 a a R
4 : : : ]
6 2 2 S
51 s H H
4 5 5 5
3 £ 2 =3 Naa/g —
5 E) S -
2 3 3 o 3 AMAC —a—
0 = S 0 = Coro —e—
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Group Size Group Size Group Size Group Size
(a) Small Uniform Dataset (b) Small Zipf Dataset (c) Large Uniform Dataset (d) Large Zipf Dataset
Figure 6: Clang Binary Search 1 Thread Varying Group Size
13 2 fg Naive —+— AMAC —&— 5 38 Naive —+— AMAC —&— g NPT
@ GP —x— Coro —e— @ 3 GP —x— Coro —e— o 4 =
8 2 16 2 a
7 S 14 o 25 2 3
6 [/=s 2 12 2 2 2
5 s 10 s s P
; M s yfééé % < 15 (ﬁf” S 2
5 5 5
3% Naive —— 2 6 b3 1 3 /Na\ve —
2 GP —x— SPY SShhatad 4 2 1 GP —<—
1| AMAC —a— s 3 05 8 AMAC —&—
0 Coro —e— IS 0 = 0 S 0 Coro —e—
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Group Size Group Size Group Size Group Size

(a) Small Uniform Dataset (b) Small Zipf Dataset

(c) Large Uniform Dataset (d) Large Zipf Dataset

Figure 7: MSVC Binary Search 1 Thread Varying Group Size

means that the advantages of interleaving apply even when using
more than a single thread. For both Clang and MSVC, all three in-
terleaving approaches maintain a significant advantage over naive.

3.1.3 Varying Input Size

The goal of our next experiment is to study the impact of data
size on throughput of various approaches. We varied the size of the
hash table from 1 million to 50 million records, and used uniform
and Zipf distribution to build and probe the hash index. We fixed
the number of threads at 28, with 30 groups per thread. Figure 4
shows our results, with the number of records on the x-axis, and
total throughput on the y-axis.

Figure 4(a) presents the results using Clang for uniform distri-
bution. At 1 million keys, naive has fully exhausted L1D, L2, and
L3 caches; so prefetching is sometimes profitable. This is why
AMAC and GP are faster than naive by about 1.5x and 1.3x, re-
spectively. Coro performs similarly to naive, because its context-
switching overhead outweighs its prefetching benefits, since most
probes can be fulfilled by L3 cache. At 5 million keys and higher,
all three interleaving approaches significantly outperform the naive
approach since most probes go to DRAM. Figure 4(c) is similar.

Using a skewed distribution, as shown in Figures 4(b) and 4(d),
makes prefetching less profitable, since popular keys are already in
the CPU caches. And similar to the case when all the data fits in the
CPU caches, we pay the overhead of interleaving without getting
any benefit. For example, Coro with the MSVC compiler, at SM
records, Zipf distribution, is slower than the naive approach, while
the other two interleaving approaches are faster.

In summary, this experiment shows that the advantages of hiding
memory stall latency during hash probe hold over a range of data
sizes. At smaller scales, interleaving approaches represent pure-
overhead, but as the data sizes grow out of the CPU caches, they
provide a significant performance boost over the naive approach.
When using the Clang compiler, AMAC and Coro continue to be
the most performant. This shows that, by using Coro, we can reap
most of the performance benefits of the AMAC approach while
maintaining very high developer productivity.

3.2 Binary Search

We now present our results with different approaches for binary
search over a sorted integer array (4-byte keys), without duplicates.

For all the experiments, we fill the sorted arrays with sequentially-
generated keys. We present results using both uniform and Zipf
distributions to generate search keys. Our experimental methodol-
ogy follows the same pattern as for the hash probe results presented
in the previous section. We use an integer array of size 0.5 MB and
1 GB for the small and large dataset, respectively. We used a hy-
brid, branching binary search implementation, where the loop body
contains an equality test, allowing for early exit. That test almost
always evaluates to false, making the branch highly predictable.
We intend the comparison (< vs. >) to compile into a conditional
move, as in [22].

3.2.1 Single Threaded, Varying Group Size

To study the impact of varying group size on binary search
throughput, we conduct an experiment with varying group size us-
ing a single thread. Figures 6 and 7 present the results of these ex-
periments compiled with Clang and MSVC compilers, respectively.
In all of these figures, we present the group size on the x-axis and
the throughput, in million operations per second, on the y-axis.

Consider Figure 6(a), which shows the throughput of binary
search using the Clang compiler with a small uniformly distributed
data set. This data set is small enough (0.5 MB) that it fits entirely
in CPU caches. When the integer array fits entirely in the CPU
caches, for all group sizes, the interleaving approaches perform
worse than the naive approach, because the cost of interleaving out-
weighs the benefits of prefetching memory from L3 cache. Naive
is up to 1.4x, 1.4x, and 1.8x faster than GP, AMAC, and Coro, re-
spectively. Similar to hash probe, overall, GP performs the best
among the interleaving approaches, since it has the lowest over-
head as mentioned in [22]. Figure 7(a) shows the result of this
experiment with MSVC. In this case, naive is up to 1.7x, 1.9x, and
1.9x faster than GP, AMAC, and Coro, respectively. Another no-
table difference is that Coro now performs worse than AMAC due
to inefficiencies in the MSVC compiler.

Even more notable, the naive approach compiled by MSVC is
much faster than compiled by Clang for small uniform and Zipf
datasets, but much slower for large uniform and Zipf datasets. The
MSVC compiler generates a highly-predictable branch and a con-
ditional move, as we intended, but the Clang compiler generates
a second, unpredictable branch, instead. For binary search, the
choice of compiler can make a big difference. While naive and

1708



Per Thread Throughput (Million ops/sec)

Percentage of Cycles

Naive —— AMAC —H&—
GP —x— Coro —e—

Naive —— AMAC —&—

3 GP —x— Coro —e—
1)

Z‘P.\'—H\.‘H

5 10 15 20

Number of Threads

25 5 10 15 20

Number of Threads

(b) Clang, Zipf

25

Per Thread Throughput (Million ops/sec)

(a) Clang, Uniform

Figure 8:

200

Front-End s 200

Bad-Speculation e
Memory &=

Core

Retiring ——

Front-End s
Bad-Speculation sz
Memory exxz=
Core
Retiring ——

Zipt

150 150

Uniform Uniform

Zipt

100 100

Percentage of Cycles

50 50

0

@
N

(¢} @ (¢}
¥ O N ¥ ©
e T fe

(b) Large Dataset

eéz v“vooég
(a) Small Dataset

Figure 9: Binary Search Microarchitectural Analysis

Coro performance vary between the two compilers, AMAC perfor-
mance does not—the two compilers generate similar AMAC code.

Figures 6(b) and 7(b) show results with the small dataset but
now using Zipf distribution for generating the search keys. Since a
Zipf distribution means that search keys are likely to be in L1D or
L2 cache, the relative advantage of prefetching is much lower than
for a uniform distribution, causing the interleaving approaches to
perform much worse than the naive approach.

Now moving onto a 1 GB dataset, which is much larger than
L3 cache, Figure 6(c) and 7(c) show that all the interleaving
approaches perform significantly better than the naive approach,
when using a uniform distribution. Also, the optimal group size is
around 8-12 groups, roughly confirming the results in [22].

When using a large dataset with Zipf distribution with Clang,
shown in Figures 6(d) and 7(d), Clang naive performance is within
25% of Clang’s Coro and AMAC, while MSVC naive performance
is around half of MSVC’s AMAC. As discussed above, MSVC and
Clang compile our naive approach into very different code.

GP shows better performance than the other interleaving tech-
niques, because the access pattern of binary search is not heavily
skewed: half of the sorted array’s keys are in the binary search
tree’s leaf level, a quarter are in the next level up, and so on. GP
performance increases beyond a group size of 15, because the Zipf
distribution means that where a key sits in the memory hierarchy is
heavily skewed.

The micro-architectural analysis presented in Figure 9 also con-
firms that for large data set, naive is memory bound 85% of the
time, while GP, AMAC, and Coro are memory bound for only 7%,
8%, and 25%, respectively, showing their effectiveness.

In summary, this experiment shows that all three approaches to
hide memory stall latency improve binary search throughput, when
the data does not fit in the CPU caches, under both uniform and
Zipf distributions. Also, interestingly, naive performs really well
when the search keys are generated using a Zipf distribution. Using
Zipf effectively reduces the working set size, resulting in a more
effective utilization of the CPU caches.

3.2.2  Scalability with Number of Threads

We next study how different approaches scale for binary search.
Based on the results of the previous experiment, we fix a group size
of 20 per thread for all approaches. This is not the optimal group

Per Thread Throughput (Million ops/sec)

1709

Naive —— AMAC —&—
GP —x— Coro —e—

! i%mb:«f

5

Naive —— AMAC —&—

25 B/E\E\E'\E»———EI\E,\E
h
T = A A

10 15 20
Number of Threads

(¢) MSVC, Uniform

25 5 10 15 20

Number of Threads

(d) MSVC, Zipf

25

Per Thread Throughput (Million ops/sec)

Large Binary Search Varying Number of Threads with 20 Groups, Large Dataset

size—which varies between 5, for GP on a small, uniform dataset,
and 30, for GP on a large, Zipf dataset—but rather a point at which
performance is insensitive to changes in group size. We vary the
number of threads from 2 to 28 using up to 14 physical cores, with
two hardware threads each. We use the large dataset with uniform
and Zipf distributions. Figure 8 shows the results, with number of
threads on the x-axis, and per-thread throughput on the y-axis.

Focusing on the results presented in Figure 8(a), using Clang
with uniform distribution, we see that all the approaches scale
nicely with increasing threads. And naive is up to 2.4x, 2.3x, and
2.2x slower as compared to GP, AMAC, and Coro respectively.
When using Zipf distribution, shown in Figure 8(b), naive performs
similar to AMAC while performing roughly 20% faster than Coro.
The reason is that the Zipf distribution utilizes CPU caches much
more effectively, as noted earlier.

MSVC results for this experiment are presented in Figures 8(c)
and 8(d) for uniform and Zipf distribution, respectively. For the
uniform dataset, Coro is on average 36% and 28% slower than
AMAC, and GP, respectively. For the Zipf case, Coro is on average
10.4%, 46.8%, and 41% slower than naive, AMAC, and GP, re-
spectively. We believe that this behavior is mainly caused by both:
(1) suboptimal support of coroutines in MSVC and (2) effectivenes
of CPU caches with Zipf distribution.

In summary, this experiment shows that for Clang, all the ap-
proaches scale nicely with the number of threads, and maintain a
significant advantage over the naive case for the uniform case.

3.2.3  Varying Input Size

The goal of our next experiment is to study the impact of data
size on binary search throughput. More specifically, we aim to
highlight the cross-over point at which the data goes from being
able to fit entirely in CPU caches to having to spill to DRAM, and
how that impacts throughput. We vary the size of the integer array
from 0.5 MB to 2 GB, and use uniform and Zipf distribution. We
fix the number of threads to 28, with 20 groups per thread. Fig-
ure 10 shows the results, with the size of the sorted integer array on
the x-axis (log scale), and the total throughput on the y-axis.

Figure 10(a) presents the results using Clang for uniform distri-
bution. At 0.5 MB, unsurprisingly, naive is the fastest and is about
1.4x, 1.7x, and 1.9x faster than GP, AMAC, and Coro, respectively.
At this point, around half of the array—i.e., all but the leaf level
of the binary search tree—can fit in L2 cache. However, we see a
performance drop from naive at 2 MB, where the last two levels
of the binary search tree no longer fit in L2 cache. Naive contin-
ues to be slightly faster than the interleaving approaches so long
as the dataset fits in L3 cache—which, on our machines, is 35 MB
per socket. Therefore, as expected, we see a cross-over point be-
tween 32 MB and 64 MB. After the cross-over point, naive is on
average 2.2x, 2.1x, and 1.9x slower than GP, AMAC, and Coro, re-
spectively. Starting at 4 MB, GP continues to outperform all other
approaches, before and after the cross-over point. This confirms



Throughput (Million ops/sec)

Throughput (Million ops/sec)

1 10
Input Size (MB) -- Logscaled

(a) Clang, Uniform

1000 1 10 100
Input Size (MB) -- Logscaled

(b) Clang, Zipf

100 1000

Throughput (Million ops/sec)

'S

o
n
a
=]
@

120
100

n
=}
S

o
S

o
S

Throughput (Million ops/sec)
@
o

o

1000

1 10
Input Size (MB) -- Logscaled

(¢) MSVC, Uniform

100 1000 1 10 100

Input Size (MB) -- Logscaled

(d) MSVC, Zipf

Figure 10: Binary Search Varying Input Size with 20 Groups, 28 Threads

the results reported for GP being the best overall approach for bi-
nary search in [22]. As noted there, binary search is the best case
for GP since all the different “interleaved” executions execute the
same code path, which reduces the number of executed instruc-
tions. Further, in this case GP’s overhead is minimal as the state
that needs to be maintained is negligible.

When using a Zipf distribution, as shown in Figure 10(b), at 0.5
MB, naive outperforms GP, AMAC, and Coro, by 2.2x, 2.6x, and
3.6x, respectively. However in this case, naive is able to maintain
its performance for most of the array sizes where GP and AMAC
are only able to outperform naive when the array size is larger than
256 MB and 1 GB, respectively. Meanwhile, Coro is unable to
outperform naive even with an array size of 2 GB. Again, this is
because CPU caches become much more effective with Zipf distri-
bution, thus, benefiting naive.

Once again, MSVC shows mixed results for this experiment as
presented in Figures 10(c) and 10(d) for uniform and Zipf distribu-
tion, respectively. With uniform distribution, as expected, we see
naive’s throughput drop after the cross-over point. In the case of
Zipf distribution, the performance of every approach with MSVC
follows our findings with the ones in Clang.

In summary, this experiment highlights the impact of varying
data sizes on binary search with different approaches. We see a
clear cross-over point from all data fitting in CPU caches to spilling
to DRAM. We show how throughput for different approaches is im-
pacted before and after the cross-over point with uniform distribu-
tion. At smaller scales, “interleaving” approaches represent pure-
overhead, but as the data sizes grow out of the CPU caches, they
provide a significant performance boost over the naive approach.
Meanwhile, naive is able to perform well even when the entire ar-
ray does not fit in the CPU cache in the case of Zipf distribution.
The reason is that most probes will only access certain part of the
array, which makes CPU caches become more effective.

4. COMPLEX DATA STRUCTURES

In this section, we show how to modify two widely-used com-
plex data structures, Masstree in Section 4.1 and Bw-tree in Sec-
tion 4.2, to incorporate coroutines in their complex code-bases. In
doing so, our goal is to highlight the qualitative advantages of us-
ing a coroutines-based approach in practice. Further, we evaluate
the effectiveness of interleaving to hide memory stall latency for
Masstree and Bw-tree using the same methodology and experimen-
tal setup used in the previous sections.

4.1 Masstree

Masstree is a high-performance, in-memory, key-value store.
Masstree splits keys into 8-byte chunks and stores each chunk in
a B+-tree. Each B+-tree node is a few CPU cache lines in size.
Masstree prefetches each node before processing it, and each node
is small enough that Masstree will touch all of the prefetched cache
lines when it actually processes the node. (Note that Masstree
prefetches using MM_HINT_TO, which prefetches memory into all

three levels of the CPU cache, rather than MM_HINT_NTA; this dis-
tinction matters to the NUMA results we discuss in Section 4.1.2.)
By prefetching each node, Masstree can effectively execute in-
structions for free while waiting for the node to be prefetched. The
problem is finding useful instructions to execute: the current node
cannot be processed until it is available in the CPU cache, and the
next node cannot be prefetched until the current node is processed.
This problem is not specific to Masstree—it is fundamental to all
B+-trees—but it makes Masstree (and any B+-tree) a good candi-
date for coroutines. Coroutines provide an easy, inexpensive way
to get more useful instructions to execute, by interleaving multiple
top-level get() or put() operations on the same hardware thread.

4.1.1 Adding coroutines to Masstree

Masstree is written in C++ and makes extensive use of C++ tem-
plates. Masstree implements a top-level get() or put() operation
over several small template functions, with different template pa-
rameters, defined inside several header files. Organizing the code
in this modular way makes it easy to read and modify, while the
C++ compiler will inline these small template functions, generat-
ing a fast executable.

Existing research on coroutines for hiding memory stalls [22]
focused on turning a single function into a coroutine, but adding
coroutines to Masstree requires either (1) rewriting Masstree so
that it uses a single, large function rather than many small, mod-
ular, functions; or (2) suspending and resuming an entire call chain
of coroutines. The first option is infeasible: it would require sub-
stantial developer resources to de-modularize Masstree, and the re-
sulting code would be much harder to understand and maintain.

We chose the second option. To add coroutines to Masstree, we
implemented a new task<type> class (based on the same princi-
ples as [3]) and replaced the default suspend_always class. Our
task<type> class allows a function of return type T to be me-
chanically turned into a coroutine of return type task<T>, where
each coroutine can co_await calls to other task <type> coroutines.
When the leaf task in a call chain is suspended, control returns to
the root task’s caller—in our case, a benchmark driver executing a
simple round-robin scheduler. Then the driver can do other work,
such as resuming another coroutine.

Eventually, the driver will resume the suspended root task, which
will actually resume the leaf task at its suspension point. The
leaf task maintains a pointer to its caller, so when it exits (using
co_return), its caller will resume. Our benchmark driver reads the
result off a root task if it has exited, and resumes it otherwise.

Using our task<type> class, we turned the relevant Masstree
functions into nestable coroutines. This process is fairly simple:

e We added a suspension point (i.e., co_await
suspend_always;) after every prefetch. This turns
functions that prefetch into coroutines.

e For every function (except the driver) that calls a coroutine,
we inserted keyword co_await between the function call and
its result. This turns callers into coroutines.

1710



o o

& s & 60

< 3

° 4 o 50

c c

2 £ 40

Z 3 =

= 2 30

3 2 3 o

2 £

2 4 2

° Naive —+— o 10 | Naive ——
IS 0 Coro —e— IS Coro —e—

5 10 15 20 25 30 35 40 45 50
Group Size

(a) 1 Thread Varying Group Size

20 40 60 80 100120140160 180200
Group Size

Size

(b) 28 Threads Varying Group

Throughput (Million ops/sec)

(c) 56 Threads Varying Group
Size (NUMA)

g Naive —+—
100 % 60 Coro —e—
80 g 50
§ 40
60 =
=)
40 5
§ 20
=)
201 Naive —— 3 10
Coro IS 0
50 100 150 200 250 300 350 400 5 10 15 20 25

Number of Threads

(d) Varying Thread

Group Size

Figure 11: Masstree Experiments

e We changed the return type of every function that we turned
into a coroutine from type T to task<T>.

e For every function that we turned into a coroutine, we re-
placed keyword return in its definition with co_return.

We also modified our benchmark driver so that each thread main-
tains an array of tasks, resuming each in turn. Adding coroutines
to Masstree and modifying our benchmark driver took us around
three developer hours. We compiled the result using Clang.
Benchmarks Setup. To see what effect coroutines had on Masstree
performance, we ran the YCSB-B benchmark (95% reads, 5%
writes) on 8-byte keys, with 8-byte values, using YCSB’s Zipf dis-
tribution, where the distribution of read and write keys is skewed.
We used a database of 250 million records.

4.1.2  Vary Group Size

Every workload will have a sweet spot of in-flight operations,
where there are enough coroutines to cover memory latency from
the slowest relevant level of the memory hierarchy, but not so many
that they spill out of CPU cache. Since we are using a Zipf distribu-
tion, Masstree’s leaf nodes that hold popular keys will be in one of
the CPU caches (which level of CPU cache depends on how pop-
ular they are), while unpopular leaf nodes will have to be loaded
from DRAM. The Zipf distribution’s skew means that the optimal
group size will be > 10, the number of line-fill buffers, since we
can execute several prefetches from L3 cache while waiting for one
prefetch from DRAM to complete.

In Figure 11(a) we vary the group size from 1 to 50 coroutines
per thread, on a single hardware thread. The coroutines approach
is able to achieve 3x the performance of an unmodified Masstree,
with a group size of 30 to 50 coroutines per thread.

In Figure 11(b), we vary the group size from 1 to 200 coroutines
per thread, on a full, single CPU. (The CPU has 14 cores, and we
use all 28 of its hardware threads.) With coroutines, Masstree per-
formance improves by 1.7x to 1.8x, from 12 to 200 coroutines per
thread. Figure 11(c) shows the effects of non-uniform memory ac-
cess (NUMA), as we fully use two CPUs. In this case, we see a
local maximum at 12 coroutines per thread, with 1.4x the perfor-
mance of an unmodified Masstree. Using 12 coroutines per thread
hides memory latency within a single NUMA node. But we also
see performance increasing to 1.6x to 1.7x beyond 150 coroutines
per thread.

NUMA extends the trade-off one makes when varying the num-
ber of coroutines per thread. We used Intel VTune to explore
this trade-off further; see Figure 12. Going from an unmodified
Masstree to one that uses 30 coroutines per thread reduces the CPU
time per operation by 27%, most of which can be attributed to re-
duced time spent accessing the CPU cache and DRAM. Going from
30 coroutines to 200 coroutines reduces the CPU time per operation
by an additional 19%. As the chart shows, L2 and L3 stalls increase
as DRAM stalls decrease. Because we have more coroutines, state
is forced out of L1 cache into L2 and L3—but we are able to

hide more DRAM latency, resulting in a net win. (Had Masstree
prefetched using MM_HINT_NTA, rather than MM_HINT_TO, state
forced out of L1 cache would have been evicted to DRAM, and we
would not have seen a performance gain at 200 coroutines. The
optimal hint, in this case, would have been MM_HINT_T1, since
our group size is large enough that the data we prefetched won’t fit
in L1 cache anyway, but we intentionally made no modifications to
Masstree beyond adding coroutines.)

4.1.3  Scalability with Number of Threads

Figure 11(d) shows performance on a single CPU as the number
of hardware threads ranges from 2 to 28. The threads are pinned so
that every 2 threads fill a CPU core. Adding coroutines to Masstree
yields performance between 1.7x (at 26 threads) and 2.1x (at 4
threads) that of an unmodified Masstree. The performance gain
is still significant at 28 hardware threads, fully using all 14 cores
of our test CPU. The stair-step “Coro” curve shows the interaction
between coroutines and hyper-threading, which allows the CPU to
schedule two hardware threads using the same CPU core. Hyper-
threading gives some of the benefits of coroutines, and vice versa,
but combining both yields the best overall performance.

4.2 Bw-tree

The Bw-tree is a latch-free B+-tree originally proposed by Mi-
crosoft Research [19], that has since been deployed in several Mi-
crosoft products and adopted by open source projects >. In this sec-
tion, we evaluate the different interleaving approaches, using the
Bw-tree as a representative of a class of highly-efficient, hardware-
conscious B+trees. We tried adding coroutines to the Bw-tree in
two different ways.

Our first approach was similar to AMAC, in that we moved all
get(key) logic into a single function. Since the Bw-tree spends a
significant amount of time stalled waiting for deltas to be brought
into CPU cache, we modified our single get() function to suspend
after prefetching the next delta.

Our second approach was to modify the Bw-tree the same way
we modified Masstree, which we believe would perform signifi-
cantly better than the first. However, we ran into a compiler bug
in MSVC that prevents us from evaluating it; and, due to various
dependencies, we were not able to compile the Bw-tree with Clang.

Unlike with Masstree, we also spent significant effort to add
AMAC and GP to the Bw-tree. As an example, the resulting
AMAC code has 10 stages, and does not look anything like the
original, non-interleaved code we started with. Our first corou-
tines approach is a lot more readable, mostly resembling the non-
interleaved code. This, once again, demonstrates the developer pro-
ductivity benefits of coroutines, when applying interleaving tech-
niques to state-of-the-art data structures.

ZAvailable for download at: https://github.com/
cmu-db/peloton/tree/master/src/index

1711



Latency per Operation(ns)

1000

1

800

L3 Eaxal
DRAM

Total ——1

600

0.4
400 Naive —+—
0.2 GP —x—
AMAC —5—

Coro —e—

2 4 6 8 10 12 14 16 18 20
Group Size

Throughput (Million ops/sec)

200

(a) 1 Thread Varying Group

Figure 12: Masstree Microarchi- Size

tectural Analysis

We next present our results for Bw-tree using MSVC on Win-
dows, using our first coroutines approach. We prefill the Bw-tree
with 25 million records, each of which has an §-byte key and an
8-byte value. We then run a random read write workload for 30
seconds, with 95% reads, 5% updates, using a uniform distribu-
tion, and measure the throughput. Each data point reported is an
average of 3 runs.

4.2.1 Varying Group Size

In the first experiment, we want to study the impact of varying
group size on throughput, first using a single thread and later ex-
panding it to multi-threaded tests. For the figures in this section,
we present the different group sizes on the x-axis, and the y-axis
shows the throughput in million operations per second.

Figure 13(a) presents the single-threaded results. For the single
group case, as expected, naive is 1.3x, 1.06x, and 1.1x faster than
GP, AMAC, and Coro, respectively. The reason is that interleav-
ing only adds additional overhead without giving any benefits with
a group size of 1. For group sizes >2, naive is up-to 1.4x, 1.5x,
and 1.3x slower than GP, AMAC, and Coro, respectively. Overall,
AMAC is the fastest and is 1.43x, 1.15x, and 1.22x faster on aver-
age than naive, GP, and Coro. As we have seen from both the hash
probe and binary search experiments, we believe that the Coro ap-
proach, if optimized properly by the compiler, can achieve at least
as much performance as the AMAC approach, without the added
code complexity.

Figure 13(b) presents the results with 28 threads, and varying
group sizes. In this case as well, AMAC beats all the other ap-
proaches and is 1.24x, 1.15x, and 1.17x faster on average than
naive, GP, and Coro, respectively. But as noted in the single-
threaded case, given that AMAC is able to improve the through-
put of Bw-tree by up-to 50% than naive, we believe that the Coro
approach can match that performance once the MSVC compiler is-
sues are resolved.

4.2.2  Scalability with Number of Threads

Figure 13(c) presents the result of an experiment with varying
number of threads from 1 to 28. We fix the group size per thread
to 12 for all approaches, based on the results from the previous
section. We see that GP, AMAC, and Coro scale better than naive.
And once again AMAC beats all the other approaches, by achieving
an average of 1.5x, 1.1x, and 1.2x speedup over naive, GP, and
Coro, respectively.

In summary, for a state-of-the-art Bw-tree implementation, over-
all, AMAC performs the best, beating naive by up-to 1.7x. This
shows the potential of interleaving approaches to improve through-
put for an already highly-optimized, hardware-conscious B+-tree.
Notably, the Coro approach lags behind due to compiler issues.
However, given the high performance of coroutines generated by
the Clang compiler, as seen in the Masstree experiments, we ex-
pect to see similar gains for Bw-Tree.

14
12
104

Throughput (Million ops/sec)
Throughput (Million ops/sec)

6 6
4 | Nave —— 4
GP —x—
2 | AMAC —8— 2
0 Coro —e— 0
2 4 6 8 10 12 14 16 18 20 5 10 15 20 25
Group Size Number of Thread

(b) 28 Thread Varying Group (c) 12 Group Size Varying
Size Thread

Figure 13: Bw-Tree Experiments

S. DISCUSSION

The effectiveness of software prefetching relies on being able to
do other work between the time when memory is prefetched and
when it is read. In some cases (for example, when traversing an in-
memory data structure—such as during a binary search or a hash
join) data dependencies within an operation mean that there is no
other work to do. Because subsequent CPU instructions, within
the same traversal operation, need to read the memory that was
prefetched, the CPU ends up stalling on the memory read after ex-
ecuting only a handful of instructions. In these cases, software
prefetching works, and incrementally improves performance, but
ultimately there is not enough distance between the prefetch and
the fetch for it to have a large impact.

All of the techniques examined in this paper address this funda-
mental problem by performing several traversal operations simul-
taneously or by “interleaving”. By doing so, the CPU can issue the
next prefetch, for the next traversal operation, while waiting for the
current prefetch to complete. One question is whether the require-
ment to “batch” multiple operations to exploit these techniques is
realistic. Generally, in multi-tenant cloud environments, where
many modern (database) systems operate, it is possible to batch
requests from multiple users and exploit interleaving to improve
overall system performance. More specifically, in [22], the au-
thors present index joins for executing IN-predicate queries in SAP
HANA as another example, where the values in the IN-predicate
list are synonymous with a multi-get operation against the index.
Batching is also common in other parts of a database engine. For
example, some database systems already have a batch (instead of a
tuple-at-a-time) interface between the query processing engine and
the storage engine, which can be exploited for interleaving.

Another, inexpensive, way to hide memory latency is to make
use of hardware threads provided by the CPU. In this paper, we
used Intel CPUs, which offer only two hardware threads per CPU
core. However, our experiments show that performance improves
significantly, beyond two hardware threads, when we use corou-
tines. In other words, two hardware threads are not enough to
hide memory latency for the workloads we tested. Using corou-
tines requires slightly more programmer effort than simply en-
abling (hardware or software) threads, but—as this paper and previ-
ous work [22] show—much less effort than a hand-rolled solution
(GP or AMAC). In summary, coroutines offer a performance im-
provement, on widely-used CPUs, beyond two hardware threads
with a fraction of the development effort.

This paper and previous work [18,22] show that using interleav-
ing approaches significantly improves performance. Also, by using
even a relatively small group size, one can achieve most of the per-
formance benefit from interleaving approaches. We further note
that the improvement can be overstated, on x64 CPUs, by disabling
hyper-threading. We have shown in this paper that coroutines, in
particular, improve performance significantly even when taking ad-
vantage of hyper-threading.

1712



Table 3: Maximum Improvement over Naive

Compiler Technique
p GP | AMAC | Coro

Clang 7.5 8.4 8.2
Hash Probe MSVC | 7.8 8.5 7.3
) Clang 2.1 23 2.3
Binary Search MSVC | 3.1 35 2.6
MassTree Clang - . 3.2
Bw-tree MSVC | 1.7 1.7 1.4

Previous work [22] analyzes the impact of cache misses in detail,
including TLB misses; we refer the interested reader to that pa-
per for a detailed microarchitectural analysis of software prefetch-
ing using coroutines, and to [15] for an excellent background on
prefetching in general. Note that [22] ran experiments on Intel’s
Haswell architecture, while we ran experiments on the successor
architecture, Broadwell—and Kaby Lake CPUs are now available.
There may be some differences in performance depending on the
architecture used, which is to be expected.

We also note that previous work [22] has focused on MSVC’s
implementation of coroutines, but now a newer, more mature, im-
plementation is available in Clang. In this paper, we compared
MSVC coroutines to Clang coroutines and found that the latter cur-
rently offers much better performance (more below). It would be
useful to repeat these experiments once MSVC improves optimiza-
tions specific for coroutines, which is a work in progress. As our re-
sults show, particularly for the naive implementations, performance
depends on the choice of compiler. And although we did not report
them in this paper, we also ran all of our experiments with Clang
on Linux, where performance was similar to Clang on Windows,
but Coro was roughly 10% faster in that case.

In Section 3.1 and 3.2 we showed the benefits of the different
interleaving approaches for simple data structures. Further, in Sec-
tion 4.1, we showed that adding coroutines to Masstree—which is
a relatively complex data structure—improved performance signif-
icantly, both on a single CPU and across NUMA. Adding corou-
tines to Masstree was straightforward and did not negatively af-
fect the Masstree code base. To do this, we implemented a simple
task<T> class, modeled on the similar class in C#. Using the
task<T> class allowed us to suspend and resume chains of nested
function calls, rather than just a single function. To the best of our
knowledge, we are the first to demonstrate the use of coroutines for
chains of nested function calls, which are common in practice.

Another practical consideration is the interaction between the
coroutines-based code and existing components, such as a sched-
uler, of a (database) system. Our benchmark driver uses a simple
round-robin scheduler. As a practical example, previous work [22]
has already shown how to incorporate coroutines in SAP HANA
to speedup IN-predicate queries. Furthermore, that work shows
how simple “sequential” and “interleaved” schedulers can be im-
plemented to run code sequentially or with coroutines (interleaved).
The main idea is that when the expected benefit of interleaving is
small, e.g., when there is not enough work to overlap, a sequential
execution performs better. A key advantage of the coroutines-based
approach is that by simply passing in an additional flag (true or
false) to the index lookup operation, the same code can be made to
run sequentially or interleaved, thus minimizing the impact on the
rest of the system. This would not have been possible for AMAC
or GP, since they require an almost complete rewrite of the code.

Last, Table 3 shows the maximum performance gain of a particu-
lar approach was able to achieve for a given data structure and com-
piler combinations in comparison to naive. We present the most
important highlights below:

1713

High Efficiency, High Developer Productivity: In terms of
performance, the coroutines-based approach matches the perfor-
mance of the AMAC-based approach when using Clang. Mean-
while, Coro beats naive by up-to 3.2x in our Masstree experiment,
with a trivial code change. This proves that for a wide variety
of scenarios, we can reap all the benefits of “interleaving” and
prefetching, without sacrificing developer productivity.

Performance Gains vs. Data Structure: Software prefetching
significantly improves performance in all the scenarios we consid-
ered. However, the performance gain varies by data structure. For
hash probe, binary search, Masstree, and Bw-tree we see a speedup
of up-to 8.4x, 3.5x, 3.2x, and 1.7x, respectively, over naive.

Compiler Support for Coroutines: As shown, coroutines sup-
port in the two popular compilers, namely Clang and MSVC, is not
equally mature. Our results show that, in terms of its relative per-
formance to other interleaving approaches, Clang-compiled Coro
performs better than the MSVC. We draw two conclusions: (1)
Clang’s Coro performance proves that getting good performance
(over hand-coded, hand-tuned AMAC code) is possible with com-
piler support, and (2) we are in early days for coroutines in C++. As
the coroutines proposal for C++20 moves forward, making corou-
tines more main-stream, we expect the quality of coroutine code
generation and the availability of coroutine libraries to improve.
Therefore, we expect that Coro will be able to match or exceed the
performance of handcrafted interleaving solutions, in the future.

6. CONCLUSION

In this work, we started with the goal of implementing and eval-
uating coroutines-based data structures to hide memory stall la-
tency. We presented an in-depth evaluation of coroutines-based ap-
proaches for hash probe, binary search, Masstree, and Bw-tree. We
compared no-prefetch (naive) with existing state-of-the-art soft-
ware prefetching approaches namely GP and AMAC. We show that
all of these approaches perform significantly better than the naive
approach. In some cases (e.g., hash probe), these approaches are
better by a factor of 8. We also confirm that with coroutines, in
most cases, we can match or beat the performance of hand-written,
hand-tuned AMAC (or GP) code at a tiny fraction of the develop-
ment cost. And our implementation and evaluation verify the ap-
plicability of coroutines- based approaches across simple and com-
plex data structures. Further, to the best of our knowledge, we are
the first to demonstrate multi-function coroutines, and to evaluate
the effectiveness of coroutines to hide memory latency when hyper-
threading is turned on and across NUMA nodes. Finally, we sum-
marized our findings, which provide a guideline for system builders
to exploit coroutines in designing highly efficient systems.

7.
(1]
(2]

REFERENCES

The Clang project. https://clang.llvm.org/.
Coroutines ISO.
https://www.iso.org/standard/73008.html.
CppCoro.
https://github.com/lewissbaker/cppcoro.

(3]
[4] Fibers. https://msdn.microsoft.com/en-us/
library/ms682661.aspx.

Intel 64 and IA-32 architectures optimization reference
manual. https://software.intel.com/sites/
default/files/managed/9%e/bc/

(5]

64-ia-32—-architectures-optimization-manual.

pdf.
Microsoft Visual Studio.
https://www.visualstudio.com/.

(6]



(7]

(8]
(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

Programming languages—C++ extensions for coroutines.
proposed draft technical specification ISO/IEC DTS 22277
(e). http://www.open—-std.org/jtcl/sc22/
wg2l/docs/papers/2017/n4680.pdf.

Redis. https://redis.io/.

A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a modern processor: Where does time go? In
PVLDB, pages 266-277, 1999.

J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson.
Bztree: A high-performance latch-free range index for
non-volatile memory. 11(5):553-565, 2018.

L. Barroso, M. Marty, D. Patterson, and P. Ranganathan.
Attack of the killer microseconds. CACM, 60(4):48-54,
2017.

S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving hash join performance through prefetching.
TODS, 32(3):17, 2007.

M. E. Conway. Design of a separable transition-diagram

compiler. Communications of the ACM, 6(7):396-408, 1963.

C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL
Server’s memory-optimized OLTP engine. In SIGMOD,
pages 1243-1254, 2013.

U. Drepper. What every programmer should know about
memory. Red Hat, Inc, 11:2007, 2007.

B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent MemCache with dumber caching
and smarter hashing. NSDI, 13:371-384, 2013.

1714

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,

T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. FAST:
Fast architecture sensitive tree search on modern CPUs and
GPUs. In SIGMOD, 2010.

0. Kocberber, B. Falsafi, and B. Grot. Asynchronous
memory access chaining. PVLDB, 9(4):252-263, 2015.

J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
Bw-Tree: A B-tree for new hardware platforms. In /CDE,
2013.

S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing
database achitecture for the new bottleneck: Memory access.
VLDBJ, 2000.

Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast
multicore key-value storage. In Eurosys, 2012.

G. Psaropoulos, T. Legler, N. May, and A. Ailamaki.
Interleaving with coroutines: A practical approach for robust
index joins. PVLDB, 11(2):230-242, 2018.

J. Rao and K. A. Ross. Making B+-trees cache conscious in
main memory. In SIGMOD, 2000.

S. M. Rumble, A. Kejriwal, and J. K. Ousterhout.
Log-structured memory for DRAM-based storage. In FAST,
2014.

V. Sikka, F. Firber, A. Goel, and W. Lehner. SAP HANA:
The evolution from a modern main-memory data platform to
an enterprise application platform. PVLDB,
6(11):1184-1185, 2013.

M. Stonebraker and A. Weisberg. The VoltDB main memory
DBMS. [EEE Data Eng. Bull., 2013.



