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ABSTRACT
Bipartite networks are of great importance in many real-
world applications. In bipartite networks, butterfly (i.e., a
complete 2× 2 biclique) is the smallest non-trivial cohesive
structure and plays a key role. In this paper, we study the
problem of efficient counting the number of butterflies in bi-
partite networks. The most advanced techniques are based
on enumerating wedges which is the dominant cost of count-
ing butterflies. Nevertheless, the existing algorithms cannot
efficiently handle large-scale bipartite networks. This be-
comes a bottleneck in large-scale applications. In this paper,
instead of the existing layer-priority-based techniques, we
propose a vertex-priority-based paradigm BFC-VP to enu-
merate much fewer wedges; this leads to a significant im-
provement of the time complexity of the state-of-the-art al-
gorithms. In addition, we present cache-aware strategies to
further improve the time efficiency while theoretically re-
taining the time complexity of BFC-VP. Moreover, we also
show that our proposed techniques can work efficiently in ex-
ternal and parallel contexts. Our extensive empirical studies
demonstrate that the proposed techniques can speed up the
state-of-the-art techniques by up to two orders of magnitude
for the real datasets.
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1. INTRODUCTION
When modelling relationships between two different types

of entities, the bipartite network arises naturally as a data
model in many real-world applications [23, 44]. For exam-
ple, in online shopping services (e.g., Amazon and Alibaba),
the purchase relationships between users and products can
be modelled as a bipartite network, where users form one
layer, products form the other layer, and the links between
users and productions represent purchase records as shown
in Figure 1. Other examples include author-paper relation-
ships, actor-movie networks, etc.
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(Adam) (Mark) (Shego) (Taylor)

(Doll) (Carpet)(Balm) (Wine)(Hat)

u0 u1 u2 u3

v0 v1 v2 v3 v4

Figure 1: A bipartite network

Since network motifs (i.e., repeated sub-graphs) are re-
garded as basic building blocks of complex networks [48],
finding and counting motifs of networks is a key to network
analysis. In unipartite networks, there are extensive studies
on counting and listing triangles (the smallest non-trivial
clique) in the literature [16, 24, 26, 36, 42, 43, 61–65]. In bi-
partite networks, butterfly (i.e., a complete 2 × 2 biclique)
is the simplest bi-clique configuration with equal numbers
of vertices of each layer (apart from the trivial single edge
configuration) that has drawn reasonable attention recently
[15, 58–60, 68, 76]; for instance, Figure 1 shows the record
that Adam and Mark both purchased Balm and Doll forms
a butterfly. In this sense, the butterfly can be viewed as
an analogue of the triangle in a unipartite graph. Moreover,
without butterflies, a bipartite graph will not have any com-
munity structure [15].

In this paper, we study the problem of butterfly counting,
that is to compute the number of butterflies in a bipar-
tite graph G, denoted by 1G. The importance of butterfly
counting has been demonstrated in the literature of network
analysis and graph theory. Below are some examples.
Network measurement. The bipartite clustering coefficient
[15, 46, 51, 58] is a cohesiveness measurement of bipartite
networks. Given a bipartite graph G, its bipartite cluster-
ing coefficient equals 4× 1G/

n

G, where

n

G is the number of
caterpillars in G — the number of three-paths. For exam-
ple, (u0, v0, u1, v1) in Figure 1 is a three-path. High bipar-
tite clustering coefficient indicates localized closeness and
redundancy in bipartite networks [15, 58]; for instance, in
user-product networks, bipartite clustering coefficients can
be used frequently to analyse the sale status for products
in different categories. These statistics can also be used
in Twitter network [10] for internet advertising where the
Twitter network is the bipartite network consisting of Twit-
ter users and the URLs they mentioned in their postings.
Since

n

G can be easily computed in O(m) time where m
is the number of edges in G [15], computing 1G becomes a
bottleneck in computing the clustering coefficient.
Summarizing inter-corporate relations. In a director-board
network, two directors on the same two boards can be mod-
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elled as a butterfly. These butterflies can reflect inter-
corporate relations [52–54]. The number of butterflies in-
dicates the extent to which directors re-meet one another
on two or more boards. A large butterfly counting number
indicates a large number of inter-corporate relations and for-
mal alliances between companies [58].
Computing k-wing in bipartite graphs. Counting the number
of butterflies for each edge also has applications. For exam-
ple, it is the first step to compute a k-wing [60] (or k-bitruss
[76]) for a given k where k-wing is the maximum subgraph
of a bipartite graph with each edge in at least k butterflies.
Discovering such dense subgraphs is proved useful in many
applications e.g., community detection [30,56,73,75], word-
document clustering [27], and viral marketing [29,47,69,74].
Given a bipartite graph G, the proposed algorithms [60,76]
for k-wing computation is to first count the number of but-
terflies on each edge in G. After that, the edge with the
lowest number of butterflies is iteratively removed from G
until all the remaining edges appear in at least k butterflies.

Note that in real applications, butterfly counting may
happen not only once in a graph. We may need to con-
duct such a computation against an arbitrarily specified sub-
graph. Indeed, the demand of butterfly counting in large
networks can be very high. However, the state-of-the-art al-
gorithms cannot efficiently handle large-scale bipartite net-
works. As shown in [59], on the Tracker network with 108

edges, their algorithm needs about 9,000 seconds to compute

1G. Therefore, the study of efficient butterfly counting is im-
perative to support online large-scale data analysis. More-
over, some applications demand exact butterfly counting in
bipartite graphs. For example, in k-wing computation, ap-
proximate counting does not make sense since the k-wing
decomposition algorithm in [60] needs to iteratively remove
the edges with the lowest number of butterflies; the number
has to be exact.
State-of-the-art. Consider that there can be O(m2) but-
terflies in the worst case. Wang et al. in [68] propose an al-
gorithm to avoid enumerating all the butterflies. It has two
steps. At the first step, a layer is randomly selected. Then,
the algorithm iteratively starts from every vertex u in the
selected layer, computes the 2-hop reachable vertices from
u, and for each 2-hop reachable vertex w, counts the number
nuw of times reached from u. At the second step, for each
2-hop reachable vertex w from u, we count the number of
butterflies containing both u and w as nuw(nuw − 1)/2. For
example, regarding Figure 1, if the lower layer is selected,
starting from the vertex v0, vertices v1, v2, and v3 are 2-
hop reached 3 times, 1 time, and 1 time, respectively. Thus,
there are C2

3 (= 3) butterflies containing v0 and v1 and no
butterfly containing v0 and v2 (or v0 and v3). Iteratively,
the algorithm will first use v0 as the start-vertex, then v1,
and so on. Then, we add all the counts together; the added
counts divided by two is the total number of butterflies.

Observe that the time complexity of the algorithm in
[68] is O(

∑
u∈U(G) degG(u)2)) if the lower layer L(G) of

G is chosen to have start-vertices, where U(G) is the up-
per layer. Sanei et al. in [59] chooses a layer S such that
O(
∑

v∈S degG(v)2)) is minimized among the two layers.

Observation. In the existing algorithms [59,68], the dom-
inant cost is at Step 1 that enumerates wedges to compute
2-hop reachable vertices and their hits. For example, re-
garding Figure 1, we have to traverse 3 wedges, (v0, u0, v1),
(v0, u1, v1), and (v0, u2, v1) to get all the hits from v0 to
v1. Here, in the wedge (v0, u0, v1), we refer v0 as the start-
vertex, u0 as the middle-vertex, and v1 as the end-vertex.

Continue with the example in Figure 1, using u2 as the
middle-vertex, starting from v0, v1, and v2, respectively, we
need to traverse totally 6 wedges.

We observe that the choice of middle-vertices of wedges
(i.e., the choice of start-vertices) is a key to improving the
efficiency of counting butterflies. For example, consider the
graph G with 2, 002 vertices and 3, 000 edges in Figure 2(a).
In G, u0 is connected with 1, 000 vertices (v0 to v999), v1000 is
also connected with 1, 000 vertices (u1 to u1000), and for 0 ≤
i ≤ 999, vi is connected with ui+1. The existing algorithms
need to go through u0 (or v1000) as the middle-vertex if
choosing L(G) (or U(G)) to start. Therefore, regardless of
whether the upper or the lower layer is selected to start,
we have to traverse totally C2

1000 (= 499, 500) plus 1, 000
different wedges by the existing algorithms [59,68].

(a) (b)

v1000

u0

v0 v1 v998 v999

u1 u2 u999 u1000

U(G)

L(G)
v0 v1 v2 v3

u2 u3u1 u4 u5u0

Figure 2: Some observations

Challenges. The main challenges of efficient butterfly
counting are twofold.

1. Using high-degree vertices as middle-vertices of wedges
may generate numerous wedges to be scanned. The ex-
isting techniques [59, 68], including the layer-priority-
based techniques [59], cannot avoid using unnecessary
high-degree vertices as middle-vertices as illustrated
earlier. Therefore, it is a challenge to effectively han-
dle high-degree vertices.

2. Effectively utilizing CPU cache can often reduce the
computation dramatically. Therefore, it is also a chal-
lenge to utilize CPU cache to speed up the counting of
butterflies.

Our approaches. To address Challenge 1, instead of the
existing layer-priority-based algorithm, we propose a vertex-
priority-based butterfly counting algorithm BFC-VP that
can effectively handle hub vertices (i.e., high-degree ver-
tices). To avoid over-counting or miss-counting, we propose
that for each edge (u, v), the new algorithm BFC-VP uses the
vertex with a higher degree as the start-vertex so that the
vertex with a lower degree will be used as the middle-vertex.
Specifically, the BFC-VP algorithm will choose one end ver-
tex of an edge (u, v) as the start-vertex, say u, according
to its priority. The higher degree, the higher priority; and
the ties are broken by vertex ID. For example, regarding
Figure 2(a), the BFC-VP algorithm will choose u0 and v1000
as start-vertices; consequently, only 2, 000 wedges in total
will be scanned by our algorithm compared with 500, 500
different wedges generated by the existing algorithms as il-
lustrated earlier. Once all edges from the starting vertex u
are exhausted, BFC-VP moves to another edge. This is the
main idea of our BFC-VP algorithm.

As a result, the time complexity of our BFC-
VP algorithm is O(

∑
(u,v)∈E(G)min{degG(u), degG(v)})

which is in general significantly lower than the time
complexity of the state-of-the-art algorithm in [59],
O(min{

∑
v∈U(G) degG(v)2,

∑
v∈L(G) degG(v)2)}), consider-

ing degG(v)2 =
∑

(u,v)∈E(G) degG(v) where v is fixed.

In the BFC-VP algorithm, there are O(n) accesses of
start-vertices because we need to explore every vertex as
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a start-vertex only once, O(m) accesses of middle-vertices
and O(

∑
(u,v)∈E(G)min{degG(u), degG(v)}) accesses of end-

vertices in the processed wedges. Thus, the number of ac-
cesses to end-vertices is dominant. Given that the cache
miss latency takes a big part of the memory access time
[14], improving the CPU cache performance when accessing
the end-vertices becomes a key issue. Our second algorithm,
the cache-aware algorithm BFC-VP++, aims to improve the
CPU cache performance of BFC-VP by having high-degree
vertices as end-vertices to enhance the locality while re-
taining the total O(

∑
(u,v)∈E(G)min{degG(u), degG(v)}) ac-

cesses of end-vertices (thus, retain the time complexity of the
BFC-VP algorithm). Consequently, BFC-VP++ proposes to
request the end-vertices to be prioritized in the same way as
the start-vertices in the BFC-VP algorithm.

For example, considering the graph in Figure 2(b), we
have p(v0) > p(v3) > p(u0) > p(v2) > p(v1) accord-
ing to their degrees where p(v) denotes the priority of a
vertex v. In this example, starting from v0 to v3, going
through u0, BFC-VP needs to process 5 wedges using u0 as
the middle-vertex (i.e., (v0, u0, v1), (v0, u0, v2), (v0, u0, v3),
(v3, u0, v1) and (v3, u0, v2)), and there are 3 vertices, v1, v2
and v3 that need to be performed as end-vertices. Note that
these are the only 5 wedges using u0 as the middle-vertex
since p(u0) > p(v2) > p(v1). Regarding the same exam-
ple, BFC-VP++ also needs to process exactly 5 wedges with
u0 as the middle-vertex, (v1, u0, v0), (v1, u0, v3), (v2, u0, v0),
(v2, u0, v3) and (v3, u0, v0); however only 2 vertices, v0 and
v3, are performed as end-vertices.

We also propose the cache-aware projection strategy to
improve the cache performance by storing high-priority
(more frequently accessed) end-vertices together to reduce
the cache-miss [71]. Considering the example in Figure 2(b),
BFC-VP++ will store v0 and v3 together after projection.
Contribution. Our principal contributions are summa-
rized as follows.
• We propose a novel algorithm BFC-VP to count the

butterflies that significantly reduce the time complexi-
ties of the existing algorithms in both theory and prac-
tice.
• We propose a novel cache-aware butterfly counting al-

gorithm BFC-VP++ by adopting cache-aware strate-
gies to BFC-VP. The BFC-VP++ algorithm achieves
better CPU cache performance than BFC-VP.
• We can replace the exact counting algorithm in the

approximate algorithm [59] by our exact counting al-
gorithm for a speedup.
• By extending our framework, we present an external-

memory algorithm and a parallel algorithm for butter-
fly counting.
• We conduct extensive experiments on real bipartite

networks. The result shows that our proposed algo-
rithms BFC-VP and BFC-VP++ outperform the state-
of-the-art algorithms by up to 2 orders of magnitude.
For instance, the BFC-VP++ algorithm can count 1012

butterflies in 50 seconds on Tracker dataset with 108

edges, while the state-of-the-art butterfly counting al-
gorithm [59] runs about 9, 000 seconds.

Organization. The rest of the paper is organized as fol-
lows. The related work follows immediately. Section 2
presents the problem definition. Section 3 introduces the
existing algorithms BFC-BS and BFC-IBS. The BFC-VP al-
gorithm is presented in Section 4. Section 5 explores cache-
awareness. Section 6 extends our algorithm to count butter-
flies against each edge, the parallel execution of our proposed

algorithms and the external memory solution. Section 7 re-
ports experimental results. Section 8 concludes the paper.

Related Work.

Motif counting in unipartite networks. Triangle is the small-
est non-trivial cohesive structure and there are extensive
studies on counting triangles in the literature [16,19,24,26,
36, 37, 42, 43, 61, 61–65]. However, the butterfly counting is
inherently different from the triangle counting for two rea-
sons, 1) the number of butterflies may be significantly larger
than that of triangles (O(m2) vs O(m1.5) in the worst case),
and 2) the structures are different (4-hops’ circle vs 3-hops’
circle). Thus, the existing triangle counting techniques are
not applicable to efficient butterfly counting because the ex-
isting techniques for counting triangles (e.g., [26, 63]) are
based on enumerating all triangles and the enumeration is
not affordable in counting butterflies due to the quadratic
number O(m2) of butterflies in the worst case.

There are also some studies [38, 39, 57] focusing on the
other cohesive structures such as 4-vertices and 5-vertices,
these techniques also cannot be used to solve our problem.
In [17], the authors propose generic matrix-multiplication
based algorithm for counting the cycles of length k (3 ≤ k ≤
7) in O(n2.376) time and O(n2) space. While the algorithm
in [17] can be used to solve our problem, it cannot process
large graphs due to its space and time complexity. As shown
in [68], the algorithm in [68] has a significant improvement
over [17], while our algorithm significantly improves [68].

Bipartite Networks. Some studies are conducted towards
motifs such as 3 × 3 biclique [23] and 4-path [51]. These
structures are different from the butterfly thus these works
also cannot be used to solve the butterfly counting prob-
lem. As mentioned earlier, the study in this paper aims to
improve the recent works in [59,68].

Graph ordering. There are some studies on specific graph
algorithms using graph ordering. Then et al. [66] opti-
mize BFS algorithms. Park et al. [55] improve the CPU
cache performance of many classic graph algorithms such as
Bellman-Fold and Prim. The authors in [34] present a suite
of approaches to accelerate set intersections in graph algo-
rithms. Since these techniques are specific to the problems
studied, they are not applicable to butterfly counting.

In the literature, there are also recent works studying gen-
eral graph ordering methods to speed up graph algorithms
[18,20–22,25,28,40,71,72]. In the experiments, we show that
our cache-aware techniques outperform the state-of-the-art
technique [71]; that is, our cache-aware strategy is more suit-
able for counting butterflies.

2. PROBLEM DEFINITION
In this section, we formally introduce the notations and

definitions. Mathematical notations used throughout this
paper are summarized in Table 1.

Our problem is defined over an undirected bipartite graph
G(V = (U,L), E), where U(G) denotes the set of vertices in
the upper layer, L(G) denotes the set of vertices in the lower
layer, U(G) ∩ L(G) = ∅, V (G) = U(G) ∪ L(G) denotes the
vertex set, and E(G) ⊆ U(G)× L(G) denotes the edge set.
We use n and m to denote the number of vertices and edges
in G, respectively, and we assume m > n. In addition, we
use r and l to denote the number of vertices in U(G) and
L(G), respectively. An edge between two vertices u and v
in G is denoted as (u, v) or (v, u). The set of neighbors of a
vertex u in G is denoted as NG(u) = {v ∈ V (G) | (u, v) ∈
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Table 1: The summary of notations
Notation Definition

G a bipartite graph
V (G) the vertex set of G
E(G) the edge set of G

U(G), L(G) a vertex layer of G
u, v, w, x a vertex in the bipartite graph
e, (u, v) an edge in the bipartite graph
(u, v, w) a wedge formed by u, v, w

[u, v, w, x] a butterfly formed by u, v, w, x
degG(u) the degree of vertex u
p(u) the priority of vertex u
NG(u) the set of neighbors of vertex u

2hopG(u) the set of two-hop neighbors of vertex u

1e the number of butterflies containing an edge e

1G the number of butterflies in G
n,m the number of vertices and edges in G (m > n)

E(G)}, and the degree of u is denoted as degG(u) = |NG(u)|.
The set of 2-hop neighbors of u (i.e., the set of vertices which
are exactly two edges away from u) is denoted as 2hopG(u).
Each vertex u has a unique id and we assume for every pair
of vertices u ∈ U(G) and v ∈ L(G), u.id > v.id.

Definition 1 (Wedge). Given a bipartite graph
G(V,E) and vertices u, v, w ∈ V (G). A path starting from
u, going through v and ending at w is called a wedge which
is denoted as (u, v, w). For a wedge (u, v, w), we call u the
start-vertex, v the middle-vertex and w the end-vertex.

Definition 2 (Butterfly). Given a bipartite graph
G and the four vertices u, v, w, x ∈ V (G) where u,w ∈ U(G)
and v, x ∈ L(G), a butterfly induced by the vertices u, v, w, x
is a (2,2)-biclique of G; that is, u and w are all connected
to v and x, respectively, by edges.

A butterfly induced by vertices u, v, w, x is denoted as
[u, v, w, x]. We denote the number of butterflies contain-
ing a vertex u as 1u, the number of butterflies containing
an edge e as 1e and the number of butterflies in G as 1G.
Problem Statement. Given a bipartite graph G(V,E),
our butterfly counting problem is to compute 1G.

3. EXISTING SOLUTIONS
In this section, we briefly discuss the two existing algo-

rithms, the baseline butterfly counting algorithm BFC-BS
[68] and the improved baseline butterfly counting algorithm
BFC-IBS [59]. As discussed earlier, both algorithms are
based on enumerating wedges. The following Lemma 1 [68]
is a key to the two algorithms.

Lemma 1. Given a bipartite graph G(V,E) and a vertex
u ∈ G, we have the following equations:

1u =
∑

w∈2hopG(u)

(
|NG(u) ∩NG(w)|

2

)
(1)

1G =
1

2

∑
u∈U(G)

1u =
1

2

∑
v∈L(G)

1v (2)

In fact, BFC-IBS has the same framework as BFC-BS and
improves BFC-BS in two aspects: (1) pre-choosing the layer
of start-vertices to achieve a lower time complexity; (2) using
a hash map to speed up the implementation. The details of
the BFC-IBS algorithm are shown in Algorithm 1.

Note that to avoid counting a butterfly twice, for each
middle-vertex v ∈ NG(u) and the corresponding end-vertex

Algorithm 1: BFC-IBS

Input: G(V = (U,L), E): the input bipartite graph
Output: 1G

1 1G ← 0
2 S ← U(G)

3 if
∑

u∈U(G) degG(u)2 <
∑

v∈L(G) degG(v)2 then

4 S ← L(G)
5 foreach u ∈ S do
6 initialize hashmap count wedge with zero
7 foreach v ∈ NG(u) do
8 foreach w ∈ NG(v) : w.id > u.id do
9 count wedge(w)← count wedge(w) + 1

10 foreach w ∈ count wedge do
11 if count wedge(w) > 1 then

12 1G ← 1G +
(count wedge(w)

2

)
13 return 1G

w ∈ NG(v), BFC-IBS processes the wedge (u, v, w) only if
w.id > u.id; consequently, in Algorithm 1 we do not need to
use the factor 1

2
in Equation 2 of Lemma 1.

As shown, the time complexity of BFC-BS is
O(
∑

v∈L(G) degG(v)2) if starting from the layer

U(G), while the time complexity of BFC-IBS is
O(min{

∑
u∈U(G) degG(u)2,

∑
v∈L(G) degG(v)2}).

4. ALGORITHM BY VERTEX PRIORITY

v1000 v1001

u0 u1

v0 v1 v998 v999

u2 u3 u1000 u1001

Figure 3: A bipartite graph containing hub vertices
u0, u1, v1000 and v1001.

In BFC-BS and BFC-IBS, the time complexity is related
to the total number of 2-hop neighbors visited (i.e.,the to-
tal number of wedges processed). When starting from one
vertex layer (e.g., U(G)), the number of processed wedges
is decided by the sum of degree squares of middle-vertices
in the other layer (e.g.,

∑
v∈L(G) degG(v)2). If all the ver-

tices with lower-degrees are distributed in one vertex layer
as middle-vertices, BFC-IBS can just start from the vertices
in the other layer and obtain a much lower computation
cost. However, when there are vertices with high-degrees
(i.e., hub vertices) exist in both layers, which is not uncom-
mon in real datasets (e.g., Tracker dataset), choosing which
layer to start cannot achieve a better performance. For ex-
ample, consider the graph G with 2, 002 vertices and 4, 000
edges in Figure 3, where u0 and u1 are connected with 1, 000
vertices (v0 to v999), v1000 and v1001 are also connected with
1, 000 vertices (u2 to u1001). In this example, choosing ei-
ther of the two layers still needs to go through hub vertices,
u0, u1 ∈ U(G) or v1000, v1001 ∈ L(G).

Optimization strategy. Clearly, [u0, v0, u1, v1] in Fig-
ure 3 can be constructed in two ways: 1) by the wedges
(u0, v0, u1) and (u0, v1, u1), or 2) by the wedges (v0, u0, v1)
and (v0, u1, v1). Consequently, a hub vertex (e.g., u0 in Fig-
ure 3) may not always necessary to become a middle-vertex
in a wedge for the construction of a butterfly. Thus, it is
possible to design an algorithm which can avoid using hub
vertices unnecessarily as middle-vertices. To achieve this
objective, we introduce the vertex-priority-based butterfly
counting algorithm BFC-VP which runs in a vertex level (i.e.,
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choosing which vertex to be processed as the start-vertex)
rather than a layer level (i.e., choosing which vertex-layer
to be processed as the start-layer). The time complexity of
BFC-VP is O(

∑
(u,v)∈E(G)min{degG(u), degG(v)}).

Given a graph G, the BFC-VP algorithm first assigns a
priority to each vertex u ∈ V (G) which is defined as follows.

Definition 3 (Priority). Given a bipartite graph
G(V,E), for a vertex u ∈ V (G), the priority p(u) is an inte-
ger where p(u) ∈ [1, |V (G)|]. For two vertices u, v ∈ V (G),
p(u) > p(v) if

• degG(u) > degG(v), or

• degG(u) = degG(v), u.id > v.id.

Given the priority, a butterfly can always be constructed
from two wedges (u, v, w) and (u, x, w) where the start-
vertex u has a higher priority than the middle-vertices v
and x. This is because we can always find a vertex which
has the highest priority and connects to two vertices with
lower priorities in a butterfly.

Based on the above observation, the BFC-VP algorithm
can get all the butterflies by only processing the wedges
where the priorities of start-vertices are higher than the pri-
orities of middle-vertices. In this way, the algorithm BFC-VP
will avoid processing the wedges where middle-vertices have
higher priorities than start-vertices (e.g., (v0, u0, v1) in Fig-
ure 3). In addition, in order to avoid duplicate counting, an-
other constraint should also be satisfied in BFC-VP: BFC-VP
only processes the wedges where start-vertices have higher
priorities than end-vertices. To avoid processing unecessary
wedges in the implementation, we sort the neighbors of ver-
tices in ascending order of their priorities. Then we can early
terminate the processing once we meet an end-vertex which
has higher priority than the start-vertex (or meet a middle-
vertex which has higher priority than the start-vertex). The
details of the BFC-VP algorithm are shown in Algorithm 2.

Algorithm 2: BFC-VP

Input: G(V = (U,L), E): the input bipartite graph
Output: 1G

1 Compute p(u) for each u ∈ V (G) // Definition 3
2 Sort N(u) for each u ∈ V (G) according to their priorities
3 1G ← 0
4 foreach u ∈ V (G) do
5 initialize hashmap count wedge with zero
6 foreach v ∈ NG(u) : p(v) < p(u) do
7 foreach w ∈ NG(v) : p(w) < p(u) do
8 count wedge(w)← count wedge(w) + 1
9 foreach w ∈ count wedge do

10 if count wedge(w) > 1 then

11 1G ← 1G +
(count wedge(w)

2

)
12 return 1G

Given a bipartite graph G, BFC-VP first assigns a priority
to each vertex u ∈ V (G) according to Definition 3 and sort
the neighbors of u. After that, BFC-VP processes the wedges
from each start-vertex u ∈ V (G) and initializes the hashmap
count wedge with zero. For each middle-vertex v ∈ NG(u),
we process v if p(v) < p(u) according to the processing rule.
Then, to avoid duplicate counting, we only process w ∈
NG(v) with p(w) < p(u). After running lines 4 - 8, we get
|NG(u)∩NG(w)| (i.e., count wedge(w)) for the start-vertex
u and the end-vertex w. Then, according to Lemma 1, BFC-
VP computes 1G. Finally, we return 1G.
Analysis of the BFC-VP algorithm. Below we show the
correctness and the time complexity of BFC-VP.
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Figure 4: Assume p4 > p3 > p2 > p1

Theorem 1. The BFC-VP algorithm correctly solves the
butterfly counting problem.

Proof. We prove that BFC-VP correctly computes 1G
for a bipartite graph G. A butterfly can always be con-
structed from two different wedges with the same start-
vertex and the same end-vertex. Thus, we only need to
prove that each butterfly in G will be counted exactly once
by BFC-VP. Given a butterfly [x, u, v, w], we assume x has
the highest priority. The vertex priority distribution must
be one of the three situations as shown in Figure 4 (the
other situations can be transformed into the above by a
symmetric conversion), where pi is the corresponding ver-
tex priority. Regarding the case in Figure 4(a), 4(b), or
4(c), BFC-VP only counts the butterfly [x, u, v, w] once from
the wedges (x, u, v) and (x,w, v). Thus, we can prove that
BFC-VP correctly solves the butterfly counting problem.

Theorem 2. The time complexity of BFC-VP is
O(
∑

(u,v)∈E(G)min{degG(u), degG(v)}).

Proof. The Algorithm 2 has two phases: initializing in
the first phase and computing 1G in the second phase. The
time complexity of the first phase is O(n + m). Firstly,
we need O(m) to get the degrees of vertices and O(n)
time to get the priorities by sorting the vertices using bin
sort [41]. Secondly, we need O(m) time to sort the neigh-
bors of vertices in ascending order of their priorities. To
achieve this, we generate a new empty neighbor list T (u)
for each vertex u. Then we process the vertex with lower
priority first and for each vertex u and its neighbor v, we
put u into T (v). Finally, the neighbors of vertices are or-
dered in T . The time cost of the second phase is related
to the number of processed wedges and each wedge needs
O(1) time to process. In BFC-VP, we only need to pro-
cess the wedges where the degrees of middle-vertices are
lower or equal than the degrees of start-vertices based on
the processing rule of BFC-VP and Definition 3. Consider-
ing an edge (u, v) ∈ E(G) connecting a start-vertex u and a
middle-vertex v, BFC-VP needs to process O(degG(v)) end-
vertices from (u, v). That is, for each edge (u, v) ∈ E(G),
BFC-VP needs to process O(min{degG(u), degG(v)}) wedges
since the middle-vertex has a lower or equal degree than
the start-vertex in a processed wedge. In total, BFC-
VP needs to process O(

∑
(u,v)∈E(G)min{degG(u), degG(v)})

wedges. Therefore, the time complexity of BFC-VP is
O(
∑

(u,v)∈E(G)min{degG(u), degG(v)}).

Theorem 3. The space complexity of BFC-VP is O(m).

Proof. This theorem is immediate.

Lemma 2. Given a bipartite graph G, we have the
following equation:∑

(u,v)∈E(G)

min{degG(u), degG(v)} ≤

min{
∑

u∈U(G)

degG(u)2,
∑

v∈L(G)

degG(v)2} (3)
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The equality happens if and only if one of the following two
conditions is satisfied: (1) for every edge (u, v) ∈ E(G) and
u ∈ U(G), degG(u) ≤ degG(v); (2) for every edge (u, v) ∈
E(G) and u ∈ U(G), degG(v) ≤ degG(u).

Proof. Given a bipartite graph G, since there are
degG(u) edges attached to a vertex u, we can get that:∑

u∈U(G)

degG(u)2 =
∑

(u,v)∈E(G),u∈U(G)

degG(u)

≥
∑

(u,v)∈E(G)

min{degG(u), degG(v)} (4)

Similarly,∑
v∈L(G)

degG(v)2 =
∑

(u,v)∈E(G),u∈U(G)

degG(v)

≥
∑

(u,v)∈E(G)

min{degG(u), degG(v)} (5)

Thus, we can prove that Equation 3 holds. The condition
of equality can be easily proved by contradiction which is
omitted here.

From Lemma 2, we can get that BFC-VP improves the
time complexity of BFC-IBS. Now we illustrate how BFC-VP
efficiently handles the hub-vertices compared with BFC-IBS
using the following example.

Example 1. Consider the bipartite graph G in Figure 3.
BFC-VP first assigns a priority to each vertex in G where

p(u1) > p(u0) > p(v1001) > p(v1000) > p(u1001) >
p(u1000) > ... > p(v1) > p(v0). Starting from u1, BFC-
VP needs to process 1, 000 wedges ending at u0. Similarly,
starting from v1001, BFC-VP needs to process 1, 000 wedges
ending at v1000. No other wedges need to be processed by
BFC-VP. In total, BFC-VP needs to process 2,000 wedges.

BFC-IBS processes each vertex u ∈ U(G) as start-
vertex. Starting from u0, BFC-IBS needs to process 1,000
wedges ending at u1. Starting from u1, no wedges need
to be processed. In addition, starting from the vertices in
{u2, u3, ..., u1001}, BFC-IBS needs to process 999, 000 wedges.
In total, BFC-IBS needs to process 1, 000, 000 wedges.

5. CACHE-AWARE TECHNIQUES
As discussed in Section 1, below is the breakdown of mem-

ory accesses to vertices required when processing the wedges:
O(n) accesses of start-vertices, O(m) accesses of middle-
vertices, and O(

∑
(u,v)∈E(G)min{degG(u), degG(v)}) ac-

cesses of end-vertices. Thus, the total access of end-vertices
is dominant. For example, by running the BFC-VP algo-
rithm on Tracker dataset, there are about 6×109 accesses of
end-vertices while the accesses of start-vertices and middle-
vertices are only 4× 107 and 2× 108, respectively. Since the
cache miss latency takes a big part of the memory access
time [14], we try to improve the CPU cache performance
when accessing the end-vertices.

Low Frequency High Frequency

Figure 5: The buffer BF

Because the CPU cache is hard to control in algorithms, a
general approach to improve the CPU cache performance is
storing frequently accessed vertices together. Suppose there
is a buffer BF and BF is partitioned into a low-frequency area

LFA and a high-frequency area HFA as shown in Figure 5.
The vertices are stored in BF and only a limited number of
vertices are stored in HFA. For an access of the end-vertex
w, we compute miss(w) by the following equation:

miss(w) =

{
1, iff. w ∈ LFA,
0, iff. w ∈ HFA.

(6)

We want to minimize F which is computed by:

F =
∑

(u,v,w)∈W

miss(w) (7)

Here, W is the set of processed wedges of an algorithm.
Since F can only be derived after finishing the algorithm,

the minimum value of F cannot be pre-computed. We
present two strategies which aim to decrease F :
• Cache-aware wedge processing which performs more

high-priority vertices as end-vertices, while retaining
the total number of accesses of end-vertices (thus, the
same time complexity of BFC-VP). Doing this will
enhance the access locality.

• Cache-aware graph projection which stores high-
priority vertices together in HFA.

5.1 Cache-aware Wedge Processing
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Figure 6: The degree distribution of the
end-vertex-accesses on Tracker

Issues in wedge processing of BFC-VP. In BFC-VP, the
processing rule restricts the priorities of end-vertices should
be lower than the priorities of start-vertices in the processed
wedges. Because of that, the accesses of end-vertices exhibit
bad locality (i.e., not clustered in memory). For example, by
counting the accesses of end-vertices over Tracker dataset,
as shown in Figure 6(a), 79% of total accesses are accesses
of low-degree vertices (i.e., degree < 500) while the percent-
age of high-degree vertices (i.e., degree > 2000) accesses is
only 9% in BFC-VP. Since the locality of accesses is a key
aspect of improving the CPU cache performance, we explore
whether the locality of end-vertex-accesses can be improved.
With the total access of end-vertices remaining unchanged,
we hope the algorithm can access more high-degree vertices
as end-vertices. In that manner, the algorithm will have
more chance to request the same memory location repeat-
edly and the accesses of HFA is more possible to increase
(i.e., F is more possible to decrease).

New wedge processing strategy. Based on the above
observation, we present a new wedge processing strategy:
processing the wedges where the priorities of end-vertices
are higher than the priorities of middle-vertices and start-
vertices. We name the algorithm using this new strategy
as BFC-VP+. BFC-VP+ will perform more high-priority ver-
tices as the end-vertices than BFC-VP because of the restric-
tion of priorities of end-vertices. For example, considering
the graph in Figure 2(b), we have p(v0) > p(v3) > p(u0) >
p(v2) > p(v1) according to their degrees. We analyse the
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processed wedges starting from v0 to v3, going through
u0. BFC-VP needs to process 5 wedges (i.e., (v0, u0, v1),
(v0, u0, v2), (v0, u0, v3), (v3, u0, v1) and (v3, u0, v2)) and 3
vertices (i.e., v1, v2 and v3) are performed as end-vertices.
Utilizing the new wedge processing strategy, in Figure
2(b), the number of processed wedges of BFC-VP+ is still
5 (i.e., (v1, u0, v0), (v1, u0, v3), (v2, u0, v0), (v2, u0, v3) and
(v3, u0, v0)) but only 2 vertices with high-priorities (i.e., v0
and v3) are performed as end-vertices. Thus, the number of
accessing different end-vertices is decreased from 3 to 2 (i.e.,
the accesses exhibit better locality). Also as shown in Figure
6(b), after applying the new wedge processing strategy, the
percentage of accesses of high-degree vertices (i.e., degree
> 2000) increases from 9% to 81% on Tracker dataset.

Time complexity unchanged. Although the new wedge
processing strategy can improve the CPU cache performance
of BFC-VP, there are two questions arise naturally: (1)
whether the number of processed wedges is still the same as
BFC-VP; (2) whether the time complexity is still the same as
BFC-VP after utilizing the new wedge processing strategy.
We denote the set of processed wedges of BFC-VP as Wvp

and the set of processed wedges of BFC-VP+ as Wvp+ , we
have the following lemma.

Lemma 3. |Wvp| = |Wvp+ |.
Proof. For a wedge (u, v, w) ∈ Wvp, it always satisfies

p(u) > p(v) and p(u) > p(w) according to Algorithm 2. For
a wedge (u, v, w) ∈ Wvp+ , it always satisfies p(w) > p(v)
and p(w) > p(u) according to the new wedge processing
strategy. In addition, every vertex u ∈ G has a unique p(u)
and the new wedge processing strategy does not change p(u)
of u. Thus, for each wedge (u, v, w) ∈ Wvp, we can always
find a wedge (w, v, u) ∈ Wvp+ . Similarly, for each wedge
(u, v, w) ∈ Wvp+ , we can always find a wedge (w, v, u) ∈
Wvp. Therefore, we prove that |Wvp| = |Wvp+ |.

Since no duplicate wedges are processed, based on
the above lemma, BFC-VP+ will process the same num-
ber of wedges with BFC-VP. However, if only apply-
ing this strategy, when going through a middle-vertex, we
need to check all its neighbors to find the end-vertices
which have higher priorities than the middle vertex and
the start-vertex. The time complexity will increase to
O(
∑

u∈V (G),v∈NG(u) degG(u)degG(v)) because each middle-

vertex v has degG(v) neighbors. In order to reduce the time
complexity, for each vertex, we need to sort the neighbors in
descending order of their priorities. After that, when deal-
ing with a middle-vertex, we can early terminate the priority
checking once we meet a neighbor which has a lower priority
than the middle-vertex or the start-vertex.

5.2 Cache-aware Graph Projection

v*0 v*1 v*2 v*3 …

v0 v1 v2 v3 …

f

Before Projection: sorted by id

After Projection: sorted by priority

①

②

Figure 7: Illustrating the cache-aware graph projection

Motivation. After utilizing the cache-aware wedge process-
ing strategy, end-vertices are mainly high-priority vertices.

Generally, vertices are sorted by their ids when storing in
the buffer. Figure 7 shows accesses of the buffer when pro-
cessing end-vertices (i.e., v0 and v3) starting from v0 to v3
and going through u0 in Figure 2(b) by BFC-VP. We can see
that although end-vertices are mostly high-priority vertices,
the distance between two end-vertices (e.g., v0 and v3) can
be very long. This is because many low-priority vertices are
stored in the middle of high-priority vertices. In addition,
real graphs usually follow power-law distributions which do
not contain too many vertices with high priorities (degrees).
For example, in the Tracker dataset with about 40, 000, 000
vertices, there are only 10, 338 vertices with degree ≥ 1000,
and only 1% vertices (400, 000) with degree ≥ 37. Motivated
by the above observations, we propose the graph projection
strategy which can further improve the cache performance.
Graph projection strategy. The main idea of the graph
projection strategy is projecting the given bipartite graph G
into a projection graph G∗ using a 1 to 1 bijective function
f . The projection graph G∗ is defined as follows:

Definition 4 (Projection Graph). Given a bipar-
tite graph G(V,E), a projection graph G∗(V,E) is defined as:
G∗ ← projection(G, f), where f is a bijection from E(G)
to E(G∗). For each e = (u, v) ∈ E(G), e∗ = (u∗, v∗) = f(e)
where u∗ ∈ U(G∗), v∗ ∈ L(G∗), and u∗.id = rankU(u) + l,
v∗.id = rankL(v). Here, rankU(u) ∈ [0, r− 1] (rankL(v) ∈
[0, l − 1]) denotes the rank of the priority of u ∈ U(G) (the
rank of the priority of v ∈ L(G)).

Unlike the conventional graph projection method in [49,
50] which projects a bipartite graph to a unipartite graph,
our linear graph projection uses a 1 to 1 bijective function
to relabel the vertex-IDs which does not change the graph
structure. Thus, the number of vertices and edges are both
unchanged after projecting. After projecting the original
graph G into the projection graph G∗, the vertices with
high priorities will be stored together. In this manner, we
can store more high-priority vertices consecutively in HFA.
Figure 7 illustrates the idea of graph projection using the ex-
ample in Figure 2(b). After obtaining the projection graph
G∗, we can see that the distance between two high-priority
end-vertices becomes much shorter, e.g., the distance be-
tween v∗1 and v∗2 is 1 while the distance between v0 and v3
before projection is 3. In the experiments, we prove that
the algorithms applying with the graph projection strategy
achieves a much lower cache miss ratio than BFC-VP.

5.3 Putting Cache-aware Strategies Together
The BFC-VP++ algorithm. Putting the above strategies
together, details of the algorithm BFC-VP++ are shown in
Algorithm 3. Given a bipartite graph G, BFC-VP++ first
generates a projection graph G∗ according to Definition 4
and for each vertex u∗ ∈ V (G∗), we sort its neighbors. Then,
BFC-VP++ finds NG∗(u∗) for each vertex u∗ ∈ V (G∗). For
each vertex v∗ ∈ NG∗(u∗), we find w∗ ∈ NG∗(v∗) with
p(w∗) > p(u∗) and p(w∗) > p(v∗) (lines 5 - 12). Af-
ter running lines 6 - 12, we get |NG(u∗) ∩ NG(w∗)| (i.e.,
count wedge(w∗)) for the start-vertex u∗ and the end-vertex
w∗ ∈ 2hopG(u∗). Finally, we compute 1G (lines 13 - 15).

Theorem 4. The BFC-VP++ algorithm correctly solves
the butterfly counting problem.

Proof. We prove that BFC-VP++ correctly computes 1G
for a bipartite graph G. Since the graph projection strategy
just renumbers the vertices, it does not affect the structure
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Algorithm 3: BFC-VP++

Input: G(V = (U,L), E): the input bipartite graph
Output: 1G

1 1G ← 0
2 G∗ ← projection(G, f) // Definition 4
3 compute p(u∗) for each u∗ ∈ V (G∗) // Definition 3
4 sort N(u∗) for each u∗ ∈ V (G∗) according to their

priorities
5 foreach u∗ ∈ V (G∗) do
6 initialize hashmap count wedge with zero
7 foreach v∗ ∈ NG∗ (u∗) do
8 foreach w∗ ∈ NG∗ (v∗) : p(w∗) > p(u∗) do
9 if p(w∗) > p(v∗) then

10 count wedge(w∗)← count wedge(w∗) + 1
11 else
12 break
13 foreach w∗ ∈ count wedge do
14 if count wedge(w∗) > 1 then

15 1G ← 1G +
(count wedge(w∗)

2

)
16 return 1G

of G. Given a butterfly [x, u, v, w], we assume x has the
highest priority. We only need to prove that BFC-VP++ will
count exactly once for each butterfly in Figure 4. Regarding
the case in Figure 4(a), 4(b), or 4(c), BFC-VP++ only counts
the butterfly [x, u, v, w] once from the wedges (v, u, x) and
(v, w, x). Thus, we can get that the BFC-VP++ algorithm
correctly solves the butterfly counting problem.

Theorem 5. The time complexity of BFC-VP++ is
O(
∑

(u,v)∈E(G)min{degG(u), degG(v)}).

Proof. The Algorithm 3 has two phases including the
initialization phase and 1G computation phase. In the first
phase, similar with BFC-VP, the algorithm needs O(n+m)
time to compute the priority number, sort the neighbors
of vertices and compute the projection graph. Secondly,
since we can use O(1) time to process one wedge, we anal-
yse the number of processed wedges by BFC-VP++ as fol-
lows. In BFC-VP++, we only need to process the wedges
where the degree of end-vertex is higher or equal than the
middle-vertex. Considering an edge (u, v) ∈ E(G) connect-
ing an end-vertex u and a middle-vertex v, we need to pro-
cess O(degG(v)) wedges containing (u, v). Thus, we need
to process O(

∑
(u,v)∈E(G)min{degG(u), degG(v)}) wedges

in total. Therefore, the time complexity of BFC-VP++ is
O(
∑

(u,v)∈E(G)min{degG(u), degG(v)}).

Theorem 6. The space complexity of BFC-VP++ is
O(m).

Proof. This theorem is immediate.

Remark. The cache-aware strategies proposed in this sec-
tion are not applicable for the algorithms BFC-BS and BFC-
IBS. This is because these strategies are priority-based
strategies while the algorithms BFC-BS and BFC-IBS are
not priority-based algorithms.

6. EXTENSIONS
In this section, firstly, we extend our algorithms to com-

pute 1e for each edge e in G. Secondly, we extend our algo-
rithms to parallel algorithms. Thirdly, we introduce the ex-
ternal memory butterfly counting algorithm to handle large
graphs with limited memory size.

6.1 Counting the Butterflies for Each Edge
Given an edge e in G, we have the following equation [68]:

1e=(u,v) =
∑

w∈2hopG(u),w∈NG(v)

(|NG(u) ∩NG(w)| − 1)

=
∑

x∈2hopG(v),x∈NG(u)

(|NG(v) ∩NG(x)| − 1) (8)

Based on the above equation, our BFC-VP++ algorithm
can be extended to compute 1e for each edge e in G. In
Algorithm 3, for a start-vertex u∗ and a valid end-vertex
w∗ ∈ 2hopG(u), the value |NG(u∗) ∩ NG(w∗)| is already
computed which can be used directly to compute 1e.

Here, we present the BFC-EVP++ algorithm to compute

1e. The details of BFC-EVP++ are shown in Algorithm 4.
In the initialization process, we initialize 1e for each edge
e ∈ E(G). Then, for each start-vertex u∗, we run Algorithm
3 Line 6 - Line 12 to compute |NG(u∗) ∩ NG(w∗)|. After
that, we run another round of wedge processing and update

1e(u,v), 1e(v,w) according to Equation 8 (lines 5 - 14). Finally,
we return 1e for each edge e in G.

In Algorithm 4, we only need an extra array to store 1e for
each edge e. In addition, because it just runs the wedge pro-
cessing procedure twice, the time complexity of BFC-EVP++

is also O(
∑

(u,v)∈E(G)min{degG(u), degG(v)}).

Algorithm 4: BFC-EVP++

Input: G(V = (U,L), E): the input bipartite graph
Output: 1e for each e ∈ E(G)

1 run Algorithm 3 Line 2 - Line 4
2 1e ← 0 for each e ∈ E(G)
3 foreach vertex u∗ ∈ V (G∗) do
4 run Algorithm 3 Line 6 - Line 12
5 foreach v∗ ∈ NG∗ (u∗) do
6 foreach w∗ ∈ NG∗ (v∗) : p(w∗) > p(u∗) do
7 if p(w∗) > p(v∗) then
8 δ = count wedge(w)− 1

9 (v, w)← f−1(v∗, w∗)

10 (u, v)← f−1(u∗, v∗)
11 1(u,v) ← 1(u,v) + δ

12 1(v,w) ← 1(v,w) + δ

13 else
14 break
15 return 1e for each e ∈ E(G)

6.2 Parallelization
Shared-memory parallelization. In Algorithm 3, only
read operations occur on the graph structure. This moti-
vates us to consider the shared-memory parallelization. As-
sume we have multiple threads and these threads can han-
dle different start-vertices simultaneously. No conflict oc-
curs when these threads read the graph structure simulta-
neously. However, conflicts may occur when they update
count wedge and 1G simultaneously in Algorithm 3. Thus,
we can divide the data-space into the global data-space and
the local data-space. In the global data-space, the threads
can access the graph structure simultaneously. In the local
data-space, we generate local count wedge and local 1G for
each thread to avoid conflicts. Thus, we can use O(n∗t+m)
space to extend BFC-VP++ into a parallel version, where t
is the number of threads.
Scheduling. In the parallel algorithm, we also need to
consider the schedule strategies which may affect the load
balance. We denote the workload for each start-vertex u as
u.l. We want to minimize the makespan L:
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L = max
1≤i≤t

(
∑
u∈Vi

u.l) (9)

Here, Vi is the set of start-vertices on thread i.
The minimization of L is a well-known NP-hard optimiza-

tion problem (i.e., the multiprocessor scheduling problem)
[31] assuming we know the exact u.l for each start-vertex u.
Nevertheless, the workload is unknown prior, this makes the
problem more challenging.

Below we discuss two types of schedule strategies: the
dynamic scheduling and the static scheduling.
Dynamic scheduling. For the dynamic scheduling, we queue
all start-vertices in a specified order. Once a thread is idle,
we dequeue a start-vertex and allocate it to the idle thread.
The dynamic scheduling always delivers a schedule that has
makespan at most (2 − 1

t
)Lopt where Lopt is the optimal

makespan even if the workload is unknown in advance [32].
The bound is further reduced to ( 4

3
− 1

3t
)Lopt by scheduling

the job (i.e., start-vertex) with longer processing time (i.e.,
larger workload) first [33]. Since the vertex order may affect
the performance, we compare three ordering strategies:

1) Heuristic strategy. Sort start-vertices in non-ascending

order by their estimated workloads (i.e., ũ.l for u);
2) Random strategy. Sort start-vertices in random order.
3) Priority-based strategy. Sort start-vertices in non-

ascending order by their priorities.
To make our investigation more complete, we also consider

the static scheduling. For the static scheduling, we need to
pre-compute the allocations of start-vertices on the threads.
Static scheduling. Here we discuss and compare three allo-
cation strategies:

1) Heuristic strategy. We first estimate the workload

for each start-vertex u as: ũ.l = |S|, where S = {w|w ∈
NG∗(v), v ∈ NG∗(u), p(w) > p(v)}. After that, we sort
start-vertices by their estimated workloads in non-ascending
order. Then we sequentially allocate these vertices and for
each start-vertex, we always allocate it to the thread which
has the minimal workload so far.

2) Random strategy. For each start-vertex u, we randomly
allocate u to a thread under a uniform distribution.

3) Priority-based strategy. First, we sort start-vertices
according to their priorities in non-ascending order. Then,
for each start-vertex u with priority p(u), we allocate u to
the thread i if p(u) mod t = i− 1.
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Figure 8: Effect of scheduling

In Figure 8, we compare the performance of the scheduling
strategies by applying them into the parallel BFC-VP++ al-
gorithm on Tracker and Bi-twitter datasets. As shown in
Figure 8, since the priority-based strategies are light-weight
greedy strategies, they perform better than the other strate-
gies in the static scheduling and the dynamic scheduling, re-
spectively. Note that the heuristic strategies need additional
pre-computation and the random strategies cannot achieve
good performance. In addition, the priority-based dynamic
scheduling strategy performs the best on these datasets.

Algorithm 5: BFC-VP++ in parallel

Input: G(V = (U,L), E): the input bipartite graph, t:
number of threads

Output: 1G for graph G
1 run Algorithm 3 Line 1 - Line 4
2 initialize local count wedge[i] and local 1G [i] for each

thread i ← 1..t
3 sort u∗ ∈ V (G∗) in non-ascending order by their priorities
4 foreach vertex u∗ ∈ V (G∗) do
5 allocate u∗ to an idle thread i
6 run Algorithm 3 Line 6 - Line 15, replace

count wedge, 1G with local count wedge[i],
local 1G [i]

7 /* on master thread */
8 1G ← 1G + local 1G [i] for each thread i ← 1..t
9 return 1G

The algorithm BFC-VP++ in parallel. Since the priority-
based dynamic scheduling strategy performs the best in the
evaluation, we use it in our parallel algorithms. The de-
tails of the algorithm BFC-VP++ in parallel are shown in
Algorithm 5. Given a bipartite graph G, we first generate
a projection graph G∗. Then, the algorithm sequentially
processes the start-vertices in non-ascending order by their
priorities. For a vertex u∗ ∈ V (G∗), it will be dynamically
allocated to an idle thread i. Note that, for each thread i,
we generate an independent space for local count wedge[i]
and local 1G [i]. After all the threads finishing their com-
putation, we compute 1G on the master thread.
Remark. The strategies presented here can be easily ap-
plied to the BFC-BS, BFC-IBS, and BFC-VP algorithms.

6.3 External memory butterfly counting
In order to handle large graphs with limited memory size,

we introduce the external memory algorithm BFC-EM in Al-
gorithm 6 which is also based on the vertex priority. We first
run an external sorting on the edges to group the edges with
the same vertex-IDs together. Then we compute the prior-
ities of vertices by sequentially scanning these edges once.
Then, for each vertex v ∈ V (G), we sequentially scan its
neighbors from the disk and generate the wedges (u, v, w)
with p(w) > p(v) and p(w) > p(u) where w ∈ NG(v) and
u ∈ NG(v) (lines 4 - 6). For each wedge (u, v, w), we only
store the vertex-pair (u,w) on disk. After that, we maintain
the vertex-pairs on disk such that all (u,w) pairs with the
same u and w values are stored continuously (line 7). This
can be simply achieved by running an external sorting on
these (u,w) pairs. Then, we sequentially scan these vertex-
pairs and for the vertex-pair (u,w), we count the occurrence
of it and compute 1G based on Lemma 1 (lines 8 - 10).
I/O complexity analysis. We use the standard no-
tations in [13] to analyse the I/O complexity of BFC-
EM: M is the main memory size and B is the disk
block size. The I/O complexity to scan N elements is
scan(N) = Θ(N

B
), and the I/O complexity to sort N ele-

ments is sort(N) = O(N
B
logM

B

N
B

). In BFC-EM, the dom-
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Algorithm 6: BFC-EM

Input: G(V = (U,L), E): the input bipartite graph
Output: 1G

1 sort all the edges e ∈ G on disk
2 compute p(u) for each u ∈ V (G) on disk // Definition 3
3 1G ← 0
4 foreach vertex v ∈ G do
5 forall u,w ∈ NG(v) : p(w) > p(v), p(w) > p(u) by

sequentially scanning NG(v) from disk do
6 store vertex-pair (u,w) on disk
7 sort all the vertex-pairs on disk
8 foreach vertex-pair (u,w) do
9 count pair(u,w)← count the occurrence of (u,w) on

disk sequentially

10 1G ← 1G +
(count pair(u,w)

2

)
11 return 1G

inate cost is to scan and sort the vertex-pairs. Since
there are O(

∑
(u,v)∈E(G)min{degG(u), degG(v)}) vertex-

pairs generated by BFC-EM, the I/O complexity of
BFC-EM is O(scan(

∑
(u,v)∈E(G)min{degG(u), degG(v)}) +

sort(
∑

(u,v)∈E(G)min{degG(u), degG(v)})).

7. EXPERIMENTS
In this section, we present the results of empirical stud-

ies. In particular, our empirical studies have been con-
ducted against the following algorithms: 1) the state-of-the
art BFC-IBS in [59] as the baseline algorithm (we thank the
authors for providing the code), 2) BFC-VP in Section 4, 3)
BFC-VP+ in Section 5.1, 4) BFC-VP++ in Section 5.3, 5)
BFC-EIBS, BFC-EVP, BFC-EVP++ by extending BFC-IBS,
BFC-VP and BFC-VP++, respectively, to compute 1e for
each edge e in G, 6) the parallel version of BFC-IBS, BFC-VP
and BFC-VP++, 7) the most advanced approximate butter-
fly counting algorithm BFC-ESap in [59], 8) BFC-ESapvp++

by combining BFC-VP++ with BFC-ESap since BFC-ESap re-
lies on the exact butterfly counting techniques on samples,
and 9) the external memory algorithm BFC-EM.

The algorithms are implemented in C++ and the exper-
iments are run on a Linux server with 2 × Intel Xeon E5-
2698 processors and 512GB main memory. Although most
empirical studies have been against single core, we want our
empirical studies to be conducted on the same computer as
the evaluation of parallel performance. We terminate an
algorithm if the running time is more than 10 hours.

7.1 Datasets
We use 12 datasets in our experiments including all the 9
real datasets in [59] to ensure the fairness. We add 3 more
datasets to evaluate the scalability of our techniques.

The 9 real datasets we used are DBPedia [5], Twitter [10],
Amazon [1], Wiki-fr [12], Wiki-en [11], Live-journal [7],
Delicious [6], Tracker [9] and Orkut [8].

To further test the scalability, we also evaluate three bi-
partite networks (i.e., Bi-twitter, Bi-sk and Bi-uk) which
are sub-networks obtained from billion-scale real datasets
(i.e., twitter [3], sk-2005 [2] and uk-2006-05 [4]). In order
to obtain bipartite-subgraphs from these two datasets, we
put the vertices with odd ids in one group while the vertices
with even ids in the other group and remove the edges which
formed by two vertices with both odd ids or even ids.

The summary of datasets is shown in Table 2. U and L are
vertex layers, |E| is the number of edges. 1G is the num-
ber of butterflies.

∑
u∈L d(u)2 and

∑
v∈R d(v)2 represent

the sum of degree squares for L and R, respectively. TCibs

is computed by min{
∑

u∈L d(u)2,
∑

v∈R d(v)2} which is the
time complexity bound of BFC-IBS. TCnew is computed by∑

(u,v)∈E(G)min{degG(u), degG(v)} which is the time com-

plexity bound of BFC-VP and BFC-VP++.

7.2 Performance Evaluation
In this section, we evaluate the performance of the pro-

posed algorithms.
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Figure 9: Performance on different datasets
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Figure 10: Performance on different datasets (Counting the
number of butterflies containing each edge e in G)

Evaluating the performance on all the datasets. In
Figure 9, we show the performance of the BFC-IBS, BFC-VP
and BFC-VP++ algorithms on different datasets. We can ob-
serve that BFC-VP++ is the most efficient algorithm, while
BFC-VP also outperforms BFC-IBS. This is because the BFC-
VP++ algorithm utilizes both the vertex-priority based opti-
mization and the cache-aware strategies which significantly
reduce the computation cost. On Tracker, the BFC-VP and
BFC-VP++ algorithms are at least two orders of magnitude
faster than the BFC-IBS algorithm. On Bi-twitter, Bi-sk
and Bi-uk, the BFC-IBS algorithm cannot finish within 10
hours. This is because the degree distribution of these
datasets are skewed and high-degree vertices exist in both
layers. For instance, TCibs is more than 100× larger than
TCnew in Tracker. This property leads to a large num-
ber of wedge processing for BFC-IBS while our BFC-VP and
BFC-VP++ algorithms can handle this situation efficiently.

In Figure 10, we show the performance of the algorithms
which compute 1e for each edge e in G. The performance
differences of these algorithms follow similar trends to those
in Figure 9. We can also observe that the BFC-EVP++ al-
gorithm is the most efficient algorithm.
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Figure 11: The number of processed wedges

Evaluating the number of processed wedges. In Fig-
ure 11, we show the number of processed wedges of the algo-
rithms on all the datasets. We can observe that on Tracker,
Bi-twitter, Bi-sk and Bi-uk datasets, BFC-IBS needs to
process 100× more wedges than BFC-VP and BFC-VP++.
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Table 2: Summary of Datasets
Dataset |E| |U | |L| 1G

∑
u∈L d(u)2

∑
v∈R d(v)2 TCibs TCnew

DBPedia 293,697 172,091 53,407 3.76× 106 6.30× 105 2.46× 108 6.30× 105 5.95× 105

Twitter 1,890,661 175,214 530,418 2.07× 108 7.42× 107 1.94× 109 7.42× 107 3.02× 107

Amazon 5,743,258 2,146,057 1,230,915 3.58× 107 8.29× 108 4.37× 108 4.37× 108 6.90× 107

Wiki-fr 22,090,703 288,275 4,022,276 6.01× 1011 2.19× 1012 7.96× 108 7.96× 108 7.08× 107

Live-journal 112,307,385 3,201,203 7,489,073 3.30× 1012 9.57× 109 5.40× 1012 9.57× 109 8.01× 109

Wiki-en 122,075,170 3,819,691 21,504,191 2.04× 1012 1.26× 1013 2.33× 1010 2.33× 1010 9.32× 109

Delicious 101,798,957 833,081 33,778,221 5.69× 1010 8.59× 1010 5.28× 1010 5.28× 1010 1.31× 1010

Tracker 140,613,762 27,665,730 12,756,244 2.01× 1013 1.73× 1012 2.11× 1014 1.73× 1012 7.83× 109

Orkut 327,037,487 2,783,196 8,730,857 2.21× 1013 1.57× 1011 4.90× 1012 1.57× 1011 1.12× 1011

Bi-twitter 601,734,937 20,826,115 20,826,110 6.30× 1013 2.69× 1013 3.48× 1013 2.69× 1013 1.66× 1011

Bi-sk 910,924,634 25,318,075 25,318,075 1.22× 1014 3.42× 1013 1.80× 1013 1.80× 1013 7.83× 1010

Bi-uk 1,327,632,357 38,870,511 38,870,511 4.89× 1014 4.22× 1013 4.16× 1013 4.16× 1013 2.92× 1011

This is because TCibs is much larger than TCnew and there
exist many hub-vertices in both L and R in these datasets.
Thus, BFC-VP and BFC-VP++ only need to process a limited
number of wedges while BFC-IBS should process numerous
wedges no matter choosing which layer to start. We also ob-
serve that BFC-VP and BFC-VP++ process the same number
of wedges since BFC-VP++ improves BFC-VP on cache per-
formance which does not change the number of processed
wedges.
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Figure 12: Effect of graph size

Scalability. Evaluating the effect of graph size. Figure 13
studies the scalability of the algorithms by varying the graph
size n on four datasets. When varying n, we randomly sam-
ple 20% to 100% vertices of the original graphs, and con-
struct the induced subgraphs using these vertices. We can
observe that, BFC-VP and BFC-VP++ are scalable and the
computation cost of them all increases when the percent-
age of vertices increases. On Bi-twitter, BFC-IBS can only
complete when n = 20%. As discussed before, BFC-VP++ is
the most efficient algorithm.
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Figure 13: Effect of t

Speedup. Evaluating the parallelization. Figure 13 studies
the performance of the BFC-IBS, BFC-VP and BFC-VP++

algorithms in parallel by varying the thread number t from
1 to 32 on four datasets. The BFC-IBS algorithm in parallel
is not parallel-friendly. For example, on Tracker, the BFC-
IBS algorithm in parallel performs worse when t increases
from 16 to 32. On Bi-twitter, the algorithm BFC-IBS in
parallel cannot get a result within the timeout threshold
when t = 1 and t = 8. We can also observe that, on all
these datasets, the computation costs of the BFC-VP and
BFC-VP++ algorithms in parallel decrease when the number
of threads increases and the algorithm BFC-VP++ in parallel
is more efficient than the other algorithms.

Table 3: Cache Statistics over Wiki-en

Algorithm Cache-ref Cache-m Cache-mr Time(s)
BFC-VP 2.78× 1011 3.13× 109 1.12% 90.41
BFC-VPC 2.39× 1011 1.46× 109 0.61% 63.45
BFC-VP+ 2.68× 1011 1.55× 109 0.58% 65.26
BFC-VP++ 2.36× 1011 8.30× 108 0.35% 48.60

Table 4: Cache Statistics over Delicious

Algorithm Cache-ref Cache-m Cache-mr Time(s)
BFC-VP 4.53× 1011 8.36× 109 1.85% 189.71
BFC-VPC 4.19× 1011 4.08× 109 0.97% 133.48
BFC-VP+ 4.40× 1011 3.87× 109 0.88% 102.82
BFC-VP++ 4.13× 1011 1.01× 109 0.24% 80.26

Table 5: Cache Statistics over Tracker

Algorithm Cache-ref Cache-m Cache-mr Time(s)
BFC-VP 2.74× 1011 5.27× 109 1.93% 142.66
BFC-VPC 2.40× 1011 1.88× 109 0.84% 87.61
BFC-VP+ 2.52× 1011 1.75× 109 0.78% 82.16
BFC-VP++ 2.39× 1011 6.20× 108 0.26% 45.48

Table 6: Cache Statistics over Bi-twitter

Algorithm Cache-ref Cache-m Cache-mr Time(s)
BFC-VP 4.87× 1012 4.96× 1010 1.02% 1897.15
BFC-VPC 4.55× 1011 2.47× 1010 0.54% 1261.11
BFC-VP+ 4.58× 1012 2.39× 1010 0.52% 1096.86
BFC-VP++ 4.54× 1012 1.35× 1010 0.30% 822.31

Evaluating the cache-aware strategies. In Table 3, Ta-
ble 4, Table 5 and Table 6, we evaluate the cache-aware
strategies on Wiki-en, Delicious, Tracker and Bi-twitter,
respectively. Here, Cache-ref denotes the total cache ac-
cess number. Cache-m denotes the total cache miss num-
ber which means the number of cache references missed.
Cache-mr denotes the percentage of cache references missed
over the total cache access number. Time denotes the com-
putation time of different algorithms. Here, BFC-VP+ is
the BFC-VP algorithm deploying with only the cache-aware
wedge processing strategy. BFC-VPC is the BFC-VP algo-
rithm deploying with only the graph projection strategy.
BFC-VP has the largest number of cache-miss on all the
datasets. By utilizing the cache-aware wedge processing,
compared with BFC-VP, BFC-VP+ reduces the number of
cache miss over 50% on all the datasets. By utilizing the
cache-aware projection, compared with BFC-VP, BFC-VPC
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also reduces over 50% cache miss on all the datasets. BFC-
VP++ achieves the smallest cache-miss-numbers, and re-
duces the cache-miss-ratio significantly on all these datasets
since BFC-VP++ combines the two cache-aware strategies
together. Compared with BFC-VP, BFC-VP++ reduces over
more than 70% cache miss on all the testing datasets.

100

101

102

103

104

0.004 0.016 0.062 0.25 1

T
im

e 
C

os
t (

se
c)

p

ESap
ESapvp++

(a) Tracker, varying p

101

102

103

104

INF

0.004 0.016 0.062 0.25 1
T

im
e 

C
os

t (
se

c)

p

ESap
ESapvp++

(b) Bi-twitter, varying p

Figure 14: Effect of p

102

103

104

INF

0.15 0.125 0.10 0.075 0.05

T
im

e 
C

os
t (

se
c)

 ε

ESap
ESapvp++

(a) Tracker, varying ε

102

103

104

INF

0.15 0.125 0.10 0.075 0.05

T
im

e 
C

os
t (

se
c)

 ε

ESap
ESapvp++

(b) Bi-twitter, varying ε

Figure 15: Effect of ε

Speeding up the approximate butterfly counting al-
gorithm. In the approximate algorithm BFC-ESap [59],
the exact butterfly counting algorithm BFC-IBS is served
as a basic block to count the butterfly exactly in a sampled
graph. Since BFC-VP++ and BFC-IBS both count the num-
ber of butterfies exactly, the approximate algorithm BFC-
ESapvp++ can be obtained by applying BFC-VP++ in BFC-
ESap without changing the theoretical guarantee.

In Figure 14, we first evaluate the average running time of
BFC-ESap and BFC-ESapvp++ for each iteration by varying
the probability p. Comparing two approximate algorithms,
BFC-ESapvp++ outperforms BFC-ESap under all the setting
of p on Tracker and Bi-twitter datasets. Especially, on
these two datasets, BFC-ESapvp++ is more than one order of
magnitude faster than BFC-ESap when p ≥ 0.062.

In the second experiment, we run the algorithms to yield
the theoretical guarantee Pr[|ˆ 1G− 1G| > ε 1G] ≤ δ as shown
in [59]. We vary ε and fix δ = 0.1 and p as the optimal p
as suggested in [59]. We can see that for these two approxi-
mate algorithms, the time costs are increased on these two
datasets in order to get a better accuracy and BFC-ESapvp++

significantly outperforms BFC-ESap as mentioned before.
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Figure 16: Evaluating the external memory algorithm

Evaluating the external memory algorithm. In Figure
16, we evaluate the scalability of the external memory algo-
rithm BFC-EM on two large datasets Bi-sk and Bi-uk by
varying the graph size n. We limit the memory size to 1GB
in our evaluation. On Bi-sk and Bi-uk, we can see that
the time cost and I/O both increase with the percentage of
vertices increases.

Table 7: Time cost compared with Gorder

Dataset
Renumbering time Computation time Total time

Projection Gorder Projection Gorder Projection Gorder
DBPedia 0.01 0.04 0.02 0.03 0.03 0.07
Twitter 0.06 4.26 0.29 0.25 0.35 4.51
Amazon 0.30 3.56 0.96 1.46 1.26 5.02
Wiki-fr 0.49 28.51 3.16 5.28 3.65 33.79

Live-journal 1.32 125.96 37.86 52.76 39.18 178.72
Wiki-en 3.02 856.07 48.60 75.78 51.62 931.85
Delicious 3.82 2225.44 80.26 134.86 84.08 2360.30
Tracker 4.89 315.01 45.48 56.13 50.37 371.13
Orkut 2.17 1615.01 435.12 553.03 437.29 2168.04

Bi-twitter 6.64 3211.63 822.31 1276.63 828.95 4488.26
Bi-sk 8.32 605.87 133.34 107.07 141.66 692.94
Bi-uk 9.91 1231.93 435.29 401.64 445.20 1633.57

Table 8: Cache statistics compared with Gorder
Dataset

Cache reference Cache miss Cache miss ratio
Projection Gorder Projection Gorder Projection Gorder

DBPedia 4.02 ×107 5.61× 107 4.54 ×104 1.20× 105 0.11% 0.21%
Twitter 8.89 ×108 9.56× 108 5.09 ×105 4.68 ×105 0.06% 0.05%
Amazon 2.51 ×109 2.52× 109 8.93 ×106 1.02× 107 0.36% 0.40%
Wiki-fr 1.34×1010 1.38×1010 7.33×107 8.40×107 0.55% 0.61%

Live-journal 1.72×1011 1.68×1011 6.68×108 8.02×108 0.39% 0.48%
Wiki-en 2.36×1011 2.30×1011 8.30×108 1.29×109 0.35% 0.56%
Delicious 4.13×1011 4.03×1011 1.01×109 1.63×109 0.24% 0.40%
Tracker 2.39×1011 2.34×1011 6.20×108 7.29×109 0.26% 0.31%
Orkut 2.69×1012 2.58×1012 7.21×109 8.38×109 0.27% 0.33%

Bi-twitter 4.54×1012 4.49×1012 1.35×1010 3.04×1010 0.30% 0.68%
Bi-sk 1.64×1012 1.58×1012 2.29×109 2.01×109 0.14% 0.13%
Bi-uk 6.15×1012 6.00×1012 3.67×109 3.21×109 0.06% 0.05%

Graph projection vs Gorder. In [71], the authors pro-
posed the Gorder model to reduce the cache miss in graph al-
gorithms. Here, we replace the graph projection with Gorder
in BFC-VP++ and evaluate the difference of performances.

Table 7 shows the time cost. We can observe that the
renumbering time cost of the graph projection is much less
than Gorder on all datasets. This is because graph projec-
tion can be simply obtained according to the priority number
of vertices while Gorder needs complex renumbering compu-
tation. Regarding the computation time, the performance
of the algorithm with graph projection is better than the al-
gorithm with Gorder on 9 datasets while the algorithm with
Gorder is better on 3 datasets. Finally, the total time cost
of graph projection is better than Gorder.

Table 8 shows the cache statistics. Firstly, they have
a similar number of cache references since the renumber-
ing process does not change the algorithm itself. Secondly,
graph projection achieves a better CPU performance than
Gorder on almost all the datasets (i.e., less cache misses and
less cache miss ratios on 9 datasets) when dealing with the
butterfly counting problem with the BFC-VP++ algorithm.

In summary, our graph projection strategy is more suit-
able when dealing with the butterfly counting problem.

8. CONCLUSION
In this paper, we study the butterfly counting problem.

We propose a vertex-priority-based butterfly counting algo-
rithm BFC-VP which can effectively handle high-degree ver-
tices. We also propose the cache-aware butterfly counting
algorithm BFC-VP++ which improves the CPU cache per-
formance of BFC-VP with two cache-aware strategies. We
conduct extensive experiments on real datasets and the re-
sult shows that our BFC-VP++ algorithm significantly out-
performs the state-of-the-art algorithms. In the future, we
plan to study the butterfly counting problem in a distributed
environment [45,67] or a data stream [35,70].
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