
SystemER: A Human-in-the-loop System for
Explainable Entity Resolution

Kun Qian
IBM Research – Almaden
qian.kun@ibm.com

Lucian Popa
IBM Research – Almaden
lpopa@us.ibm.com

Prithviraj Sen
IBM Research – Almaden

senp@us.ibm.com

ABSTRACT
Entity Resolution (ER) is the task of identifying different
representations of the same real-world object. To achieve
scalability and the desired level of quality, the typical ER
pipeline includes multiple steps that may involve low-level
coding and extensive human labor. We present SystemER,
a tool for learning explainable ER models that reduces the
human labor all throughout the stages of the ER pipeline.
SystemER achieves explainability by learning rules that not
only perform a given ER task but are human-comprehensible;
this provides transparency into the learning process, and
further enables verification and customization of the learned
model by the domain experts. By leveraging a human in the
loop and active learning, SystemER also ensures that a small
number of labeled examples is sufficient to learn high-quality
ER models. SystemER is a full-fledged tool that includes an
easy to use interface, support for both flat files and semi-
structured data, and scale-out capabilities by distributing
computation via Apache Spark.

PVLDB Reference Format:
Kun Qian, Lucian Popa, and Prithviraj Sen. SystemER: A Human-
in-the-loop System for Explainable Entity Resolution. PVLDB,
12(12): 1794-1797, 2019.
DOI: https://doi.org/10.14778/3352063.3352068

1. INTRODUCTION
Entity Resolution (ER), also known as entity matching,

record linkage, reference reconciliation, and merge-purge,
identifies and links different representations of the same real-
world entities. As a data cleaning step, ER yields a uni-
fied and consistent view of data, thus serving as a crucial
pre-processing step for downstream applications, including
knowledge base creation, text mining, and social media anal-
ysis. More precisely stated, given two (possibly identical)
entity databases D1 and D2, the goal of ER is to determine
for each entity pair r ∈ D1, s ∈ D2 whether they represent
the same real-world object. When D1, D2 are the same, the
task is to identify duplicates within the same database.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352068

While both non-learning and learning based approaches
for ER have been developed, the latter type of approaches
provide more automation and have flourished recently. How-
ever, most existing learning-based ER tools and systems
(e.g., Magellan[4] , dedupe1, pydedupe2, HUMO[2]) rely on
learning statistical, black-box models that are difficult for
humans to interpret. In contrast, consider learning for in-
stance the ER rule shown in Figure 1, expressed in first-order
logic, and aimed at deduplicating scientific publications:

DBLP.title = ACM.title
AND DBLP.year = ACM.year
AND jaccardSim(DBLP.authors, ACM.authors)> 0.1
AND jaccardSim(DBLP.venue, ACM.venue)> 0.1

→ SamePaper(DBLP.id, ACM.id)

Figure 1: An ER rule for matching publications.

As opposed to learning a statistical model whose logic
is encoded in its feature weights (e.g., for logistic regres-
sion), the above rule clearly states that two publications
are deemed to represent the same real-world entity if their
titles and years of publication are identical, and (token-
based) Jaccard similarities of their author lists and publica-
tion venues exceed a certain threshold. A collection of one or
more of such rules represents a human-comprehensible ER
model. In general, explainable ER models have many advan-
tages such as allowing for verification of its logic by domain
experts and even enabling customization and modification
so as to drive improvements in the presence of feedback.

Orthogonal to the issue of explainability, an end-to-end
ER learning pipeline (Figure 2) includes multiple steps where
non-trivial system-level support is needed to reduce the bur-
den on the user:
(i) Data preparation and blocking: ER tasks require ac-

cess to a variety of forms of data, ranging from flat
csv files to richly structured data where the attributes
may themselves be arrays or structured fields. Further-
more, to unburden the computationally heavy learning
step to follow, it is advantageous to reject the obvious
non-matches early on - an operation known as blocking.

(ii) Training data creation: Most learning-based systems
require copious amounts of labeled data upfront, which
is a significant investment in terms of human labor. A
system that can learn accurate ER models with less la-
beled data can directly contribute towards reducing the
start-up costs associated with ER, and further enable its
applicability to new domains or datasets that may not
have been seen before.

1
https://github.com/dedupeio/dedupe

2
https://github.com/gpoulter/pydedupe

1794

https://github.com/dedupeio/dedupe
https://github.com/gpoulter/pydedupe


-support csv and newline
delimited json
-prior blocking is not needed

-can start without
labeled data

-an auxillary tool for learning
complex matching functions
-provide prebuilt functions

-effective active learning algorithm
-scale up with distributing computing
-produce explainable ER models

Figure 2: SystemER provides support for the multiple stages of the ER pipeline.

(iii) Feature engineering: Identifying attributes and match-
ing functions that contribute towards match/non-match
decisions go a long way in achieving high quality ER.
Usually, domain experts possessing in-depth knowledge
of the application from which the data arises will be best-
positioned to make such choices. However, domain ex-
perts may not possess low-level coding skills.

(iv) Scalable model learning: Depending on the complex-
ity of the learning algorithm and particularly on the com-
plexity of the datasets, model learning itself may require
distributing computation across a cluster.

We present SystemER, a tool that learns explainable ER
models consisting of logical rules. A video demo is avail-
able at https://youtu.be/nsRAONFU_ak. SystemER is aimed
at domain experts who are not necessarily programmers,
but understand the data and the semantics of the task.
SystemER minimizes the human effort as well as the required
training data, by leveraging active learning techniques that
choose only a few informative examples for the human to
label while still learning a high-quality ER model. The
high quality is achieved through a combination of multi-
ple rules, which are individually above a precision thresh-
old, and which collectively achieve high coverage (recall)
over the space of possible matches. Every example chosen
for labeling, by using SystemER’s active learning algorithm
(presented in [8]), is obtained by invoking some (interme-
diate) rule that is, in turn, interpretable, explainable and
available for user’s inspection if s/he desires. This provides
explainability into the learning process. To best aid domain
experts, SystemER also includes:
• an intuitive UI with support for end-to-end ER pipeline,
• prebuilt matching functions and an auxiliary tool, called
LUSTRE3, which learns sophisticated entity-specific nor-
malization/matching functions for feature engineering,
• automatic support for blocking by including appropri-

ate predicates into the learned rules,
• capabilities for running in single-node and cluster modes,

via Spark4, to scale up to large datasets.

Other related tools Among the existing systems, Febrl5

and HUMO lack support for richly structured data, while
additionally HUMO lacks support for blocking. Systems
such as Magellan, dedupe, and pydedupe lack an easy-to-use
UI to allow domain experts to construct complex matching
functions without coding. JedAI[6] assumes that all data
fits in main memory of a single machine and thus cannot
scale to large inputs. Besides the systems mentioned above,

3
Video demo of LUSTRE: https://youtu.be/hhM3BkvTZbE

4
https://spark.apache.org/

5
http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/

febrldoc-0.3/manual.html

[5] conducted a thorough study of 33 ER systems including
both learning and non-learning based systems to identify
shortcomings in each of them, thus underscoring the need
for a system that provides end-to-end support for learning
ER models. Finally, none of the above mentioned systems
learn explainable models.

2. SYSTEM OVERVIEW
SystemER expects the user to understand the semantics

of the task and have sufficient knowledge to correctly label
selected entity pairs as matches or non-matches. SystemER

has a carefully designed UI that hides the technical details
and complexity of the ER pipeline from the user, while still
makes the learning process highly explainable. We next
elaborate how SystemER supports the ER pipeline and the
user experiences with SystemER.

2.1 Data Preparation
As opposed to existing systems (e.g., Magellan and HUMO)

that supports only flat csv files, the user can load csv files
(assuming first row contains attribute headers) or newline
delimited json files into SystemER, which can automatically
infer the schemas of the input files. SystemER does not re-
quire any a priori blocking to be applied to the input data (as
opposed to HUMO) nor does it require the user to write low-
level code for blocking (as opposed to Magellan). Instead,
the user just needs to provide the raw data files consisting of
entity records. During feature engineering, the user is pro-
vided with an intuitive drag-and-drop UI to setup blocking.

Training data is optional. As opposed to [8], initial la-
beled data is optional in SystemER. If no labeled data is pro-
vided, SystemER has heuristics (see Section 2.3) to come up
with a candidate rule for the first active learning iteration.

2.2 Feature Engineering
SystemER considers boolean features only, which is a de-

sign choice we made to facilitate the derivation of explain-
able ER models. This is not necessary a limitation since we
can discretize a continuous feature (e.g., jaccardSim(r,s))
into multiple boolean features (e.g., jaccardSim(r,s)>0.05,
. . . , jaccardSim(r,s)>0.95). Additionally, all features in
SystemER measure the goodness of match rather than its con-
trapositive. For example, as opposed to r.name = s.name,
the predicate r.name 6= s.name does not measure goodness
of match and SystemER does not allow the latter.
SystemER provides three types of prebuilt functions: (1)

binary matching (e.g., jaccardSim(r.venue,s.venue)>0.2),
(2) unary filtering (e.g., isUSA(r.country)), and (3) unary
normalization (e.g., CompanyNorm(r.name)). These func-
tions include both general functions (e.g., equality) and

1795

https://youtu.be/nsRAONFU_ak
https://youtu.be/hhM3BkvTZbE
https://spark.apache.org/
http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/manual.html
http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/manual.html


Rule Validation via
Likely False Positives

Candidate Rule
Learning

Accept / Reject
Rule

Find New Pattern via
Likely False Negatives

Next
Iteration

Figure 3: Workflow of one active learning iteration

entity-specific functions (e.g., CompanyNorm, medicalTermSim).
Figure 4a shows SystemER’s UI for feature engineering. The
user can click on a pre-built function to apply it and choose
applicable attribute(s) by selecting from a dropdown list.

Extensibility. Although no programming skill is re-
quired, if the user has Java/Scala programming skills, s/he
can add a new function by providing its Java/Scala imple-
mentation through the UI. SystemER also provides an aux-
iliary tool, named LUSTRE [1, 7], to learn entity-specific nor-
malization/matching functions. For example, LUSTRE is able
to learn a matching function that gives a similarity score of
1.0 for “General Electric Corporation” and “GE Corp”
even if they are textually dissimilar.

Blocking. Users can use SystemER’s drag-and-drop UI
(see Figure 4b) to setup “blocking buckets”. Each bucket
contains a conjunction of matching functions including at
least one equality based function. During active learning,
SystemER considers only candidate rules that contain at least
one of these blocking buckets. As a result, any comparison of
pairs of records will be performed on subsets of the cartesian
product that satisfy the blocking conditions. The candidate
rules are then compiled into Spark join operations that can
run at scale.

2.3 Explainable Active Learning
SystemER provides different ways to start active learning:

(1) learning from scratch either with or without labeled data,
(2) starting with a manual rule (see Figure 4c) if the user has
a candidate rule in mind, and (3) continue from a previously
finished iteration, where the user stopped last time.

The active learning phase involves multiple iterations, where
each iteration includes the following steps (see Figure 3):
1. SystemER produces a candidate rule R based on the avail-

able labeled data.
2. To verify R, SystemER selects a few examples that satisfy

R but have low-confidence scores. We call these examples
likely false positives (LFP) and have the user label them.

3. The user can either accept R if most (e.g., 90%) of the
LFPs turn out to be matches, or reject it otherwise.

4. The system will then search for examples that do not sat-
isfy R but are likely to be matches with high-confidence
scores (the exploration is done by relaxing R). We call
these examples likely false negatives (LFN), and the user
also needs to label them.

5. Update labeled data with the newly labeled examples.

The two types of examples selected in steps 2 and 3 guide
the system to refine the ER rules in different ways: (1) Low-
confidence LFPs can be seen as adversarial examples to fal-
sify the current rule, and thus can potentially improve the
precision of the subsequent learned rule. (2) High-confidence
LFNs are important for improving the overall recall of the
ER model. Recall that SystemER considers only features
that measure goodness of match. Therefore, the confidence
score of an entity-pair p can be measured by the number of
features that evaluate to true on p. More technical details
of the adopted active learning algorithm can be found at [8].

Since both the intermediate rules and final model pro-
duced by SystemER are explainable, it can help the user
understand the labeling process by offering insights into the
active learning process. We carefully designed the labeling
interface (Figure 4d) so that it is simple enough to hide the
technical complexity but still achieve high explainability by
providing evidence why those examples are selected for la-
beling. Moreover, matching functions of a rule are clickable.
Once a function (e.g., dblp.year=acm.year in Figure 4d) is
clicked, the corresponding attribute pairs (i.e., year) will be
highlighted to help the user understand why this example
satisfies the function and the rule.

Start without labeled data. When no labeled data is
provided, SystemER will use one of the blocking buckets to
form the first candidate rule C to start the active learning.
Then, in the first iteration, examples that satisfy C with
low-confidence (resp. high-confidence) score will be used as
likely false positives (resp. likely false negatives).

Quality guarantee. The learning philosophy of SystemER
is that a candidate rule will be accepted only if it achieves
high precision in likely false positives, which is a conservative
way to conclude that the rule is high-precision [8]. Multi-
ple active learning iterations are desired so that a variety
of semantically different high-precision rules can be learned,
which collectively achieve high recall. SystemER maintains
a repository that keeps all the accepted rules so that when
searching for new examples to be labeled, examples that
are already covered by the accepted rules will be excluded,
which makes the active learning more effective.

Empirical study. A thorough empirical study reported
in [8] shows that the active learning methodology adopted in
SystemER can significantly outperform both statistical mod-
els (e.g., support vector machines) and models that combine
statistics with first-order logic rules (e.g., learning-based
Markov Logic Networks or MLN [9]) across various matching
tasks. Specifically, in a big data scenario (matching 470K
employee records with 50M social profiles), SystemER pro-
duces 7 rules that can find 10 times more correct matches
than MLN under the same precision constraint, while using
the same number of user labels as MLN.

2.4 Scalability and Optimizations
SystemER expresses ER rules in the language of HIL [3],

which can be compiled into different high-performance run-
times. However, unlike the prototype system in [8] that runs
on MapReduce only, SystemER now can distribute the com-
putation via a Spark cluster, which is more efficient. For
small datasets (e.g., DBLP-ACM), single-node mode is suf-
ficient, but for large datasets (e.g., twitter users vs. Walmart
customers) cluster mode can significantly speed up compu-
tation. Specifically, one of our realistic matching tasks aims
to identify matches across two company datasets (one has
20K records and the other has 12M records). With single-
node mode, one iteration may take more than two hours.
However, with a cluster of 10 nodes, the running time re-
duced to 20-30 minutes including labeling time.

3. DEMO SCENARIOS
SystemER provides several predefined scenarios including

DBLP-ACM (bibliography datasets with flat records), and
Pubmed6(matching of authors across biomedical publication

6
https://www.ncbi.nlm.nih.gov/pubmed/

1796

https://www.ncbi.nlm.nih.gov/pubmed/


(a) Feature engineering (b) UI for setup blocking functions

(c) Start with a manual rule (d) Labeling interface

Figure 4: Screenshots of SystemER in action

records with nested structures). The demo attendees can
either provide their own data or use one of the provided
scenarios. Taking DBLP-ACM as an example, the user will
experience the following steps:
1. the user provides dblp.csv and acm.csv to SystemER,

and the SystemER will automatically infer the schemas
to create a new scenario.

2. The user can apply various matching functions (e.g.,
equality, Jaccard and JaroWinkler similarity) over dif-
ferent attribute pairs of the two datasets.

3. The user can specify blocking conditions, for example,
dblp.year=acm.year.

4. The user can learn from scratch (without labeled data).
5. The system will learn a candidate rule (e.g., the one

shown in Figure 4d) together with 10 likely false posi-
tives and 8 likely false negatives. The user then needs to
label them and continue to the next iteration.

6. The system will learn a new rule (such as the rule shown
in Figure 1), which refines the previous one by either
adding an addiontal predicate or changing the threshold
values for some similarity functions. If the new rule is
precise, the user can choose to accept it. Otherwise, the
user can move to the next iteration.

The user can continue the learning process for multiple iter-
ations to see how SystemER refines the rules to produce sub-
sequent good rules. Additionally, the user can run SystemER

in different execution modes (single-node vs. cluster).

4. REFERENCES
[1] N. Bhutani, K. Qian, Y. Li, H. V. Jagadish, M. A.

Hernández, and M. Vasa. Exploiting structure in

representation of named entities using active learning.
In COLING, 2018.

[2] Z. Chen, Q. Chen, and Z. Li. A human-and-machine
cooperative framework for entity resolution with
quality guarantees. In ICDE 2017, pages 1405–1406.

[3] M. A. Hernández, G. Koutrika, R. Krishnamurthy,
L. Popa, and R. Wisnesky. Hil: a high-level scripting
language for entity integration. In EDBT, 2013.

[4] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan,
J. R. Ballard, H. Li, F. Panahi, H. Zhang, J. Naughton,
S. Prasad, G. Krishnan, R. Deep, and V. Raghavendra.
Magellan: Toward building entity matching
management systems. PVLDB, 9(13):1197–1208, 2016.

[5] P. Konda, S. Das, S. GC, et al. Technical perspective::
Toward building entity matching management systems.
ACM SIGMOD Record, 47(1):33–40, 2018.

[6] G. Papadakis, L. Tsekouras, E. Thanos,
G. Giannakopoulos, T. Palpanas, and M. Koubarakis.
The return of jedai: End-to-end entity resolution for
structured and semi-structured data. PVLDB,
11(12):1950–1953, 2018.

[7] K. Qian, N. Bhutani, Y. Li, H. Jagadish, and
M. Hernandez. Lustre: An interactive system for entity
structured representation and variant generation. In
ICDE 2018, pages 1613–1616.

[8] K. Qian, L. Popa, and P. Sen. Active learning for
large-scale entity resolution. In CIKM, pages
1379–1388, New York, NY, USA, 2017. ACM.

[9] P. Singla and P. Domingos. Entity resolution with
markov logic. ICDM’06, pages 572–582.

1797


	Introduction
	System Overview
	Data Preparation
	Feature Engineering
	Explainable Active Learning
	Scalability and Optimizations

	Demo Scenarios
	References

