
CDB: A Crowd-Powered Database System

Guoliang Li†, Chengliang Chai†, Ju Fan∗, Xueping Weng†, Jian Li‡, Yudian Zheng#,
Yuanbing Li†, Xiang Yu†, Xiaohang Zhang†, Haitao Yuan†

†Tsinghua University, ∗Renmin University, #Twitter
{liguoliang,lijian83}@tsinghua.edu.cn; chaicl15@mails.thu.edu.cn; fanj@ruc.edu.cn; yudianz@twitter.com

ABSTRACT
Crowd-powered database systems can leverage the crowd’s
ability to address machine-hard problems, e.g., data integra-
tion. Existing crowdsourcing systems adopt the traditional
tree model to select a good query plan. However, the tree
model can optimize the I/O cost but cannot optimize the
monetary cost, latency and quality, which are three impor-
tant optimization goals in crowdsourcing. To address this
limitation, we demonstrate CDB, a crowd-powered database
system. CDB proposes a new graph-based model that adopts
a fine-grained tuple-level optimization model which signifi-
cantly outperforms existing coarse-grained tree-based opti-
mization models. Moreover, CDB provides a unified frame-
work to simultaneously optimize the monetary cost, quality
and latency. We have deployed CDB on well-known crowd-
sourcing platforms and users can easily use our system to
deploy their applications. We will demonstrate how to use
CDB to address real-world applications, including web table
integration and entity collection.

PVLDB Reference Format:
Guoliang Li, Chengliang Chai, Ju Fan, Xueping Weng, Jian Li,
Yudian Zheng, Yuanbing Li, Xiang Yu, Xiaohang Zhang, Haitao
Yuan. CDB: A Crowd-Powered Database System. PVLDB, 11
(12): 1926 - 1929, 2018.
DOI: https://doi.org/10.14778/3229863.3236226

1. INTRODUCTION
Crowdsourcing aims to leverage the crowd’s ability to

solve the problems that are hard for the machines, e.g., en-
tity resolution [2]. Inspired by traditional DBMS, crowd-
sourcing database systems, such as CrowdDB [4], Qurk [7],
Deco [8], and CrowdOP [3], have been recently proposed
and developed. There are two major limitations in existing
crowdsourcing systems. First, to optimize a query, existing
systems always adopt the traditional tree model to select a
good query plan. The tree model can optimize the I/O cost
but cannot optimize the monetary cost, latency and quality,
which are three important optimization goals in crowdsourc-
ing. Second, existing crowdsourcing systems mainly focus on

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/08.
DOI: https://doi.org/10.14778/3229863.3236226

optimizing the monetary cost while ignoring other two sig-
nificant optimization goals (e.g., reducing the latency and
improving the quality) in crowdsourcing. To address these
limitations, we develop a novel crowd-powered database sys-
tem, CDB, which has the following salient features.

Fine-Grained Query Model. To optimize a query, exist-
ing systems adopt a tree model to select an optimized table-
level join order. However, it generates the same order for
different joined tuples and limits the optimization potential
that different joined tuples can be optimized by different or-
ders, and thus the tree model only provides a coarse-grained
table-level optimization. This is possibly because the opti-
mization goal of traditional databases is to reduce random
access. While in crowdsourcing, one optimization goal is to
reduce the number of tasks that reflects the monetary cost.
To this end, we propose a graph-based query model that
provides the fine-grained tuple-level optimization [5].

Multi-Goals Optimization. In crowdsourcing, there are
three optimization goals, i.e., smaller monetary cost, lower
latency, and higher quality. However, most of the existing
systems only focus on optimizing monetary cost, and they
adopt the simplest majority voting strategy for quality con-
trol, without modeling the latency control. Thus it calls for
a new crowd-powered system to enable the multi-goal op-
timization. We devise a unified framework to perform the
multi-goal optimization based on the graph model [5].

Cross Platform Deployment. We have implemented and
deployed our system on Amazon Mechanical Turk (AMT),
CrowdFlower and ChinaCrowd. Given a query, our system
can execute the crowd-based operations by publishing tasks
to any of these platforms. Thus our system can be easily and
user-friendly used to deploy crowdsourcing applications.

Demonstration Scenarios. (1) Web Data Integration.
Web tables contain a large amount of data but with rather
low quality. CDB utilizes crowd-powered operations to inte-
grate the data. For example, CDB can identify the product
with the lowest price from Amazon, eBay and Best buy. CDB
can also find the publications from ACM, DBLP, and Google
scholar that refer to the same entity. We will demonstrate
how CDB generates the query plan to reduce the cost while
achieving high quality and low latency. The participants
can pose online queries to find the products with the lowest
price from different sources. (2) Entity Collection. CDB can
collect entities with low cost, e.g., collecting NBA players
born in California. As different crowd workers may return
duplicated results, it is important to avoid duplicates to re-
duce the cost. We will demonstrate how CDB collects answers
with few duplicates and how CDB interacts with the crowd.

1926



MetaData

Task

Worker

Crowdsourcing

Platforms
Relational

Database

Graph-Based Query Model

Assignment

CQL Parser Result Collection

Query Optimization

Cost Control

Latency Control

Quality Control

!"#$ %##&'()*(+ !,-+. /(0*,*(1*

Crowd UI Designer Statistics

Figure 1: System Overview

2. SYSTEM ARCHITECTURE
The architecture of CDB is shown in Figure 1. CDB still

uses the relational data model and extends SQL to define
a declarative query language CQL by adding some crowd-
powered operations into SQL, e.g., CROWDEQUAL, CROWDJOIN.
A requester (user) defines her data and submits her query
with crowd-powered operations using CQL, which will be
parsed by CQL Parser. Then Graph-based Query Model

builds a graph model. Next Query Optimization gener-
ates an optimized query plan, where cost control selects a
set of tasks with the minimal cost, latency control identifies
tasks that can be asked in parallel, and quality control de-
cides how to assign each task to appropriate workers and in-
fer the truth. Crowd UI Designer designs various interfaces
and interacts with underlying crowdsourcing platforms. It
periodically pulls the answers from the crowdsourcing plat-
forms in order to evaluate worker’s quality. Finally, Result
Collection reports the results to the requester.

Figure 2 shows the differences between CDB and existing
systems. CDB supports many more crowdsourcing opera-
tions, enables multiple optimization goals (cost, latency and
quality), provides tuple-level fine-grained optimization and
is deployed into multiple crowdsourcing markets. Please re-
fer to [5] for more details. The source code is available at
https://github.com/TsinghuaDatabaseGroup/CDB.

2.1 Graph Query Model
After parsing the CQL query, we obtain the operators that

a requester wants to execute. CDB supports all relational
operators such as join, selection, group-by, aggregation. We
define a graph-based query model to provide a fine-grained
optimization on CQL queries. Given a CQL query, we con-
struct a graph, where each vertex is a tuple in a table and
each edge connects two tuples based on the join/selection
predicates in the CQL. For example, consider the tuples in
Figure 3. A Blue solid (Red dotted) edge denotes that the
two tuples can (cannot) be successfully joined. Before asking
the crowd, we do not know the result of each edge. We aim
to ask the minimum number of tasks to find the Blue solid
chains as answers. The traditional tree-based optimization
model first selects two tables to join (involving 9 tasks) and
then joins with the third table and the fourth table. The
tree model asks at least 9+5+1=15 tasks for any join order.
However, the optimal solution is to ask the 3 Red dotted
edges, and the tasks on other 24 edges could be saved.

CrowdDB Qurk Deco CrowdOP CDB

Crowd

Powered

Operators

COLLECT √ × √ × √

FILL √ × √ √ √

SELECT √ √ √ √ √

JOIN √ √ √ √ √

ORDER √ √ × × √

GROUP × × × × √

Optimization

Objectives

Cost √ √ √ √ √

Latency × × × √ √

Quality × × × × √

Optimization

Strategies

Cost-model × √ √ √ √

Tuple-level × × × × √

Budget-

supported
× × × × √

Task

Deployment
Cross-Market × × × × √

Figure 2: Comparison of Crowdsourcing Systems.

Table 1 Table 2 Table 3 Table 4

T
u
p

le
s

Figure 3: An example of tuple-level optimization

Formally, given a CQL query with N join predicates, we
construct a graph G according to the CROWDJOIN predicates
(i.e., asking the crowd to check whether two tuples can be
joined), where each vertex is a tuple of a table in the CQL

query. For each join predicate T .Ci CROWDJOIN T ′.Cj be-
tween two tables T and T ′ in the query, we add an edge
between two tuples tx ∈ T and ty ∈ T ′, and the weight
of this edge is the matching probability that the two values
tx[Ci] and ty[Cj ] can be matched, where tx[Ci]/ty[Cj ] is the
value of tx/ty on attribute Ci/Cj . (The matching probabil-
ity can be computed based on the similarity of tx[Ci]/ty[Cj ],
e.g., Jaccard similarity [5]). Besides, in order to reduce the
cost, we will remove some edges whose weights are below a
threshold ε. In the graph G, a connected substructure of
the graph G with N edges is called a candidate if it contains
a corresponding edge for every query predicate in the CQL

query. And obviously, a candidate is an answer if each edge
in the candidate is Blue. To find all the answers, a straight-
forward method randomly asks the edges until all the edges
are colored as Blue or Red. However, some Red edges may
make some Blue or Red edges disconnected, and we do not
need to ask such edges, which are called invalid edges.

Based on this observation, we propose an effective task
selection algorithm in [5]. The intuitive idea is that we aim
to first ask edges that can result in the maximum benefit.
Consider an edge e = (t, t′) where t and t′ are from tables T
and T ′ respectively, and ω(e) is the matching probability of
t and t′. If cutting the edge makes some edges invalid, we
compute its pruning expectation by the probability of cut-
ting the edge (i.e., 1−ω(e)) times the number of invalid edges
introduced by this cutting. Then we compute the pruning

1927

https://github.com/TsinghuaDatabaseGroup/CDB


expectation for every edge, sort them by the expectation in
descending order, and select the edge in order as tasks.

To support selection operation, we integrate it into our
graph model instead of just pushing it down as existing sys-
tems. For each crowd-powered selection T .Ci CROWDEQUAL
value, we add a new vertex (with this value) into the graph.
For each tuple t ∈ T , we take the similarity between t[Ci]
and value as the matching probability ω(t[Ci], value). If
ω(t[Ci], value) ≥ ε, we add an edge between this vertex and
t with weight ω(t[Ci], value). We discuss how to support
other operators in Section 2.3.

2.2 Query Optimization
2.2.1 Cost Optimization

We optimize the cost through the graph model in Sec-
tion 2.1. We select the edge with the largest pruning ex-
pectation to ask and thus provide a fine-grained tuple-level
optimization model compared with the traditional coarse-
grained table-level model.

2.2.2 Latency Optimization
We use the round model to quantify the latency, i.e., the

number of rounds to publish the tasks to a platform, and
aim to minimize the number of rounds without increasing
the number of tasks. Given two edges e and e′, we check
whether they are in the same candidate answer. If they are
in the same candidate, we call that they are conflict, because
asking an edge may prune the other edges; otherwise we
call that they are non-conflict. Obviously we can ask non-
conflict edges simultaneously but cannot ask conflict edges.
We propose several effective rules [5] to detect whether two
edges can be asked simultaneously.

2.2.3 Quality Optimization
In order to derive high-quality results based on workers’

answers, it is important to do quality control. CDB controls
quality from two aspects. (1) When a worker first comes
to answer tasks, we estimate the worker’s quality and infer
the truth of her answered task, called “truth inference”; (2)
When a worker comes and requests for new tasks, we con-
sider the worker’s quality and assign tasks with the high-
est improvement in quality to the worker, called “task as-
signment”. CDB supports four types of tasks: single-choice,
multiple-choice, fill-in-blank and collection tasks. More de-
tails on how CDB addresses truth inference and task assign-
ment on crowdsourcing tasks can be found in [12, 11, 13].

2.3 Optimizing Other Operators
2.3.1 Collection and Fill Operations
CDB also supports the open-world collection and fill oper-

ations, which are not well supported in other systems.
Fill Operation. CQL introduces FILL, which can be con-
sidered as a crowd-powered UPDATE, to crowdsource missing
attribute values. Given a CQL query with fill operation, e.g.,
filling the affiliations of researchers, we first parse it and then
publish a fill task associated with the missing attributes and
other attributes to the crowdsourcing platform. After work-
ers finish answering the tasks based on other attributes, we
collect the results and fill them to the corresponding missing
attributes. Moreover, FILL also allows a requester to fill a
part of missing attribute values, e.g., filling the affiliations
of female researchers.
Collection Operation. We also design COLLECT in CQL to
collect more tuples from the crowd for a CROWD table. For ex-
ample, if we want to collect NBA players using CQL collect

NBAPlayer.name, NBAPlayer.birthplace. Our system will
parse the CQL first, publish collection tasks and the workers
will collect the answers for the requester. To avoid the du-
plicated entities provided by different workers, we propose
an incentive-based strategy to reduce the cost [1].

2.3.2 Sort and Top-k Operation
CDB also supports sorting and top-k operations [10, 6],

which contains two main steps. The first step infers top-k
results based on the current answers of rating and ranking
tasks, called top-k inference. We model the score of each ob-
ject as a Gaussian distribution, utilize the rating and rank-
ing results to estimate the Gaussian distribution, and infer
the top-k results based on the distributions. The second
step selects tasks for a coming worker, called task selection.
Based on the probability of an object in the top-k results, we
get two distributions: real top-k distribution and estimated
top-k distribution. We propose an effective task selection
strategy that selects tasks to minimize the distance between
the real distribution and the estimated distribution. We
propose effective algorithms to estimate the distribution so
as to minimize the distance of the two distributions [6].

2.3.3 Groupby Operation
CDB supports the Groupby operation to aggregate the query

results based on a given attribute. We use crowdsourc-
ing entity resolution to support groupby [2]. Specifically,
we first use a similarity-based method to identify the possi-
ble matching pairs and prune large numbers of un-matching
pairs. Then we ask the crowd to verify the pairs. We can
use transitivity and partial order to reduce the cost [9, 2].

3. DEMONSTRATION SCENARIOS
Web Table Integration. We first illustrate the web table
integration scenario. Given three tables of electrical prod-
ucts from Amazon, Best buy and eBay, we aim to compare
prices of the same products from different sources. To use
CDB to address this problem, the requester needs to upload
the relational data (i.e., the products). Then, the requester
can pose a CQL query to find the records that refer to the
same entity. Next CDB parses the CQL, constructs the graph
model and publishes entity resolution tasks to a crowdsourc-
ing platform like AMT. In CDB, we use a tuple-level task
selection approach based on the graph model to optimize
the cost. We can see from Figure 4(a) that these tasks are
selected from different adjacent tables rather than the same
adjacent tables as other crowd-powered systems do. After
workers finish a batch of tasks on the platform (like AMT)
in Figure 4(b), CDB reconstructs the graph model, selects
tasks which can achieve the most benefit and publishes an-
other batch of tasks, as shown in Figure 4(c). CDB repeats
this until getting all the results. At last, CDB shows the
results to the requester and she can download the results
from our platform as shown in the bottom part of Figure
4(c). In this scenario, we ask 4 tasks in total. However, if
we apply other crowd-powered systems [4, 7, 8], they will
select a table-level order to ask the crowd. Firstly, they will
ask four tasks between the first two tables (or the last two).
And then they have to ask two tasks between the remaining
two tables. Therefore, they task 6 tasks in total, which have
weaker pruning ability than CDB.

In our demo, we allow participants to pose product search
queries, e.g., “iPhone X 256GB”, and our system can auto-
matically find the products with the lowest cost from dif-
ferent sources while keeping high quality and low latency.

1928



Figure 4: CDB Screenshot for Web Data Integration

Figure 5: CDB Screenshot for Entity Collection

We will show how CDB generates the query plan and selects
tasks to ask, how CDB iteratively interacts with the crowd,
and why CDB can reduce the cost.

Entity Collection. Entity collection aims to collect a set
of “open-world” entities, e.g., NBA players born in Califor-
nia. Given this entity collection problem, CDB publishes a
query in CDB, as shown in Figure 5(a). Then CDB generates
some collection tasks and publishes the tasks on crowdsourc-
ing platforms, e.g., AMT. Workers in AMT will answer our
collection tasks like Figure 5(b). Then the requester can
view the results and download them as shown in Figure 5(c)
during the collection process.

Note that for entity collection tasks, we want to collect
complete entities with low cost. However the workers may
provide duplicate entities. For example, most workers will
provide famous players, e.g., “James Harden”, “Kevin Love”,
“Russell Westbrook”, “Kawhi Leonard”, and these entities
will be provided by many workers. Thus existing methods
will incur high cost. To address this challenge, CDB employs
an incentive-based crowdsourcing model in the entity collec-
tion scenario. When a worker provides an answer, she can
check whether the entity has been already collected. If it is
a duplicated answer, the worker can choose to change other
entities and check again until providing a distinct entity. If
she provides a distinct entity, she will get some bonus. Oth-
erwise she can only get the basic reward for answering a
task. Since workers want to get the bonus, they will think
over how to provide distinct entities. We devise effective
techniques to encourage workers to provide distinct entities
in [1]. Besides, we design strategies to eliminate those work-
ers who provide duplicated answers or wrong answers.

In our demo, we allow participants to pose an entity col-
lection task, e.g., collecting all universities in Rio, and our
system will automatically generate the tasks, deploy them

on AMT, and interact with workers to collect entities. We
show how CDB encourages workers to provide distinct entities
and find the results with the lowest cost.
Acknowledgement. This work was supported by the 973
Program of China (2015CB358700), NSF of China (61632016,
61472198,61521002,61661166012), and TAL education.

4. REFERENCES
[1] C. Chai, J. Fan, and G. Li. Incentive-based entity collection

using crowdsourcing. In ICDE, 2018.

[2] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. Cost-effective
crowdsourced entity resolution: A partial-order approach. In
SIGMOD, pages 969–984, 2016.

[3] J. Fan, M. Zhang, S. Kok, M. Lu, and B. C. Ooi. Crowdop:
Query optimization for declarative crowdsourcing systems.
TKDE, 27(8):2078–2092, 2015.

[4] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. Crowddb: answering queries with crowdsourcing. In
SIGMOD, 2011.

[5] G. Li, C. Chai, J. Fan, X. Weng, J. Li, and Y. Zheng. CDB:
optimizing queries with crowd-based selections and joins. In
SIGMOD, pages 1463–1478, 2017.

[6] K. Li, X. Z. G. Li, and J. Feng. A rating-ranking based
framework for crowdsourced top-k computation. In SIGMOD,
pages 1–16, 2018.

[7] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced
databases: Query processing with people. In CIDR, 2011.

[8] A. G. Parameswaran, H. Park, H. Garcia-Molina, and
J. Widom. Deco: declarative crowdsourcing. In CIKM, 2012.

[9] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins. In
SIGMOD, 2013.

[10] X. Zhang, G. Li, and J. Feng. Crowdsourced top-k algorithms:
An experimental evaluation. PVLDB, 9(8):612–623, 2016.

[11] Y. Zheng, G. Li, and R. Cheng. DOCS: domain-aware
crowdsourcing system. PVLDB, 10(4):361–372, 2016.

[12] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference
in crowdsourcing: Is the problem solved? PVLDB,
10(5):541–552, 2017.

[13] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. QASCA: A
quality-aware task assignment system for crowdsourcing
applications. In SIGMOD, 2015.

1929


	introduction
	System architecture
	Graph Query Model
	Query Optimization
	Cost Optimization
	Latency Optimization
	Quality Optimization

	Optimizing Other Operators
	Collection and Fill Operations
	Sort and Top-k Operation
	Groupby Operation


	Demonstration Scenarios
	References

