Stateful Functions as a Service in Action

Adil Akhter

ING
adil.akhter@ing.com

ABSTRACT

In the serverless model, users upload application code to a
cloud platform and the cloud provider undertakes the de-
ployment, execution and scaling of the application, reliev-
ing users from all operational aspects. Although very pop-
ular, current serverless offerings offer poor support for the
management of local application state, the main reason be-
ing that managing state and keeping it consistent at large
scale is very challenging. As a result, the serverless model
is inadequate for executing stateful, latency-sensitive appli-
cations. In this paper we present a high-level programming
model for developing stateful functions and deploying them
in the cloud. Our programming model allows functions to
retain state as well as call other functions. In order to de-
ploy stateful functions in a cloud infrastructure, we translate
functions and their data exchanges into a stateful dataflow
graph. With this paper we aim at demonstrating that using
a modified version of an open-source dataflow engine as a
runtime for stateful functions, we can deploy scalable and
stateful services in the cloud with surprisingly low latency
and high throughput.

PVLDB Reference Format:

A. Akhter, M. Fragkoulis, A. Katsifodimos. Stateful functions as
a service in action. PVLDB, 12(12):1890-1893, 2019.

DOI: https://doi.org/10.14778/3352063.3352092

1. INTRODUCTION

Serverless computing [12| |7] is a broad term used to de-
scribe the cloud service model in which users develop appli-
cations and then deploy them in a cloud infrastructure with-
out having to deal with operational aspects such as scaling,
recovery, and availability. The most common form of the
serverless model is Function—as—a—ServiceE (FaaS). In FaaS
users develop functions that read data state from an exter-
nal data storage/database system, perform a computation
and subsequently write data to an external system. Since

!This term is used by commercial offerings such as AWS
Lambda, Azure Functions, and Google Cloud Serverless.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3352063.3352092

Marios Fragkoulis

Delft University of Technology
m.fragkoulis@tudelft.nl

1890

Asterios Katsifodimos

Delft University of Technology
a.katsifodimos@tudelft.nl

functions do not encapsulate state, they can be executed in
an embarrassingly parallel fashion and they do not require
any coordination or data consistency guarantees.

In order to retain some form of state, functions can be
initialised with their state retrieved from an external sys-
tem and store back the new state when they finish. As
a result, although it scales extremely well, FaaS is a poor
fit for stateful latency-sensitive applications. Furthermore,
in FaaS functions are not addressable, i.e., functions can-
not call other functions directly; instead, they communicate
with each other through cloud storage, which is slow. Fi-
nally, since they are not coordinated in any way and be-
cause state is external to the application, FaaS makes it
virtually impossible to develop correct and consistent dis-
tributed applications. For these reasons, the current reali-
sation of serverless falls short of its potential and its original
purpose [6} |7].

We believe that remedies to the shortcomings of current
Faa$S offerings are 1) the support of state as a first-class cit-
izen in order to guarantee some form of state consistency
and i) the ability for functions to be composed into more
complex applications with some form of transactional guar-
antees. To the best of our knowledge, the only attempts to
this direction are Akka, the Orleans virtual actors [1] and re-
lational actors [11]. We argue that these systems could deal
with a large subset of the challenges with respect to scalabil-
ity and state consistency, by exploiting existing work done
in the context of streaming dataflow systems [5, 3} |2, |8].

In this paper we demonstrate this potential by using a
high-level programming model allowing users to specify busi-
ness logic in the form of stateful functions. Functions can
call one another through named endpoints and they can be
coordinated via distributed transactions, guaranteeing con-
sistent distributed state. In our demonstration we execute
such applications on a modified version of Apache Flink
[3]. To this end, we translate applications into a stateful
streaming dataflow graph in which function code becomes a
dataflow operator and function invocations and their return
values form events travelling though the dataflow graph. To
enable scalability and low latency, state is automatically
sharded and function code is given access to local state [4].

In this paper we first present our programming model and
translation techniques (Section 2), as well as a demonstra-
tion scenario (Section 3). We then present a short discussion
of related works (Section 4), concluding with future research
and open problems (Section 5).

def internalState: ShardedState[OrderSummary]
transaction {
val paymentApproved: PaymentApproved =

OrderPlaced(o.orderID)
}.onFailureReturn(OrderRejected(o.orderId))
¥
}

class CreateOrderLambda extends LambdaDescriptor [OrderInitiated, OrderProcessed, OrderSummary] {
new PersistedMap [OrderSummary] ()
def execute(ctx: ExecutionContext, o: OrderInitiated): OrderProcessed = {

ctx.callLambda[OrderPaymentLambda] (PaymentRequested(o.orderID, o.userID, o.amount))
internalState.update (OrderSummary (o.orderId, o, paymentApproved))

Listing 1: Function definition that includes a state object, as well as a transactional call

to another function.

2. STATEFUL FUNCTIONS IN THE CLOUD

We believe that stateful functions can provide the building
block for high-throughput low-latency stateful applications
with advanced state management requirements. A number
of use cases can be supported this way. For instance, state-
ful microservices require low-latency response times under
high load. Moreover, transaction coordination and state
consistency has been a big challenge in microservices and
people fall back to solutions such as SAGAs and eventual
consistency. Distributed systems of stateful actors exchang-
ing messages at scale need to be scalable and resilient to
failures, while application state should remain consistent.

2.1 Programming model

Declaring Functions. Our declarative programming model
consists of a Function and a State Scala trait. To specify
a stateful function, the users of the FaaS platform extend the
LambdaDescriptor trait and implement the execute method,
which receives a set of parameters as input as well as an ex-
ecution context. For instance, describes such a
function namely CreateOrderLambda that outlines the cre-
ation of a new order in the system. As shown in Line
it extends the LambdaDescriptor trait, specifying an input
(OrderInitiated) and an output (OrderProcessed). The
execute method of CreateOrderLambda specifies the com-
putation of the function when an OrderInitiated event ar-
rives at the system.

Sharding and Paralellization Contracts. Line [2] de-
clares the type of state that the function wants to have
managed by the system, namely a ShardedState map of
OrderSummary. It is important to note that the compiler en-
sures that the author of OrderSummary class declares a key
on which the state will be partitioned in the cluster. The
same applies to the input type OrderInitiated. This use
of explicit keys both in the inputs but also in the state, is
used by the underlying runtime engine to consistently route
input events of the same key to the same process. This is the
only “contract” that the system and the user have to agree
on, in order to guarantee parallel and elastic deployment of
functions. The actual sharding of state and parallelization
of functions is taken over by the backend system.

Remote Function Calls. Our programming model pro-
vides primitives to manage and execute computational ef-
fects in a scalable and fault-tolerant manner. It facilitates
high-level abstractions to declaratively specify control-flows,
i.e., the interactions with the other functions and coordi-
nation among them as if the code is going to be executed
in a local context. For instance, Line |§| calls the func-

1891

tion OrderPaymentLambda with the PaymentRequested event
that consists of a specific order id of a specified user and the
total amount. This call returns with the status of the pay-
ment approval. The subsequent lines update the internal
state with a new OrderSummary and complete the computa-
tion with OrderPlaced.

Transactional Workflow Execution. Line E| begins a
separate branch of the code which is meant to execute func-
tions in a transactional manner. The implicit contract be-
tween the system and the user is that if one of the external
function calls or access to a local state fails for any reason,
we rollback all the changes that have resulted from all func-
tion calls within the transaction branch. For instance, if
the local update to the internalState has failed in Line IZL
the effects of the function call to the OrderPaymentLambda
in the line above will be rolled back and we complete the
execution of CreateOrderLambda with OrderRejected.

2.2 State Management at Scale

Deploying stateful functions in the cloud brings forward
very challenging operational issues such as automatic elas-
ticity and failure recovery. First, state has to be partitioned
or replicated across the running instances of a function and
input events should be routed to the correct partition in
a deterministic manner. Second, scale-out actions require
sharding a state partition even further, while scale-in actions
entail merging multiple state partitions into one. Third, re-
covering a function instance with partitioned state entails
keeping a snapshot of this state in a way that constitutes a
global consistent snapshot of the application’s state at a spe-
cific point in time when combined with the rest snapshots of
partitioned state. When a failure strikes, the latest snapshot
of a function’s partitioned state together with the function’s
code can instantiate a new function instance that requests
and re-processes all events from the latest checkpoint. These
challenges are well known to the stream processing litera-
ture. Hence, we can benefit from years of prior research if
we map stateful functions into a stream processing topology
and deploy it on a streaming dataflow engine.

2.3 From Functions to Dataflows

Our intermediate representation (IR) is a directed graph
which can contain cycles. We depict one of these graphs in
where we show how a set of three functions and
their invocations result into a cyclic dataflow graph with
operators, and edges. The diamonds connecting the edges
represent the types of events (parameters or returned values)
sent from one function to another. The translation from our
IR to a streaming dataflow is quite straightforward.

| A Control Event (com

A

Input Message Queves

Gateway

Output Message Queue

User Defined Function

Logical Message Inboxe3

| Gutgoing Message Router

N

TV
Managed State

Figure 1: Overview of the overall system architec-
ture. Functions are embedded inside dataflow oper-
ators, events become dataflow events. All inputs or
outputs are persisted in a event broker/queue to be
used for fault tolerance in case of failures.

Functions — Dataflow Operators. Functions with a sin-
gle input and output event type and destination are simply
translated into a dataflow operator.

Function State — Operator State. Each annotated
managed state becomes the state of a stateful operator in
the dataflow graph. Our macro-based static analyzer makes
sure that only functions of a given context can read or write
on a given state.

Data Dependencies — Dataflow Edges. Edges in the
dataflow represent data dependencies among functions, i.e.,
for an event to be directed from one function to another
and a response to come back, the two dataflow operators
are connected with an edge encoding the type of events that
this edge carries.

AND-nodes — Transaction Coordination. The AND
nodes in our IR represent a transactional constraint: for
the execution of CreateOrderLambda to complete, it has to
receive success events from the other functions pointing to
that AND node. We implement transaction processing func-
tionality via events that travel through the dataflow graph
between operators. When any function call fails, the calling
operator instructs all the transaction participants to rollback
their changes.

Function Orchestration. Special care has to be taken
when a function depends on multiple input events that possi-
bly come from different functions. In that case, the dataflow
operator hosting that function needs to buffer events (e.g., in
a window operator) and trigger the execution of the function
as soon as all events are gathered together.

Handling External Requests. As seen in[Figure 1] func-
tions can be invoked via a gateway service. All request
events enter a persistent event queue or broker (e.g. Kafka
or RabbitMQ) and those requests are then processed by
the dataflow operators in the system. Every incoming in-
vocation of a function (via events) goes through a persis-
tent queue for resilience reasons. The underlying streaming
dataflow system needs to be able to replay certain parts
of a stream in order to be able to perform fault tolerance

AR
4

1892

with consistent state, debugging, and exactly-once process-
ing guarantees [2]. Output events are also directed to a
queue where they can be read and sent back to the invoker.

3. DEMONSTRATION SCENARIO

Demonstration Use-case. To showcase stateful functions
we plan to use a real-world scenario of a set of stateful ser-
vices dealing with orders, payments and stock management.
The application use-case simply receives a request for fil-
ing an order. The order service then needs to reserve the
credit of a given user with the amount required for the or-
der, while making sure that it also reserves a certain stock.
When both the stock and credit have been secured, the or-
der service replies with a message to the user invoking that
order request.

Part 1: Authoring Stateful Functions. In the first
part, we give the attendants the opportunity to use our pro-
gramming model and abstractions to specify several state-
ful lambdas declaratively. The implementation of our real-
world scenario can serve as a basis to modify or extend
during the demonstration. The compiled functions forming
a logical dataflow graph can be interactively visualised at
compile time from our static analyzer, as shown in Figure

Part 2: Executing Functions as Dataflows. In the
second part, we focus on the runtime of the system. We
show how we can interpret and execute the logical dataflow
graph and how it can be executed and debugged in a local
environment on a single node. We then show how stateful
functions translate into concrete Apache Flink jobs.

Part 3: Debugging Functions. In the third part, we
allow users to replay input event queues and debug their
functions with time-travel debugging.

Part 4: Scaling and Elasticity. Finally, we demonstrate
executing a dataflow graph in a cloud infrastructure. We fo-
cus on several key system aspects such as the partitioning of
the state, data-parallel execution of the stateful functions,
transactional processing, etc. The attendants will have the
opportunity to submit massive amounts of requests via a
scalable request generator and follow how the system re-
veals possible bottlenecks and how it responds to pressure
by dynamic re-scaling.

4. RELATED WORK

Our work is related to serverless computing and FaaS of-
ferings, high-level programming models for stateful stream-
ing dataflow graphs, and streaming transactions.

Serverless Computing and FaaS. We described FaaS,
the current state of serverless computing offerings, in the
introduction. Closest to our rationale is another flavour
of serverless computing, Microsoft Azure’s Service Fabric
Mesh. According to the documentation, this is a platform
for authoring and executing microservices that provides a
managed service which includes state management, auto-
matic scaling, distributed transaction, and failure recovery
among others. Although going through the documentation
for details is difficult, we believe that the ideas presented
in this paper can be used to build a backend for execut-
ing service fabric microservices. Our programming model is
meant to complement models such as the Azure Functions
or Amazon’s AWS Lambda.

falcon sre main scala net falcon o

°
Boot
package net.falcon

mimport

b Dobject Boot extends App {

val execContext: ExecutionContext = LocalExecutionContext()
val orderCreatelLambda: Cr
val orderPaymentLambda:
val reserveStockLambda:

teorderLambda
CreditLambda = ReserveCreditlLambda.instantiatel

= CreateOrderLambda.instantiate()

StockLambda = ReserveStockLambda.instantiatel

val computationGraph : FalconRuntime.ComputationGraph

Q)
Q)

FalconRuntime.compile(orderCreateLambda, orderPaymentLambda, reserveStockLambda)

computationGraph.visualize()

computationGraph
.materializeWith(execContext))|
.run()

graph.png

=B ®o0wn@A 2,334x1,848 PNG (32-bit color
v

< acquiing > CreateOrder < Acquiring >
. Stock . Credit _~

ReserveStock ReserveCredit

Figure 2: Live visualization of dataflows created from a set of functions that call each other in different ways.

High-level Programming Models. High-level program-
ming models for stateful streaming dataflow graphs have
been considered in big data processing [5| and reactive pro-
gramming [10]. In [5] a stateful dataflow graph is statically
inferred from imperative Java programs and executed in a
data-parallel fashion using partitioned state to achieve scal-
ability and checkpoints to provide fault-tolerance. The ex-
ecuting tasks are pipelined with one another to fulfill low
latency as in streaming systems. Skitter [10] proposes a
domain specific language for writing reactive programs and
composing those into distributed workflows that Skitter’s
runtime deploys in a cluster. Skitter scales stateless reactive
components according to available resources, but needs to
synchronize state changes across stateful components. Con-
trary to the above works, this paper focuses on the transla-
tion of function definitions with dependencies and intercon-
nections into a standalone dataflow graph.

Streaming Transactions. Support for transactions in
streaming systems is scarce. The only complete work is
S-Store [9], which provides ACID guarantees on shared mu-
table state on a single machine, while a closed-source imple-

mentation of multi-key transactions exists in Apache Flink [3].

Our work builds on these works to provide an early proto-
type of a distributed transaction mechanism on a streaming
system.

S. CONCLUSIONS & FUTURE WORK

In this paper we make the case for using a streaming
dataflow system in order to execute stateful and resilient
functions in the cloud in a scalable and elastic fashion. We
show how surprisingly well existing dataflow sytems can be
used for executing functions in the cloud, and point out
some of their inefficiencies. Our next immediate steps are
to optimize the throughput of transactions, developing ver-
sioning schemes for functions and advanced reconfiguration
methods for dataflow graphs. Finally, we plan on working
on a model for querying snapshots of live function states
to allow users to have a complete view of the state of their
applications.

1893

6 REFERENCES

P. A. Bernstein and S. Bykov. Developing cloud services
using the orleans virtual actor model. IEEE Internet
Computing, 20(5), 2016.

P. Carbone, S. Ewen, G. Féra, S. Haridi, S. Richter, and
K. Tzoumas. State management in Apache Flink®:
consistent stateful distributed stream processing. PVLDB,
10(12):1718-1729, 2017.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas. Apache Flink@®: Stream and Batch
Processing in a Single Engine. IEEE Data Engineering
Bulletin, 38, 2015.

B. Chandramouli, G. Prasaad, D. Kossmann, J. J.
Levandoski, J. Hunter, and M. Barnett. FASTER: A
concurrent key-value store with in-place updates. In ACM
SIGMOD, 2018.

R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and

P. Pietzuch. Making state explicit for imperative big data
processing. In USENIX ATC, 2014.

J. M. Hellerstein, J. M. Faleiro, J. E. Gonzalez,

J. Schleier-Smith, V. Sreekanti, A. Tumanov, and C. Wu.
Serverless computing: One step forward, two steps back. In
CIDR ’19, 2019.

E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsali,

A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth,
N. Yadwadkar, J. E. Gonzalez, R. A. Popa, I. Stoica, and
D. A. Patterson. Cloud programming simplified: A berkeley
view on serverless computing, 2019.

A. Katsifodimos and M. Fragkoulis. Operational stream
processing: Towards scalable and consistent event-driven
applications. In EDBT. ACM, 2019.

J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas,

U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier,
A. Pavlo, et al. S-store: streaming meets transaction
processing. PVLDB, 8(13):2134-2145, 2015.

M. Saey, J. De Koster, and W. De Meuter. Skitter: A dsl
for distributed reactive workflows. In ACM SIGPLAN
Workshop on Reactive and Event-Based Languages and
Systems, 2018.

[11] V. Shah and M. A. Vaz Salles. Reactors: A case for
predictable, virtualized actor database systems. In ACM
SIGMOD, 2018.

L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift.
Peeking behind the curtains of serverless platforms. In
USENIX ATC ’18, 2018.

2]

(3]

(4]

[5]

[6]

7]

8

(10]

(12]

	Introduction
	Stateful Functions in the Cloud
	Programming model
	State Management at Scale
	From Functions to Dataflows

	Demonstration Scenario
	Related Work
	Conclusions & Future Work
	References

