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ABSTRACT
With data explosion in scale and variety, OLAP databas-
es play an increasingly important role in serving real-time
analysis with low latency (e.g., hundreds of milliseconds),
especially when incoming queries are complex and ad hoc
in nature. Moreover, these systems are expected to provide
high query concurrency and write throughput, and support
queries over structured and complex data types (e.g., JSON,
vector and texts).

In this paper, we introduce AnalyticDB, a real-time O-
LAP database system developed at Alibaba. AnalyticDB
maintains all-column indexes in an asynchronous manner
with acceptable overhead, which provides low latency for
complex ad-hoc queries. Its storage engine extends hybrid
row-column layout for fast retrieval of both structured data
and data of complex types. To handle large-scale data with
high query concurrency and write throughput, AnalyticDB
decouples read and write access paths. To further reduce
query latency, novel storage-aware SQL optimizer and exe-
cution engine are developed to fully utilize the advantages
of the underlying storage and indexes. AnalyticDB has been
successfully deployed on Alibaba Cloud to serve numerous
customers (both large and small). It is capable of holding
100 trillion rows of records, i.e., 10PB+ in size. At the same
time, it is able to serve 10m+ writes and 100k+ queries per
second, while completing complex queries within hundreds
of milliseconds.

PVLDB Reference Format:
Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqiang Peng,
Liang Lin, Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang
Zheng, Chengliang Chai. AnalyticDB: Real-time OLAP Database
System at Alibaba Cloud. PVLDB, 12(12): 2059-2070, 2019.
DOI: https://doi.org/10.14778/3352063.3352124

1. INTRODUCTION
AnalyticDB is an OLAP database system designed for

high-concurrency, low-latency, and real-time analytical queries
on PB scale, and has been running on 2000+ physical ma-
chines on Alibaba Cloud [1]. It serves external clients on
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Alibaba Cloud from a wide range of business sectors, in-
cluding e-commerce, finance, logistics, public transit, mete-
orological analysis, entertainment, etc., as well as internal
business operations within Alibaba Group.

Recent works [35, 28, 29, 36, 25] have summarized the
main challenges of designing an OLAP system as achieving
low query latency, data freshness, flexibility, low cost, high
scalability, and availability. Compared to these works, ana-
lytical workloads from our clients elevate AnalyticDB to an
even larger scale: 10PB+ data, hundred thousands of tables
and trillions of rows, which presents significant challenges to
the design and implementation of AnalyticDB.

The first challenge is that today’s users face more com-
plicated analytics scenarios than before, but still have high
expectation for low query latency. Users often do not tol-
erate queries that spend a long time. However, as users of
AnalyticDB come from various domains, their analytical de-
mands differ significantly and may change frequently, which
make their diverse and complex queries hard to optimize.
The queries range from full scan, point lookup to multi-
table join, and involve conditions on many combinations of
columns. Although indexing is a straightforward way to im-
prove query performance, building indexes on pre-specified
columns is often no longer effective.

The second challenge is that emerging complex analysis
tends to involve different types of queries and data at the
same time, which requires the system to have a friendly
and unified data layout at the storage layer. Traditional O-
LAP queries and point-lookup queries require different lay-
outs, i.e., column-stores and row-stores respectively [34, 12].
Furthermore, more than half of our users’ data has a com-
plex data type, such as text, JSON string, vector, and other
multi-media resources. A practical storage layout should be
able to provide fast retrieval for many data types, in order
to efficiently support queries involving both structured data
and data of complex types.

The third challenge is that while the system is processing
real-time queries with low latency, it also needs to handle
tens of millions of online write requests per second. Tradi-
tional designs [6, 8, 10, 29, 5] process reads and writes in
the same process path, so that reads could see newly writ-
ten data once it is committed. However, such designs are no
longer well-suited for our case, as consuming a large portion
of resources to guarantee query performance will hurt write
performance, and vice versa. Careful designs to balance a-
mong query latency, write throughput and data visibility
should be taken into consideration.
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To address above challenges, we propose and implemen-
t several novel designs in AnalyticDB and have made the
following contributions:

Efficient Index Management. AnalyticDB embeds an
efficient and effective index engine, which leverages two key
approaches for achieving low latency with acceptable over-
head. First, indexes are built on all columns in each table for
significant performance gain on ad-hoc complex queries. We
further propose a runtime filter-ratio-based index path selec-
tion mechanism to avoid performance slow-down from index
abuse. Second, since it is prohibitive to update large indexes
in the critical path, indexes are asynchronously built during
off-peak periods. We also maintain a lightweight sorted-
index to minimize the impact of asynchronous index build-
ing on queries involving incremental (i.e., newly-written af-
ter index building has started) data.

Storage layout for structured data and data of
complex types. We design the underlying storage to sup-
port hybrid row-column layout. In particular, we utilize fast
sequential disk IOs so that its overhead is acceptable under
either OLAP-style or point-lookup workloads. We further
incorporate complex data types in the storage (including in-
dexes) to provide the capability of searching resources (i.e.,
JSON, vector, text) together with structured data.

Decoupling Read/write. In order to support both
high-throughput writes and low-latency queries, our system
follows an architecture that decouples reads and writes, i.e.,
they are served by write nodes and read nodes respectively.
These two types of nodes are isolated from each other and
hence can scale independently. In particular, write nodes
persist write requests to a reliable distributed storage called
Pangu [7]. To ensure data freshness when serving queries, a
version verification mechanism is applied on read nodes, so
that previous writes processed on write nodes are visible.

Enhanced optimizer and execution engine. To fur-
ther improve query latency and concurrency, we enhance the
optimizer and execution engine in AnalyticDB to fully uti-
lize the advantages of our storage and indexes. Specifically,
we propose a storage-aware SQL optimization mechanism
that generates optimal execution plans according to the s-
torage characteristics, and an efficient real-time sampling
technique for cardinality estimation in cost based optimizer.
Besides, we design a high-performance vectorized execution
engine for the hybrid storage that improves the efficiency of
computation-intensive analytical queries.

The rest of the paper is organized as follows. Section 2
discusses related work and Section 3 presents read/write de-
coupling architecture. The data structures and indexes for
structured data and complex data types are described in Sec-
tion 4, and optimizations on optimizer and execution engine
are described in Section 5. Section 6 evaluates AnalyticDB
and Section 7 concludes the paper.

2. RELATED WORK
AnalyticDB is built from scratch for large-scale and real-

time analysis on cloud platform. In this section, we compare
AnalyticDB with other systems.

OLTP databases. OLTP databases such as MySQL [6]
and PostgreSQL [8] are designed to support transactional
queries, which can be considered as point lookups that in-
volve one or several rows. Hence, storage engines in OLTP
databases are row-oriented and build B+tree index [16] to
speed up query performance. However, row-store does not

fit for analytical queries as these queries only require a sub-
set of columns, where row-store significantly amplifies I/Os.
Moreover, OLTP databases usually actively update indexes
in the write path, which is so expensive that affects both
write throughput and query latency.

OLAP databases. To improve the efficiency of analyt-
ical queries, many OLAP databases like Vertica [29], Tera-
data DB [10] and Greenplum [5] have been developed. Ver-
tica [29] uses projection to improve query performance. In-
stead of building conventional indexes on columns, it only
keeps information about Min/Max values, leading to high
latency from less effective pruning. Teradata DB [10] and
Greenplum [5] adopt column-store and allow users to specify
indexed columns. However, they have two main limitations:
first, they modify column indexes in the write path, which
is prohibitive for all-column indexes; second, column-store
requires many random I/Os for point-lookup queries.

Big Data systems. With the emergence of Map-Reduce
model [18], batch processing engines, such as Hive [35] and
Spark-SQL [37, 13], become popular to process large-scale
data on many machines. However, the executed queries are
considered “offline”. The whole execution could last for
minutes or hours, and thus is not well-suited for real-time
queries. Impala [28] converts “offline” queries to interactive
queries using pipeline processing model and column-store,
reducing latency of common queries to seconds. However,
Impala does not have column indexes (with Min/Max statis-
tics only), so that it can not handle complex queries well.

Real-time OLAP systems. Recent real-time OLAP
systems include Druid [36] and Pinot [25], both adopting
column store. They all build bitmap-based inverted indexes,
i.e., Pinot on all columns and Druid on Dimension Column-
s. A query on Druid may suffer high latency, if it involves
columns not in Dimension Columns. All their indexes are
updated in the write path, which affects the write perfor-
mance. Besides, they lack support for some important query
types such as JOIN, UPDATE, and DELETE, and are inefficient
for point-lookup queries as they are column-oriented.

Cloud Analytical Services. A number of cloud ana-
lytical services such as Amazon Redshift [21] and Google
BigQuery [33] have recently emerged. Amazon Redshift
is a fully managed cloud database service. It uses colum-
nar storage and massively parallel processing (MPP) to dis-
tribute queries across multiple nodes. A typical Redshift
cluster has two or more Compute Nodes which are coordi-
nated through a Leader Node. Compared to it, AnalyticDB
introduces a read/write decoupling architecture with inde-
pendent read nodes and write nodes, as well as a set of
coordinators to communicate with. Google BigQuery is the
external implementation of one of Google’s core technologies
called Dremel [31], which includes columnar storage for high
storage efficiency and a tree topology for dispatching queries
and aggregating results across thousands of machines in sec-
onds. This is different from AnalyticDB, which leverages an
efficient index engine and a DAG execution framework.

3. SYSTEM DESIGN
As a cloud database, AnalyticDB runs on top of Apsara,

a large-scale, general-purpose and highly-reliable comput-
ing infrastructure developed at Alibaba Cloud since 2009.
Apsara manages all resources among hundreds of thousands
of physical machines, and sustains many Alibaba Cloud ser-
vices, such as searching, computing and storage. AnalyticD-
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Figure 1: Architecture of AnalyticDB

CREATE TABLE db_name.table_name (
id int,
city varchar,
dob date,
primary key (id)

)
PARTITION BY HASH KEY(id)
PARTITION NUM 50
SUBPARTITION BY LIST (dob)
SUBPARTITION OPTIONS (available_partition_num = 12);

Figure 2: DDL for creation of partitioned table.

B leverages two core components in Apsara, i.e., Pangu [7]
(a reliable distributed storage system) and Fuxi [38] (a re-
source manager and job scheduler), as shown in Figure 1.
In this section, we present the vital design choices made in
AnalyticDB, including data model and system architecture.

3.1 Data Model and Query Language
AnalyticDB follows a standard relational data model, i.e.,

records in tables with fixed schema. In addition, many popu-
lar complex data types, e.g., full-text, JSON and vector, are
also supported to fulfill increasing analytical demands from
real-world applications (detailed in Section 4.1.1 and 4.2.2).
AnalyticDB supports ANSI SQL:2003 [19] and enhances it
with additional features, such as partition specifications and
complex-typed data manipulations.

3.2 Table Partitioning
In AnalyticDB, each table is subjective to two levels of

partition, i.e., primary and secondary. Figure 2 illustrates
a sample DDL that creates a table with two-level partition,
i.e., a primary partition on column id with 50 partitions and
a secondary partition on dob with 12 partitions. The prima-
ry partition is based on the hash of a user-specified column,
and hence rows are distributed among all primary partitions
to maximize concurrency. In practice, any column with high
cardinality could be chosen as this partition column, which
makes each partition balanced. Besides, users can optionally
specify a secondary partition (called subpartition). The sec-
ondary partition is a list partition with a threshold defining
the maximum partition number, for automatic data reten-
tion and recycling. Usually, a column representing time in-
tervals (e.g., day, week or month) is chosen as the secondary
partition column, and hence rows within the same interval
are grouped as a partition. Once the number of partitions
exceeds the threshold, the oldest partition is discarded au-
tomatically.

3.3 Architecture Overview
Figure 1 shows the system architecture. In overall, there

are mainly three types of nodes in AnalyticDB, i.e., Coor-

BlockBlock

Connector

Data Store
Block Row

DAG 
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Connector
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Figure 3: Pipeline-mode execution engine.

dinator, Write Node and Read Node. Coordinators collect
requests (both writes and queries) from clients through JD-
BC/ODBC connections, and dispatches them to correspond-
ing write nodes and read nodes. Write nodes are responsible
for processing writes (such as INSERT, DELETE, UPDATE), and
flush SQL statements into Pangu for persistence. Read n-
odes are responsible for handling queries (such as SELECT). In
this manner, Write nodes and read nodes are decoupled from
each other (detailed in Section 3.4). Fuxi utilizes available
resources in all these nodes to provide computing workers for
asynchronous task execution. In addition, AnalyticDB pro-
vides a general-purpose and pipeline-mode execution engine
(shown in Figure 3) that runs on computing workers. Data
flows through the system in units of column blocks (called
Pages) from the storage to the client. All data processes are
in memory and are pipelined between different stages across
the network. This pipeline workflow enables AnalyticDB to
serve users’ complex queries with high throughput and low
latency.

3.4 Read/Write Decoupling
Traditional OLAP databases couple reads and writes, i.e.,

a database instance executes any arrived request in the same
execution path, without considering whether it is a read or
write. Therefore, all concurrent requests share a resource
pool and hence affect each other. In the scenario where
both query and write concurrency is high, this design leads
to poor performance from resource contention. To address
this issue, we propose a read/write decoupling architecture.
Write nodes are only responsible for write requests while
read nodes are for queries. These two types of nodes are
isolated from each other, so that writes and queries are han-
dled in completely different execution paths.

3.4.1 High-throughput Write
One of write nodes is selected as master and others as

workers, and they coordinate with each other through lock
service built on ZooKeeper [24]. When write nodes are
first launched, the master configures table partitioning (Sec-
tion 3.2) on workers. Coordinators can then distribute write
requests to corresponding workers based on this configura-
tion. When a write request arrives, the coordinator first
parses SQL and recognizes it as a write, and then dispatches
it to the corresponding write node. Each write node work-
s as an in-memory buffer for received SQL statements and
periodically flushes them as a log to Pangu (similar to log
writer threads in traditional databases). Once the buffer is
completely flushed, the node returns a version (i.e., log se-
quence number) to coordinators, which then return users a
success message for each committed write.

When the number of log files on Pangu reaches a certain
scale, AnalyticDB will launch multiple MapReduce [18] jobs
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Figure 4: Data placement among read nodes.

on Fuxi to convert log commits into actual data files, i.e.,
baseline data and indexes (detailed in Section 4).

3.4.2 Real-time Read
Each read node is assigned a number of partitions by co-

ordinators, where partitions with the same hash value are
placed in one node. Figure 4 shows this partition placement
among read nodes, With the storage-aware optimizer (Sec-
tion 5.1), this placement helps to save the cost of data redis-
tribution by more than 80%, measured from our production
service. Moreover, read nodes are replicated for concurrency
and reliability (detailed in Section 3.4.3). Each node loads
initial partitions from Pangu, and pulls subsequent updates
from corresponding write nodes periodically. It applies up-
dates to its local data copies, which are not written back
to Pangu. We choose to continuously pull data from write
nodes instead of Pangu, in order to reduce synchronization
latency. Therefore, The write node performs as a cache to
serve concurrent pulls from different read node replicas.

Since recent writes need be remotely fetched, read nodes
provide two visibility levels to users: real-time read where
data can be immediately read after written; and bounded-
staleness read where data is visible within a bounded delay.
To sustain low query latency, AnalyticDB uses bounded-
staleness read by default, which is acceptable in most O-
LAP scenarios. For users demanding high visibility, real-
time read can be enabled, which however exposes a data
synchronization issue between read nodes and write nodes.

To solve this issue, we use a version verification mechanis-
m. Specifically, each primary partition is associated with its
own version on write node. After a number of write requests
on a partition are flushed, the write node will increase this
partition’s version and attach this value to the response mes-
sage. Let’s look at Figure 5 and take a write-read request
sequence as an example. A user writes a record into a table
(step 1 & 2), and then immediately sends a query to retrieve
it. When coordinator receives this query, it sends both the
query and versions (denoted as V1) cached from previous
flush responses (for bounded-staleness read, or pulled from
write nodes for real-time read, i.e., step 3) to the correspond-
ing read nodes (step 4). For each partition, the read node
compares its local version (denoted as V2) with V1. If V1 is
not larger than V2, the node can directly execute the query.
Otherwise, it has to pull the latest data from write nodes
(step 5) and updates its local copy first.

Following above actions, we can ensure data visibility
between read nodes and write nodes for real-time queries.
However, if read nodes issue pull requests to write nodes and
wait for the required data, the latency would be prohibitive-
ly high. We optimize this by replacing read node pulls with
write node pushes. When write nodes observe newly written
data, they push it along with the versions to corresponding
read nodes actively.

Insert

Coordinator

Read Node

Query

Write Node

Pangu Distributed FS

Client

1

2

3 4

5
6

Write NodeWrite Node Read Node

Figure 5: Real-time read workflow.

3.4.3 Reliability and Scalability
Reliability. AnalyticDB provides high reliability for both

write nodes and read nodes. For write nodes, when a worker
fails, the master will evenly distribute partitions that work-
er serves to other available write nodes. When the master
fails, a new master will be elected from active workers.

For read nodes, users can specify a replication factor (e.g.,
2 by default), and different replicas of the same node are
deployed on different physical machines (detailed in Sec-
tion 3.5). When a read node fails while serving a query,
the coordinator will re-send that query to other replicas au-
tomatically, which is transparent to users. Note that read
nodes will not be blocked by failures of write nodes when
pulling new data from them. If read nodes fail to contact a
write node, they can directly read data from Pangu (though
resulting in higher latency) and continue their executions
(step 6 in Figure 5).

Scalability. AnalyticDB also guarantees high scalability
for write nodes and read nodes. When a new write node is
added, the master will adjust table partition placement in
order to ensure load balance. The new placement is updated
to ZooKeeper, and coordinators can issue subsequent write
requests based on the new information. The scalability of
read nodes works in a similar way, except that table partition
placement is adjusted by coordinators.

3.5 Cluster Management
The cluster management for AnalyticDB is designed for

multi-tenant purposes. That is to say, there could be many
AnalyticDB instances existing within one cluster. We de-
sign and implement a cluster management component called
Gallardo, which utilizes Control Group technology to isolate
resources (CPU cores, memory, network bandwidth) among
different AnalyticDB instances and guarantee their stabili-
ty. When a new AnalyticDB is created, Gallardo allocates
required resources for it. During allocation, Gallardo care-
fully places different roles (Coordinator, Write Node, Read
Node) and replicas of Read Node into different physical ma-
chines, so as to obey the reliability requirement. Note that
Gallardo has no confliction with Fuxi. Gallardo is respon-
sible for allocating and isolating resources among different
AnalyticDB instances, while Fuxi utilizes available resources
from all AnalyticDB instances for computation tasks.

4. STORAGE
The storage model of AnalyticDB supports structured da-

ta and other complex data types, such as JSON and vectors.
We first discuss our hybrid row-column storage layout, fol-
lowed by its fast and powerful index engine.
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4.1 Physical Data Layout
This section first presents the data layout and meta data

in AnalyticDB, and then explains how data is manipulated.

4.1.1 Hybrid Row-Column Store
One design goal of AnalyticDB is to support both OLAP-

style and point-lookup queries. OLAP-style queries often
involve a small set of columns in a wide table. Column-
store [34] is well-suited for these queries due to its effective
data compression and I/O reduction, but struggles for point-
lookup queries that need to access one or several entire rows.
Row-store outperforms in point-lookup cases, however, it
amplifies access cost for OLAP-style queries [12].

To address this dilemma, we propose a hybrid row-column
storage layout, as shown in Figure 6. In our design, data in
each table partition is maintained in a single file (called de-
tail file), which is divided into multiple row groups. Each
row group contains a fixed number1 of rows. Within a row
group, all values from the same column are contiguously
grouped as a data block, and all data blocks are stored in
sequence. The data block is the basic operational unit (e.g.,
for fetch and cache) in AnalyticDB, and it helps achieve
high compression ratio to save storage space. Such a hy-
brid design is able to balance OLAP-style and point-lookup
queries with acceptable overhead [12, 20, 34]. Similar to
column-store, hybrid-store still clusters data by columns,
benefiting OLAP-style queries. Though an entire column
resides in multiple data blocks within different row group-
s, only a small number of sequential seeks are required to
fetch all data. As we observe in our real-world AnalyticD-
B service, this overhead contributes to less than 5% of the
overall query latency. For point-lookup queries, it also pre-
serves good performance, as all columns of a specific row are
stored in the same row group. Row assembling only involves
short-distance sequential seeks [23], instead of cross-segment
seeks in column-store.

Complex-typed Data. The hybrid row-column store
suits for short columns, e.g., numeric and short string types,
but is not for complex-typed data (e.g., JSON and vectors),
as this data is of variable sizes and usually much larger.
Grouping these rows into fixed-count row groups could re-
sult in unexpectedly huge blocks. To address this issue, a
fixed-size storage model is designed for complex-typed da-
ta. It leverages another level of blocks, namely FBlock, each

1This number is configurable, set as 30,000 by default ac-
cording to our production practice.

FBlock Header

…

FBlock
Data Block for One Column

Header
FBlock1 Row: [0-99]

Block Entry1
30,000 rows

Complex-typed
Data (32 KB)

FBlock Header
Complex-typed

Data (32 KB)

Complex-typed
Data (32 KB)

FBlock2 Row: [99-200]

FBlocki Row: [10k-12k]

…

FBlockn

…

FBlock Header

…

Row: [29k-30k]

Complex-typed
Data (32 KB)

FBlock Header

Figure 7: The complex-typed data format.

Query Execution
(Version = N)

MINUS

UNIONDelete
Bitset

Baseline Data
Incremental

Data

Incremental
Data

Baseline Data

Index

Detail

Delete Bitset

Detail

0 0 0 0 0 0Vn

0 0 0 0 0 0V2

0 0 0 0 0 0V1

…
Insert/Delete/Update

Figure 8: Manipulation and query execution over
storage.

with a fixed size of 32KB. In particular, a data block (with
30,000 rows) further distributes its rows into multiple F-
Blocks and stores pointers to these FBlocks instead. In this
manner, the data block is still with fixed row count, and all
FBlocks are stored in a separate file, as shown in Figure 7.
However, the number of rows contained in a FBlock can vary
from less than one (i.e., a partial row) to many. To support
fast search, we maintain in the data block a block entry for
each FBlock, as shown in the left part of Figure 7. Each
entry contains two identifiers, i.e., start row and end row of
the corresponding FBlock. A row can be split into multiple
contiguous FBlocks. For example in Figure 7, FBlock1 and
FBlock2 stores rows [0, 99] and [99, 200] respectively, indi-
cating that row 99 is divided into two FBlocks. To access it,
we first scan block entries from the data block to locate in-
volved FBlocks (e.g., FBlock1 and FBlock2), and then fetch
and concatenate partial rows.

4.1.2 Meta Data
Each column in the detail file has its own meta data that

accelerates retrieval over huge amounts of data in that col-
umn. This meta data is stored as a separate file for each
column, called detail meta file as illustrated in Figure 6. It
is small in size (i.e., below 1MB) and is cached in memory
for frequent access. Meta data of each column consists of
four sections: a header that contains a version number and
the total length of this detail meta file; a summary that con-
tains important statistics required by query optimizer (Sec-
tion 5.1), such as number of rows, number of NULLs, value
cardinality, sum (SUM) and maximum/minimum (MAX/MIN);
a dictionary that is automatically enabled for columns with
low cardinality for space saving; and a block map that keeps
one entry for each data block, containing its offset/length in
the detail file for fast access.

4.1.3 Data Manipulation
AnalyticDB uses Lamda architecture for underlying stor-

age (see Figure 8), which contains baseline data and incre-
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Algorithm 1: INSERT(SQL, version)

Input: SQL statement and version number
/* parse multiple column values from SQL */
values = parse(SQL);
/* append values to tail of incremental data */
row id = incremental data.append(values);
/* add a new bit to the delete bitset */
delete bitset[row id] = 0;
/* create a snapshot of delete bitset */
delete bitset snap = create snapshot(delete bitset);
/* put a version-snapshot pair into the map */
snap map.put(version, delete bitset snap);

Algorithm 2: DELETE(SQL, version)

Input: SQL statement and version number
/* search according to WHERE conditions */
row ids = search(baseline data, incremental data,
SQL.where);
/* delete records satisfying conditions */
for each row id in row ids do

delete bitset[row id] = 1;

delete bitset snap = create snapshot(delete bitset);
snap map.put(version, delete bitset snap);

Baseline Data Incremental 
Data

1SplitMerge Baseline
START 

Merge Baseline
FINISH 

2Replace 

Baseline Data Incremental 
Data

Incremental 
Data

Baseline Data Incremental 
Data

Figure 9: The process of merging baseline data and
incremental data.

mental data. The baseline data stores historical data in-
cluding both index and row-column data. The incremental
data keeps the newly written data, and does not contain full-
index but a simple sorted index (detailed in Section 4.2.5).
Incremental data occurs only on read nodes when they pull
and replay logs from write nodes. Baseline and incremental
data follow the identical data and meta formats above.

Query Execution. In order to support UPDATE2 we use
bit-set to record the row ids of deleted data. Copy-on-write
technology is used to support MVCC (Multi-version con-
currency control) [15]. When a row is updated or deleted,
a bit-set snapshot along with a version number is stored
in an in-memory map for serving subsequent queries. This
delete bit-set is divided into small compressed segments, so
that snapshots can share unchanged segments to make them
space-efficient. Furthermore, when a new version of the s-
napshot is created, the oldest version will be eliminated once
there is no query running on it. Algorithms 1, 2 and 3 ex-
plain how INSERT, DELETE and FILTER queries are executed
on both baseline and incremental data, following steps in
Figure 8. To execute a query, a version number is given
firstly, and then corresponding delete bit-set snapshots of

2Currently, we only support primary-key-based update to
avoid changing too much data in one operation. An update
is treated as the combination of a delete and an insert.

Algorithm 3: FILTER(conditions, version)

Input: filter conditions and version number
Output: row ids satisfying conditions
/* get delete bitset according to version */
delete bitset snap = snap map.get(version);
/* get row-ids by searching index with conditions */
row ids = search(baseline data, incremental data,
conditions);
/* remove deleted row-ids from the results */
return minus(row ids, delete bitset snap);

Inverted index on “NAME” Bitmap index on  “SEX” Dictionary index on “CITY” JSON and vector index

{1,3} {1,3,5,7,9}

NAME: bob SEX:NOT 
female

CITY: 
hangzhou

CITY:
shanghai

{2,3} {1,4}

JSON_EXTACT
(ATTR,'time') > 0

ANN(VEC, 
[1,1,1,1], 2)

{1,2} {2,7}

{1,3}

{1,3}

{1,2,3,4}

{1,2,7}

Row Ids {1,2,3,7}

INTERSECT UNION

SELECT ... WHERE (
NAME='Bob'
AND SEX !='female' 
AND (CITY = 'Hangzhou' 
OR CITY = 'Shanghai')) 
OR(JSON_EXTACT(ATTR,'time') > 0
OR ANN(VEC, [1,1,1,1], 2)) INTERSECT

UNION

UNION

Figure 10: Query over indexes on all columns.

both baseline and incremental data are referenced. Quali-
fied row-ids are obtained from full-index (on baseline data)
and sorted index (on incremental data) respectively. After
that, we filter out deleted rows from referenced delete bit-
sets to get the final results.

Merge Baseline Data with Incremental Data. As
new data is continuously written, searching on incremental
data is significantly slowed down. Therefore, a build pro-
cess is started asynchronously to merge incremental data
into baseline data. During this process, the deleted records
will be ignored and a new index will be created correspond-
ingly. As illustrated in Figure 9, the merge procedure is as
follows: When the build process starts, we make current in-
cremental data immutable and create another incremental
data instance to handle new arrivals. Before the build pro-
cess finishes, all queries are executed on the baseline data,
stale incremental data and new incremental data. Once the
new version of baseline data is merged, the old baseline data
and stale incremental data can be safely removed. At this
time, the new baseline data, along with new incremental
data, serves subsequent queries.

4.2 Index Management
Indexes are a key component in almost all databases to

improve query performance. However, existing indexing ap-
proaches are not able to fully satisfy requirements in OLAP
applications. For example, B+-trees are costly to update due
to node splitting, and hence are only affordable on carefully
selected columns. Systems like Druid [36] choose bitmap-
based inverted indexes to build on more columns, but only
suitable for some specific data types (e.g., String). Recent-
ly, with the increasing need to query on complex-typed data
(e.g., JSON, vector and texts), indexes on these types should
also be supported. Moreover, most systems build indexes in
the write path [8, 6, 5, 10], which significantly limits write
performance.

We therefore design and implement an index engine that
builds indexes for structured and complex-typed data with-
out affecting write throughput. This engine builds indexes
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on all columns to fully support ad-hoc queries, and com-
pletely removes index construction from the write path. Sev-
eral sophisticated designs are made to minimize the storage
overhead and maximize the performance.

4.2.1 Index Filtering
Each column in a partition is built with an inverted index,

which is stored in a separate file. In the inverted index, the
index key is the value from the original column, while the
value is the list of corresponding row ids (i.e., row numbers).
According to Section 4.1.1, we can easily locate a row via
its id, since each row group has a fixed number of rows.

With indexes on all columns, AnalyticDB is able to sup-
port high-performance ad-hoc queries. Figure 10 gives a
SQL filtering example that contains conditions on both struc-
tured data and complex-typed data. For each condition, the
index engine filters on its corresponding index and obtains
partial results, i.e., a set of qualified row ids. After that,
all partial results are merged into the final results through
intersection, union, minus, etc. To merge these results, 2-
way merging is commonly used in most databases, but it
incurs huge memory usage and suffers low concurrency. To
mitigate this impact, we apply K-way merging [17] instead,
which ensures sub-second query latency on large datasets.

Index Path Selection. However, the overuse of index
filtering on all columns may sometimes deteriorate query
performance. For example, for two conditions A and B, if
the partial results of A is much smaller than that of B, it
is more cost-effective to obtain results of A first and further
filter them with B, rather than getting both partial result-
s and merging them. To address this issue, we propose a
runtime filter-ratio-based index path selection mechanism,
which evaluates the filter ratio of each condition to decide
whether to use the corresponding index at runtime. The fil-
ter ratio is defined as the number of qualified rows (retrieved
from index) divided by the total number of rows (retrieved
from meta data). AnalyticDB uses indexes to filter condi-
tions in ascending order based on their filter ratios. After
one condition filtering is finished, if the joint filter ratio of
all processed conditions (i.e., calculated by ratio multipli-
cation) is small enough (e.g., less than one percent of total
rows), this process termninates and all previously obtained
partial results are K-way merged. Subsequent conditions are
directly filtered on these row ids instead of on indexes.

4.2.2 Index for Complex-Typed Data
JSON. When a JSON object is inserted, we flatten hi-

erarchical JSON attributes into multiple columns and then
build inverted index for each column. For example, given
a JSON object {id, product name, properties {color,
size}}, it is flattened into columns id, product name,
product properties.color and product properties.size,
each of which is built an index. We apply PForDelta algo-
rithm [39] to compress the row-ids under each index key.
Furthermore, a JSON object may contain thousands of at-
tributes (i.e., thousands of indexes). We pack all indexes of
one object in a single file to limit the number of files. With
the index, AnalyticDB can directly fetch the object accord-
ing to the predicates in JSON format, which is more efficient
than reading and parsing blocks of JSON data from disk.

Full-text. For full-text data, AnalyticDB extends the in-
verted indexes by storing more information, including term
frequency and mapping from document to terms. We then
use the popular TF(Term Frequency)/IDF(Inverse Docu-

Table 1: Comparison between AnalyticDB (ADB)
and Greenplum (GP) on building all-column index
of 1TB data.

ADB GP
Index Space 0.66TB 2.71TB

Index Building Time 1 hour 0.5 hour
Asynchronous? Yes No

Data Insertion Time 4,015s 20,910s

ment Frequency) score to calculate the similarity between
the query and texts in the database. Only those objects
with scores above a threshold are returned to users.

Vector Data. Feature vectors are a common component
of many computer vision tasks, such as object/scene recogni-
tion and machine learning, where a high-dimensional vector
can be extracted from an image via a trained AI model. The
similarity of two objects can be measured by the distance of
their feature vectors. In queries for vector data, users always
require nearest neighbour search (NNS), aiming to find ob-
jects that are the closest to the query point in the database.
Formally, NNS can be defined as finding the object NN(q)
in a finite set Y ⊂ RD of vectors stored in the same column
in the database, who minimizes the distance to the query
vector q ∈ RD, as Equation 1. AnalyticDB supports differ-
ent similarity metrics d like Euclidean distance and Cosine
distance, which can be specified in SQL language.

NN(q) = arg min
y∈Y

d(q, y) (1)

The most brute-force way for NNS is to scan all vectors
linearly in the database, compute the distances with the
query vector and finally return the top-k results. To avoid
such exhaustive search, we implement and combine Product
Quantization (PQ) [26] and Proximity Graph (k-NNG) [22].
PQ and k-NNG are experimentally-proven efficient approxi-
mate NNS approaches [4] that fetch NN (or k-NN) with high
probability. PQ has a smaller index size by decomposing the
vector space, while k-NNG holds better search performance
and accuracy through its efficient well-connected graphical
index. AnalyticDB adaptively chooses the most appropriate
one for vector data, depending on the memory resources as
well as accuracy and efficiency requirements of users.

4.2.3 Index Space Saving
We apply an adaptive method to reduce index sizes. For

each key-value pair in the index, AnalyticDB automatically
chooses bitmap or integer array to hold the value based on
their space consumption. For example, if the index value is
[1,2,8,12], bitmap (2 bytes) is cheaper than integer array (4
bytes). But if the index value is [1,12,35,67], integer array (4
bytes) is a better choice than bitmap (9 bytes). By adopting
this method, the overall index size can be reduced by 50%.
We also allow users to disable indexes on specific columns
to trade latency for space.

4.2.4 Asynchronous Index Building
AnalyticDB serves tens of millions of write requests per

second, and thus is not affordable to build all-column in-
dexes in the write path. Alternatively, the index engine
builds index asynchronously. Recall that in AnalyticDB the
write path ends when write nodes flush write logs to Pangu
(Section 3.4.1). The index engine periodically builds in-
verted indexes on these new writes (i.e., incremental data),
and merges them with existing full indexes at background.
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Figure 11: Sorted Index for Incremental Data

Such asynchronous approach completely hides the overhead
of building from users, and preserves both query efficiency
and write throughput. The process for building and merg-
ing indexes is translated into many Map-Reduce tasks. With
the help of Fuxi [38], these tasks run concurrently and auto-
matically during off-peak periods within AnalyticDB clus-
ter, introducing acceptable overhead.

Table 1 compares building all-column index for 1TB da-
ta on AnalyticDB and Greenplum [5], a column-store-based
OLAP database system. We see that AnalyticDB only uses
0.66TB extra space for indexes, which is much smaller than
2.71TB in Greenplum. Although AnalyticDB doubles the
index building time, this asynchronous process does not im-
pact performance of online reads and writes. As shown in
Table 1, the time for real-time ingestion (INSERT) of 1TB
data in Greenplum is about four times longer than in An-
alyticDB. Thus, AnalyticDB yields acceptable overhead in
exchange for significant performance improvement for ad-
hoc queries, which is evaluated in Section 6.

4.2.5 Index For Incremental Data
The adoption of asynchronous indexes brings in a perfor-

mance gap: before the new index is online, incremental data
lack the support of indexes, and thus they need be scanned
to serve a query with high latency. To close this gap, the
index engine independently builds sorted indexes in read n-
odes for incremental data. The sorted index is actually an
array of row ids in the data block. As illustrated in Fig-
ure 11, for an ascending sorted index, the i-th element Ti

represents that the i-th smallest value in the data block is
at row Ti. A search in incremental data is then converted
to a binary search, reducing the complexity from O(n) to
O(logn). To store the sorted index, we allocate an addi-
tional header in each data block. As there are 30k rows in a
block and each row id is a short integer, the size of the head-
er, i.e., the sorted index, is just about 60KB. Before flushing
a data block, the index engine builds the sorted index and
dumps it to the head of the file. This building process is
executed locally in read nodes and is quite lightweight.

4.2.6 Index Cache for Conditions
Traditional databases cache indexes (at the granularity of

index page) in the memory to reduce costly disk I/Os. Ana-
lyticDB applies not only an index-page cache, but a more ag-
gressive query-condition cache. This query-condition cache
treats query conditions (e.g. id < 123) as keys, and query
results (i.e., row ids) as values. In consequence, repeated
filtering over index pages can be completely avoided. When
the query-condition cache misses, we can access indexes in
index-page cache to compute query results.

One challenge in our two-level cache policy is that user
conditions change continuously and dramatically, resulting
in frequent cache eviction. However, we observe that this
will not affect overall cache effectiveness much: 1) the con-
ditions with large-size results are rare and do not change fre-
quently (e.g., WHERE city=‘Beijing’), so that their caches
can last for a long time; 2) the conditions with small-size
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Figure 12: The STARs framework of AnalyticDB.
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Figure 13: Storage-aware join optimization.

results are massive and change dramatically (e.g., WHERE

user id=XXX), but their results can be re-computed with
low cost. In summary, costly computations are usually well
cached to save resources, while light queries are re-computed
without much extra overhead. This observation ensures the
effectiveness of our index cache.

5. OPTIMIZER AND EXECUTION ENGINE
In this section, we discuss the novel optimizations adopt-

ed by optimizer and execution engine respectively, which
further improve query latency and concurrency.

5.1 Optimizer
The AnalyticDB optimizer provides both CBO (cost-based

optimization) and RBO (rule-based optimization), and tar-
gets the real-time online analytics that require extremely low
response time and high concurrency. It contains a rich set of
relational algebra conversion rules to ensure that the opti-
mal plan can be always selected. These rules include: basic
optimization rules (e.g., cropping, pushdown/merge, dedu-
plication, constant folding/predicate derivation); probe op-
timization rules for different Joins (e.g., BroadcastHashJoin,
RedistributedHashJoin, NestLoopIndexJoin), Aggregate, Join-
Reorder, GroupBy pushdown, Exchange pushdown, Sort
pushdown, etc.; and advanced optimization rules (e.g., Com-
mon Table Expression). Other than the generic CBO/RBO
above, two key features are developed, i.e., storage-aware
optimization and efficient real-time sampling.

5.1.1 Storage-Aware Plan Optimization
Predicate Push-down. Predicate (i.e., condition) push-

down is to extract the relational algebraic calculations in
SQL that can take advantage of the underlying storage, and
to convert this query plan into two equivalent parts (i.e., for
the compute layer and the storage layer respectively). S-
ince there is no clear boundary in the original query plan to
support this separation, it completely relies on the optimiz-
er. Predicate push-down has already been implemented in
many distributed databases, but mainly focusing on AND
operators of single-column conditions. They do not consider
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other common operators, such as functions and joins, which
are usually implemented in the compute layer. This is be-
cause many existing databases do not provide the interface
for the storage layer to register its advanced capability. As
a result, the storage layer can only do a single column or a
combination of condition filtering.

AnalyticDB introduces a STARs (STrategy Alternative
Rules) [30, 14] framework to make the optimizer extensi-
ble for predicate push-down, as illustrated by Figure 12.
STARs provide a high-level, declarative, implementation-
independent specification of legal strategies for query exe-
cution. Each STAR defines a set of high-level constructs
from low-level database operators or other STARs. With
the STARs framework, AnalyticDB abstracts the capability
of heterogeneous data sources according to the dimensions
of relational algebra, and characterizes the capability of s-
torage as relational algebra that can be utilized. In addition,
the STARs framework also provides cost calculation. That
is, performing a push-down is not simply dependent on the
capability of storage, but also on the cost of its relational
algebra ability. During the dynamic planning, both the cost
and execution capability are used as reference factors at the
same time, so as to avoid blindly pushing down and causing
performance deterioration. This is important in low laten-
cy and high concurrency environment. After the optimizer
completes the initial distributed execution plan, the rela-
tional algebraic operators applicable for target data sources
are encapsulated by means of dynamic programming, and
transformed into corresponding storage API calls.

Join Push-down. Data redistribution is another impor-
tant aspect of distributed database execution plan. It is
different from those in traditional databases, mainly due to
the mismatch between the physical distribution characteris-
tics of data and the logical semantics of relational algebra.
For example, in SQL statement “SELECT T.tid, count(*)

FROM T JOIN S ON T.sid = S.sid GROUP BY T.tid”, based
on whether table T and S are hashed by the same field and
with partitions placed at the same read node (Section 3.4.2),
AnalyticDB is able to select the best join push down strate-
gy. The avoidance of data redistribution is very important,
since the cost of physical data redistribution is prohibitive,
which involves serialization, de-serialization, network over-
head, etc. In the case that table T and S are not hashed
by the same field, AnalyticDB clearly knows shuffling which
table is more efficient, by obtaining the sizes of T and S
from the underlying storage. As mentioned previously, the
optimizer expands and calculates the cost of all possible ex-
ecution plans. It is in this way that AnalyticDB achieves
an execution plan that is optimal for data characteristics at
different data sizes.

Index-based Join and Aggregation. Index-on-all-
columns further eliminate the overhead on building hash
indexes, by doing lookup on existing indexes instead. When
adjusting the order of join, the optimizer avoids generat-
ing BushyTree and prefers LeftDeepTree, when most of join
columns are partition columns and have indexes. With the
LeftDeepTree, AnalyticDB utilizes existing indexes better
(see Figure 13). Additionally, we also push down predicates
and aggregations. For example, aggregations like count can
be returned directly from indexes; and filtering can be eval-
uated solely on indexes. All these optimizations reduce the
query latency while improving the cluster utilization, which
enables AnalyticDB to support high concurrency easily.

5.1.2 Efficient Real-time Sampling
Cost estimation is the foundation for cost-based optimiza-

tion and is determined by the cardinality estimation that
heavily relies on the available statistics. In modern databas-
es, statistics are collected and utilized in a limited way where
data skewness and correlation are not well handled, result-
ing in sub-optimal query plans. Besides, since one of our
system design goals is the short response time of queries
that are either simple or complex, conventional approaches
(such as real-time statistics, predicate selectivity profiling,
and execution results feedback) are impractical due to their
overheads and complexities. Instead, we design and im-
plement an efficient sampling-based cardinality estimation
framework. Our framework takes advantages of the Ana-
lyticDB’s high-performance storage engine that provides ef-
ficient data access and evaluation through abundant types
of indexes, caches, and optimized computation. At opti-
mization time, the optimizer sends request on the sampling
predicates (individual or compound decided by optimization
rules) to the storage engine through the framework APIs. S-
torage engine then accesses the sampled data via appropri-
ate indexes/caches, evaluates the predicates via optimized
computation paths, and returns the cardinality results. The
optimizer utilizes the sampled cardinality to estimate can-
didate plans and choose the optimal one.

Although our sampling framework estimates the cardinali-
ty efficiently, further optimizations are carried out to further
reduce the overhead, especially for those critical business s-
cenarios where queries run in sub-seconds. Such optimiza-
tions include caching previously sampled results (and car-
dinality estimates), optimized sampling algorithm, and im-
proved derived cardinality, etc. By applying all these, our
sampling-based cardinality framework is able to estimate the
cardinality at extremely low overhead in milliseconds while
providing high estimation accuracy.

5.2 Execution Engine
AnalyticDB provides a general-purpose, pipeline-mode ex-

ecution engine, as well as a DAG [27] (Directed Acyclic
Graph) running framework on top of this engine. It is suit-
able for both small (with low latency) and large-scale (with
high throughput) workloads. AnalyticDB execution engine
is column-oriented, which takes advantages of the underlying
hybrid store clustering data on columns. Compared to row-
oriented execution engine, this vectorized engine is cache-
friendly and avoids loading unnecessary data into memory.

Like many OLAP systems, runtime code generator [32]
(CodeGen) is used to improve the efficiency of CPU-intensive
operations. AnalyticDB CodeGen is based on ANTLR AS-
M [2] that dynamically generates code for the expression
trees. This CodeGen engine also takes runtime factors into
consideration, allowing us to leverage the power of hetero-
geneous hardware in a task-level granularity. For example,
most types of data (such as int and double) in vectorized
engine are aligned. In a heterogeneous cluster with CPUs
supporting AVX-512 instruction set, we can generate byte-
codes using SIMD instructions to improve performance. In
addition, by consolidating the internal data representation
between storage layer and execution engine, AnalyticDB is
able to operate directly on serialized binary data rather than
Java objects. This helps eliminate the overhead of serializa-
tion and de-serialization, which accounts for more than 20%
of time when shuffling a large amount of data.
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Table 2: Three kinds of queries for evaluation.
Query type Query

Full Scan (Q1) SELECT * FROM orders ORDER BY o trade time LIMIT 10

Point Lookup (Q2)
SELECT * FROM orders
WHERE o trade time BETWEEN ’2018-11-13 15:15:21’ AND ’2018-11-13 16:15:21’
AND o trade prize BETWEEN 50 AND 60 AND o seller id=9999 LIMIT 1000

Multi-table Join (Q3)

SELECT o seller id, SUM(o trade prize) AS c FROM orders
JOIN user ON orders.o user id = user.u id
WHERE u age=10 AND o trade time BETWEEN ’2018-11-13 15:15:21’ AND ’2018-11-13 16:15:21’
GROUP BY o seller id ORDER BY c DESC LIMIT 10;

6. EVALUATION
In this section, we evaluate AnalyticDB in both real work-

loads and TPC-H benchmark [11] to demonstrate Analyt-
icDB’s performance under different types of queries and its
write capability.

6.1 Experimental Setup
The experiments are conducted on a cluster of eight phys-

ical machines, each with an Intel Xeon Platinum 8163 CPU
(@2.50GHz), 300GB memory and 3TB SSD. All these ma-
chines are connected through 10Gbps Ethernet network. We
create one AnalyticDB instance with 4 coordinators, 4 write
nodes, and 32 read nodes within this cluster.

Real Workloads. We use two real tables in our pro-
duction for the evaluation. The first table is called Users
Table, which uses user id as its primary key, and has 64
primary partitions (no secondary partition). The second
table is called Orders Table, which uses order id as its pri-
mary key, and has 64 primary partitions and 10 secondary
partitions. These two tables are associated with each other
through user id. We use three types of queries generated
from our users (as shown in Table 2), ranging from scan,
point lookup to multi-table join. Note that all three queries
contain o trade time, which is a timestamp column. It is
because Druid MUST have a timestamp column as the par-
tition key, and queries without specifying the timestamp
column are much slower [36].

Systems to compare against. We compare AnalyticD-
B with four OLAP systems: PrestoDB [9], Spark-SQL [13],
Druid [36], and Greenplum [5]. Greenplum has index on all
columns; Druid does not support index on numeric columns;
PrestoDB and Spark-SQL keep data in Apache ORC (Opti-
mized Record Columnar) File [3] and do not have index on
any column. All systems are run in their default configu-
rations. Note that Druid does not support complex queries
like JOIN, so that most of TPC-H queries and Q3 in Table 2
can not be executed. Hence, we omit it in corresponding ex-
periments. In all experiments, the term concurrency number
refers to the number of concurrently running queries.

6.2 Real Workloads
This section first presents query performance on 1TB data

and 10TB data, and then shows the write throughput.

6.2.1 Query on 1TB Data
We generate a dataset of 1TB to run the three queries

in Table 2. Figure 14 and Figure 15 show the 50-percentile
and 95-percentile query latency of AnalyticDB, PrestoDB,
Druid, Spark-SQL, and Greenplum respectively. As can be
seen, AnalyticDB achieves a lower latency by at least an
order of magnitude compared to other systems.

Q1. With the help of the index engine, AnalyticDB avoids
expensive scan and sort over the entire table, which is dif-
ferent from PrestoDB and Spark-SQL. In particular, Ana-
lyticDB distributes the operators of ORDER BY and LIMIT to
each secondary partition, which holds the index for colum-
n o trade time. Since the index is ordered, each partition
just traverses the index to obtain qualified row ids, involv-
ing only dozens of index entries. Although Greenplum also
builds index on all columns, it fails to utilize them for ORDER
BY operators and executes a full scan, thus is much slower
than AnalyticDB. Druid uses o trade time as the column
for range partitioning [36]. When doing ORDER BY on this
column, Druid filters from the largest range partition. It
achieves better performance than Greenplum, but is stil-
l slower than AnalyticDB as it still scans all rows in that
partition.

Q2. In our dataset, the number of rows satisfying condi-
tions on o trade time, o trade prize and o seller id are
306,340,963, 209,994,127, and 210,408 respectively. With-
out index support, PrestoDB and Spark-SQL has to scan
all rows for filtering. Druid and Greenplum achieve bet-
ter performance as they can benefit from fast searches on
indexed columns. However, Druid only builds indexes on
string columns. Greenplum’s indexes are available for all
columns, but it has to filter multiple conditions sequential-
ly, and does not have cache for unchanged conditions. Com-
pared to them, AnalyticDB directly scans indexes on three
columns in parallel, and caches qualified row ids respective-
ly (Section 4.2.6). Hence, the subsequent queries with same
conditions could benefit from the index cache.

Q3. As shown in Figure 14 and Figure 15, the 50/95-
percentile latency of Q3 is higher than that of Q1 and Q2
under different concurrency levels. This is because Q3 is a
much more complicated query, i.e., a multi-table join scan
combined with GROUP BY and ORDER BY operators. Though
the latency is slightly high due to the query complexity,
AnalyticDB still ensures that the optimal execution can be
achieved. In particular, AnalyticDB translates the join op-
erator into equality sub-queries and makes use of indexes
to complete these sub-queries. It further leverages index-
es to execute GROUP BY and ORDER BY operators and avoids
the overhead of building a hashmap. Greenplum is slower
than AnalyticDB, because it bears the hashmap overhead
from hash join. To make it fair, we also evaluate Analyt-
icDB in hash join mode and are able to achieve comparable
performance with Greenplum.

6.2.2 Query on 10TB Data
We further generate a larger dataset of 10TB data and

increase the level of concurrency. As the comparison sys-
tems are much slower than AnalyticDB in large datasets
and higher concurrency, we omit them from this analysis.
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Figure 14: 50-percentile latency, 1TB data (PDB for PrestoDB, ADB for AnalyticDB, GP for Greenplum).
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Figure 15: 95-percentile latency, 1TB data (PDB for PrestoDB, ADB for AnalyticDB, GP for Greenplum).

10

10
2

10
3

10
4

40 80 120 160 200

5
0
-t

h
 l
a
te

n
c
y
(m

s
)

Concurrency number

Q1
Q2
Q3

(a) 1TB

10
2

10
3

10
4

40 80 120 160 200

5
0
-t

h
 l
a
te

n
c
y
(m

s
)

Concurrency number

Q1
Q2
Q3

(b) 10TB

Figure 16: 50-percentile latency of AnalyticDB on
1TB and 10TB data.

Figure 16 illustrates the 50-percentile latency of three
queries on both 1TB and 10TB data. We can see that, for
Q1 and Q2, the latency is within hundreds of milliseconds
under different concurrency levels. For Q3, the latency with
200 concurrency is much higher than that with 40 concur-
rency. The reason is that the computing capacity under 8
machines has been saturated. Specifically, with 64 prima-
ry and 10 secondary partitions, the real concurrent threads
could reach 128,000 under 200 concurrency. There are in
total 48 × 8 = 384 CPU cores on these eight machines. As
Q3 is computing-intensive, the performance is deteriorated
due to frequent context switch, suffering from high latency.

From Figure 16 we can see that the variation trend on
10TB data under different concurrency levels is similar to
that on 1TB data. That is, the performance is not affect-
ed dramatically in spite of the increase in data size. The
query latency on 10TB just doubles that on 1TB, because
AnalyticDB searches indexes for row ids first and only need-
s to fetch qualified rows. With the help of index cache,
index lookup is cost-effective and brings down the overall
overhead. In summary, the performance of AnalyticDB is
slightly impacted by the table size, but is more dominat-
ed by the computation on indexes as well as the number of
qualified rows.

6.2.3 Write Throughput
To evaluate the write performance of AnalyticDB, we in-

sert records, each with 500 bytes, into Orders Table. Table 3
illustrates the write throughput (write requests per second).
Thanks to the read/write decoupling architecture and asyn-

Table 3: Write throughput under different numbers
of write nodes.

write node number 2 4 6 8 10
write throughput 130k 250k 381k 498k 625k
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Figure 17: TPC-H performance comparison.

chronous index building, the write throughput grows nearly
linearly with the increasing number of write nodes, until
Pangu is saturated. When the number of write nodes reach-
es 10, the write throughput is 625,000 and the bandwidth
corresponds to about 300 MB/s. Note that index build-
ing tasks are distributed over the entire AnalyticDB cluster
with affordable overhead (as evaluated in Table 1 in Sec-
tion 4.2.4), which will not affect both query efficiency and
write throughput.

6.3 TPC-H Benchmark
We generate 1TB data for TPC-H evaluation. Figure 17

illustrates the performance comparison among AnalyticD-
B, PrestoDB, Spark-SQL, and Greenplum 3. AnalyticDB
achieves the smallest running time for 20 out of 22 queries,
and outperforms the second best, i.e., Greenplum, by 2x.
Compared to Spark-SQL, AnalyticDB adopts pipeline pro-
cess model and indexes, which is faster than stage-based
process. PrestoDB also adopts pipeline process, but it lack-
s indexes on columns. Although Greenplum also has both

3In Figure 17, if the time of a query is 1000s, it means the
system encountered an exception when running the query
and we did not get a result, e.g., query No.3 of PrestoDB
and query No.21 of Spark-SQL.
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pipeline process and all-column index, AnalyticDB preserves
four additional advantages. First, AnalyticDB uses hybrid
row-column storage, while Greenplum uses column-store.
About half of columns are involved in a common TPC-H
query, and hence AnalyticDB can fetch multiple column-
s of a row with a single I/O. Second, AnalyticDB’s run-
time cost-based index path selection (using real intermedi-
ate results) leads to better table access plans, compared to
statistics-based planning in Greenplum. Third, AnalyticDB
combines K-ways merging with composite predicates push-
down. Fourth, AnalyticDB incorporates vectorized execu-
tion engine and applies optimized CodeGen to all operators
and expressions. For query No.2, AnalyticDB is slower than
PrestoDB and Greenplum, because it chooses a different join
order for multi-table join.

7. CONCLUSION
This paper presents AnalyticDB, a high-concurrent, low-

latency, and real-time OLAP database at Alibaba. Ana-
lyticDB has an efficient index engine to build index for al-
l columns asynchronously, which helps improve query per-
formance and hide index building overhead. With careful
designs, the all-column index just consumes 66% more s-
torage. AnalyticDB extends hybrid row-column layout to
support both structured and other complex-typed data that
may be involved in complex queries. To provide both high-
throughput write and high-concurrent query, AnalyticDB
follows a read/write decoupling architecture. Moreover, we
enhance the optimizer and execution engine in AnalyticDB
to fully utilize the advantages of our storage and indexes.
Our experiments have showed that all these designs help
AnalyticDB achieve better performance compared to state-
of-art OLAP systems.
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[20] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux,
and S. Madden. Hyrise: a main memory hybrid storage engine.
PVLDB, 4(2):105–116, 2010.

[21] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak,
S. Stefani, and V. Srinivasan. Amazon redshift and the case for
simpler data warehouses. In SIGMOD, pages 1917–1923. ACM,
2015.

[22] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang. Fast
approximate nearest-neighbor search with k-nearest neighbor
graph. In IJCAI, pages 1312–1317, 2011.

[23] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden.
Performance tradeoffs in read-optimized databases. In VLDB,
pages 487–498. VLDB Endowment, 2006.

[24] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX
ATC, volume 8. Boston, MA, USA, 2010.

[25] J.-F. Im, K. Gopalakrishna, S. Subramaniam, M. Shrivastava,
A. Tumbde, X. Jiang, J. Dai, S. Lee, N. Pawar, J. Li, et al.
Pinot: Realtime olap for 530 million users. In SIGMOD, pages
583–594. ACM, 2018.

[26] H. Jégou, M. Douze, and C. Schmid. Product quantization for
nearest neighbor search. IEEE Trans. Pattern Anal. Mach.
Intell., 33(1):117–128, 2011.

[27] F. V. Jensen. An introduction to Bayesian networks, volume
210. UCL press London, 1996.

[28] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching,
A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs, et al.
Impala: A modern, open-source sql engine for hadoop. In Cidr,
volume 1, page 9, 2015.

[29] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver,
L. Doshi, and C. Bear. The vertica analytic database: C-store 7
years later. PVLDB, 5(12):1790–1801, 2012.

[30] G. M. Lohman. Grammar-like functional rules for
representing query optimization alternatives, volume 17.
ACM, 1988.

[31] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: interactive analysis of
web-scale datasets. PVLDB, 3(1-2):330–339, 2010.

[32] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. PVLDB, 4(9):539–550, 2011.

[33] K. Sato. An inside look at google bigquery.(2012). Retrieved
Jan, 29:2018, 2012.

[34] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, et al. C-store: a column-oriented dbms. In VLDB,
pages 553–564. VLDB Endowment, 2005.

[35] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: a
warehousing solution over a map-reduce framework. PVLDB,
2(2):1626–1629, 2009.

[36] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and
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