
A Collaborative Framework for Tweaking Properties in A
Synthetic Dataset

J.W. Zhang
National University of

Singapore

jiangwei@u.nus.edu

Yu Wang
National University of

Singapore

yuwang@u.nus.edu

Y.C. Tay
National University of

Singapore

dcstayyc@nus.edu.sg

ABSTRACT
Researchers and developers use benchmarks to compare their
algorithms and products. For database systems, a bench-
mark must have a dataset D. To be application-specific, this
dataset D should be empirical. However, a real D may be
too small, or too large, for the benchmarking experiments.
Therefore, D must first be scaled to the desired size.
Previous related work typically extracts a set of proper-

ties Π = {π1, . . . , πn} from D, then use Π to generate the
synthetic D̃. Π may thus ensure D̃ is similar to D. This
approach of having some monolithic software enforce prop-
erties π1, . . . , πn becomes increasingly intractable as n in-
creases. Our demonstration will present ASPECT, a frame-
work that takes a different approach.
With ASPECT, there is a tool S0 to first scale the dataset

size. The resulting D̃ can then be tweaked by tools T1, . . . , Tn,
where Tk enforces πk in D̃.
At the demonstration, a visitor has a choice of (i) D, (ii)

size scaler S0, (iii) the subset of properties to enforce, and
(iv) the order of applying the tools for the chosen properties.
The visitor can then see the enforcement error for each πk

and the running time for each Tk.
A video of the demonstration is presented here:

http://scaler.d2.comp.nus.edu.sg/

PVLDB Reference Format:
J.W. Zhang, Yu Wang and Y.C. Tay. A Collaborative Framework
for Tweaking Properties in a Synthetic Dataset. PVLDB, 11 (12):
2010-2013, 2018.
DOI: https://doi.org/10.14778/3229863.3236247

1. INTRODUCTION
Benchmarks are ubiquitous for the computing industry

and in academia. Developers and researchers use them to
compare their products and algorithms. For 20-odd years,
the popular benchmarks for database management systems
were the ones defined by the Transaction Processing Council

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236247

(TPC) 1. However, the small number of TPC benchmarks
are increasingly irrelevant to the myriad of diverse applica-
tions, and the TPC standardization process is too slow [5].
This led to a proposal for a paradigm shift, from a top-
down design of domain-specific benchmarks by committee
consensus, to a bottom-up collaboration to develop tools for
application-specific benchmarking [6].
A database benchmark must have a dataset. For the

benchmark to be application-specific, it must start with an
empirical dataset D. This D may be too small or too large
for the benchmarking experiment, so the first tool to develop
would be for scaling D to a desired size. This motivated the
Dataset Scaling Problem [6]: Given a dataset D and a scale
factor s, generate a synthetic dataset D̃ that is similar to D
but s times its size.
The definition of similarity is application-specific, and

can be specified by a set of properties Π = {π1, . . . , πn}.
For example, if D is a social network dataset, πi may be
“5% of users have more than 100 friends”, and πj may be
“80% of posts have no comments”.

1.1 Current Techniques and Limitations
Previous solutions to the Dataset Scaling Problem [3, 4,

7, 8] proceed as follows:
(Step1) Extract a set of properties Π = {π1, . . . , πn} from
D. Each πi is some metric or statistic, like fraction of posts
with no comments or joint distribution of foreign key values.
(Step2) Scale each πi to some target property π̃i. π̃i may
be the same as πi, but this may not be possible; e.g. if πi

is the frequency distribution of foreign key to primary key
references, the number of tuples in D̃ may prevent π̃i from
being exactly the same as πi.
(Step3) Use Π̃ = {π̃1, . . . , π̃n} to synthesize D̃.
This approach has limitations for the developer and user:

(Code Reuse) Suppose a developer has implemented an al-
gorithmA12 to enforce properties {π1, π2}, and someone else
has implemented some A23 to enforce properties {π2, π3}.
Another developer who wants to enforce {π1, π2, π3} will
have to add π3 enforcement to A12, or add π1 enforcement
to A23, or implement some A123 from scratch. In each case,
there is a reimplementation of code for property enforce-
ment. There is another need for code reuse: One can in-
crease the similarity between D̃ and D by having more prop-
erties in Π, but the implementation effort for a monolithic
software to enforce more properties is also greater.

1http://www.tpc.org/

2010



Figure 1: The ASPECT architecture – The empirical dataset D is uploaded by the user to the backend system through the
user interface (UI). Then, D is first scaled to D̃ by a size-scaler S0 to meet the size requirement. After that, tools T1, T2, . . . , Tn

sequentially interacts with the controller to modify dataset D̃ to enforce target properties π̃1, . . . , π̃n (similarity enforcement).
At the end of modification, the target properties will be reflected in D̃.

(Enforcement Flexibility) Given A12 and A23 in the ex-
ample above, a user cannot freely choose to enforce just π1,
nor change the order in enforcement of π2 and π3.

1.2 Our Solution: ASPECT
In this demonstration, we present ASPECT, a framework

for scaling an empirical dataset D to a synthetic D̃, and
flexibly enforcing similarity between D and D̃. ASPECT
has a repository of software tools S0, T1, . . . , Tn:
(S0) There is a choice of S0 for scaling D to the desired size.
This S0 may enforce similarity for some basic properties,
e.g. the number of foreign key references for each primary
key value.
(Tk) Each Tk is a tool to enforce some target property π̃k;
specifically, Tk tweaks (i.e. modifies) the data in D̃ to en-
force π̃k. To enforce π̃1 and π̃2, a user can choose T1(T2(D̃))

or T2(T1(D̃)) by ordering the application of the tools.
The ASPECT approach addresses the above-mentioned

limitations as follows:
(Code Reuse) If some developer X has implemented tools
T1 and T2 to enforce properties π̃1 and π̃2, and someone else
Y wants to enforce properties π̃2 and π̃3, then Y just need to
implement a tool T3 for π̃3, and use T2(T3(D̃)) or T3(T2(D̃)).
(Enforcement Flexibility) A user can choose the subset
of tools available from ASPECT, and choose the order for
applying the tools on D̃.
Since there are innumerable applications and properties,

and the list is evergrowing, we envision having developers
from the database community contribute the tools in AS-
PECT. This would go some way towards realizing the vi-
sion of a paradigm shift to a bottom-up collaboration for
application-specific benchmarking.
However, for the tools from different developers to inter-

operate, ASPECT must specify the interfaces and provide
a framework for the tools to collaborate. We next describe
the architecture to support this.

Figure 2: Running example for property enforcement.

2. ASPECT ARCHITECTURE
Figure 1 illustrates the ASPECT architecture. It has a

user interface (UI) and a backend system. We will
not elaborate on the UI, which helps the user understand
and interact with the backend system. (It is implemented
in Java.) Further details can be found in a technical report
that is under revision [9].

2.1 The Backend System
The backend system has two tasks: Size Scaling and

Property Enforcement.

2.1.1 Size Scaling
ASPECT first runs a tool S0 to scale the input empirical

D to a synthetic D̃ of the desired size. For example, S0 may
let the user specify the number of suppliers and products
in an e-commerce dataset D̃. Currently, ASPECT offers
three choices for S0: Dscaler [8], ReX [1] and Rand(which
generates random attribute values for the required number
of tuples).

2011



2.1.2 Property Enforcement
We illustrate the property enforcement together with the

example presented in Figure 2. In the Figure 2, there are
three properties expected to be presented in the scaled database.
π̃1 says that the ratio of male gender should be no less than
50%. π̃2 says that there must be 3 distinct years. π̃3 says
that there are exactly 2 males born in 2002. Suppose AS-
PECT has already applied T1, T2 to D̃. Now we are going
to apply T3 to fix π̃3, it does the following:
Step1. Controller first calls T3 to start tweaking, then calls
T1, T2 to start preparation.
Step2.1. T3 calls Target Generator to determine π̃3. In the
Figure 2, π̃3 is labelled accordingly.
Step2.2. Concurrently, T1, T2 call their respective Property
Evaluator to calculate current statistics for their properties.
Step3. T3 starts its Tweaking Algorithm. Every time T3

needs to modify D̃, it sends the intended modification to
Controller for validation.
Step4. For each proposed modification, Controller calls
T1, T2 to get the agreement of their Property Validators.
Controller summarizes the feedback from T1, T2 and replies
“yes” or “no” to T3. In Figure 2, if the proposed modification
is modifying the second row to < M, 2000 >, then, it vio-
lates π̃2. However, if the proposed modification is modifying
the third row to < M, 2000 >, then such a proposal should
be accepted.
Step5.1. If the reply is “yes”, Controller modifies D̃ and
tells T1, T2 to run their Statistics Updator.
Step5.2. If the reply is “no”, T3 must find an alternative
modification.
Step6. Repeat from Step3 until T3 halts.
Of course, there are properties that are mutually conflict-

ing, hence cannot be satisfied at the same time. To resolve
this, ASPCET always enforces the properties for the most
recently applied tools. Reader can find more details in the
technical report [9].

2.2 Tool Implementation Details
To facilitate interoperability, ASPECT requires each tool

to have 6 components that satisfy the following specifica-
tions:
(1) Target Generator:
This module generates the target property π̃k for Tk. For D̃
to be similar to D with respect to πk, π̃k would be the same
as πk, as determined from D. However, ASPECT allows 3
alternative ways of specifying π̃k:
(1a) User Input The user can accept πk as the default π̃k,
or specify the target π̃k manually. For example, the user
may want to specify the fraction of males in D̃.
(1b) Developer Generation A developer who implements
Tk may have a better understanding of how πk (e.g. for the
number of comments per post) changes when the dataset
scales up or down. The developer may therefore provide the
code for generating π̃k.
(1c) Statistical Extrapolation Some datasets may have a
time attribute that can be used to take snapshots D1, . . . ,Dr

of D. Otherwise, the user can provide some sampling tech-
nique to obtain D1, . . . ,Dr (with increasing size), or accept
the default VFDS [2] sampling provided by ASPECT. AS-
PECT then extracts statistics of the desired property from
D1, . . . ,Dr, fit these statistics with some distribution, and
extrapolate the distribution parameters to get the target

property. For example, the number of comments per post
in Di may be modelled by a Poisson(λi) distribution, and
λ1, . . . , λr fitted by some polynomial that is used to deter-
mine the target λ for D̃. Currently, ASPECT can do such
prediction for statistics in the form of frequency distribution
f , where

∑
v f(v) = 1 and v is a vector of attribute values

(e.g. < weight, height > or < age, income, gender >).
(2) Tweaking Algorithm:
It tweaks the dataset D̃ to make sure the target property
π̃k is enforced in D̃ when the algorithm terminates. Note
that some properties (e.g. for the fraction of user-pairs who
comment on each other’s posts) require nontrivial tweaking
algorithms.
(3) Property Evaluator:
This calculates statistics for a property.
(4) Property Validator:
It checks whether a proposed tuple insertion/deletion/re-
placement adversely affects an existing property. Suppose,
to enforce a property π̃k, the tool Tk proposes to modify a
tuple t to become t′, but t′ will cause a violation of some
currently enforced π̃i. Then the property validator for Ti

will vote against t′ and Tk must find some alternative t′′. If
no such alternative is possible, ASPECT can allow a modi-
fication to proceed, and accept an error increase in property
enforcement.
(5) Statistics Updator:
The relevant statistics are updated after each tuple modifi-
cation.
(6) Error Calculator:
This component calculates the error between the property
in the scaled database D̃ and the target property.
It is the developer’s responsibility to ensure that a tool

correctly implements the 6 requirements above, and comply
with the ASPECT framework. If a tool does not, say, prop-
erly validate a proposed modification, then it will likely fail
to enforce its corresponding property.

3. DEMONSTRATION SCENARIO
In this demonstration, a visitor first chooses between two

(real) social network datasets (Xiami 2 and Douban 3), and
picks the size scaler S0 (Dscaler, ReX or Rand). The UI
will list the tweaking tools currently in ASPECT’s reposi-
tory; it also indicates whether two tools overlap, in the sense
that their properties include common attributes (e.g. “80%
of posts have no comments” and “40% of comments are from
female users” overlap since they refer to the same attribute
CommentID). The visitor then selects which tools to apply.
These choices are illustrated in Figure 3. Some of the tools
might be overlapping. ASPECT will automatically find out
those overlapping tools as presented at the bottom of Fig-
ure 3.
The visitor then specifies the order for applying the chosen

tools. By specifying different execution order of the chosen
tools, the visitor can gain some intuition of how the proper-
ties are enforced.
Next, ASPECT starts tweaking the dataset. ASPECT

applies the tool one by one. Whenever a tool t′ will cause a
violation of some currently enforced π̃i, ASPECT will pop
out a window to ask the visitor to choose skip validation
on conflicting properties. If the visitor does not respond
2www.xiami.com
3www.douban.com

2012



Figure 3: Tool Selection Interface: Each node in the graph
is a tool, e.g. Tlinear is the node with id 0. An edge between
two tools indicate that their properties overlap, i.e. have a
common attribute.

within one minute, ASPECT will randomly skip on currently
enforced property.
When this is done, ASPECT presents the error rate for

each chosen property πi and the time taken for the corre-
sponding Ti. This is illustrated in Figure 4. The visitor can
check how the error of each property is calculated by clicking
the details button.
Visitors can experiment with the demo by changing their

choices to see the impact on D̃.

4. CONCLUSION
ASPECT is our contribution towards shifting database

benchmarking from TPC-like synthetic datasets to a scale-
then-tweak approach that is based on empirical datasets.
We will upload the source code of ASPECT to GitHub.
The success of this approach relies on collecting a critical

mass of tweaking tools from developers and researchers in
the database community. This demonstration is therefore
an effort to reach out to them, get them acquainted with
ASPECT, and build a community of developers for tweaking
tool.

5. REFERENCES
[1] T. Buda, T. Cerqueus, et al. ReX: Extrapolating

relational data in a representative way. In Data
Science, LNCS 9147, pages 95–107. Springer, 2015.

Figure 4: Result Interface: If a tweaking process finishes
within 1 second, it is indicated as 1s.

[2] T. S. Buda, T. Cerqueus, et al. VFDS: An application
to generate fast sample databases. In CIKM, pages
2048–2050, 2014.

[3] L. Gu, M. Zhou, Z. Zhang, et al. Chronos: An elastic
parallel framework for stream benchmark generation
and simulation. In ICDE, pages 101–112, 2015.

[4] N. Patki, R. Wedge, and K. Veeramachaneni. The
synthetic data vault. In DSAA, pages 399–410, Oct
2016.

[5] M. Stonebraker. A new direction for TPC? In TPCTC,
pages 11–17, 2009.

[6] Y. C. Tay. Data generation for application-specific
benchmarking. PVLDB, 4(12):1470–1473, 2011.

[7] Y. C. Tay, B. T. Dai, et al. UpSizeR: Synthetically
scaling an empirical relational database. Inf. Syst.,
38(8):1168–1183, 2013.

[8] J. W. Zhang and Y. C. Tay. Dscaler: Synthetically
scaling a given relational database. PVLDB,
9(14):1671–1682, 2016.

[9] J. W. Zhang and Y. C. Tay. A tool framework for
tweaking features in synthetic datasets.
https://arxiv.org/abs/1801.03645, 2018.

2013


