Demonstration of Krypton: Optimized CNN Inference for
Occlusion-based Deep CNN Explanations

Allen Ordookhanians
University of California
San Diego

aordookh@eng.ucsd.edu

Xin Li
University of California
San Diego

xli222@eng.ucsd.edu

Supun Nakandala
University of California
San Diego

snakanda@eng.ucsd.edu

Arun Kumar
University of California
San Diego

arunkk@eng.ucsd.edu

ABSTRACT

In this demonstration, we present KRYPTON, a system for ac-
celerating occlusion-based deep convolution neural network
(CNN) explanation workloads. Driven by the success of
CNNs in image understanding tasks, there is growing adop-
tion of CNNs in various domains, including high stakes ap-
plications such as radiology. However, users of such applica-
tions often seek an “explanation” for why a CNN predicted a
certain label. One of the most widely used approaches for ex-
plaining CNN predictions is the occlusion-based explanation
(OBE) method. This approach is computationally expensive
due to the large number of re-inference requests produced.
KRYPTON reduces the runtime of OBE by up to 35x by en-
abling incremental and approximate inference optimizations
that are inspired by classical database query optimization
techniques. We allow the audience to interactively diagnose
CNN predictions from several use cases, including radiology
and natural images. A short video of our demonstration can
be found here: https://youtu.be/10Wddbd4n6Y

PVLDB Reference Format:

Allen Ordookhanians, Xin Li, Supun Nakandala, Arun Kumar.
Demonstration of Krypton: Optimized CNN Inference for Occlu-
sion-based Deep CNN Explanations. PVLDB, 12(12): 1894-1897,
2019.

DOI: https://doi.org/10.14778/3352063.3352093

1. INTRODUCTION

Deep Convolution Neural Networks (CNNs) are now the
state of the art method for many image prediction tasks.
Thus, there is growing interest in adopting deep CNNs in
various application domains, including high stakes applica-
tions such as healthcare [1, 7]. Despite their successes, a
key criticism of CNNs is that their internal workings are
unintuitive to non-technical users. Thus, users often seek

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOIL: https://doi.org/10.14778/3352063.3352093

1894

an “explanation” for why a CNN predicted a certain label.
Explanations can help users trust CNNs [9] and are a legal
requirement for machine learning applications in some coun-
tries [12]. How to explain a CNN prediction is still an active
research question, but in the practical literature, an already
popular mechanism for CNN explanations is a simple pro-
cedure called occlusion-based explanations [13], or OBE for
short.

OBE works as follows. Place a small square patch (usually
black) on the image to occlude those pixels and rerun CNN
inference on the occluded image. The probability of the pre-
dicted class will change. Repeat this process by moving the
patch across the image to obtain a sensitivity heatmap of
probability changes, as shown in Figure 1. This heatmap
highlights regions of the image that were highly “respon-
sible” for the prediction (red/orange color regions). Such
localization of the regions of interest allows users to gain
intuition on what “mattered” for the prediction. Overall,
OBE is popular because it is easy for non-technical users to
understand.

Alas, OBE is highly expensive computationally. Deep
CNN inference is already expensive; OBE just amplifies it by
issuing a large number of CNN re-inference requests (even
1000s). For example, [14] report 500,000 re-inference re-
quests for 1 image, which took 1hr even on a GPU! Such long
wait times can hinder users’ ability to consume explanations
and reduce their productivity. One could use more compute
hardware, if available, since OBE is embarrassingly parallel
across re-inference requests. But this may not always be
affordable, especially for domain scientists, or feasible in all
settings, e.g., in mobile clinical diagnosis. Extra hardware
can also raise monetary costs, especially in the cloud.

In this work we use a database-inspired lens to formal-
ize, optimize, and accelerate OBE. We start with a simple
but crucial observation: the occluded images are not disjoint
but share most of their pizels; so, most of CNN re-inference
computations are redundant. This observation leads us to
connect OBE with two classical data management concerns:
incremental view maintenance (IVM) [5] and multi-query
optimization (MQO) [10]. Instead of treating a CNN as
a “blackbox,” we open it up and formalize CNN layers as
“queries.” Just like how a relational query converts rela-
tions to other relations, a CNN layer converts tensors (mul-
tidimensional arrays) to other temsors. So, we reimagine

Inputimage file _+—"
picker

Inputimage —_|

Estimated and
Actual Runtimes <

Patch Size Selection
Drop-down

OBE Workload
Submit/Reset

Browse | Prediction: lion, king of beasts, Panthera leo

Predicted class
label

| Predicted probability
color bar

| Generated
sensitivity heat map

Options for
L enabling/disabling
system optimizations

buttons

Stride Selection
Drop-down

Drop-down for
+— selecting the CNN
model

Figure 1: KRYPTON user interface. Users can load an input image, select a CNN model, and interactively
diagnose the prediction by occluding parts of the full image or part of the image using the cropping tool.
KRYPTON generates a sensitivity heatmap (right image) and iteratively refines it as the user progresses. NB:
This figure is best viewed in color, as is standard in the visual computing literature.

OBE as a set of tensor transformation queries with incre-
mentally updated inputs. With this fresh database-inspired
view, we introduce several novel CNN-specific query opti-
mization techniques to accelerate OBE.

We prototype our ideas in the popular deep learning frame-
work PyTorch to create a tool we call KRYPTON. It works on
both CPU and GPU and currently supports a few popular
deep CNNs (VGG16, ResNet18, and InceptionV3). KRyPp-
TON yields up to 35x speedups over the current dominant
practice of running re-inference with just batching for pro-
ducing high-quality approximate heatmaps and up to 5x
speedups for producing exact heatmaps. In this demon-
stration, we allow the audience to use KRYPTON and in-
teractively diagnose CNN predictions from three real-world
image datasets from recent radiology and computer vision
literature. A short video of our demonstration can be found
here: https://youtu.be/10Wddbd4n6Y

2. TECHNICAL CONTRIBUTIONS

The novelty of our system comes from the optimization
techniques that it uses for accelerating the OBE workload.
In this section, we briefly explain our incremental CNN in-
ference and approximate inference optimizations. More de-
tails on KRYPTON’s optimizations can be found in our tech-
nical report [2]. In addition to the above optimizations, in
this demonstration we showcase KRYPTON as an end-to-end
system for interactive diagnosis of CNN predictions. Users
can now select a subset of the image to run OBE using a
cropping tool to exploit their intuitions about what regions
might be more important. We also provide runtime estima-
tions for the OBE workload.

2.1 Incremental Inference

For the incremental CNN inference optimization, we ma-
terialize all tensors produced by the CNN’s layers on the
given image. For every re-inference request in OBE, in-
stead of rerunning CNN inference from scratch, we treat it
as an incremental view maintenance (IVM) query [5], with
the “views” being the tensors. We rewrite such queries to

AlexNet
VGG16

VGG19
ResNet18
ResNet50
DenseNet121
MobileNet
Squeezenetl.0
Inception3

[
s

SARRS RS

Theoretical Speedup

T T T T
4 8 12 16 20 24 28 32
Patch Size

Figure 2: Theoretical speedups for popular deep
CNN architectures with incremental inference.

reuse as much of the materialized views as possible and re-
compute only what is needed, thus avoiding computational
redundancy. Such rewrites are non-trivial because they are
closely tied to the complex geometric dataflows of CNN lay-
ers. We have formalized such dataflows to create an algebraic
framework of CNN query rewrites. Going further, we batch
all re-inference requests in OBE to reuse the same mate-
rialized views. This is a form of multi-query optimization
(MQO) [10], albeit interwoven with our IVM, leading to a
novel batched incremental CNN inference procedure. To the
best of our knowledge, this is the first instance of IVM be-
ing fused with MQO in query optimization, at least for CNN
inference.

We calculate the highest attainable theoretical speedup in
terms of the amount of computations saved for performing
IVM-based incremental inference for popular CNN archi-
tectures with different occlusion patch sizes. The results
are shown in Figure 2. VGG-16 has the highest theoretical
speedups, while DenseNet-121 has the lowest. Most CNNs
fall in the 2x-3x range. The differences arise due to the
specifics of the CNN’s architecture: VGG-16 has small con-
volution filter kernels and strides, which means full inference
incurs a high computational cost (15 GFLOPs). In turn, in-
cremental inference is most beneficial for VGG-16. Note
that we assumed an image size of 224x224 for this plot; if
the image is larger, the theoretical speedups will be higher.

1895

While one might be tempted to think that speedups of
2x-3x may not be “that significant” in practice, we find
that they indeed are significant for at least two reasons.
First, users often wait in the loop for OBE workloads for
performing interactive diagnoses and analyses. Thus, even
such speedups can improve their productivity, e.g., reduc-
ing the time taken on a CPU from about 6min to just
2min, or on a GPU from lmin to just 20s. Second, and
equally importantly, incremental inference is the foundation
for our approximate inference optimizations, which amplify
the speedups we achieve for OBE.

2.2 Approximate Inference

The approximate inference optimization in KRYPTON al-
lows users to tolerate some degradation in visual quality of
the heatmaps produced to reduce runtimes further in a tun-
able manner. We draw from the concept of projective field
from neuroscience and exploit the internal semantics of how
CNNs work to reduce runtimes. The projective field of a
CNN neuron is the slice of the output tensor that is con-
nected to it. This notion essentially captures the growth
of the size of the modified patches through the layers of a
CNN. Due to the overlapping nature of how convolution fil-
ter kernels operate, the projective field of a modified patch
in the input image will grow at every layer. It can be shown
that in the projective field, the change in the pixels that are
radially further away from the center of the patch will be
marginal. To exploit this property we introduce the concept
of projective field thresholding, which essentially truncates
the growth of the projective field and saves computations.

2.3 OBE Runtime Estimation

To make the KRYPTON’s interface more user friendly, we
provide runtime estimations for the OBE workload based
on the configurations selected by the user. Showing the es-
timated runtime for the OBE workload will enable the user
to make an informed decision when picking the OBE con-
figurations to trade-off the quality of the heatmap and the
available time budget. The runtime of a single OBE work-
load depends on the width and height of the selected im-
age region, the stride value, occlusion patch size, selected
CNN model, and the execution mode (i.e. exact vs approx-
imate). When we control for the occlusion patch size, CNN
model, and the execution mode, the runtime of the workload
is directly proportional to the number of different occlusion
patch positions. We ran several offline experiments with
different configurations and recorded the runtimes. These
runtimes are then used to fit a linear regression cost model
for each patch size, CNN model, and execution mode com-
bination and are then used to predict the runtime for new
configuration instances. Figure 3 shows the cost models gen-
erated for ResNet18 and VGG16 for a patch size of 16 with
the exact execution mode.

3. DEMONSTRATION
3.1 Datasets and CNN models

We will present a demonstration of KRYPTON with three
real-world image datasets: 1) identifying diabetic retinopa-
thy from retinal images, 2) identifying pneumonia from chest
X-ray images, and 3) identifying objects from natural im-
ages in the ImageNet dataset. KRYPTON currently supports
three popular CNN architectures: VGG16, ResNet18, and

1896

ResNet18 VGG16
e o 0 _ -
20 . ..
. E -
% = 27,’ 0 ,',!6
£ » >
o o - o5
2 .
E (y“ 5 ,’9‘
a 27 1 g
/ 5 7
2 0

[} 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

Number of occlusion positions Number of occlusion positions

Figure 3: Runtime estimation using linear regres-
sion cost model (occlusion patch size = 16 and exe-
cution mode is exact).

Inception3. Altogether, the audience will be able to interact
with our system on nine different settings.

3.2 Walkthrough

Each participant will be first made familiar with CNN
models and OBE method using a supporting slide deck. We
will briefly cover important aspects such as different opera-
tors inside a CNN, the dataflow inside a CNN, and also the
OBE approach for explaining CNN predictions. This brief
introduction will give the participants the necessary back-
ground to understand the KRYPTON system and appreciate
its optimizations. After the introduction, participants will
be demonstrated four scenarios of using KRYPTON.

Scenario: Naive OBE. In the first scenario, we will demon-
strate performing OBE using the naive approach of per-
forming CNN re-inference for each occlusion patch position.
Let’s say we want to demonstrate the use of OBE to ex-
plain a prediction of an image from the ImageNet dataset
from VGG16 model using a patch of size 8x8 and a stride
of 2. We first load an image by clicking the file picker shown
in Figure 1. After picking an image file, the image will be
then displayed on the left hand side panel of the interface.
Next we select the Naive option by clicking the correspond-
ing radio button. Selecting of the patch size, stride, and the
CNN model can be done using the corresponding drop-down
menus as shown in Figure 1. We allow the user to pick from
4 different patch sizes (4x4, 8x8, 16x16, 32x32) and 4 dif-
ferent stride values (2, 4, 8, 16). Currently we support three
different CNN model (VGG16, ResNet18, Inception3).

After picking the above configuration values, the user can
then initiate the OBE workload by clicking the “Submit”
button. The system will also display an estimate for the
runtime of the workload. After the workload is completed,
the system will overlay the sensitivity heatmap on the orig-
inal image and display it on the right hand side panel. We
also show the predicted class label (e.g., lion) and the ac-
tual workload execution time. On the heatmap, red color
regions correspond to low predicted probabilities for the se-
lected label (e.g., lion) and the blue color regions correspond
to high predicted probabilities for the selected label. So the
red color regions are the most sensitive regions for the pre-
dicted class label. The color bar for the heatmap is also
shown in the interface.

Scenario: KRYPTON Exact. After demonstrating the OBE
workload using the naive approach, we then demonstrate the
utility of KRYPTON’s incremental inference optimizations.
We call this KrRYPTON Exact execution. Recall that in-
cremental inference optimizations produce the exact same

heatmap produced by the naive approach but at a reduced
computational cost. KRYPTON Exact scenario is same as
the previous scenario but with the exception of picking the
KRrRYPTON Exact option from the radio button options in-
stead of Naive option. The estimated and actual runtimes
for KRYPTON Exact will be much smaller than Naive OBE.

Scenario: KRYPTON Approximate. Next we will demon-
strate the utility of KRYPTON’s approximate inference op-
timizations, which we call KRYPTON Approximate execu-
tion. Approximate inference optimization trades off the ac-
curacy of the generated heatmap with respect to the original
heatmap in favor of faster runtimes. KRYPTON Approximate
scenario is also same as the previous scenarios but with the
exception of picking the KRYPTON Approximate option. The
estimated and actual runtimes for KRYPTON Approximate
will be even smaller than KrRYPTON Exact. Though there
will be minor differences between the generated heatmaps
with KrRYPTON Exact and KRYPTON Approximate, partici-
pants will be able see that the overall visual perception of
both methods are very much the same.

Scenario: Interactive Image Cropping. In all of the
above three cases, we considered occlusion patch positions
over the entire image. However, this can be wasteful if the
significant objects in an image are localized into a small re-
gion. For example consider the image shown in Figure 1.
It contains an image of a lion on a wilderness background.
Clearly, the main object in this image is the lion which oc-
cupies only a small region of the entire image. A user who
wants to diagnose the prediction for this image can start the
diagnosis by selecting a smaller region which contains only
the face and the body of the lion by cropping that region.
This will execute faster than the full image. If the user is
not satisfied with the produced heatmap, she can iteratively
refine the selected region. The cropping of an image can be
done simply by dragging on the image in the interface to
select a rectangular selection area. Cropping operation is
supported with all of the above three scenarios.

After going through the above four scenarios, participants
will then be given the opportunity to use the system by
themselves. They will be able to select images from three
different datasets: OCT images, Chest X-Ray images, and
natural images from ImageNet dataset and will have the
opportunity to interactively diagnose CNN predictions.

4. RELATED WORK

CNN Explanations. Perturbation-based and gradient-
based are the two main kinds of CNN explanation meth-
ods. Perturbation-based methods observe the output of the
CNN by modifying regions of the input image [13]. OBE be-
longs to this category. Gradient-based methods generate a
sensitivity heatmap by computing the partial derivatives of
model outputs with respect to every input pixel [11]. How-
ever, OBE is usually the method of choice for domain sci-
entific users, especially in radiology [6, 8], since it is easy to
understand for non-technical users and typically produces
high-quality and well-localized heatmaps. Also to the best
of our knowledge, ours is the first work to address the CNN
explainability problem from a systems standpoint.

Faster CNN Inference. There are several approaches
proposed in the literature for accelerating CNN inference.
EVA? [3] is a custom software-hardware integrated stack for

exploiting temporal redundancy across video frames. Since
our optimizations are at the logical level, they are also appli-
cable to any compute hardware. CBinfer performs change-
based approximate CNN inference to accelerate real-time
object recognition on video [4]. Our focus is on accelerating
the OBE workload for images, not video streams. Our IVM
and approximate inference optimizations exploit specific se-
mantic properties of OBE, not general object recognition.
Overall, both of these tools are orthogonal to our focus.

Acknowledgments. This work was supported by a Hell-
man Fellowship and by the NIDDK of the NIH under award
number RO1DK114945. The content is solely the responsi-
bility of the authors and does not necessarily represent the
official views of the NIH. We thank NVIDIA Corporation
for the donation of the Titan Xp GPU used for this work.

S. REFERENCES

[1] Ai device for detecting diabetic retinopathy earns
swift fda approval.
https://www.aao.org/headline/first-ai-screen—
diabetic-retinopathy-approved-by-f. Accessed
March 15, 2019.

[2] Incremental and approximate inference for faster
occlusion-based deep cnn explanations.
https://adalabucsd.github.io/papers/TR_2019_
Krypton.pdf. Accessed March 15, 2019.

[3] M. Buckler et al. Eva®: Exploiting temporal
redundancy in live computer vision. arXiv preprint
arXiw:1803.06312, 2018.

[4] L. Cavigelli et al. Cbinfer: Change-based inference for
convolutional neural networks on video data. In 11th
International Conference on Distributed Smart
Cameras, pages 1-8. ACM, 2017.

[5] R. Chirkova, J. Yang, et al. Materialized views.
Foundations and Trends in Databases, 4(4):295-405,
2012.

[6] K.-H. Jung et al. Deep learning for medical image
analysis: Applications to computed tomography and
magnetic resonance imaging. Hanyang Medical
Reviews, 37(2):61-70, 2017.

[7] D. S. Kermany et al. Identifying medical diagnoses
and treatable diseases by image-based deep learning.
Cell, 172(5):1122-1131, 2018.

[8] T. Miller. Explanation in artificial intelligence:
Insights from the social sciences. arXiv preprint
arXiw:1706.07269, 2017.

[9] M. T. Ribeiro et al. Why should i trust you?:
Explaining the predictions of any classifier. In 22nd
ACM SIGKDD, pages 1135—-1144. ACM, 2016.

[10] T. K. Sellis. Multiple-query optimization. ACM
TODS, 13(1):23-52, 1988.

[11] K. Simonyan et al. Deep inside convolutional
networks: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[12] P. Voigt and A. Von dem Bussche. The EU General
Data Protection Regulation, volume 18. Springer, 2017.

[13] M. D. Zeiler and R. Fergus. Visualizing and
understanding convolutional networks. In ECCYV,
pages 818-833. Springer, 2014.

[14] L. M. Zintgraf et al. Visualizing deep neural network
decisions: Prediction difference analysis. arXiv
preprint arXiv:1702.04595, 2017.

1897

