
FineLine: Log-structured Transactional Storage and
Recovery

Caetano Sauer
∗

Tableau Software
Munich, Germany

csauer@tableau.com

Goetz Graefe
Google Inc.

Madison, WI, USA
goetzg@google.com

Theo Härder
TU Kaiserslautern

Kaiserslautern, Germany

haerder@cs.uni-kl.de

ABSTRACT
Recovery is an intricate aspect of transaction processing
architectures. In its traditional implementation, recovery
requires the management of two persistent data stores—a
write-ahead log and a materialized database—which must
be carefully orchestrated to maintain transactional consis-
tency. Furthermore, the design and implementation of re-
covery algorithms have deep ramifications into almost every
component of the internal system architecture, from con-
currency control to buffer management and access path im-
plementation. Such complexity not only incurs high costs
for development, testing, and training, but also unavoidably
affects system performance, introducing overheads and lim-
iting scalability.

This paper proposes a novel approach for transactional
storage and recovery called FineLine. It simplifies the imple-
mentation of transactional database systems by eliminating
the log-database duality and maintaining all persistent data
in a single, log-structured data structure. This approach
not only provides more efficient recovery with less overhead,
but also decouples the management of persistent data from
in-memory access paths. As such, it blurs the lines that
separate in-memory from disk-based database systems, pro-
viding the efficiency of the former with the reliability of the
latter.

PVLDB Reference Format:
Caetano Sauer, Goetz Graefe, and Theo Härder. FineLine: Log-
structured Transactional Storage and Recovery. PVLDB, 11 (13):
2249-2262, 2018.
DOI: https://doi.org/10.14778/3275366.3275373

1. INTRODUCTION
Database systems widely adopt the write-ahead logging

approach to support transactional storage and recovery. In
this approach, the system maintains two forms of persistent

∗Work done partially at TU Kaiserslautern

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 11, No. 13
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3275366.3275373

Main memory Main memory

Log DB Indexed log

a) Dual storage b) FineLine

Figure 1: Single-storage principle of FineLine

storage: a log, which keeps track and establishes a global
order of individual transactional updates; and a database,
which is the permanent store for data pages. The former
is an append-only structure, whose writes must be synchro-
nized at transaction commit time, while the latter is updated
asynchronously by propagating pages from a buffer pool into
the database.

The primary reason behind such a dual-storage design,
illustrated in Fig. 1a, is to maximize transaction throughput
while still providing transactional guarantees, taking into
account the characteristics of typical storage architectures.
The log, being an append-only structure, is write-optimized,
while the database maintains data pages in a “ready-to-use”
format and is thus read-optimized.

The downside of the dual-storage approach is that main-
taining transactional consistency requires a careful orches-
tration between the log and the database. This requires
complex software logic that not only leads to increased code
maintenance and testing costs, but also unavoidably limits
the performance of memory-resident workloads. Further-
more, the propagation of logged updates into the database
usually lags behind the log by a significant margin, leading
to longer outages during recovery from system failures.

These problems are known for a long time, as noted
recently by Stonebraker, referring to the now 30-year old
POSTGRES design [46]:

“. . . a DBMS is really two DBMSs, one managing
the database as we know it and a second one
managing the log.”

Michael Stonebraker [47]

A single-storage approach eliminates these problems, but
existing solutions are usually less reliable and more restric-
tive than traditional write-ahead logging—for instance, be-
cause they require all data to fit in main memory, are de-

2249



signed for non-volatile memory and cannot perform well
with hard disks and SSDs, or do not support media recovery.

This paper proposes a novel, single-storage approach
for transactional storage and recovery called FineLine. It
employs a generalized, log-structured data structure for
persistent storage that delivers a sweet spot between the
write efficiency of a traditional write-ahead log and the read
efficiency of a materialized database. This data structure,
referred to here as the indexed log, is illustrated in Fig. 1b.

The indexed log of FineLine decouples persistence con-
cerns from the design of in-memory data structures, thus
opening opportunity for several optimizations proposed for
in-memory database systems. The system architecture is
also general enough to support a wide range of storage de-
vices and larger-than-memory datasets via buffer manage-
ment. Unlike many existing proposals, this generalized ap-
proach not only improves performance but also provides
all features of write-ahead logging as implemented in the
ARIES family of algorithms—e.g., media recovery, partial
rollbacks, index and space management, fine-granular recov-
ery with physiological log records, and support for datasets
larger than main memory. In fact, the capabilities of Fine-
Line go beyond ARIES with support for on-demand recov-
ery, localized (e.g., single-page) repair, and no-steal propa-
gation, but with a substantially simpler design. Lastly, the
FineLine design is completely independent from concurrency
control schemes and access path implementation, i.e., it sup-
ports any storage and index structures with any concurrency
control protocol.

In the remainder of this paper, Section 2 discusses related
work. Section 3 introduces the basic system architecture
and its components. Sections 4 and 5 then expose the
details of the logging and recovery algorithms, respectively.
Finally, Section 6 provides some preliminary experiments
and Section 7 concludes this paper.

2. RELATED WORK
This section discusses related work, focusing on the

limitations that the FineLine design aims to overcome. This
new approach is not expected to be superior to all existing
approaches in their own target domains, but it is unique in
which it combines their advantages in a generalized design.

2.1 Single-storage approaches
System designs that provide a single persistent storage

structure fall into two main categories: those that eliminate
the log and those that eliminate the database. Before
discussing these in detail, it is important to point out that
this work considers single and dual storage from a logical
data-structure perspective. In other words, a single-storage
approach is not one that maintains all data in a single
physical device or class of devices, but rather one in which a
single data structure is used to manage all persistent data.

Approaches that completely eliminate the log must em-
ploy a no-steal/force mechanism [25], i.e., they must syn-
chronously and atomically propagate all updates made by
a transaction at commit time and uncommitted updates
must not reach the materialized database. Early research
on transaction processing has proposed some such designs
[5, 24, 32], but they never made it into production use
because of their inefficiency in traditional storage architec-
tures. The POSTGRES system [46] mentioned earlier falls
into the same category, with the main difference that a small

amount of non-volatile memory is assumed. Some designs
for in-memory databases employ a no-steal/no-force strat-
egy [11, 33, 48], which eliminates persistent undo logging,
but a log is still required for redo recovery.

The LogBase approach [50] uses a log-based representa-
tion for persistent data. It maintains in-memory indexes for
key-value pairs where the leaf entries simply point to the
latest version of each record in the log. This way, updates
on the index are random in main memory but sequential on
disk. In order to deliver acceptable scan performance, the
persistent log is then reorganized by sorting and merging,
similar to log-structured merge (LSM) trees [37].

Despite the single-storage advantage, this approach has
three major limitations. The first limitation stems from the
fact that the approach seems to be targeted at NoSQL key-
value stores rather than OLTP database systems. LogBase
is designed for write-intensive, disk-resident workloads, and
thus it makes poor use of main memory by storing the whole
index in it and requiring an additional layer of indirection—
and thus additional caching—to fetch actual data records
from the log. Furthermore, it destroys clustering and
sequentiality properties of access paths, making scans quite
inefficient and precluding the use of memory-optimized
index structures—e.g., the Masstree [34] used in Silo [48]
or the Adaptive Radix Tree [31] used in HyPer [29].

The third limitation is that recovery requires a full scan
of the log to rebuild the in-memory indexes. As a remedy,
the authors propose taking periodic checkpoints of these
indexes. However, these checkpoints essentially become a
second persistent storage representation, and the single-
storage characteristic is lost. While details of how recovery
is implemented are not provided in the original publication
[50], it seems like traditional recovery techniques like ARIES
[35] or System R [21] are required.

Hyder [6] is a distributed transactional system that main-
tains a shared log as the only persistent storage structure.
The design greatly simplifies recovery and enables simple
scale-out without partitioning. It also exploits the implicit
multi-versioning of its log-structured storage to perform op-
timistic concurrency control with its novel meld algorithm.
Despite the design simplicity and scalability, its recovery
and concurrency control protocols are tightly coupled. Fur-
thermore, a fundamental assumption of Hyder is that the
entire database is modelled as a binary search tree. These
restrictions, while acceptable for the distributed scenario en-
visioned by the authors, have major performance implica-
tions for single-node, memory-optimized database systems.
In this case, a single-storage approach that (i) accommo-
dates arbitrary in-memory storage and index structures, and
(ii) is independent of concurrency control algorithms would
provide more choices for optimizing performance.

Another recent approach for a singe-storage, log-structured
database is Aurora [49]. Also aimed at distributed transac-
tions, the goal of this design is to cut down I/O costs of
replication and durability, as well as to simplify recovery. It
achieves that by shipping log records, grouped by some page-
ID partitioning scheme, from processing nodes to replicated
storage nodes, where these logs are saved for durability and
also applied in local materialized copies of database pages.
From a general perspective, a key architectural benefit of the
approach is the decoupling of processing and storage via log-
ging, which is also a central goal of this paper. Here, a more
general architecture is presented and contrasted with write-

2250



ahead logging for general-purpose database systems, which
is also applicable for single-node scenarios and compatible
with many existing designs (e.g., by adding a transactional
persistence layer to an existing in-memory database).

2.2 Recovery in in-memory databases
Achieving an appropriate balance between reliability in

the presence of failures and high performance during normal
processing is one of the key challenges when designing
transaction processing systems. In traditional disk-based
architectures, ARIES [35] and its physiological logging
approach seem to be the most appropriate solution, given
its success in production. However, the emergence of in-
memory databases has since challenged this design.

One prominent alternative to ARIES is to employ logical
logging, in which high-level operations are logged on coarser
objects, such as a whole table, instead of low-level physical
objects such as pages. The advantage of logical logging is
that log volume, and therefore traffic to the persistent log
device, is significantly reduced, thus increasing transaction
throughput. However, a known trade-off of logging and
recovery algorithms is that logical logging requires a stronger
level of consistency on the persistent database [25], and
maintaining such level of consistency may, in some cases,
outweigh the benefits of logical logging.

An example of logical logging is found, for instance, in
the H-Store database system and its command logging ap-
proach [33]. Each log record describes a single transaction,
encoded as a stored-procedure identifier and the arguments
used to invoke it. Because arbitrarily complex transactions
are logged with a single log record, the granularity of logging
and recovery is the coarsest possible: the whole database.
Consequently, the persistent database must be kept at the
strongest possible level of consistency—transaction consis-
tency [25]—and maintaining it requires expensive check-
pointing procedures that rely on shadow paging [21] or copy-
on-write snapshots [33, 29]. The CALC approach [39] is a
more sophisticated checkpointing technique that minimizes
overhead on transaction processing by establishing virtual
points of consistency with a multi-phase process. However,
its overhead is still noticeable, as copies of records must be
produced and bitmaps must be maintained during a check-
point; thus, transaction latency spikes are still observed dur-
ing checkpoints. Because maintaining transaction-consistent
checkpoints is expensive, they must be taken sparingly to
not affect performance negatively. This, on the other hand,
implies that longer recovery times are required in case of
failures—not only because the persistent state is expected
to be quite out of date, but also because log replay requires
re-executing transactions serially [33].

One commonly overlooked aspect of command logging is
that it does not really eliminate the overhead of generating
physiological log records, since these are still required for
transaction abort [33]. Rather, it eliminates the overhead
of inserting these log records in a centralized log buffer and
flushing them at commit time. These overheads, however,
can also be mitigated in physiological logging approaches,
e.g., with well-balanced log bandwidth [48], scalable log
managers [28], and distributed logging [51]. With these
concerns properly addressed, the advantages of command
logging seem less compelling.

Given these limitations, a solution based on physiologi-
cal logging—perhaps more general and susceptible to main-

memory optimizations than traditional ARIES—seems more
appropriate to provide efficient recovery with minimal over-
head on transaction execution.

2.3 Instant recovery
Instant recovery [17] is a family of techniques that builds

upon traditional write-ahead logging with physiological log
records to improve database system availability. The main
idea is to perform recovery actions incrementally and on
demand, so that the system can process new transactions
shortly after a failure and before recovery is completed.

The instant recovery algorithms—instant restart after a
system failure, instant restore after a media failure—exploit
the independence of recovery among objects that is inherent
to physiological logging [35]. Pages can be recovered
independently—and thus incrementally and on demand—
during redo recovery by retrieving and replaying the history
of log records pertaining to each page independently. The
same independence of recovery applies for transactions that
must be rolled back for undo recovery. The adaptive logging
approach [52] exploits this independence to improve recovery
times in the command logging technique by adaptively
incorporating physiological log records.

The support for incremental and on-demand recovery is
crucial for decoupling downtime after a failure from the
amount of recovery work that must be performed. In this
new paradigm, a more useful metric of recovery efficiency is
how quickly the system is able to regain its full performance
after a failure, thus unifying concerns of fast recovery and
quick system warm-up [38].

2.4 Modern storage hardware
While the cost of DRAM has decreased substantially

in the past years, another recent phenomenon in memory
technology is the advancement of non-volatile memory
devices. Although these efforts seem promising, assuming
that the new technology will replace all other forms of
storage is likely unrealistic. A relevant example is the advent
of flash memory: rather than completely replacing magnetic
hard disks, it is employed as a better fit for a certain
type of demand, namely low I/O latency and lower (albeit
not nonexistent) imbalance between sequential and random
access speeds. However, in terms of sustained sequential
bandwidth, endurance, and capacity, magnetic disks still
provide the more economically favorable option. Therefore,
it is reasonable to expect that non-volatile memory will,
at least at first, coexist with other forms of storage media,
fulfilling certain, but not all, application demands in a more
cost-efficient manner.

The “five-minute rule”, introduced three decades ago [22]
and refined multiple times since then [20, 16], points to the
importance of considering economic factors when planning
memory and storage infrastructures. A recent re-evaluation
of the five-minute rule [2], for instance, makes a strong
case for the use of flash-based SSDs in the foreseeable
future, potentially coexisting with non-volatile memory.
Similar arguments have been made in support for buffer
management in modern database systems [19, 30]. The
emergence of new memory technologies is likely to further
promote the importance of the five-minute rule, leading to
a wider spectrum of choices and optimization goals. Thus,
systems that embrace the heterogeneity of storage hardware
with a unified software approach are desirable.

2251



2.5 Log-structured storage
Much like the recovery log in a write-ahead logging

approach with a no-force policy [25], an LSM-tree [37]
increases I/O efficiency by converting random writes into
sequential. The difference is that the recovery log usually
serves a temporary role: during normal operation, log space
is recycled as pages are propagated [44]; during restart, at
least in a traditional ARIES-based approach [35], the log is
mostly read sequentially from pre-determined offsets in the
log analysis, redo, and undo phases. Given these restricted
access patterns, a typical recovery log is never indexed or
reorganized like an LSM-tree.

Our previous work on instant recovery from media fail-
ures [17] introduces an indexed, incrementally reorganizable
data structure to store log records. Closely resembling an
LSM-tree and other forms of incremental indexing, the se-
quential recovery log is organized into partitions sorted pri-
marily by page identifier and secondarily by LSN. This orga-
nization enables efficient retrieval of the history of updates
of a single page as well as bulk access to contiguous pages.
The instant restore technique [43] makes use of these fea-
tures in the context of recovery from media failures, but
the indexed log data structure has applications far beyond
media recovery.

One important caveat of most log-structured approaches
is that they rely on a separate write-ahead log [7] to provide
ACID semantics. Given that the log itself can be reorganized
and indexed, as done in instant recovery [17, 42], there is
potential to unify the data structures used to store the log
and those used to store data pages on persistent storage.
In other words, applying techniques of LSM-trees to store
and organize transaction logs seems to be an effective way
to eliminate database storage and provide a single-storage
transactional system.

Despite both having a log-structured storage component,
FineLine differs from LSM-trees in some fundamental ways—
perhaps the most notable one being the indexing of phys-
iological log records pertaining to a database page rather
than key-value pairs in the application domain. As ex-
plained in the remainder of this paper, this approach is key
in completely decoupling in-memory data structures from
their persistent representation and thus optimizing the per-
formance of in-memory workloads. Section 6.6 empirically
evaluates an LSM-tree in comparison with FineLine.

2.6 Summary of related work
In the wide design space between traditional disk-based

and modern in-memory database systems, we identify four
major design goals that none of the existing approaches
seems to fulfill in a holistic and generalized manner. These
are: simplified and loosely coupled logging and recovery ar-
chitecture with a single-storage approach, performance com-
parable to in-memory databases, efficient recovery following
the instant recovery paradigm, and independence from un-
derlying memory technology in favor of heterogeneous and
economically favorable infrastructures. We also identify log-
structured techniques as a potential approach in design-
ing a single-storage architecture that eliminates traditional
database storage. FineLine aims to explore this potential
and fulfill the design goals laid out above, hopefully blur-
ring many of the sharp lines that separate different classes
of database system architectures.

In-memory
data structures

Log

Transaction
manager

Lightweight
buffer manager

Application

begin,
commit,

abort

insert, update,
delete, scan

append

rollback

log

fetch node

allocate node,
fix/unfix node

Figure 2: Overview of the FineLine architecture

3. ARCHITECTURE
Fig. 2 shows the four main components of FineLine. This

section provides an overview of these components and their
interaction.

Applications interact primarily with two components: in-
memory data structures and the transaction manager. The
latter is used for establishing transaction boundaries with
begin and commit calls, as well as to voluntarily abort an ac-
tive transaction. In-memory data structures are essentially
key-value stores, usually storing uninterpreted binary data;
a typical example is a B-tree. These are explicitly qual-
ified as in-memory because their internal structure is not
mapped directly to objects on persistent storage. Instead,
their persistent representation is maintained exclusively in
the log component. Note that there is no database storage,
and thus the log serves as single storage structure for all
persistent data. Finally, a lightweight buffer manager com-
ponent manages the memory used by data structures and
controls caching of data objects.

3.1 In-memory data structures
FineLine is designed to provide persistence to any collec-

tion of arbitrary storage structures that can be organized
into nodes uniquely identified by a node ID. It can be used
as the storage component of a relational database system—
supporting either row- or column-based storage—as well as
a generic software library that provides persistence to in-
memory data structures with transactional guarantees.

The distinguishing feature of FineLine in contrast to
existing approaches is that it provides persistence without
mapping data structures directly to a persistent storage
representation. This is illustrated in Fig. 3, which compares
the propagation of changes from volatile to persistent
storage, as well as the retrieval of data in the opposite
direction, in traditional write-ahead logging (WAL; top)
and in FineLine (bottom). A typical WAL-based database
system propagates changes to persistent storage by flushing
a node of a data structure into a corresponding page slot
on disk. Because this propagation happens asynchronously
(i.e., following a no-force policy [25]), these changes must
also be recorded in a log for recovery. Following the WAL
rule, a log record must be written before the affected page
is written. FineLine, on the other hand, never flushes nodes

2252



Log records

Data
structure

fetch

append

Indexed
log

reorg.

WAL
Log records

Database

Data
structure

write

read

volatile persistent

append

volatile persistent

FineLine:

Write-ahead logging:

Figure 3: Propagation in WAL (top) vs. FineLine (bottom)

or any other part of an in-memory data structure. Instead,
it relies on the log, which is indexed for fast retrieval, as
the only form of propagation to persistent storage. In
order to retrieve a node into main memory, its most recent
state is reconstructed from the log with the fetch operation.
Sections 3.2 and 4 below discuss the details of the FineLine
log, referring back to Fig. 3.

The assumption that data structures are not mapped to
persistent storage has profound implications for the rest
of the system architecture. First, it naturally implements
a no-steal policy, which eliminates the need for undo re-
covery and therefore significantly cuts down the amount
of logged information as well as complexity. Furthermore,
it eliminates bottlenecks of disk-based database systems in
memory-abundant environments, because it allows the use
of encoding, compression, addressing, and memory man-
agement techniques optimized for in-memory performance.
Lastly, by decoupling in-memory data structures from any
persistence concern, recovery overheads—such as the inter-
ference caused by periodic checkpoints and the maintenance
of page LSN values and dirty bits—are also eliminated.

In order to provide fine-granular access to data on persis-
tent storage, i.e., in the log, as well as to support incremen-
tal recovery from system and media failures, the FineLine
architecture employs a generalized form of physiological log-
ging. Instead of being restricted to pages, i.e., fixed-length
blocks mapped to specific locations on persistent storage,
log records pertain to nodes of a data structure. In this
generalized definition, a node is any structural unit of an
in-memory data structure, regardless of size, memory con-
tiguity, or internal complexity. It may well be mapped di-
rectly to a page—which is even advisable to simplify buffer
management—and in these cases the terms can be used
interchangeably. However, a node can also be of variable
length, point to non-inlined fields, and contain arbitrary in-
ternal structure. From the perspective of logging and re-

covery, a node is any structure that has a unique identifier
and is the fundamental unit of caching, recovery, and fault
containment.

The choice of what constitutes a node naturally yields a
continuum of different logging and recovery algorithms from
a single generalized template. If a node is simply a page of a
storage structure like a B-tree, FineLine behaves much like
ARIES and physiological logging, with the added advantage
of simplified and on-demand recovery, better performance,
and redo-only logging (i.e., no-steal). On the other hand, if
a node represents a whole table, FineLine essentially delivers
a logical logging mechanism. A node might also be a single
record, which is then a form of physical logging (or value
logging, as employed in Silo [48]). The key observation here
is that these distinctions are essentially blurred under this
new generalized model, where all data is kept in a single
indexed log.

3.2 Log
The log component is the centerpiece of the FineLine

design, and the main contribution of this work. As Fig. 2
illustrates, the log interface provides two primary functions:
append and fetch. An internal reorganization function is also
implemented to incrementally and continuously optimize the
fetch operation; this is similar to merging and compaction
in LSM-trees [37, 45, 8]. Internal aspects of the log are
discussed in Section 4; this section focuses on the interface
to the other components through the append and fetch
operations, as illustrated in the bottom part of Fig. 3.

The append function is called by the transaction manager
during transaction commit. Instead of appending a log
record into the log for every modification, log records of
a transaction are collected in a private log buffer and
appended all at once at commit time. This is another
key distinction to traditional write-ahead logging, and the
process will be discussed in detail in Section 4.

The fetch function is used to reconstruct a node from
its history of changes in the log. Following a physiological
logging approach, each log record describes changes to a
single node, and the indexed log must support efficient
retrieval of all log records associated with a given node
identifier.

3.3 Lightweight buffer manager
Traditional buffer management in database systems has

two key concerns: caching and update propagation. In
contrast, FineLine employs a lightweight buffer manager
whose only concern is caching of nodes. This involves:
(1) managing memory and life-cycle of individual nodes,
(2) fetching requested nodes from persistent storage (i.e.,
from the log), (3) evicting less frequently- or less recently-
used nodes, and (4) providing a transparent addressing
scheme for pointers among nodes. The concerns of update
propagation, on the other hand, include keeping track of
version numbers (i.e., PageLSN values) and durable state
(i.e., dirty bits) of individual nodes, propagating changes to
persistent storage by writing pages, and enforcing the WAL
rule. FineLine eliminates these concerns by performing
propagation exclusively via logging.

The FineLine design does not require a specific buffer
management scheme; traditional page-based implementa-
tions [23]—preferably optimized for main memory [19, 30]—
as well as record-based caching schemes [10, 13] are equally

2253



conceivable. It is nevertheless advisable to use nodes as the
unit of caching and eviction, since it is a better fit for the
rest of the system architecture.

3.4 Transaction manager
The transaction manager component of FineLine is re-

sponsible for keeping track of active transactions, imple-
menting a commit protocol, supporting rollback, guaran-
teeing transaction isolation, and maintaining transaction-
private redo/undo logs. The latter aspect is a key distinc-
tion of the present design to traditional ones. Operations
on in-memory data structures generate log records that are
kept in a thread-local, per-transaction log buffer. During
commit, all log records generated by a transaction are ap-
pended into the log atomically. Section 4 provides details of
the commit protocol.

Note that because nodes are never flushed to persistent
storage, FineLine implements a no-steal policy; this means
that only redo information is required in the log. As
implemented in most in-memory databases [29, 33], a
transaction-private undo log is used for rollback and it
may be discarded after commit. In essence, an aborted
transaction leaves absolutely no trace of its existence in the
persistent state of the database.

Concurrency control among isolated transactions is also
an important role of the transaction manager. A two-phase
locking approach, for instance, requires a lock manager
component (omitted in Fig. 2). The private logs can also
be reused for validation in optimistic concurrency control
schemes as well as for multi-versioning (e.g., Silo [48] and
HyPer [36]). The present design does not assume any
specific concurrency control scheme; thus, the transaction
manager is treated as an abstract component.

4. LOGGING
The FineLine indexed log serves as the only form of

persistent storage, and thus it must support both writes
and reads efficiently. Writes happen at commit time with
the append function, while reads are performed with the
fetch function. To provide acceptable fetch performance,
the log is incrementally and continuously reorganized by
merging and compacting partitions. This section discusses
these operations in detail.

4.1 Indexed log organization
The indexed log is actually a partitioned index, in which

probes require inspecting multiple partitions before return-
ing a result [14]. A partitioned index is ideal for the Fine-
Line log because it performs all writes sequentially, like a
traditional write-ahead log, at a moderate and, thanks to
caching, amortized cost on read performance. As discussed
in Section 1, this is precisely the goal of a single-storage ap-
proach: combine the write efficiency of the log with the read
efficiency of a database file.

Fig. 4 illustrates the partitioned-index log organization
used in FineLine in contrast with a traditional sequential
log. In this minimal example, three transactions generate
log records on two nodes, A and B. In the traditional
organization, each operation is assigned an LSN value
(omitted here), and their total order must be reflected
in the sequential log. In the indexed organization, log
records are sorted by node ID within each partition. Log
records pertaining to the same node, in turn, must be

1 23

co
m

m
it

2 21 3 3Txn. ID:

Node ID: A B B A B A

a) Sequential log:

1

AB

co
m

m
it

3

1 21 1 2 3 3Txn. ID:

Node ID: A B A B A B

b) Indexed log:

A

co
m

m
it

1

3

B

p
1

p
2

p
3

Figure 4: Sequential log (a) and its equivalent indexing (b)

ordered by a sequence number that reflects the order in
which the operations were applied to the node. In the
example diagram, each transaction forms a new partition—
which would be a naive implementation but illustrates the
point well. The order of transactions, and thus the order
of partitions, is irrelevant, because a total order is only
required among log records of the same node. The reason
for that is the absence of undo recovery, as discussed in
Section 5. For a comprehensive discussion on the issue of log
record ordering, we refer to the work of Wang and Johnson
[51] and their GSN approach.

Each append operation, which is invoked by the commit
protocol discussed below, creates a new partition in the
log. Therefore, the indexed log maintains the append-
only efficiency of a sequential log for write operations
(i.e., transaction commits). For read operations, i.e.,
node fetches, the principal design challenge is to effectively
approximate the read efficiency of a page-based database file
by merging partitions. This is essentially the same challenge
faced by all log-structured designs [37, 41, 45], and thus
many techniques can be borrowed.

In the example, if node A were to be fetched, each of
the three partitions would be probed and merged in order
to replay the four log records in the correct order. This
example assumes that the first log record represents the
creation of the node, so that it is fully reconstructed from log
records only. Section 4.3 provides further details of the fetch
operation and the reorganization of log partitions. Before
that, Section 4.2 discusses how new partitions are created
with transaction commits.

4.2 Commit
Commit processing in ARIES (shown in Fig. 5a) main-

tains a centralized log buffer where a log record is appended
for each update of any transaction. These appends must be
synchronized to produce a global LSN order, and thus the
contention is quite high. In the example, the commit of T2

causes all contents of the log buffer up to its commit log
record to be flushed to persistent storage.

In the FineLine commit protocol, updates to in-memory
data structures generate physiological log records that are
maintained in transaction-private log buffers. At commit
time, a transaction’s log buffer is inserted into a system-
wide commit queue. At this point, here referred to as the
pre-commit, locks can be released [18] and resources can be
freed—the transaction may not rollback anymore and the

2254



a) ARIES commit

T
1

T
2 T

3

flush

co
m

m
it

b) FineLine commit

T
1

T
2

T
3co

m
m

it

T
0

T
0

T
2

Indexed log

pre-commit of T
2

sort & finish epoch of T
0 

and T
2

States of the pre-commit queue:

new last
partition

force

persistent
storage

Figure 5: Commit protocols of ARIES (a) and FineLine (b)

commit will be acknowledged as soon as the log records are
forced to persistent storage.

The commit queue is formatted as a log page that can be
appended directly to the indexed log. Before the append
occurs, the log records in this page are sorted primarily by
node ID and secondarily by a node-local sequence number.
This sort can be made very efficient if log pages are
formatted as an array of keys (or key prefixes) and pointers
to a payload region within the page.

Each appended log page creates a new partition in the
indexed log1. An alternative implementation maintains
the last partition unsorted, i.e., it retains the order of
transactions established by the pre-commit phase. Since
it is unsorted, the last partition can be much larger than
a log page. To enable access to the history of individual
nodes in this last partition, it must either be sorted or use
an alternative indexing mechanism 2. For ease of exposition,
we assume here that each group commit creates a new sorted
partition that is directly appended to the log index.

Instead of forcing their own logs, transactions block wait-
ing for a notification from an asynchronous commit service,
which is responsible for the final commit, i.e., the “hard-
ening”, of transactions. This technique, borrowed from the
Aether log manager [28] and also used in the Silo in-memory
database [48], essentially implements the group commit ap-
proach [11], allowing for effective amortization of I/O costs
and reduced system call overhead. As for minimizing the
contention to a single log buffer, the consolidation approach
used in Aether can also be employed here; note, however,
that the contention is significantly reduced, because only
one log buffer insert is required per transaction, instead of
one per log record.

Each commit group defines an epoch, which is basically
the unit of transaction hardening and can also be used
for efficient resource management [48]. Once an epoch is
finished, clients are notified and their commit is finally
acknowledged. As with traditional group commit, epochs
may be defined by a variety of policies—e.g., fixed time
intervals, log volume thresholds, or a combination of both.

The example of Fig. 5b illustrates commit processing in
FineLine. It starts with active transactions T1 . . . T3, whose
updates, represented by black dots, generate log records in

1The choice of log page size depends on a good balance
between maximizing write bandwidth, minimizing fragmen-
tation, and optimizing group commit schedules [26].
2The experiments in Section 6 use this approach to imple-
ment FineLine as an extension of an existing WAL system.

A BA B A B

c) First-level merge:

A B

⟨1,1,2⟩ ⟨0,3,3⟩

A BA BA B

d) Second-level merge:

A B

⟨2,1,3⟩

Figure 6: Partitioned log after one (c) and two (d) merges

a private buffer, represented by rectangles. A transaction
T0 has already pre-committed and thus its log records are
already in the pre-commit queue. Then, T2 enters the
pre-commit phase—an event represented here by a white
dot—and appends its logs into the pre-commit queue. The
commit service then kicks in and starts a new epoch by
atomically swapping the pre-commit queue with an empty
one. Then, it sorts all logs of the previous epoch into a
new partition of the indexed log. After that, the previous
epoch is considered durable and the commit of T0 and T2 is
acknowledged.

For now, we assume a single, system-wide log buffer, but
our technique can be extended to multiple commit service
threads to provide distributed logging. Such extension is
out of the scope of this paper, but existing techniques can
be adapted [48, 51].

4.3 Node fetch and merging
In the architecture diagram of Fig. 2, traversing a node

pointer in an in-memory data structure may incur a cache
miss in the lightweight buffer manager, which requires
invoking the fetch operation on the log. To perform a node
fetch, each log partition is probed in reverse order, starting
from the most recent one, and the log records are merged and
collected in a thread-local buffer. This process stops when
a node-format log record is found, which can be either an
initial node construction and allocation or a “backup” image
of a node, containing all data required to fully reconstruct
it. Then, starting from the node-format log record, all
committed updates are replayed in a previously allocated
empty node, bringing it to its most recent, transaction-
consistent state.

In order to reduce the number of probes and deliver ac-
ceptable fetch performance in the long run, partitions are

2255



merged and compacted periodically with an asynchronous
daemon, like in LSM-trees [37, 45]. To simplify the manage-
ment of partitions with concurrent node fetches and merges,
as well as to enable garbage collection, partitions are iden-
tified by a three-component key of the form 〈level number,
first epoch, last epoch〉. Initial partitions generated by the
commit protocol have level zero, and they are numbered se-
quentially according to their epoch number e, so their iden-
tifiers are of the form 〈0, e, e〉. A merge of partitions of
level i yields a partition 〈i + 1, a, b〉, where a is the lowest
first epoch of the merged partitions and b is the highest
last epoch. Only consecutive partitions may be merged, so
that all epochs in the interval [a, b] are guaranteed to be
contained in the resulting partition.

Fig. 6 illustrates the merge process, where the two states
(c and d) of the index are derived from the states (a and b) of
Fig. 4. In the first merge, partitions p1 and p2, whose proper
notation is 〈0, 1, 1〉 and 〈0, 2, 2〉, are merged into a level-one
partition 〈1, 1, 2〉. The second merge then produces a single
partition 〈2, 1, 3〉 using p3 (i.e., 〈0, 3, 3〉).

When performing a fetch operation, a list of partitions to
be probed can be derived by computing maximum disjoint
[first epoch, last epoch] intervals across all existing levels
(i.e., the smallest set of partitions that covers all epochs).
This can occur either by probing the index iteratively or
relying on auxiliary metadata—such implementation details
are omitted here. Furthermore, while not illustrated in the
examples, the creation of a new partition through merging
does not overwrite the merged lower-level partitions—these
can be garbage collected later on. We refer to previous
work on partitioned B-trees for a thorough coverage of these
techniques [14].

While the process of probing the partitioned index for log
records and reconstructing a node is fairly simple, it may
be inefficient if implemented naively, especially because the
commit protocol is expected to produce multiple partitions
(up to hundreds or thousands) per second. Therefore, the
following paragraphs discuss techniques to optimize node
fetches and mitigate such performance concerns.

As a first and foremost optimization, pages of the indexed
log must be cached in main memory for efficient retrieval.
This ensures that index probes incur either reads on leaf
pages only or no reads at all for the most recent partitions.
Second, system-maintained constraints and auxiliary data
structures such as Bloom filters, succinct trees [53], or zone
indexes [15] can be used to avoid probing partitions that
are known to not contain a given node identifier. These
two measures can substantially reduce the number of read
operations required for a single node fetch.

When merging partitions, opportunities for compaction
should be exploited. In the FineLine context, compaction
can be characterized as follows: given a stream of log records
l1...ln pertaining to the same node, produce a stream of log
records k1...km such that the total size in bytes is reduced.
Other than simple compression techniques like omitting the
node identifier or applying delta encoding to keys inside each
log record, a more effective compaction strategy involves
node-format log records. If any of li (1 ≤ i ≤ n) is a node-
format log record, then a single node-format log record k
can be produced (i.e., m = 1) for the whole stream. This
log record essentially creates a snapshot of the node as
reconstructed from li and all subsequent updates until ln.
Such node-format log records deliver the best-possible read

efficiency for the fetch operation, with the same cost as a
single database page read in a traditional WAL approach.

Note that by employing effective node eviction policies
for in-memory data structures, high-cost fetch operations
requiring tens or hundreds of partition probes should be
extremely rare. This is because the buffer manager should
absorb the vast majority of reads when sufficient main
memory is available. Therefore, the vast majority of node
fetches should be of cold nodes. Since cold nodes are
expected to not have been updated recently, it is very
likely that all relevant log records have been merged into
higher-level partitions, possibly into a single node-format
log record. Such higher-level partitions, containing one
node-format log record for most nodes, can be viewed as a
generalized form of database storage as employed in a dual-
storage architecture.

5. RECOVERY
The design and implementation of recovery algorithms

must take into consideration the different levels of abstrac-
tion in a system architecture and the degree of consistency
expected between them [25]. Traditional ARIES recovery,
for instance, restores database pages to their most-recent
state and rolls back persisted updates made by loser trans-
actions. This process involves scanning the log in three
phases—analysis, redo, and undo. To work properly, the
algorithm must “trust” the contents of the log file, and thus
it relies on a certain degree of consistency provided by the
file system. Within its layer of abstraction, the file system
may employ its own recovery measures to guarantee such
consistency, and these are hidden from the database system.

In contrast with ARIES, higher-level recovery in FineLine
is significantly simpler—in fact, as discussed later on, there
is actually no code path which is specific to recovery in a
traditional sense. However, this simpler, almost transparent
mechanism requires a degree of consistency from the indexed
log data structure that cannot be delivered by file systems
alone. To better explain how recovery works in FineLine,
the following sub-sections explicitly separate these concerns
into two levels of consistency: that expected from the
internal indexed log data structure, and that expected
from the transaction system as a whole (i.e., full ACID
compliance). Lastly, a final sub-section discusses concerns
of stable storage and media failures.

5.1 Indexed log consistency
As discussed in Section 3, the log interface provides two

operations to other components: append, which appends one
or more log pages to a new partition in the index, and fetch,
which is essentially a sequence of index probes on each par-
tition. Furthermore, incremental maintenance of the index
requires adding a new partition when performing a merge
and deleting a set of partitions during garbage collection
(e.g., after a merge). The fundamental requirement for con-
sistency is that these operations must appear atomic.

In order to support the atomicity of index operations,
multiple design and implementation choices are conceivable,
and discussing them would be beyond the scope of this
paper. Nevertheless, it may be worthwhile to point out that
the indexed log has a particular access pattern which is more
restricted than that of a relational index in main memory, for
instance. Most importantly, there are no random updates—
the commit protocol appends whole log pages and merging

2256



creates whole partitions at once. This makes designs based
on shadow paging much more attractive; for instance, a
copy-on-write B-tree [3, 40] would be perfectly suitable.
Another approach would be to store each partition as a
sequential file on disk and maintain all index information
in main memory; a caveat, however, is that restoring this
index information after a system failure substantially adds
to the total recovery time, whereas a copy-on-write B-tree
has practically instantaneous recovery [3].

5.2 Transaction consistency
Provided that the indexed log is kept consistent with

atomic operations, no additional steps are required to
perform recovery after a system failure, i.e., transactions
can start immediately after the system boots up. This is
because the node fetch protocol already replays updates up
to the most recent committed log record. Furthermore, no
undo actions are required because of the no-steal policy.

To understand why explicit recovery is not required,
consider the steps involved in the three phases of ARIES
recovery and why they are required. The goal of the first
phase—log analysis—is to basically determine what needs
to be redone (i.e., dirty pages and their dirty LSN) and
what needs to be undone (i.e., loser transactions to be
rolled back) [35]. In a no-steal propagation scheme, there
is no undo phase and therefore log analysis and checkpoints
would only be concerned with dirty pages that might require
redo. In preparation for the redo phase, ARIES recovery
requires determining the dirty LSN—i.e., the LSN of the
first update since the page was last flushed—of each dirty
page. This is not required in FineLine because a node fetch
automatically replays all committed updates without any
additional information. Another way to look at this is that
whatever information would be collected during log analysis
(e.g., a dirty-page table) is embedded—and maintained
atomically—in the indexed log itself.

In terms of availability in the presence of system fail-
ures, this recovery scheme naturally supports incremental
and on-demand recovery, much like the instant restart algo-
rithm [17]. However, FineLine goes beyond instant restart
by eliminating an offline log analysis phase. Thus, the actual
downtime after a failure depends solely on the time it takes
to boot-up the system again. A much more useful metric
of recovery efficiency, in this case, is how quickly the sys-
tem regains its “full speed”, i.e., the pre-failure transaction
throughput. Here, techniques such as fetching nodes in bulk
and proactively merging partitions with high priority have a
substantial impact. Also note that the concerns of efficient
recovery are essentially unified with concerns of buffer pool
warm-up [38]. Unfortunately, discussing such techniques is
out of the scope of this introduction to FineLine.

Given that recovery happens as a side-effect of fetching
nodes, and that no offline analysis is required, this also
implies that checkpoints are not required during normal
processing. This reduces not only overheads and interfer-
ence on running transactions, but also—and perhaps most
importantly—code complexity and architectural dependen-
cies. Instead, the asynchronous merge and compaction of
partitions is what shortens recovery time, speeds up warm-
up after a restart, and improves node fetch performance.
In fact, these three concerns are essentially the same in the
generalized approach of FineLine.

Whether this novel recovery scheme actually has no recov-
ery actions or the recovery actions are embedded in normal
operations is simply a matter of perspective. As emphasized
before, the single-storage approach of FineLine is in fact a
generalization of sequential logs and database pages. In this
architecture, there is no meaningful distinction between nor-
mal and recovery processing modes.

5.3 Stable storage and media failures
Recovery algorithms based on write-ahead logging rely on

the stable storage assumption, i.e., that contents of the log
are never lost. This is, of course, an ideal concept used
simply for abstraction in theory. In practice, it basically
means that the log must be kept on highly reliable—and
expensive—storage. Given that the “head” of the sequential
log is expected to be recycled quickly as transactions
are finished and updates are propagated to their final
destination in the database, the log device can be fairly
small, so the high reliability cost is usually not a concern.

While the FineLine logging and propagation mechanisms
are quite different from typical write-ahead logging designs,
the concept of stable storage is still required, and it would be
implemented in practice using exactly the same measures.
In FineLine, log partitions of level zero, i.e., partitions
generated by commit epochs and not yet merged, must be
kept on stable storage. These partitions would then be
eligible for garbage collection as soon as they have been
merged into level-one partitions. Note, therefore, that the
equivalent of propagating updates to the database is, in the
FineLine approach, merging partitions.

This storage management approach using log partitions
also replaces—or rather generalizes—backup and recovery
strategies for media failures. While details are out of
the scope of this paper, we briefly discuss the techniques
involved. In ARIES, media recovery essentially requires
archive copies of both the log and the database [35]. If
the database device fails, a backup image is first restored
in a replacement device (which may involve loading full and
incremental backups), and then the log archive is replayed
on the restored pages. Using an indexed log archive, which is
actually quite similar to the FineLine log, instant restore [43]
performs these operations incrementally and on demand,
incurring mostly sequential I/O. In FineLine, a similar
restore procedure can be employed, but instead of restoring
a database device by merging a backup and a log archive,
lost partitions can be recovered by re-merging lower-level
partitions or replicas of the lost partitions.

We emphasize that, in comparison with traditional write-
ahead-logging recovery, FineLine is by no means less reli-
able. While the concepts and algorithms are quite different
in this generalized approach, the level of reliability depends
solely on the hardware infrastructure and the level of re-
dundancy of persistent storage; whether this redundancy
takes the form of log archive plus backup images or parti-
tions that are copied and merged does not affect the level
of reliability. In fact, the FineLine approach enables much
more cost-effective solutions than ARIES while achieving
the same reliability. As argued in previous work on instant
restore [43], the substantial reduction in mean time to repair
presents two attractive options: to either increase availabil-
ity without additional operational cost; or to maintain the
same level of availability with reduced operational cost.

2257



6. EXPERIMENTS
This section describes some experiments performed to

investigate the feasibility of the FineLine approach. We start
with a description of the prototype implementation and a
discussion of the hypotheses that we aim to prove or refute.
Then, we present four experiments that compare FineLine
with a traditional WAL system as well as an LSM-tree.

6.1 Implementation
To evaluate the feasibility of the single-storage approach

of FineLine, we have adapted the Zero storage manager3—
a fork of Shore-MT [27] that implements instant restart
and instant restore [17, 43]—to eliminate the materialized
database and perform logging as described in Section 4. The
prototype aims to approximate the FineLine design with an
existing WAL system, performing as little implementation
changes as possible. This also implies that the performance
comparisons with the baseline system provide a fair evalu-
ation of traditional WAL vs. FineLine, sharing a large per-
centage of common code and infrastructure.

The commit protocol described in Section 4.2 is imple-
mented in a slightly different manner, which aims to reuse
the same log manager implementation as the baseline sys-
tem [28]. Rather than immediately appending each epoch
to the indexed log as a new partition, a suffix of the log is
maintained unsorted—or rather, sorted by order of commit.
Sorting and indexing run constantly in the background, so
that this unordered suffix is kept fairly small. Because index
fetches are only supported from the sorted partitions of the
log, eviction of a node from the buffer pool must wait until
all log records affecting that node have been sorted and in-
dexed; this is easily achieved by maintaining an epoch field
on each node, analogous to the PageLSN of ARIES [35].
To provide earlier availability during recovery, node fetches
may also replay log records in the unsorted partition using
sequential scans—this presents a trade-off between time to
first transaction and overall recovery speed.

Unlike logging in ARIES, the FineLine prototype described
above only logs redo information and appends all log records
of a particular transaction in a single step during commit, as
described in Section 4.2. Furthermore, because there is no
persistent database, there are no checkpoints of any kind; in-
stead, partitions are merged in the background to gradually
improve the performance of node fetches, reduce recovery
effort in case of a failure, and to recycle log space.

6.2 Hypotheses
This paper focuses on presenting FineLine as a viable ar-

chitectural alternative to traditional WAL systems such as
ARIES. Therefore, our main goal in these experiments is to
demonstrate that the single-storage approach of FineLine is
capable of delivering better performance than a WAL sys-
tem, thanks to reduced logging overhead and a more efficient
commit protocol, but with a simpler architecture and retain-
ing the advantages of transparent support for larger-than-
memory workloads and efficient recovery. Furthermore, we
show that recovery performance is drastically improved by
providing on-demand, incremental recovery from system fail-
ures, as in the instant recovery approach [17, 42]. Lastly, we
evaluate transaction performance as the workload size grows

3http://github.com/caetanosauer/fineline-zero

0

10

20

30

40

50

60

2 4 8 12 16 20

T
h
ro
u
g
h
p
u
t
(k
tp

s)

Threads

WAL
FineLine

Figure 7: Average transaction throughput of WAL and
FineLine with increasing worker thread count

beyond the size of main memory and evaluate the trade-offs
in comparison to LSM-trees.

More specifically, our experiments test the following
hypotheses, each with a dedicated sub-section below:

1. The FineLine prototype improves performance—as
measured by transaction throughput—in comparison
with a WAL system, thanks to the lack of persistent
undo logging and the new commit protocol.

2. The FineLine prototype is able to recover from a sys-
tem failure and warm up the buffer pool with compa-
rable performance to a state-of-the-art WAL system
with support for instant recovery. In comparison with
traditional WAL, it should recover much faster.

3. For larger-than-memory workloads, the performance of
the FineLine prototype is still better than in a WAL
system, but as the data set grows—or, equivalently,
as the buffer pool size decreases—a turning point is
expected where WAL performs better.

4. The application scenarios that favor LSM-trees also
favor FineLine and the same trade-offs can be achieved
by tuning system parameters or design choices.

6.3 Transaction throughput
The workload used here consists of the TPC-C benchmark

with scale factor 75, which produces ∼10 GB of initial
database size. All TPC-C experiments shown in this paper
were executed with up to 20 worker threads and Samsung
840 Pro SSDs as persistent storage devices.

The experiment of Fig. 7 shows average transaction through-
put (y-axis) for a 5-minute execution of the TPC-C bench-
mark with increasing worker-thread count (x-axis) on both
the WAL system and FineLine. As the results show, through-
put is roughly increased by a factor 2. In order to test
in-memory performance only, all these executions employ
a buffer pool larger than the total dataset size. Further-
more, because both systems share the same implementation
of system components other than logging and recovery, the
scalability curve looks very similar.

To confirm that the observed performance improvement
is a consequence of the reduced log volume without undo
logging and the more efficient commit protocol, Fig. 8
shows the average log size (left side) as well as the average
number of log buffer insertions (right side) per transaction
for the experiment above. The log volume per transaction
is reduced in FineLine by roughly 45%, which is attributed
to the elimination of undo information. Note that this
includes not only before-images of data values but also log-
record metadata such as transaction ID, undo-next pointer,
relation ID (for logical undo), etc. The number of log
inserts per transaction is drastically reduced in FineLine to

2258

http://github.com/caetanosauer/fineline-zero


0

1000

2000

3000

4000

5000

6000

WAL FineLine
0
2
4
6
8

10

12
14

WAL FineLine

L
o
g
b
y
te
s
/
tx
n
. 5773.82

3189.56

L
o
g
in
se
rt
s
/
tx
n
. 14.02

1.23

Figure 8: Average log bytes and insertions per transaction
in WAL and FineLine for the TPC-C benchmark

less than 9% of that of the WAL system; this is because
one log buffer insertion is performed per transaction rather
than per log record. The value computed here is higher
than one because the experiment includes log insertions of
both system transactions as well as the user transactions
that initiate them. For instance, if a user transaction
triggers the split of a B-tree node, the split has to be
logged independently of the fate of the user transaction;
thus, it is inserted in the log buffer before the pre-commit of
the user transaction. Other system actions, such as page
allocations, space-management tasks, and logged events,
are also accounted for in this manner, which explains why
FineLine generates 1.23 insertions per user transaction.

The experiments above confirm our first hypothesis postu-
lated earlier, namely that redo-only logging and the efficient
commit protocol greatly improve the performance of the log-
ging subsystem, delivering higher transaction throughput.

6.4 Restart and warm-up
The restart experiment measures the time it takes to re-

cover and warm-up the buffer pool, i.e., to reach maximum,
steady-state transaction throughput, after a system failure.
To set up this experiment, the TPC-C benchmark is loaded
and ten million transactions are executed, after which the
system abruptly shuts down. During this phase, standard
propagation measures are enabled in each system, namely
buffer-pool write-back in WAL and background partition
merging in FineLine. Then, the benchmark restarts and
the average transaction throughput (y-axis) is plotted over
time (x-axis); this shows how quickly the systems are able
to recover and warm-up the buffer pool.

The results are shown in Fig. 9, which compares restart
time between WAL, FineLine, and WAL enhanced with in-
stant restart [17] (shown as WAL-Instant). First, by com-
paring FineLine and WAL, we observe that transactions
start executing (and thus the system becomes available)
much earlier in the former—namely a few secons vs. more
than two minutes. This can be confirmed in Fig. 10, which
essentially zooms into the first 40 seconds of the experi-
ment to show when the first transactions are executed. Fur-
thermore, because peak performance is higher in FineLine,
warm-up happens at a similar pace but goes twice as higher
than in the WAL variant. The re-establishment of peak per-
formance happens roughly one minute earlier in FineLine.

A second comparison can be made in Fig. 9 between Fine-
Line and the WAL system with instant recovery. Because
the latter is only offline during the log analysis phase, while
redo and undo actions are preformed on demand [17], it
is actually able to warm-up faster than FineLine, reaching
peak throughput roughly a half minute earlier. FineLine ac-
tually has a similar behavior, but warm-up is slightly slower
because of the cold index probes required to fetch nodes.

0

10

20

30

40

50

60

70

0 1 2 3 4 5

T
h
ro
u
g
h
p
u
t
(k
tp

s)

Time (min)

WAL
WAL-Instant

FineLine

Figure 9: Restart and warm-up efficiency

0

0.1

0.2

0 5 10 15 20 25 30 35 40

T
h
ro
u
g
h
p
.
(k
tp

s)

Time (sec)

WAL
WAL-Instant

FineLine

Figure 10: Restart availability (i.e., zoomed-in graph)

This is likely a limitation of the implementation used in our
prototype, which, as explained earlier, reuses the same ba-
sic logging infrastructure of the WAL system by maintaining
the last partition of the log unsorted and then relies on se-
quential scans to replay updates in the unsorted part.

These results confirm our second hypothesis, namely that
recovery performance in FineLine is comparable to a state-
of-the-art WAL implementation with instant restart, but
much better than a traditional WAL implementation.

6.5 Larger-than-memory workload
The next experiment evaluates the performance of larger-

than-memory workloads in FineLine. We analyze average
transaction throughput during a three-minute run of the
TPC-C benchmark with warmed-up buffer pool. The buffer
pool size varies from 10% (1 GB) to 100% (10 GB) of the
initial database size. The results are shown in the bar charts
of Fig. 11. On the left side, the transaction throughput
(y-axis) is plotted for each buffer size (x-axis) of the WAL
system; on the right side, the same is shown for FineLine.

The results show that FineLine is quite effective in dealing
with limited buffer pool sizes, except for the smaller sizes
of 1 and 2 GB, where WAL delivers higher performance.
This is expected because as the buffer size decreases,
transaction latency is dominated by reads from the database
in WAL and, equivalently, indexed log fetches in FineLine.
However, thanks to the higher performance of FineLine,
higher transaction throughput is observed in the buffer
sizes beyond 3 GB. Furthermore, these results indicate that
FineLine makes better use of medium-sized buffer pools in
relative terms—note, for example, how the 5-GB buffer pool
delivers more than 50% the performance of the 10-GB buffer
pool, while the same size in the WAL variant delivers less
than a third of maximum performance (exact numbers are
7.7 and 24.8 ktps, respectively).

These results confirm our third hypothesis, namely that
FineLine still outperforms WAL as the dataset grows beyond
main memory, up to a turning point where it becomes
slower. Therefore, for large workloads with very scarce main
memory, traditional WAL might still be preferred.

6.6 Performance comparison with LSM-trees
A thorough comparison of FineLine with LSM-trees and

traditional WAL systems would be enough for a separate
experiment and analysis paper, given the complexity of

2259



0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

T
h

ro
u

g
h

p
u

t
(k

tp
s)

Buffer size (GB)

WAL

Buffer size (GB)

FineLine

Figure 11: Txn. throughput with varying buffer pool sizes

design choices [8, 3], hardware configurations [9, 2], and
trade-offs [4] involved. Thus, this section focuses on a simple
benchmark based on the YCSB dataset to demonstrate
pragmatically that the trade-offs offered by LSM-trees in
comparison with WAL are also present in FineLine.

To test these hypothesis, we implemented an LSM storage
module based on LevelDB [1] in the Shore-Kits framework
that runs on top of both Shore-MT/Zero (the WAL system)
and FineLine. The reason behind choosing LevelDB is
its widespread adoption as an open-source project and
thus ease of use and understanding, which aligns with the
pragmatic nature of our experiments. A comparison with
more advanced and highly tunable LSM engines such as
RocksDB [12] is left for future work.

To vary access patterns, we consider a similar setup from
the paper of Arulraj et al. [3], which also evaluates log-
structured and WAL approaches. The experiment executes
500 million operations on records of 1000 bytes with 8-byte
keys; these are either read or updated randomly under four
different workloads: read-only (100% reads), read-heavy
(90% reads), balanced (50% reads), and write-heavy (10%
reads). The storage device used here is a DELL PM1725a
NVMe SSD and 20 worker threads are used. The issue of
caching and read amplification is not considered here, as
the differences between each system are less prominent in
comparison with write efficiency; thus, enough main memory
is provided to all systems to maximize the cache hit ratio.

Fig. 12 shows the transaction throughput observed for
each of the four workloads under the three different engines.
Thanks to the lack of logging overheads (including log
record generation, insertion into the centralized buffer,
and I/O), the read-only workload exhibits by far the best
performance in all systems. The first observation is that,
in all workloads considered, FineLine provides the highest
transaction throughput. An addition of 10% updates, as is
the case in the read-heavy workload, causes a significant
drop in the WAL system—this result shows how large
the impact of logging overheads is, and how effective its
optimization can be, as demonstrated by the FineLine
result. Here, the LSM-tree is faster the WAL system, but
the latter performs better in the balanced and write-heavy
workloads, which is a surprising result. This is likely due to
a more scalable implementation of the WAL system.

Fig. 13 shows the total data volume written to persistent
devices during the experiment. Note that the y-axis is in a
log scale here. Except for the read-only scenario, in which
LevelDB still performs background compaction, the WAL
system exhibits the highest write amplification. This is
because it has to write back pages of 64 KB when only a few
1 KB records were modified—note that this was expected, as
the experiment is designed to benefit LSM-trees. The write
volume increases substantially on all systems as the ratio

0
200
400
600
800

1000
1200
1400
1600
1800
2000

R-only R-heavy Balanced W-heavyT
xn

.
th

ro
ug

hp
ut

(k
tp

s)

FineLine
WAL
LSM

Figure 12: Transaction throughput of the YCSB benchmark

10−2

10−1

100
101
102
103
104
105

R-only R-heavy Balanced W-heavy

W
ri

te
vo

lu
m

e
(G

B
) FineLine

WAL
LSM

Figure 13: Data volume written in the YCSB benchmark

of updates increases, but their proportions remain similar.
Note that FineLine writes less data than LSM, even though
it delivers significantly higher transaction throughput.

7. CONCLUSION
This paper presented a log-structured design for transac-

tional storage systems called FineLine. The design follows
a single-storage approach, in which all persistent data is
maintained solely in an indexed log data structure, unify-
ing database and recovery log in a more general approach.
This novel storage architecture decouples in-memory data
structures from their persistent representation, eliminating
many of the overheads associated with traditional disk-based
database systems.

The log-structured approach also greatly improves recov-
ery capabilities in comparison with state-of-the-art designs.
Because the indexed log contains all information required to
always retrieve data items in their most recent, transaction-
consistent state, recovery from a system failure is fast and
makes the system available much earlier. Furthermore, un-
like most state-of-the-art approaches, there are no check-
points, no offline log scans, and no auxiliary data structures
that must be rebuilt during recovery.

By mixing existing data management techniques—such
as log-structured access methods, in-memory databases,
physiological logging, and buffer management—in a novel
way, FineLine achieves a design and architecture sweet-
spot between modern in-memory database systems and
traditional disk-based approaches. It also introduces a new,
generalized perspective to data storage and recovery, in
which the distinctions between persisted data objects and
logs, much like the distinctions between in-memory and disk-
based data management, are essentially blurred.

Acknowledgements
We are grateful to Viktor Leis for his valuable feedback and
insightful suggestions and to Lucas Lersch for being avail-
able to bounce off ideas in many informal discussions. This
work was partially supported by the Deutsche Forschungs-
gemeinschaft (DFG) through grant HA 1286/9-1.

2260



8. REFERENCES
[1] LevelDB. https://github.com/google/leveldb,

2018. Online; accessed 2018-07-12.

[2] R. Appuswamy, R. Borovica-Gajic, G. Graefe, and
A. Ailamaki. The Five-minute Rule Thirty Years
Later and its Impact on the Storage Hierarchy. In
Proc. ADMS Workshop, 2017.

[3] J. Arulraj, A. Pavlo, and S. Dulloor. Let’s talk about
storage & recovery methods for non-volatile memory
database systems. In Proc. SIGMOD, pages 707–722,
2015.

[4] M. Athanassoulis, M. S. Kester, L. M. Maas,
R. Stoica, S. Idreos, A. Ailamaki, and M. Callaghan.
Designing access methods: The RUM conjecture. In
Proc. EDBT, pages 461–466, 2016.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[6] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - A
transactional record manager for shared flash. In Proc.
CIDR, pages 9–20, 2011.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. ACM Trans. Comput. Syst.,
26(2), 2008.

[8] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey:
Optimal navigable key-value store. In Proc. SIGMOD,
pages 79–94, 2017.

[9] J. DeBrabant, J. Arulraj, A. Pavlo, M. Stonebraker,
S. B. Zdonik, and S. Dulloor. A prolegomenon on
OLTP database systems for non-volatile memory. In
Proc. ADMS Workshop, pages 57–63, 2014.

[10] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and
S. B. Zdonik. Anti-caching: A new approach to
database management system architecture. PVLDB,
6(14):1942–1953, 2013.

[11] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. Stonebraker, and D. A. Wood. Implementation
techniques for main memory database systems. In
Proc. SIGMOD, pages 1–8, 1984.

[12] S. Dong, M. Callaghan, L. Galanis, D. Borthakur,
T. Savor, and M. Strum. Optimizing space
amplification in rocksdb. In Proc. CIDR, 2017.

[13] A. Eldawy, J. J. Levandoski, and P. Larson. Trekking
Through Siberia: Managing Cold Data in a
Memory-Optimized Database. PVLDB, 7(11):931–942,
2014.

[14] G. Graefe. Sorting and indexing with partitioned
b-trees. In CIDR, 2003.

[15] G. Graefe. Fast loads and fast queries. In Proc.
DaWaK, pages 111–124, 2009.

[16] G. Graefe. The five-minute rule 20 years later (and
how flash memory changes the rules). Commun. ACM,
52(7):48–59, 2009.

[17] G. Graefe, W. Guy, and C. Sauer. Instant Recovery
with Write-Ahead Logging: Page Repair, System
Restart, Media Restore, and System Failover, Second
Edition. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2016.

[18] G. Graefe, M. Lillibridge, H. A. Kuno, J. Tucek, and
A. C. Veitch. Controlled lock violation. In Proc.
SIGMOD, pages 85–96, 2013.

[19] G. Graefe, H. Volos, H. Kimura, H. A. Kuno,
J. Tucek, M. Lillibridge, and A. C. Veitch. In-memory
performance for big data. PVLDB, 8(1):37–48, 2014.

[20] J. Gray and G. Graefe. The five-minute rule ten years
later, and other computer storage rules of thumb.
SIGMOD Record, 26(4):63–68, 1997.

[21] J. Gray, P. R. McJones, M. W. Blasgen, B. G.
Lindsay, R. A. Lorie, T. G. Price, G. R. Putzolu, and
I. L. Traiger. The Recovery Manager of the System R
Database Manager. ACM Comput. Surv.,
13(2):223–243, 1981.

[22] J. Gray and G. R. Putzolu. The 5 minute rule for
trading memory for disk accesses and the 10 byte rule
for trading memory for CPU time. In Proc. SIGMOD,
pages 395–398, 1987.

[23] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[24] T. Härder and A. Reuter. Optimization of Logging
and Recovery in a Database System. In IFIP TC-2
Working Conference on Data Base Architecture, pages
139–156, 1979.

[25] T. Härder and A. Reuter. Principles of
transaction-oriented database recovery. ACM Comput.
Surv., 15(4):287–317, 1983.

[26] P. Helland, H. Sammer, J. Lyon, R. Carr, P. Garrett,
and A. Reuter. Group commit timers and high volume
transaction systems. In Prod. HPTS, pages 301–329,
1987.

[27] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-MT: a scalable storage manager
for the multicore era. In Proc. EDBT, pages 24–35,
2009.

[28] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Scalability of write-ahead logging on
multicore and multisocket hardware. VLDB Journal,
21(2):239–263, 2012.

[29] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. In Proc. ICDE, pages
195–206, 2011.

[30] V. Leis, M. Haubenschild, A. Kemper, and
T. Neumann. LeanStore: In-Memory Data
Management Beyond Main Memory. In Prod. ICDE,
2018.

[31] V. Leis, A. Kemper, and T. Neumann. The adaptive
radix tree: ARTful indexing for main-memory
databases. In Proc. ICDE, pages 38–49, 2013.

[32] R. A. Lorie. Physical integrity in a large segmented
database. ACM Trans. Database Syst., 2(1):91–104,
1977.

[33] N. Malviya, A. Weisberg, S. Madden, and
M. Stonebraker. Rethinking main memory OLTP
recovery. In Proc. ICDE, pages 604–615, 2014.

[34] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. In Proc. EuroSys,
pages 183–196, 2012.

[35] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial

2261

https://github.com/google/leveldb


rollbacks using write-ahead logging. ACM Trans.
Database Syst., 17(1):94–162, 1992.

[36] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
serializable multi-version concurrency control for
main-memory database systems. In Proc. SIGMOD,
pages 677–689, 2015.

[37] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil.
The log-structured merge-tree (lsm-tree). Acta Inf.,
33(4):351–385, 1996.

[38] K. Park, J. Do, N. Teletia, and J. M. Patel.
Aggressive buffer pool warm-up after restart in SQL
Server. In Proc. ICDE, pages 31–38, 2016.

[39] K. Ren, T. Diamond, D. J. Abadi, and A. Thomson.
Low-overhead asynchronous checkpointing in
main-memory database systems. In Proc. SIGMOD,
pages 1539–1551, 2016.

[40] O. Rodeh. B-trees, shadowing, and clones. TOS, 3(4),
2008.

[41] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Trans. Comput. Syst., 10(1):26–52, 1992.

[42] C. Sauer. Modern techniques for transaction-oriented
database recovery. PhD thesis, TU Kaiserslautern,
Germany, Dr.Hut-Verlag München, 2017.

[43] C. Sauer, G. Graefe, and T. Härder. Instant restore
after a media failure. In Proc. ADBIS, 2017.

[44] C. Sauer, L. Lersch, T. Härder, and G. Graefe.
Update propagation strategies for high-performance
OLTP. In Proc. ADBIS, 2016.

[45] R. Sears and R. Ramakrishnan. bLSM: a general
purpose log structured merge tree. In Proc. SIGMOD,
pages 217–228, 2012.

[46] M. Stonebraker. The design of the POSTGRES
storage system. In Proc. VLDB, pages 289–300, 1987.

[47] M. Stonebraker. The land sharks are on the squawk
box. Commun. ACM, 59(2):74–83, 2016.

[48] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy transactions in multicore
in-memory databases. In Proc. SIGOPS, pages 18–32,
2013.

[49] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam,
K. Gupta, R. Mittal, S. Krishnamurthy, S. Maurice,
T. Kharatishvili, and X. Bao. Amazon aurora: Design
considerations for high throughput cloud-native
relational databases. In Proc. SIGMOD, pages
1041–1052, 2017.

[50] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C.
Ooi. Logbase: A scalable log-structured database
system in the cloud. PVLDB, 5(10):1004–1015, 2012.

[51] T. Wang and R. Johnson. Scalable logging through
emerging non-volatile memory. PVLDB,
7(10):865–876, 2014.

[52] C. Yao, D. Agrawal, G. Chen, B. C. Ooi, and S. Wu.
Adaptive logging: Optimizing logging and recovery
costs in distributed in-memory databases. In Proc.
SIGMOD, pages 1119–1134, 2016.

[53] H. Zhang, H. Lim, V. Leis, D. G. Andersen,
M. Kaminsky, K. Keeton, and A. Pavlo. Surf:
Practical range query filtering with fast succinct tries.
In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pages 323–336,
2018.

2262


	Introduction
	Related work
	Single-storage approaches
	Recovery in in-memory databases
	Instant recovery
	Modern storage hardware
	Log-structured storage
	Summary of related work

	Architecture
	In-memory data structures
	Log
	Lightweight buffer manager
	Transaction manager

	Logging
	Indexed log organization
	Commit
	Node fetch and merging

	Recovery
	Indexed log consistency
	Transaction consistency
	Stable storage and media failures

	Experiments
	Implementation
	Hypotheses
	Transaction throughput
	Restart and warm-up
	Larger-than-memory workload
	Performance comparison with LSM-trees

	Conclusion
	References

