Declarative and distributed graph analytics with GRADOOP

Martin Junghanns
University of Leipzig &
ScaDS Dresden/Leipzig

Kevin Gomez
University of Leipzig &
ScaDS Dresden/Leipzig

ABSTRACT

We demonstrate GRADOOP, an open source framework that
combines and extends features of graph database systems
with the benefits of distributed graph processing. Using a
rich graph data model and powerful graph operators, users
can declaratively express graph analytical programs for dis-
tributed execution without needing advanced programming
experience or a deeper understanding of the underlying sys-
tem. Visitors of the demo can declare graph analytical pro-
grams using the GRADOOP operators and also visually expe-
rience two of our advanced operators: graph pattern match-
ing and graph grouping. We provide real world and artificial
social network data with up to 10 billion edges and allow
running the programs either locally or on a remote research
cluster to demonstrate scalability.

PVLDB Reference Format:

Martin Junghanns, Max Kieflling, Niklas Teichmann, Kevin Gémez,

André Petermann and Erhard Rahm. Declarative and distributed
graph analytics with GRADOOP. PVLDB, 11 (12): 2006-2009,
2018.

DOI: https://doi.org/10.14778/3229863.3236246

1. INTRODUCTION

Currently, two major categories of systems focus on the
management and analysis of graph data: graph database
systems and distributed graph processing systems [7]. Graph
database systems, such as Neo4j, focus on the efficient stor-
ing and transactional processing of graph data where mul-
tiple users can access a graph in an interactive way. They
support expressive data models, such as the property graph
model [13], which are suitable to represent heterogeneous
graph data (see Figure 1). Furthermore, graph database sys-
tems often provide a declarative graph query language, e.g.,
Cypher [11], with support for graph traversals and pattern
matching. However, graph database systems are typically
less suited for high-volume data analysis and graph mining
[4, 10, 14] and often do not support distributed processing
on partitioned graphs which limits the maximum graph size
to the resources of a single machine.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 11, No. 12

Copyright 2018 VLDB Endowment 2150-8097/18/8.

DOI: https://doi.org/10.14778/3229863.3236246

Max KiefB3ling
University of Leipzig &
ScaDS Dresden/Leipzig

André Petermann
University of Leipzig &
ScaDS Dresden/Leipzig

Niklas Teichmann
University of Leipzig &
ScaDS Dresden/Leipzig

Erhard Rahm
University of Leipzig &
ScaDS Dresden/Leipzig

..

University .

L[. —oeseam

________ i.é,J l§amed:dUn?vi48§ Leipzig T name : Leipzig
ounde . pop : 600K

since : 2017

studyAt H
friendof

N\ J H
(Person) (Person)
name Alice name : Bob
yob 1984 speaks : [en, ger])!
i

..

Figure 1: Heterogeneous social network with custom la-
bels and properties on vertices, edges and graphs.

By contrast, parallel graph processing systems [1, 7] such
as Google Pregel [9] or GraphX [15] process and analyze
large-scale graph data in-memory on shared nothing clus-
ters. They provide tailored computational models in which
users need to implement predefined functions to express
graph algorithms. However, these systems typically lack an
expressive graph data model with support for heterogeneous
entities and declarative graph operations. Especially the lat-
ter makes it difficult for users to formulate analytical tasks
as this requires profound programming and system knowl-
edge.

The comparison shows that the two categories have both
strengths and restrictions. To combine and extend the for-
mer, we built GRADOOP, our full-fledged framework for dis-
tributed, declarative graph analytics." GRADOOP is the first
system that provides support for multiple, heterogeneous
graphs, distributed graph querying and distributed graph
algorithms within a single system. In addition, GRADOOP
provides several powerful graph operators to help data scien-
tists, who are often non-professional programmers and rely
on domain-specific abstractions to express complex analyti-
cal tasks. The main contributions of GRADOOP are:

e The Extended Property Graph Model [5] to support het-
erogeneous graphs as well as collections of those.

e Composable graph operators, including analytical opera-
tors such as Cypher-based graph pattern matching [6] and
graph grouping [8] as well as general operators for data
transformation and aggregation.

e Integration of graph algorithms, e.g., page rank, commu-
nity detection and frequent subgraph mining [12].

e Support for batch-oriented program execution and inter-
active operator execution including result visualization.

In the remainder we will briefly introduce the GRADOOP
system (Sec. 2) and describe our demonstration (Sec. 3).

Laww. gradoop.com

2006

| Java AP |

Graph Analytical Language (GrALa)

‘ 1/0 H Analytical Operators H Graph Algorithms ‘

‘ Extended Property Graph Model (EPGM

. - - rX0—
‘ Distributed Execution Engine (Apache Flink)

‘ Distributed Storage (Apache HDFS / HBase) ‘

Figure 2: High-level architecture of the Gradoop system.

2. THE GRADOOP SYSTEM

With GRADOOP, we provide an open source framework for
scalable analytics of large, semantically expressive graphs.
To achieve horizontal scalability of storage and processing
capacity, GRADOOP runs on shared nothing clusters and uti-
lizes existing open source frameworks for distributed data
storage and processing. The difficulties of distributing data
and computation are hidden beneath a graph abstraction
allowing the user to focus on the problem domain.

Figure 2 shows the GRADOOP architecture. Analytical
programs are defined within our Graph Analytical Language

(GRALA), which is a domain specific language for the Extended

Property Graph Model (EPGM) [5]. GRALA contains op-
erators for accessing graphs in the underlying storage as well
as for applying graph operations and analytical graph algo-
rithms to them. Operator execution is carried out by the
distributed execution engine which spreads the computa-
tion across the available machines. When the computation
of an analytical program is completed, results may be either
written back to the storage layer or presented to the user.
In the following, we briefly explain the core components.

Distributed Storage. GRADOOP supports several ways to
store EPGM compliant graph data. To abstract the specific
storage, GRALA offers two interfaces: DataSource to read
and DataSink to write graphs. An analytical program typ-
ically starts with one or more data sources and ends in at
least one data sink (see Fig. 3). We provide several imple-
mentations for file-based storage, e.g., CSV and JSON, that
allow reading and writing graphs from the local file system
or the Apache Hadoop Distributed File System (HDFS).
GRADOOP in addition supports Apache HBase, that intro-
duces database capabilities on top of the HDF'S.

Distributed Execution Engine. Within GRADOOP, the
EPGM and GRALA provide a graph abstraction for the
user. However, the actual implementation of the data model
and its operators are transparent to the user and hidden
within the distributed execution engine. Generally, this
can be an arbitrary data management system that allows
implementing graph operators. GRADOOP utilizes a dis-
tributed dataflow system to achieve horizontal scalability.
Well-known systems are Apache Spark [16] and Apache Flink
[2]. Those systems provide high-level APIs that enable fast
application development by abstracting from the complex-
ities of distributed computing. For our current proof of
concept, we chose Apache Flink, a distributed batch and
stream processing framework, that allows executing arbi-

2007

Table 1: Analytical graph operators and algorithms
available in Gradoop organized by their input type, i.e.,
logical graph or graph collection. (* auxiliary operators)

Analytical Operators Graph Algorithms

Unary Binary
= Aggregation Combination PageRank
g Pattern Matching [6] Overlap Community Detection
&} Transformation Exclusion Connected Components
Tg Grouping [8] Equality Single Source Shortest Path
'gﬂ Subgraph Summarization
= Call* Hyperlink-Induced Topic Search
= Selection Union Frequent Subgraph Mining [12]
oo Distinct Intersection
< Limit Difference
§ Apply* Equality
&} Reduce*

Call*

trary dataflow programs in a data-parallel and distributed
manner. A dataflow system provides two fundamental pro-
gramming abstractions: datasets and transformations among
them. A dataset is a collection of arbitrary data objects par-
titioned over a cluster of machines. A transformation is a
parallel operation that is executed on the elements of one
or two input datasets and produces a new dataset. Well-
known transformations are map and reduce, but also rela-
tional operators are supported, e.g., selection (filter), join
and grouping. Application logic is expressed by user-defined
functions which are arguments of transformations and ap-
plied to dataset elements during execution. The dataflow
system handles data distribution, load balancing and fail-
ure management. In addition, Apache Flink provides sev-
eral libraries that can be combined and integrated within
a GRADOOP program, e.g., for graph processing, machine
learning and SQL.

Extended Property Graph Model. The EPGM [5] de-
scribes how graphs and their elements (vertices and edges)
are structured within GRADOOP. It is an extension of the
property graph model [13], which is used in various graph
database systems. To facilitate integration of heterogeneous
data, it does not enforce any kind of schema, but the graph
elements can have different type labels and attributes (see
Figure 1). The latter are exposed to the user and can be
accessed within graph operators. For enhanced analytical
expressiveness, the EPGM supports handling of multiple,
possibly overlapping graphs within a single analytical pro-
gram [5]. Graphs, as well as vertices and edges, are first-class
citizens of the data model and can have their own properties.
Within GRADOOP, EPGM elements are represented through
specific data types and organized within datasets of the un-
derlying dataflow system. The concrete organization is de-
termined by a graph layout, for example, the default layout
maps a single graph to three datasets. GRADOOP already
provides a set of layouts that are beneficial within specific
analytical scenarios.

Graph Analytical Language. Programs are specified us-
ing declarative GRALA operators. These operators can be
composed as they are closed over the EPGM, i.e., take graphs
as input and produce graphs. From a user perspective,
graphs and graph operators are the analogy to datasets and

// init Flink execution environment

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

/ create default Gradoop config
GradoopFlinkConfig config = GradoopFlinkConfig.createConfig(env);
// create DataSource
JSONDataSource dataSource = new JSONDataSource(inputDir, config);
// lazily read the graph from the DataSource
LogicalGraph socialNetwork = dataSource.getlLogicalGraph();
// perform analytics
LogicalGraph resultGraph =
// create DataSink
CSVDataSink dataSink = new CSVDataSink(outputDir, config);
'/ write result in CSV format
dataSink.write(resultGraph);
// trigger program execution
env.execute();

analyze(socialNetwork);

Figure 3: GrALa program to read and write graph data.

transformations. Table 1 shows available analytical oper-
ators and graph algorithms categorized by their input [5].
Besides general operators for graph transformation or ag-
gregation, GRADOOP also provides pattern matching [6] ca-
pabilities known from graph database systems and analyt-
ical operators, e.g., for graph grouping [8]. Each category
contains auxiliary operators, e.g., to apply unary graph op-
erators on each graph in a graph collection or to call external
algorithms. GRALA already integrates a set of well-known
graph algorithms (e.g., page rank or connected components),
which can be seamlessly integrated into an operator com-
position. Within GRADOOP, an operator call is mapped
to a series of transformations on the underlying datasets
representing the graph or the graph collection on which it
is called. For example, calling the grouping operator on a
single graph performs map, filter, grouping and join trans-
formations on its vertices and edges, whereas the pattern
matching operator abstracts a complete cost-based query
engine that - depending on the search pattern - generates
individual compositions of dataset transformations.

Application Programming Interface. GRADOOP offers
a Java API containing the EPGM abstraction including all
operators defined within GRALA. This way, users can spec-
ify analytical programs (see Figures 3 and 4) and execute
them either locally for testing or on a cluster. Graphs can
optionally be initialized from existing datasets which al-
lows for pre-processing data within the dataflow system.
Graphs also expose the underlying datasets, which enables
post-processing using any available library provided by the
dataflow system.

Performance evaluation. We already evaluated GRADOOP
and its operators extensively in previous publications. Our
benchmarks were performed on a shared nothing cluster us-
ing artificial [3] and real-world heterogeneous graphs with up
to 10 billion edges. In [6], we demonstrated that our Cypher-
based pattern matching operator achieves good scalability
for increasing computing resources and near perfect scala-
bility for increasing data sets. The graph grouping opera-
tor, presented in [8], shows a similar behavior and achieved
runtimes of a few seconds on real-world data. A bench-
mark for a comprehensive GRALA program including several
GRADOOP operators and a community detection algorithm
was conducted in [5] and achieved near-linear scalability. For
our implementation of Frequent Subgraph Mining [12], we
were also able to show high scalability for increasing data
sets, decreasing minimum support thresholds and increasing
computing resources.

return socialNetwork
// 1) extract subgraph using vertex and edge predicates
.subgraph (
vertex -> vertex.getlLabel().toLowerCase().equals(person),
edge -> edge getLahel().taLowerCase().equals(knows))
/ 2) project elements to necessary information
.transform(
'/ keep graph label and all properties
TransformationFunction.keep(),
'/ keep necessary vertex properties
(current, transformed) -> {
transformed. setlLabel(current.getlabel());
transformed.setProperty(city, current.getPropertyvalue(city));
transformed. setProperty(gender, current.getPropertyValue(gender));
transformed.setProperty(label, current.getPropertyValue(birthday));
return transformed;

'
' keep only edge label
(current, transformed) -> {
transformed. setlabel(current.getlabel());
return transformed;
H
// 3a) compute communities via label propagation
.callForGraph(new GellylLabelPropagation(maxIterations, label))
3b) separate communities into a graph collection
.splltBy(label)
// 4) compute number of vertices per community
.apply(new ApplyAggregatlon(new VertexCount()))
/ 5) select communities with a minimum number of vertices
.select(g -> g. getPropertyValue(vertexCount) getlong() > threshold)
/ 6) combine selected communities to a single graph
.reduce(new ReduceCombination())
// 7) group that graph by vertex properties
.groupBy (Lists.newArraylist(city, gender))
// 8) count vertices of su "y graph
.aggregate(new VertexCount())
// 9) count edges of summary graph
.aggregate(new EdgeCount());

Figure 4: GrALa program to analyze a social network.

3. DEMONSTRATION DESCRIPTION

Our demonstration is separated into two parts. First, we
want to give visitors the opportunity to inspect and ma-
nipulate existing example GRALA programs written in the
Java programming language. All example programs can be
executed on demo data, but also remotely on our research
cluster. We provide real-world graphs and artificial social
network data with up to 10 billion edges generated by the
LDBC data generator [3]. The second part of the demonstra-
tion focuses on the analytical value of two of our graph op-
erators for which we created a browser-based user interface.
Here, the operators can be parameterized and executed, the
result is presented to the user by graph visualization.

Programmatic demonstration. GRADOOP already comes
with a set of example programs? that show basic function-
ality like reading and writing graphs from different data
sources and sinks (see Figure 3) as well as the application
of basic graph operators. Advanced examples, like the one
shown in Figure 4, demonstrate the composition of multi-
ple operators to answer a specific analytical question. In
the example, we analyze a social network by extracting rel-
evant information using the subgraph and transformation
operators, applying a community detection algorithm (label
propagation) and using aggregation to compute the number
of users per community on which we select those that are
above a given threshold. Finally, we compute a summary
graph by grouping the combined communities based on user
attributes.

The example illustrates the abstraction level of a GRADOOP
program. A user does not need to be concerned about graph
data structures, operator implementations and distributed
execution details. The very same program can be executed

*https://git.io/vbAbr

2008

Graph & Graph View = Table View

Graphalytics

tag

Query
tag
MATCH &2
(n:person)-->() haslnterest
WHERE haslnterest hasinterest
n.firstName='Paul’
o «knows—— person
<"
com
pary P AN

id : 584019eb3cbd56b2202ecObc

label : person \

birthday : 485395200000

continent : Europe

country : Germany

firstName : Paul

lastName : Fischer \4

» .
tag g'ender.'female .
city : Weimar

@ Attach Attributes

speaks : en

browserUsed : Firefox

locationIP : 204.79.178.83

creationDate : 1295598534587

email : Paul6597069790414@yahoo.com
\

Figure 5: Computing vertex neighborhoods via Cypher.

locally for tests but also unmodified on a cluster using large-
scale datasets. Visitors will be able to execute those exam-
ples, manipulate them and write their own analytical pro-
grams using all GRALA operators.

Visual demonstration. To illustrate the analytical value
of graph pattern matching and graph grouping, we demon-
strate these two operators using a web application®.

Graph pattern matching is applied to find specific pat-
terns within a logical graph [6]. To declare a query, we
adopted core features of Cypher [11], the graph query lan-
guage of Neodj. Cypher uses so called ASCII-art to describe
a pattern, for example, in the social network of Figure 1, we
want to look for friends that study at the same University.
In Cypher, this can be expressed using the following query:
MATCH (pl:Person)-[:friend0f]-(p2:Person),

(p1)-[:studyAt]->(u:University)<-[:studyAt]-(p2)
RETURN pil, p2

The pattern matching operator is parameterized with a
Cypher query and applied on a logical graph. The result
of that operation is a graph collection in which each graph
represents a subgraph of the input graph that matches the
pattern. Figure 5 shows our demo application in which we
query the neighborhood of all persons named Paul. The
resulting graphs can be either visualized or displayed in a
tabular view. In the demonstration, users can explore the
graphs by writing Cypher queries and executing them on our
demo data. We will show more complex queries including
path searches and complex predicates.

Graph grouping is applied to reduce the complexity of
large-scale graphs by summarizing the graph structure by
user-defined vertex and edge properties [8]. This way, a user
is able to gain insights that are not derivable by looking at
the raw data. A simple example is shown in Figure 6. Here,
we group vertices and edges by their label to find out what is
connected and how. Each vertex and edge in the summary
graph represents a group of vertices and edges of the input
graph. During grouping, a user can apply several aggregate
functions (e.g., count, min, max) whose results are stored as
new vertex and edge properties. In the demonstration, we

3https://github.com/dbs-1leipzig/gradoop_demo

2009

Vertex Grouping
Parameters

isSubclagsof (2)

knows/8906)

Grouping Keys tagclass (8)
erson (3576)

workA; (954)

isLocatedIn (11)
*count

)Eanefw‘

Figure 6: Computing a summary graph via grouping.

*label

Aggregation Function

*count

Edges Grouping
Parameters

Grouping Properties

*label

Aggregation Function

will show more examples involving multiple grouping keys,
label-dependent grouping as well as graph roll up and drill
down.

4. REFERENCES

[1] O. Batarfi et al. Large scale graph processing systems:
survey and an experimental evaluation. Cluster Computing,
18(3):1189-1213, 2015.

P. Carbone et al. Apache Flink: Stream and Batch
Processing in a Single Engine. IEEE Data Eng. Bull.,
38(4):28-38, 2015.

O. Erling et al. The LDBC social network benchmark:
Interactive workload. In Proc. SIGMOD, 2015.

Y. Guo et al. How Well Do Graph-Processing Platforms
Perform? An Empirical Performance Evaluation and
Analysis. In Proc. IPDPS, pages 395-404, 2014.

M. Junghanns et al. Analyzing Extended Property Graphs
with Apache Flink. In Proc. SIGMOD NDA Workshop,
2016.

M. Junghanns et al. Cypher-based Graph Pattern Matching
in Gradoop. In Proc. SIGMOD GRADES Workshop, 2017.
M. Junghanns et al. Management and Analysis of Big
Graph Data: Current Systems and Open Challenges. In
Handbook of Big Data Technologies, pages 457-505. 2017.
M. Junghanns, A. Petermann, and E. Rahm. Distributed
Grouping of Property Graphs with GRADOOP. In Proc.
BTW, pages 103-122, 2017.

G. Malewicz et al. Pregel: A System for Large-scale Graph
Processing. In Proc. SIGMOD, pages 135-146, 2010.

R. McColl et al. A Performance Evaluation of Open Source
Graph Databases. In Proc. PPAA, pages 11-18, 2014.
openCypher. Cypher Query Lang. Ref.
https://github.com/opencypher/openCypher/blob/
master/docs/openCypher9.pdf, accessed: Feb. 2018.

A. Petermann et al. DIMSpan - Transactional Frequent
Subgraph Mining with Distributed In-Memory Dataflow
Systems. In Proc. BDCAT, pages 237246, 2017.

M. A. Rodriguez and P. Neubauer. Constructions from dots
and lines. ASIS&T Bull., 36(6), 2010.

B. Shao, H. Wang, and Y. Xiao. Managing and Mining
Large Graphs: Systems and Implementations. In Proc.
SIGMOD, pages 589-592, 2012.

R. S. Xin et al. GraphX: A Resilient Distributed Graph
System on Spark. In Proc. SIGMOD GRADES Workshop,
2013.

M. Zaharia et al. Apache Spark: A Unified Engine for Big
Data Processing. Commun. ACM, 59(11):56-65, 2016.

2]

(3]

(4]
[5]

[6]

[7]
(8]

[9]
(10]

(11]

(12]

(13]

(14]

(15]

[16]

