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ABSTRACT
Query optimizers are notorious for inaccurate cost estimates, lead-
ing to poor performance. The root of the problem lies in inaccurate
cardinality estimates, i.e., the size of intermediate (and final) re-
sults in a query plan. These estimates also determine the resources
consumed in modern shared cloud infrastructures. In this paper,
we present CARDLEARNER, a machine learning based approach
to learn cardinality models from previous job executions and use
them to predict the cardinalities in future jobs. The key intuition in
our approach is that shared cloud workloads are often recurring and
overlapping in nature, and so we could learn cardinality models for
overlapping subgraph templates. We discuss various learning ap-
proaches and show how learning a large number of smaller models
results in high accuracy and explainability. We further present an
exploration technique to avoid learning bias by considering alter-
nate join orders and learning cardinality models over them. We de-
scribe the feedback loop to apply the learned models back to future
job executions. Finally, we show a detailed evaluation of our mod-
els (up to 5 orders of magnitude less error), query plans (60% ap-
plicability), performance (up to 100% faster, 3× fewer resources),
and exploration (optimal in few 10s of executions).
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1. INTRODUCTION
The root of all evil, the Achilles Heel of query opti-
mization, is the estimation of the size of intermediate
results, known as cardinalities. [27]

While it is well-known that poor cardinality estimation leads to in-
accuracy in traditional query optimizers [17, 26, 18], the problem is
even harder with big data systems. This is due to: (i) massive vol-
umes of data which are very expensive to analyze and collect statis-
tics on, (ii) presence of unstructured data that have schema imposed
at runtime and hence cannot be analyzed a priori, and (iii) pervasive
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use of custom user code (e.g., UDFs) that embed arbitrary applica-
tion logic resulting in arbitrary output cardinalities.

Cardinality estimates are even more important to shared cloud in-
frastructures, such as Google’s BigQuery [6], Amazon’s Athena [5],
and Microsoft’s Azure Data Lake [11]. These shared cloud infras-
tructures expose a job service abstraction for users to submit analyt-
ics queries written in a SQL-like query language [42, 9], and a pay-
as-you-use model for users to pay only for the resources consumed
per job (e.g., number of containers, size of containers, etc.). Car-
dinality estimates are crucial in determining the resources needed,
and hence the monetary costs incurred, to execute a job in these
shared infrastructures.

Prior techniques to improve cardinality estimates include the
popularly used dynamic query re-optimization [19, 28, 8, 46], i.e.,
monitoring the actual cardinalities and adjusting the query plan as
the query execution progresses. A major challenge of dynamic
query re-optimization is determining when to re-optimize. On one
hand, aggressive re-optimization can lead to increased overhead.
On the other hand, a large portion of the query may have already
been executed sub-optimally if re-optimization is performed con-
servatively. Moreover, adjusting the query plan in a distributed set-
ting is expensive. Other feedback-based approaches either rely on
adjustment factors [39] and are prone to error, or reuse the cardi-
nalities of the exact same query subexpressions seen before [2] and
have limited applicability.

In this paper, we explore a radically different approach to deriv-
ing intermediate cardinalities. Given that estimating cardinalities
at compile-time is non-trivial for big data systems, we consider
whether we can learn cardinalities from past executions. This is
possible due to the popularity of shared cloud infrastructures [20]
with large volumes of query workloads [34] that could be used for
training. Furthermore, these shared cloud workloads are often re-
curring and overlapping in nature [22, 21, 20], providing significant
opportunities to learn and apply a cardinality model multiple times.

We present CARDLEARNER, a machine learning based approach
to improve cardinality estimates at each point in a query graph. Our
key idea is to extract overlapping subgraph templates that appear
over multiple query graphs and learn cardinality models over vary-
ing parameters and inputs to those subgraph templates. The result-
ing predictor is up to five orders of magnitude more accurate than
the default cardinality estimators. This is an important step towards
building a learning optimizer for modern shared cloud workloads.
We further introduce an exploratory join ordering technique to ex-
plore alternate join orders (i.e., alternate subgraphs), build cardi-
nality models over them, and eventually find the optimal join order.
We have integrated CARDLEARNER with the SCOPE [9, 47] query
optimizer and it will be available in an upcoming SCOPE release.
In summary, our core contributions are as follows:
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(a) Cardinality Accuracy (b) Cost Accuracy (c) Subgraph Overlaps
Figure 1: SCOPE workload from Cosmos clusters at Microsoft. Figures 1(a) and 1(b) compare the estimated/actual cardinalities and
costs, while Figure 1(c) motivates the presence of overlaps in production workloads.

(1) We present CARDLEARNER, a learning approach to cardinality
estimation in big data workloads. We motivate the problem of in-
accurate cardinalities from production workloads at Microsoft. We
further illustrate the overlapping nature of production workloads
and how it facilitates learning cardinalities for subgraph templates.
We then describe the key requirements and our design choices for
building such a system in our production setting (Section 2).

(2) We walk through the journey of learning cardinality models
and discuss the trade-offs in various approaches. Instead of learn-
ing one single giant model, we show how a large number of small
models are helpful in achieving high accuracy as well as low over-
head in terms of featurization (Section 3).

(3) We present an exploration technique to consider alternate join
orders and avoid learning bias. We describe an exploratory join or-
dering algorithm that leverages prior executions to quickly prune
the search space and consider only the promising join order candi-
dates over a small number of executions (Section 4).

(4) We describe our feedback loop to inject the predicted cardinal-
ities back to the optimizer. This includes offline workload analysis,
parallel training, and annotations for future queries (Section 5).

(5) Finally, we show a detailed experimental evaluation, including
model evaluation, plan evaluation, performance evaluation, and ex-
ploration evaluation, over production workloads at Microsoft. Our
results show that the learning-based approach is applicable to 60%
of the jobs and 50% of the subgraphs, has 75th percentile cross-
validation error of 1.5%, which is five orders of magnitude lower
than the default optimizer error, and results in plans which have
lower latency (25% less), processing time (55% less), as well as
containers used (60% less). The exploration technique is further
able to find the optimal join orders in few 10s of executions for
fairly sized schemas (Section 6).

2. CARDLEARNER OVERVIEW
Motivation. In this section, we illustrate the problem of cardinal-
ity and cost estimation in SCOPE [9, 47] workloads at Microsoft,
which motivates our approach. SCOPE data processing system pro-
cesses multiple exabytes of data over hundreds of thousands of jobs
running on hundreds of thousands of machines. These jobs are
written in a SQL-like language and authored by thousands of inter-
nal developers, across different business units in Microsoft, to draw
insights from the usage of various Microsoft products. To evaluate
the cardinality and cost estimates in SCOPE, we analyzed one day’s
workload, consisting of tens of thousands of jobs from thousands
of internal users, from one of the largest SCOPE customers, the
Asimov system [4]. The Asimov system uses SCOPE to analyze
telemetry data from millions of Windows devices in a shared cloud
infrastructure, i.e., thousands of users processing shared datasets
using a shared set of compute resources.

Figure 1(a) shows the cumulative distribution of the ratio of es-
timated and actual cardinalities of different subgraphs. Our results
show that a very tiny fraction of the subgraphs have estimated car-
dinalities matching the actual ones, i.e., the ratio is 1. Almost 15%
of the subgraphs underestimate (up to 10,000x) and almost 85%
of the subgraphs overestimate (up to 1 million times!). Figure 1(b)
shows the cumulative distribution of the ratio of estimated and ac-
tual processing costs of different subgraphs. We see that the esti-
mated costs are as much off as the cardinality — up to 100,000x
overestimated and up to 10,000x underestimated than the actual
costs. This is because the cost models are built considering car-
dinality as the key input and therefore estimated costs are directly
correlated with the estimated cardinality. Hence, cardinality is in-
deed the root of the problem.

We also computed the Pearson correlation coefficient between
the estimated and actual cardinalities/costs, and they both turned
out to be very low. As discussed before, estimating cardinalities in
a big data system like SCOPE is challenging for several reasons,
including unstructured data and user defined operators (UDOs). In
its current state, the SCOPE query processing system derives ref-
erence selectivities, for different operator classes, from the most
important workloads. Obviously, these selectivities are not appli-
cable to all scenarios, offering a huge potential for improvement.
Also, making simple adjustments to these selectivities do not help,
as we discuss in detail in Section 3.1.

SCOPE workloads are also overlapping in nature: multiple jobs
access the same datasets in the shared cloud and end up having
common subgraphs across them. These jobs are further recurring
in nature, i.e., they are submitted periodically with different param-
eters and inputs. Figure 1(c) shows the cumulative distribution of
subgraph overlap frequency. We see that 40% of the subgraphs ap-
pear at least twice and 10% appear more than 10 times. Thus, we
could leverage subgraph overlaps to learn cardinality models. By
improving cardinality estimates, our goal is to improve plan quality,
i.e., produce plans with lower costs, and to reduce the resource con-
sumption caused by overestimation, i.e., avoid over-provisioning a
large number of containers, each processing a tiny dataset.

Note that while we focus on big data in shared clouds due to
the presence of overlaps in them, the problem of cardinality es-
timation is also relevant for other clouds, short running jobs, or
even traditional databases. It is equally possible for these other
environments to have overlapping workloads and hence the learn-
ing opportunities. Exploring these will be a part of future work.
Likewise, the over-provisioning problem would be applicable to all
container-based data processing environments. Finally, the cost as-
sociated with improving cardinality estimation is a system cost to
improve system efficiency and attract more customers, even though
each of them might be paying less in the pay-as-you-go model.
Requirements. Our key requirements derived from the current
production setting are as follows:
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R1. Being minimally invasive, i.e., we do not want to completely
rewrite the existing optimizer. Furthermore, the optimizer should
have the flexibility to decide whether to use the improved cardinal-
ities, and be able to overwrite them with any user-provided hints.

R2. Having an offline feedback loop to learn the cardinality mod-
els outside of the critical path and use them multiple times before
updating with new ones. This is because workload traces on our
clusters are collected and post-processed offline.

R3. Having low compile time overhead to the existing optimizer
latencies (typically 10s to 100s of milliseconds), i.e., cardinality
improvement mechanisms should be lightweight.

R4. Finally, the improved cardinalities should be explainable, i.e.,
we do not want to add a black box which is difficult to reason about.
This is important in SCOPE like cloud services [6, 5], where cus-
tomer concerns need to be resolved quickly.
Approach. We apply a learning-based approach to improve car-
dinalities using past observations. Instead of using state-of-the-art
operator based learning [39] (discussed in Section 3.1), we con-
sider subgraphs and learn their output cardinalities. Rather than
learning a single giant model to predict cardinalities for all pos-
sible subgraphs, we learn a large number of smaller models (few
features), one for each subgraph template in the workload. These
models are highly accurate as well as much easier to understand
(R4). Smaller feature set also makes it easier to featurize during
prediction, adding minimal compile time overhead (R3). Further-
more, since we learn over subgraph templates, we can train our
models periodically over new batches of data and outside of the
critical path of query processing (R2). Finally, we provide the im-
proved cardinalities as annotation hints to the query that could later
be applied wherever applicable by the optimizer, i.e., we do not
overwrite the entire cardinality estimation mechanism and the op-
timizer can still choose which hints to apply (R1).

In the rest of the paper, we describe our approach to learning car-
dinality models in Section 3, introduce algorithms to avoid learn-
ing bias in Section 4, discuss system details of our feedback loop
in Section 5, and present a detailed evaluation in Section 6. We
discuss related work in Section 7. Finally, Section 8 concludes.

3. LEARNING CARDINALITY MODELS
Traditional query optimizers incorporate a number of heuristics

to estimate the cardinalities for each candidate query subgraph.
Unfortunately, these heuristics often produce inaccurate estimates,
leading to significantly poor performance [17, 26, 39]. Given large
prior workloads in production systems, the question is whether we
can learn models to predict the cardinalities. The rest of this sec-
tion describes the various aspects we considered towards answering
this question.

3.1 Adjustment Factors
Before considering sophisticated learning models, one important

question is whether we can simply apply adjustment factors (i.e.,
the ratio between the actual selectivity and the estimated selectiv-
ity of a given operator) to cardinality estimates and get satisfactory
results. This is similar to the approach followed in LEO [39]. The
adjustment factor approach can be viewed as a very simple linear
model, with its slope being the adjustment factor and its only fea-
ture being the estimated selectivity. This approach suffers from two
major problems: First, adjusting selectivity using a constant factor
assumes that the relationship between the input and output cardi-
nality is linear. However, this assumption rarely holds given the
presence of complex operators such as join, aggregation, and UDO
in production workloads. Therefore, a single adjustment factor is

not enough to model the relationship between the input and output
cardinality. Second, this approach considers estimated selectivity
as the only relevant feature to adjust the output cardinality. This is
limiting because there are many other factors that contribute to the
output cardinality, especially under the presence of parameterized
user code. To illustrate, Table 1 shows the input and output cardi-
nalities from multiple instances of a recurring user-defined reducer
from the SCOPE workload (see Section 2).

Table 1: Cardinalities of a recurring user-defined reducer.
Reducer Instance Input Cardinality Output Cardinality

R1 672331 1596
R2 672331 326461
R3 672331 312
R4 672331 2
R5 672331 78
R6 672331 1272
R7 672331 45
R8 672331 6482

Although the input cardinality to the reducer is the same across
all instances, the output cardinalities are very different. This is
because the output cardinality depends on the parameters of the
reducer, which are different across instances. Hence, simple ad-
justment factors will not work for complex queries with such user
code. To validate that, we computed the percentage error and Pear-
son correlation (between the predicted and actual cardinality) over
this dataset, which yields over 1 million percent error and Pearson
correlation of 0.38. Therefore, the adjustment factor approach does
not help in this situation.

We extended the above analysis to all subgraphs in the SCOPE
workload (see Section 2) that have the same logical expression1.
The average coefficient of variation of output cardinalities turns
out to be 22%, 75th percentile being 3.2% and 90th percentile
being 93%. Thus, cardinalities vary significantly and simple ad-
justment factors will not work. If we use the average adjustment
factor for each subgraph, the 75th and 90th percentile errors are
78% and 840% respectively, compared to 1.5% and 32% for the
learned models (See Section 6.1.2).

Given the above limitations, we consider using more sophisti-
cated learning techniques. We introduce the granularity of our
learning models in Section 3.2, and discuss how we enhance the
feature set and pick the model in Sections 3.3 and 3.4 respectively.

3.2 Granularity of Learning
Our goal is to obtain accurate output row counts for every sub-

graph in each of the queries. These subgraphs are rooted at one
of the internal operator nodes and cover all prior operators from
that node. We consider different learning granularities for a sub-
graph, depending on what part of the subgraph is considered fixed,
as shown in Table 2 below.

Table 2: Possible granularities for learning cardinality.
Subgraph Type Logical Expression Parameter Values Data Inputs
Most Strict 3 3 3
Template 3 7 7
Most General 7 7 7

The top row in Table 2 shows one extreme, the most strict sub-
graphs, where the logical expression, parameter values, and data
inputs are all fixed. In this case, we simply record the subgraph
cardinalities observed in the past and reuse them in future occur-
rences of the exact same subgraphs. This is similar to the approach
followed in ROPE [2]. While these feedbacks are the most ac-
curate, such strict matches are likely to constitute a much smaller

1Logical expression includes the predicates and the schemas of in-
put datasets but excludes the parameter values and the content of
the input datasets.
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fraction of the total subgraphs in the workload (e.g., less than 10%
on our production workloads). Hence, low applicability is the main
challenge with the most strict subgraph matches.

The bottom row in Table 2 shows the other extreme, where none
of the logical expressions, parameter values, and data inputs are
fixed. In this case, we essentially learn a single global model that
can predict cardinalities for all possible subgraphs, i.e., having full
applicability. However, it turns out that building a single global
model is impractical for a number of reasons: (i) feature engineer-
ing: featurizing the logical expression of the subgraph is challeng-
ing since it is difficult to express a variable-size subgraph as a fixed-
size feature vector without losing the structure of the graph, which
we assume have strong predictive signal. (ii) large-scale training: a
very large set of training data is required to train one single model,
which in turn needs powerful scale-out machine learning tools to
be developed. (iii) prediction latency: the single model approach
requires a large number of features, and extracting all features dur-
ing the query compilation phase is at odds with the pressing needs
of low compile time; in particular, getting features that relate to in-
put data distribution (such as max, min, number of distinct values)
could require preprocessing that is simply not possible for ad-hoc
queries.

We take a middle ground. Our approach is to learn cardinalities
for each template subgraph (Table 2), with varying parameters and
inputs. This has a number of advantages:
(1) Easier to featurize: We no longer need to featurize the logical
expression. Furthermore, since subgraphs with the same logical
expression have the same input data schema, the data distributions
remain roughly the same and the only data feature that typically
matters is the input size, which could be easily retrieved from the
database catalog. Furthermore, the parameter values provided to
the logical expression could be readily used as features. Therefore,
learning at this granularity makes featurization much simpler.
(2) Higher applicability: Compared to the most strict subgraphs,
learning cardinalities for templates gives higher applicability as it
allows both parameters and data inputs to vary (Table 2).
(3) Higher accuracy: It is challenging to have high accuracy in a
single model, due to the non-linear nature of the target cardinality
function. Instead, a large number of smaller models allows us to
capture the non-linearity of each subgraph more accurately.
(4) Offline feedback loop: Since subgraph templates allow for in-
puts and parameters to vary, we could periodically train the model
and use it to predict future subgraphs that have matching logical
expressions. Moreover, since training happens offline, its overhead
does not lie on the critical path of query processing. We discuss in
Section 6 how to detect when the models become fairly inaccurate
and retrain them.

3.3 Feature Engineering
Below we discuss the features we use to train our models and

analyze the impact of each feature on different subgraph models.

3.3.1 Feature Selection
There are three types of features that we consider, listed together

in Table 3. First, we extract metadata such as the name of the job
the subgraph belongs to and the name of the input datasets. These
metadata attributes are important as they could be used as inputs to
user defined operators. In fact, the reason that leads to the orders-
of-magnitude difference in the output cardinality between the first
and the second row in Table 1 is due to the difference in the name
of the job (everything else is the same for these two observations).

Second, we extract the input cardinalities of all input datasets.
Intuitively, the input cardinality plays a central role in predicting

Table 3: The features used for learning cardinality.
Name Description
JobName Name of the job containing the subgraph
NormJobName Normalize job name
InputCardinality Total cardinality of all inputs to the subgraph
Pow(InputCardinality, 2) Square of InputCardinality
Sqrt(InputCardinality) Square root of InputCardinality
Log(InputCardinality) Log of InputCardinality
AvgRowLength Average output row length
InputDataset Name of all input datasets to the subgraph
Parameters One or more parameters in the subgraph

the output cardinality (similar to LEO’s assumption [39]). In or-
der to account for operators (joins, aggregations, and UDO) that
can lead to a non-linear relationship between the input and output
cardinality, we also compute the squared, squared root, and the log-
arithm of the input cardinality as features.

Finally, since the parameters associated with operators, such as
filters and UDOs, can have a big impact in the output cardinality,
we also extract these parameters as features.

3.3.2 Feature Analysis
We now analyze the features that contribute to our model’s pre-

diction. We analyze the Poission regression models under the pro-
duction training data from one of the largest customers in SCOPE
(described earlier in Section 2). We consider Poisson regression
since it offers the best performance, as shown later in Section 6.
For each model, the features that do not contribute to the prediction
are given zero weights. Hence, inspecting the features with non-
zero weights gives us insight about what features contribute more
to the prediction (important for R4 from Section 2). In Figure 2(a),
for each feature (x-axis), we compute the fraction of the models
where the feature has non-zero weights (y-axis). Since each model
can have different number of parameters as features, we group these
parameters into one feature category named ‘Parameters’ for ease
of presentation. Across all the models that we trained, we notice
that InputCardinality plays a central role in model prediction as it
has non-zero weights in near 50% of the models. It is worth noting
that the squared, squared root, and logarithm of the input cardinal-
ity also have big impact on the prediction. In fact, the fractions are
a bit higher than InputCardinality. Interestingly, all other features
also have noticeable contribution. Even the least significant fea-
ture, AvgRowLength, has non-zero weights in more than 10% of
the models.

We further group the models based on the root operator of the
subgraph template, and analyze models whose root operators are
Filter, UDO, Join, and Aggregation. For Join and UDO, we notice
that the importance of cardinality and input dataset features go up
significantly, possibly due to complex interaction between different
datasets for Joins and ad-hoc user-defined data transformations for
UDOs. For Filter, it is not surprising to see that Parameters con-
tribute a lot more, e.g., the parameter values to the filter operator
can have big impact on the output cardinality. For Aggregation, we
see the AvgRowLength matters a lot less because a large fraction of
the aggregation queries produce a single number as output, which
has the same row length. To summarize, Figure 2(a) shows that a
lot of features other than InputCardinality contribute to cardinality
prediction, and models with different operators have different set
of important features.

Figure 2(b) shows the cumulative distribution of the number of
non-zero weight features our models contain. Overall, we see that
more than 55% of the models have at least 3 features that contribute
to the prediction, and 20% of the models have at least 6 features.
It is worth noting that for models whose root operators are UDOs,
more than 80% of the models have at least 5 contributing features.
This confirms that subgraphs with complex operators need a num-
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Figure 2: Fraction of models that contain each feature with
non-zero weight (2(a)), and the cumulative distribution of the
number of non-zero weight features a model contains (2(b)).
ber of features to accurately predict the output cardinality, as op-
posed to relying solely on the input cardinality (Section 3.1).

3.4 Choice of Model
We experimented with three different types of machine learning

models: linear regression (LR) [31], Poisson regression (PR) [13],
and multi-layer perceptron (MLP) neural network [14]. While LR
is a purely linear model, PR is slightly more complex and is con-
sidered a generalized linear model (GLM) [30]. MLP, on the other
hand, provides us with a fully non-linear and arbitrarily complex
predictive function.

The main advantage of using linear and GLM models is their
interpretability, which is crucial for our requirement R4 from Sec-
tion 2. In particular, it is easy to extract the learned weights as-
sociated with each feature so that we can explain which features
contribute more to the output cardinality in a postmortum analysis.
This can be useful for many practical reasons as it gives analysts
an insight into how different input query plans produce different
output cardinalities. The simplicity and explainability can however
come at a cost: the linear model may not be sufficiently complex
to capture the target cardinality function. This is referred to as the
problem of underfitting which puts a cap on the accuracy of the
final model regardless of how big our training data is. Also, note
that LR can produce negative predictions which are not allowed in
our problem since cardinalities are always non-negative. Though,
we can rectify this problem by adjusting the model output after-fact
so that it will not produce negative values. PR, on the other hand,
does not suffer from this problem as by definition it has been built
to model (non-negative) count-based data.

On the other extreme, MLP provides us with a much more so-
phisticated and richer modeling framework that in theory is capable
of learning the target cardinality function regardless of its complex-
ity, given that we have access to sufficient training data. In prac-
tice, however, training and using a MLP for cardinality estimation
is way more challenging than that of LR or PR for some fundamen-
tal reasons. First, as opposed to LR and PR, using a MLP requires
careful designing of the neural network architecture as well as a
significant hyper-parameter tuning effort. Secondly, if we do not
have enough training data for a given subgraph template, depend-
ing on its complexity, it is very easy for a MLP to just memorize
the training examples without actually learning how to generalize
to future examples, also known as the overfitting problem in ma-
chine learning. Finally, it is quite difficult to explain and justify the
output of MLP for human analysts even though the output might as
well be quite an accurate prediction of the cardinality.

To illustrate the effectiveness of different models, we compare
the percentage error and Pearson correlation (between the actual
and predicted cardinality) across different learning approaches over
the workload used in Section 3.1 (multiple instances of a reducer

Table 4: Comparing adjustment factor with other approaches.
Model Percentage Error Pearson Correlation
Default Optimizer 2198654 0.41
Adjustment Factor (LEO) 1477881 0.38
Linear Regression 11552 0.99
Neural Network 9275 0.96
Poisson Regression 696 0.98

that takes different parameters). Table 4 shows that although LEO’s
approach improves slightly over the default optimizer estimates,
it still has very high estimation error and low correlation. On
the other hand, our learning models (linear regression, poisson re-
gression and neural networks) can reduce the error by orders-of-
magnitude and provide very high correlation. Note that although
significantly better than the adjustment factor approach, our mod-
els still generate high prediction errors (ranging from 696% to
11552%). The reason is that for this workload, input cardinality
does not contribute to the variation of output cardinality, as it is
fixed across all reducer instances. Moreover, most of the parameter
inputs to the reducer take non-numerical values that are difficult to
map to output cardinality. These make it difficult to predict the ex-
act value of the output cardinality. However, the high Pearson cor-
relation indicates that there is a near-linear relationship between the
predicted cardinality (cost) and the actual cardinality (cost). This
implies that the query plan picked by the optimizer is highly likely
to be optimal, regardless of the exact value of the predicted costs.

3.5 Limitations
Although our feature-based learning could achieve very good

performance, as shown in Section 6, there are a few limitations
to this approach.

First, our feature-based framework cannot make predictions for
unobserved subgraph templates. Of course, we can collect more
data, i.e., observing more templates, during the training phase, but
the model still cannot improve the performance of ad-hoc queries
with new subgraph templates.

Second, since we train a model for each subgraph template, the
number of models grows linearly with the number of distinct sub-
graph templates in the workload. Therefore, in case of limited stor-
age budget, we need to rank and filter the models based on their
effectiveness in fixing the inaccurate cardinality estimates.

Finally, recall that a query optimizer chooses an execution path
with the lowest cost. However, it may end up comparing the cost
between two paths, where the cost of the first path is computed
using the learned model’s predicted cardinality and the cost of the
second path is computed using the optimizer’s default cardinality
estimation (due to missing subgraph template models). Comparing
these two costs could lead to inaccuracy as the optimizer’s default
cardinality estimation could be overestimating or underestimating
the cardinality heavily.

The first limitation is beyond the scope of this paper. We discuss
solutions to the second limitation in Section 6.1.1 and describe our
approach to address the third limitation in Section 4.

4. AVOIDING LEARNING BIAS
Learning cardinalities can improve the cost estimates of all previ-

ously executed subgraph templates. However, since only one plan
is executed for a given query, we still have inaccurately estimated
costs for other subgraphs in that query. For example, Figure 3
shows three alternate plans for joining relations X , Y , and Z.

Since X 1 Y (plan 1) has lower estimated cost than X 1 Z and
Y 1 Z, it will be picked (for illustration purpose we assume the
cost model here only considers the output cardinality of the sub-
graph). Once plan 1 is executed, we know that the actual cardinal-
ity of X 1 Y is 100, which is higher than the estimated cardinality
of X 1 Z. Therefore, if we execute the same query again, the
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Figure 3: Candidate exploration plans with estimated and ac-
tual cardinalities for X 1 Y 1 Z.

Algorithm 1: EarlyPruning
Input : Relation r, Plan p, Query q, RuntimeCosts c, CardModels m
Output: Return null if pruning is possible; otherwise the input plan with updated

cardinality, if possible.

1 if m.Contains(r) then
2 p.UpdateCard(m.Predict(r))

3 if c.Contains(p) & c.GetBestCost(q)< c.GetCost(p) then
// prune as outer is more expensive than an

overall query plan
4 return null

5 return p

optimizer will pick plan 2. However, even though Y 1 Z is the
cheapest option, it is never explored since the estimated cardinality
of Y 1 Z is higher than any of the actual cardinalities observed so
far. Thus, we need a mechanism to explore alternate join orders and
learn cardinality models of those alternate subgraphs, which might
have higher estimated costs but turn out to be cheaper.

4.1 Exploratory Join Ordering
We now present an exploratory join ordering technique to con-

sider alternate join orders, based on prior observations, and ulti-
mately discover the best one. The core idea is to leverage existing
cardinality models and actual runtime costs of all previously ex-
ecuted subgraphs to: (i) quickly explore alternate join orders and
build cardinality models over the corresponding new subgraphs,
and (ii) prune expensive join paths early so as to reduce the search
space. Having cardinality models over all possible alternate sub-
graphs naturally leads to finding the best join order. We present our
key components below.
Early pruning. The number of join orders are typically exponen-
tial and executing all of them one by one is simply not possible,
even for a small set of relations. Therefore, we need to quickly
prune the search space to only execute the interesting join orders.
Our intuition is that whenever a subgraph plan turns out to be more
expensive than a full query plan, we could stop exploring join or-
ders which involve that subgraph plan. For instance, if A 1 C is
more expensive than ((A 1 B) 1 C) 1 D, then we can prune
join orders ((A 1 C) 1 B) 1 D and ((A 1 C) 1 D) 1 B, i.e.,
all combinations involving A 1 C are discarded as the total cost is
going to be even higher anyways.

Algorithm 1 shows the pseudocode for early pruning described
above. The input relations correspond to the subgraph to be evalu-
ated for pruning. The algorithm first updates the cardinality of the
subgraph using the predicted value if a model is available (line 1-
2). It then checks the RuntimeCosts cache to see whether the cost
of the candidate plan is more expensive than the cost of the best
query plan2. If so, the plan is pruned; otherwise it is kept.
Exploration comparator. The goal of exploratory join ordering is
to learn cardinality models for alternate subgraph templates. Thus,

2It could be the observed cost from the exact same subgraph/query
or the predicted cost computed using a learned cardinality model
from the recurring subgraph/query.

Algorithm 2: ExplorationComparator
Input : Plan p1, Plan p2, Ranking ranking, RuntimeCosts c
Output: Return true if p1 is better than p2; false otherwise.

1 h1 = NewObservations(c, p1)
2 h2 = NewObservations(c, p2)
3 begin
4 switch ranking do
5 case OPT COST
6 return (p1.cost < p2.cost)

7 case OPT OBSERVATIONS
8 return (h1 > h2) | (h1==h2 & p1.cost < p2.cost)

9 case OPT OVERHEAD
10 return (p1.cost << p2.cost) | (p1.cost≈ p2.cost & h1 > h2)

Algorithm 3: ExploratoryPlanner
Input : Query q, Ranking ranking, RuntimeCosts c, CardModels m
Output: Left-deep plan for the query q.

1 Relation [] rels = LeafRels(q) // relations to join
2 Map <Relation,Plan > optPlans = {}
3 foreach r ∈ rels do
4 optPlans[r] = ScanPlan(r) // generate scan plans

// perform left-deep bottom-up enumeration
5 foreach d ∈ [1, |R| − 1] do
6 foreach outer : outer ⊂ R, |outer| = d do
7 foreach inner : inner ∈ (R− outer) do
8 Plan pOuter = optPlans[outer]
9 Plan pInner = optPlans[inner]

10 pOuter = EarlyPruning(outer, pOuter, q, c, m)
11 pInner = EarlyPruning(inner, pInner, q, c, m)
12 if pOuter==null || pInner==null then
13 Continue

14 Plan p = OptJoin(pOuter, pInner) // join algo
15 Plan pOpt = optPlans[p.rel]
16 if (pOpt==null) || ExplorationComparator(p, pOpt,

ranking, c) then
17 optPlans[p.rel] = p // add plan

18 return optPlans[q];

for two equivalent plans, we want to pick the one which maximizes
the number of new subgraph templates observed. This is in contrast
to the typical approach of picking the cheapest plan amongst equiv-
alent query plans. Figure 4 illustrates the idea, where the planner
first executes the plan shown in Figure 4(a) and then considers next
plan choices 1 and 2 for other runs of this recurring query, shown in
Figure 4(b) and 4(c). The planner makes only one new observation
with plan 1, namely A 1 B 1 D, as A 1 B and A 1 B 1 D 1 C
(which is equivalent to A 1 B 1 C 1 D) have already been ob-
served. However, with plan 2, the planner makes two new obser-
vations, namely C 1 D and C 1 D 1 A. Thus, plan 2 is better
in terms of the number of new observations. Alternatively, in case
C 1 D had appeared in some other queries, plans 1 and 2 would
have had the same number of observations.

Algorithm 2 shows the exploration plan comparator. In addition
to the standard comparison to minimize cost (Lines 5–6), we pro-
vide a mode to maximize the number of new observations (Line
7). In case of a tie, we pick the plan with the lower cost in order
to keep the execution costs low (Line 8). To reduce the overhead
even further, we could pick the plan with higher number of new
observations only if both plans have similar cost (Lines 9–10). The
exploration comparator provides knobs to the planner to explore
alternate join orders over recurring queries.
Exploratory planner. We now describe how the early pruning
strategy and the exploration plan comparator can be integrated into
a query planner for exploratory join ordering. Algorithm 3 shows
the exploratory version of System R style bottom-up query planner,
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Figure 4: Candidate exploration plans for a recurring query
A 1 B 1 C 1 D.

also sometimes referred to as the Selinger planner [36]. The plan-
ner starts with leaf level plans, i.e., scans over each relation, and
incrementally builds plans for two, three, and more relations. For
each candidate outer and inner plans, we check if we can prune the
search space (Lines 10–13). Otherwise, we compare (using the ex-
ploration comparator) the current plan to join outer and inner with
the previous best seen before (Lines 14–16), and update the best
plan if it turns out to be better (Line 17). Finally, we return the best
plan for the overall query (Line 18).

We could likewise extend other query planners, e.g., top-down [16]
or randomized [44] query planners, to explore alternate join orders
and eventually find the best one. Essentially, we have a three-step
process to convert a given query planner into an exploratory one:
(i) Iterate over candidate plans using the planner’s enumeration
strategy, e.g., bottom-up, top-down, etc., (ii) Add a pruning step in
the planner to discard subgraphs based on the costs of prior execu-
tions, i.e., subgraphs that were more expensive than the full query
need not be explored anymore. This is in addition to any existing
pruning in the planner, and (iii) Consider the number of new obser-
vations made when comparing and ranking equivalent plans. We
could also incorporate costs by breaking ties using cheaper plans,
or by considering observations only for plans with similar costs.
Planner overhead. Now we analyze the overhead of Explorato-
ryPlanner. Note that only three new lines (10, 11, 16) are added
to the inner loop of the Selinger planner. The first two lines (10,
11) are invocation to EarlyPruning, whose complexity is O(1) (it
consists of hash table lookups and model evaluation, both of which
are performed in constant time). Line 16 invokes ExplorationCom-
parator, which consists of cost lookups and comparisons (O(1)).
Note that determining the number of newly observed subgraph tem-
plates (line 1-2 of Algorithm 2) seems to require traversing through
the entire candidate plan. In practice, however, this number is being
updated incrementally and stored in the optPlans hash table, and
therefore only incurs O(1) overhead (e.g. for plan (A 1 B) 1 C,
we only need to know if subgraph template ABC is new because
we already have the new observation count for plan A 1 B from
prior iterations.). In summary, ExploratoryPlanner adds negligible
complexity to the Selinger planner, and is consistent with our low
compile time overhead requirement (R3) from Section 2.

4.2 Execution Strategies
We now discuss different execution strategies for exploratory

join ordering with CARDLEARNER.
Leveraging recurring/overlapping jobs. Given the recurring and
overlapping nature of production workloads at Microsoft, as de-
scribed earlier in Section 2, the natural strategy is to run multiple
instances of jobs (or overlaps) differently, i.e., apply the exploratory
join ordering algorithm and get different plans for those instances.
We could further eagerly run every instance of every job differ-
ently until we have explored all alternative subgraphs, i.e., we have
cardinality models for those alternate subgraphs and can pick the
optimal join orders. Or, we could lazily run every other instance of
every other job differently to limit the number of expensive runs.

Static workload tuning. Instead of the above pay-as-you-go
model for learning cardinality models for alternate subgraphs, we
can tune queries upfront by running multiple trials, each with dif-
ferent join ordering, over the same static data. We show in Sec-
tion 6.4 how our proposed techniques could quickly prune down
the search space, thereby making the number of trials feasible even
for fairly complex jobs.
Reducing exploration overhead. Since the actual costs of unseen
subgraphs are unknown, exploratory join ordering could introduce
significant runtime overheads. A typical technique to mitigate this
is to perform pilot runs over a sample of the data [24]. Similar sam-
ple runs have been proposed for resource optimization [33], i.e., for
finding the best hardware resources for a given execution plan. We
could likewise use samples to learn cardinality models during static
workload tuning. Samples could be built using the traditional apri-
ori sampling [3], or the more recent just-in-time sampling [23].

5. THE FEEDBACK LOOP
In this section, we describe the end-to-end feedback loop to learn

cardinality models and generate predictions during query process-
ing. Figure 5 shows the architecture. Below we walk through each
of the components in detail.

5.1 Workload Analyzer
The first step in the feedback loop is to collect traces of past

query runs from different components, namely the compiler, opti-
mizer, scheduler, and runtime. The SCOPE infrastructure is already
instrumented to collect such traces. These traces are then fed to a
workload analyzer, which (i) reconciles the compile-time and run-
time statistics, and (ii) extracts the training data, i.e., all subgraphs
and their actual cardinalities. Combining compile-time and run-
time statistics requires mapping the logical operator tree to the data
flow that is finally executed. To extract subgraphs, we traverse the
logical operator tree in a bottom-up fashion and emit a subgraph
for every operator node. For each subgraph, we extract the parame-
ters by parsing the scalar operators in the subgraph, and extract the
leaf level inputs by tracking the operator lineage. We use a unique
hash, similar to plan signatures or fingerprints in earlier works, that
is recursively computed at each node in the operator tree to iden-
tify the subgraph templates. Note that the leaf level inputs and the
parameter values are excluded from the computation as subgraphs
that differ only in these attributes belong to the same subgraph tem-
plate. Finally, for each subgraph, we extract the features discussed
in Section 3 and together with the subgraph template hash send
them to the parallel trainer described below.

5.2 Parallel Trainer
Given that we have a large number of subgraph templates, and

the model trained from one subgraph template is independent of
others, we implement a parallel model trainer that can significantly
speed up the training process. In particular, we use SCOPE to parti-
tion the training data for each subgraph template, and build the car-
dinality model for each of them in parallel using a reducer. Within
each reducer, we use Microsoft’s internal machine learning library
to train the model. This library supports a wide range of models,
including the ones discussed in Section 3, that can be used to pre-
dict cardinality. In addition to the model, the reducer also emits the
training error and the prediction error for the ten-fold cross valida-
tion [40]. The reducer can also be configured to group these statis-
tics by the type of the root operator of the subgraph template. This
can help us investigate which type of subgraph template model is
more effective compared to the optimizer’s default estimation. The
trained models are stored in a model server described below.
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Figure 5: The feedback loop architecture.

5.3 Model Server
The model server is responsible for storing all the models trained

by the parallel trainer. For each subgraph template hash, the server
keeps track of the model along with its accuracy improvement
(measured in the ten-fold cross validation) over the optimizer’s
default estimation. Models with high accuracy improvement are
cached into the database to improve the efficiency of model lookup.
Note that caching all models into the database is impractical due
to limited storage resources. Since SCOPE job graphs can have
hundreds of nodes and hence cardinality models, the model server
builds an inverted index on the job metadata (which often remains
the same across multiple instances of a recurring job) to return all
relevant cardinality models for a given job in a single call.

5.4 Model Lookup & Prediction
The compiler and optimizer are responsible for model lookup

and prediction, as shown in Figure 5. First, the compiler fetches
all relevant cardinality models for the current job and passes them
as annotations to the optimizer. Each annotation contains the sub-
graph template hash, the model, and the accuracy improvement.
Thereafter, the optimizer prunes out the false positives by match-
ing the subgraph template hash of the model with the hashes of
each subgraph in the job graph. For matching subgraphs, the opti-
mizer generates the features and applies them to the corresponding
model to get the predicted cardinality. Either of the compiler or
the optimizer could prune models with sufficiently low accuracy
improvement. In addition, any row count hints from the user (in
their job scripts) still supersede the predicted cardinality values, in
accordance to requirement R1 from Section 2.

5.5 Retraining
We need to retrain the cardinality models for two reasons: (i) ap-

plying cardinality predictions would result in new query plans and
new subgraph templates, and hence we need to retrain until the
plans stabilize, and (ii) the workloads change over time and hence
many of the models are no longer applicable. Therefore, we need
to perform periodic retraining of the cardinality models to update
existing models as well as adding new ones. We do this by keep-
ing track of the cardinality models’ applicability, i.e., the fraction
of the subgraphs and jobs for which the models are available, and
retrain when those fractions fall below a threshold. We show in our
experiments (Section 6.1.3) that one month is a reasonable time to
retrain our models.

5.6 Exploration
Exploratory join ordering executes alternate subgraphs that could

be potentially expensive. Due to the SLA sensitivity of our pro-
duction workloads, we need to involve humans (users, admins) in
the loop in order to manage the expectations properly. Therefore,
our current implementation runs the exploratory join ordering algo-
rithm separately to produce the next join order given the subgraphs
seen so far. Users can then enforce the suggested join order using
the FORCE ORDER hint in their job scripts, which is later enforced
by the SCOPE engine during optimization. Users can apply these

hints to their recurring/overlapping jobs, static tuning jobs, or pi-
lot runs over sample data. Note that involving human-in-the-loop
is not fundamental to our approach and we only do that for explo-
ration to manage user expectations. Alternatively, we could run
the exploration phase on a sample dataset or over a static offline
workload, as discussed in Section 4.2.

6. EXPERIMENTS
We now present an experimental evaluation of CARDLEARNER

over the same dataset as discussed in Section 2, i.e., one days
worth of jobs consisting of tens of thousands of jobs from one
of the largest customers on SCOPE, the Asimov system [4]. The
goals of our evaluation are four-fold: (i) to evaluate the quality of
the learned cardinality models, (ii) to evaluate the impact of feed-
back loop on the query plans, (iii) to evaluate the improvements in
performance, and (iv) to evaluate the effectiveness of exploratory
query planning. We discuss each of these below.

6.1 Model Evaluation

6.1.1 Training
Let us look at the training error of different learning models. Fig-

ure 6(a) shows the results over tens of thousands of subgraph tem-
plates. We also included the prediction error from the optimizer’s
default estimation as a baseline comparison. We notice that for
90% of the subgraph templates, the training error of all three mod-
els (neural network, linear regression, and Poisson regression) is
less than 10%. For the baseline, however, only 15% of the sub-
graph templates achieve the same level of performance. Therefore,
our learning models significantly outperform the baseline.

Figure 6(b) shows the effect of using the enhanced cardinality
features on the prediction accuracy. The enhanced features include
the square, square root, and log of input cardinality, as discussed in
Section 3.3.1, to account for operators that can lead to a non-linear
relationship between the input and output cardinality. We observe
that adding these features does lead to an improvement in terms of
the training accuracy. As we will see in Section 6.2, the enhanced
features lead to more (better) query plan changes.

Figure 6(c) shows the Pearson correlation between the predicted
cardinality and the actual cardinality for different models. We see
that both linear and Poisson regression achieve higher correlation
than the baseline. Surprisingly, although neural network attains
very low training error, the correlation is lower than the baseline.

In order to study the impact of the root operator on the quality of
cardinality estimation, we group the subgraph templates by the type
of their root operator. Figure 7(a)– 7(c) shows the training error
of our models and the baseline on subgraph templates whose root
operators are scan, filter, and hash join. While for the scan opera-
tor, the accuracy of the optimizer’s estimates is comparable to our
models’, our models perform significantly better than the baseline
for the other two operators. This gives us insight that some mod-
els are more important than others, and therefore help us decide
which model to cache when we have limited storage budget. For
GLM models (Poisson regression), which turn out to be the best,
we only need to store the feature name and weight pairs and this
results in an average model size of 174 bytes (75th percentile 119
bytes, 90th percentile 418 bytes). We built a total of 34,065 mod-
els in this experiment, resulting in a total size of 5.7MB, which is
easily manageable. To fit larger number of models within a storage
budget, we first filter models to have accuracy improvement (over
the optimizer’s default estimation) above a minimum threshold and
then maximize coverage (number of applicable jobs) while staying
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(a) Comparing different models (b) Standard vs Enhanced features (c) Cardinality Correlation
Figure 6: Cardinality model training results.
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(b) Filter
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(c) Hash Join
Figure 7: Operator-wise cardinality model training error.
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(a) Predicted vs Actual Cardinality
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(b) Percentage Error in Cardinality
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(c) Cardinality Ratio (compare to Figure 1(a))
Figure 8: Cross-validation performance.

within the budget. This maps to the classic knapsack problem [29]
that can be solved using dynamic programming.

6.1.2 Cross-Validation
We now compare different learning models over ten-fold cross

validation. Figure 8(a) shows the cumulative distributions of pre-
dicted and actual cardinalities. We can see that both linear and
Poisson regression follow the actual cardinality distribution very
closely. Figure 8(b) shows the percentage error of different pre-
diction models. Poisson regression has the lowest error, with 75th

percentile error of 1.5% and 90th percentile error of 32%. This
is a huge performance improvement over the default SCOPE opti-
mizer, which has 75th and 90th percentile errors of 74602% and
5931418% respectively! It is worth noting that while neural net-
work achieves the smallest training error, it exhibits the largest
cross-validation error compared to the other two models. This is
due to overfitting given the large capacity of neural network and
the relatively small observation space and feature space, as also
discussed in Section 3.4.

Lastly, Figure 8(c) shows the ratio between our model’s pre-
dicted cardinality and the actual cardinality for each subgraph. We
can see that the ratio is very close to 1 for most of the subgraphs
across all three models. Compared to linear regression and Pois-
son regression, we notice that neural network overestimates 10%
of the subgraphs by over 10 times. Again, we suspect that this is
due to the aforementioned overfitting. Nevertheless, compared to
the same figure (Figure 1(a)) generated using the optimizer’s esti-
mation, all of our models achieve significant improvement.

6.1.3 Applicability

We now evaluate the applicability of our cardinality models. We
define the subgraph applicability as the percentage of subgraphs
having a learned model and the job applicability as percentage of
jobs having learned cardinality model for at least one of their sub-
graphs. Figure 9(a) shows the applicability for different virtual
clusters (VCs)3 — 58% (77%) VCs have at least 50% jobs (sub-
graphs) impacted. We further subdivide the jobs/subgraphs into
processing time4 and latency5 buckets and evaluate the applicabil-
ity over different buckets. Figures 9(b) and 9(c) show the result. In-
terestingly, the fraction of subgraphs impacted decrease both with
larger processing time and larger latency buckets. This is because
there are fewer number of jobs in these buckets and hence fewer
overlapping subgraphs across jobs. Still, more than 50% of the
jobs are covered in the largest processing time bucket and almost
40% are covered in the largest latency bucket.

Next, we evaluate how the applicability changes as we vary the
training and testing duration. Figure 10(a) shows the applicabil-
ity over varying training duration, from one day to one month, and
testing one day after. We see that two-day training already brings
the applicability close to the peak (45% subgraphs and 65% jobs).
This is because most of the workload consists of daily jobs and a
two-day window captures jobs that were still executing over the day
boundary. This is further reflected in Figure 10(b), where the appli-
cability remains unchanged when we vary the test window from a
day to a week. Finally, we slide one-day testing window by a week

3A virtual cluster is a tenant having an allocated compute capacity
and controlling access privileges to its data.
4Processing time is the total time of all containers used in a query.
5Latency refers to the time it takes for a query to finish executing.
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(a) Applicability across virtual clusters
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(b) Applicability across processing times
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(c) Applicability across latencies
Figure 9: Job and subgraph applicability of the learned cardinality models over different buckets.

 

  

 

   

 

  

 

  

Ap
pl

ic
ab

ilit
y 

(%
)

0

20

40

60

80

100

Train Duration
1-day 2-day 4-day 1-week 2-week 1-month

Jobs
Subgraphs

 

 

(a) Varying Train Duration (1-day test)
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(c) Sliding Test (1-week train, 1-day test)
Figure 10: Job and subgraph applicability of the learned cardinality models over varying training and testing duration.
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(c) Comparing plan structures
Figure 11: Plan evaluation with the learned cardinality models over production workloads.

and by a month in Figure 10(c). We can see that the applicability
drop is noticeable when testing after a month, indicating that this is
a good time to retrain our models to adapt changes in the workload.

6.2 Plan Evaluation
In this section, we evaluate how the cardinality models affect

the query plans generated by the optimizer. We replay the same
workload that was used to train the models in Section 6.1, and pre-
dict cardinalities wherever possible using the learned models. The
average latency for querying the model server is 14ms, which is in-
significant compared to the total compilation latency (on the order
of minutes) for SCOPE like batch processing systems. We do not
observe overhead on the optimizer for using the learned cardinality
model since the features are collected over subexpressions that are
already memoized [15] and the cardinality value is computed us-
ing a linear combination of the features, bypassing the mathemat-
ical calculations for default cardinality estimation and satisfying
requirement R3 from Section 2.

First, we compute the percentage of jobs whose query plan
change after applying our models. This is important for two rea-
sons: (i) change in query plan usually implies generation of new
subgraph templates, which could be used for further training and
improving applicability, and (ii) the new query plan has the poten-
tial to significantly improve the performance. Figure 11(a) shows
that when training models using standard features (Section 6.1), on
average, only 11% of the jobs experience changes in query plans.
However, once we incorporate the enhanced features, which cap-
ture the non-linear relationships between the input and output car-

dinality, these percentages go up to 31%. This is significant when
considering the hundreds of thousands of jobs per day in SCOPE
and the potential savings with better plans. Finally, note that plan
changes depend on whether the query costs have changed with bet-
ter cardinalities or not. In this work, we have kept the cost model
intact and focused on improving the cardinalities. Improving cost
model accuracy will be a part of future work.

Next, we compute the percentage cost change before and after
applying our models to the jobs in the workload. Our results show
that 67% of the jobs have cost reduction of more than 105, and
30% of the jobs have cost increase of more than 103. Figure 11(b)
shows the absolute change for all three models. We can see a 75th

percentile cost change of 79% and 90th percentile cost change of
305%. Thus, the high accuracy cardinality predictions from our
models significantly impact and rectify the estimated costs.

Finally, to understand the changes to the query plans, Fig-
ure 11(c) shows the percentage new subgraphs generated in the re-
compiled jobs due to improved cardinality estimates. We only show
for Poisson regression which was seen to be the best earlier. We
can see a 75th percentile change of 5% and 90th percentile change
of 20%, indicating that the cost changes indeed lead to newer and
better query plans for execution.

6.3 Performance Evaluation
We now evaluate the performance improvement brought by

CARDLEARNER. We consider three metrics for our evaluation:
(i) the end-to-end latency which indicates the performance visi-
ble to the user, (ii) the processing time which indicates the cost
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Figure 12: Performance evaluation over a subset of production workload, with and without CARDLEARNER.
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Figure 13: Evaluating the effectiveness of exploratory join ordering.

of running the queries in a job service [11], and (iii) the number
of containers (or vertices) launched which indicates the resource
consumption. In this section, we focus on evaluating the learning
models discussed in Section 3. We separately present the effective-
ness of our exploratory planner in the next section.

Workload. In order to evaluate performance, we need to re-run
the production jobs over the same production data. However, pro-
duction resources are expensive and so it is not possible to re-run
all of the tens of thousands of jobs that we analyzed in the previous
sections. Therefore, we picked a small subset of the jobs for per-
formance evaluation as follows. We picked a pre-production virtual
cluster from all of the virtual clusters that we analyzed, and consid-
ered unique hourly jobs having end-to-end latency within 10 min-
utes (to make sure we do not cause a major noise). Amongst these
jobs we picked 8 jobs that process unstructured data, use SPJA op-
erators, and contain a UDO — all of these being typical of pro-
duction workloads that we see at Microsoft. We executed these
jobs with and without CARDLEARNER by directing the output to a
dummy location, similar to prior work [2]. We also disabled the op-
portunistic scheduling [7] to make the measurements from different
queries comparable.

Figure 12(a) shows the end-to-end latencies of each of the
queries with and without CARDLEARNER. More accurate car-
dinalities lead all queries, except query 8, to have plan changes.
These included changes in physical operator implementations and
changes in degree of parallelism. However, the plan changes in
queries 2 and 4 are not in the critical path of the job graph, i.e.,
the changes get masked by slower parallel execution branch, and
hence the latency changes are not observable. Other queries such
as queries 5 and 6, see a significant performance improvement
(around 100%) since their plan changes were in the critical path.
Query 5 also has an operator implementation change from sort
merge join to hash join, which is preferred for smaller datasets (de-
fault optimizer was overestimating heavily). The key reasons why
the default SCOPE optimizer suffers from inaccurate cardinality es-
timation in these 8 queries are: (i) cardinality of unstructured data
is estimated using the input size and a constant row length, (ii) the
UDOs are treated as black boxes with a constant selectivity, and
(iii) in certain cases, even the filter selectivities are approximated

using fixed constants since collecting statistics is too expensive at
SCOPE-scale. Such magic constants derived from key workloads
are typical in commercial database system implementations [35].
Overall, we see an average improvement of 25% in end-to-end la-
tency, which is valuable for reducing costs and improving user ex-
perience in SCOPE clusters. Thus, improving cardinality estimates
indeed leads to better performance.

Figure 12(b) compared the processing time of queries with and
without CARDLEARNER. The improvements are much more sig-
nificant here because even though the plan change may not be on
the critical path of the query, it still translates to lower processing
time. Overall, there is a 55% drop in total processing time, which
is significant for dollar savings in terms of operational costs.

Finally, Figure 12(c) shows the total number of vertices (con-
tainers) launched by each of the queries. Interestingly, the savings
are much more significant. This makes sense because we saw in
Section 2 how the default optimizer significantly overestimates the
cardinalities most of the times, resulting in a large number of parti-
tions to be created and correspondingly large number of containers
to be launched, each with a very small amount of data to process.
Tighter cardinality estimations, using our models, help avoid the
overhead of creating too many partitions and wasting container re-
sources over them. Overall, we launch 60% less vertices using
CARDLEARNER. This is highly desirable to (i) improve query
performance, (ii) free up spare capacity for other workloads, and
(iii) reduce the resource allocation load on the resource manager.

6.4 Exploration Evaluation
We now evaluate the effectiveness of our exploratory query plan-

ner. The focus of our evaluation is to show how quickly the algo-
rithm prunes the search space, exploits unobserved subgraph tem-
plates, and finds the optimal plan. As discussed in Section 5.6,
our current prototype provides the join ordering hints which the
users can later enforce in their scripts. Thus, for the purpose of
evaluation, we use a synthetic workload along with the unmodified
SCOPE cost model, which models the expected latency of queries.
Our synthetic workload contains a join query over 6 randomly gen-
erated tables with varying cardinalities, where any pair of tables
can have a join predicate with probability 0.8, and a random join
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selectivity between 0 to 1. The query is replayed multiple times to
simulate static workload tuning, as described in Section 4.2.

Figure 13(a) compares the (actual) cost of the plans chosen by
the exploratory algorithm against the plans chosen by several alter-
natives. The default optimizer with bottom-up (Selinger) planner
and without statistics feedback picks the same sub-optimal plan ev-
ery time. When we turn on the feedback, the planner picks a better
plan at iteration 2 but does not explore alternate plans in further it-
erations, and therefore, fails to find the optimal plan. Finally, when
we turn on exploration (ranking set to OPT OBSERVATIONS), the
planner is able to explore all unobserved subgraph templates in 17
more iterations and find the optimal plan. By design, the explo-
ration might consider more expensive alternatives. However, we
feed back the cost of each subplan into the RuntimeCosts cache
and build models over newly observed subgraphs after each itera-
tion. This helps efficiently prune the suboptimal plans early (Al-
gorithm 1). Thus, in our experiments, exploration never considers
plans that are more expensive than those produced by the baseline
Selinger planner.

Figure 13(b) shows that while the baseline planner and the plan-
ner with feedback can only explore a small subset of the subgraph
templates and build cardinality models over them, the exploratory
planner is able to quickly cover all subgraph templates in 17 more
iterations. The cardinality models built over those newly observed
subgraph templates could be useful across multiple other queries,
in addition to helping find the optimal plan for the current query.

Figure 13(c) shows the number of executions needed to complete
exploration when varying the number of inputs. We see that while
the candidate paths grow exponentially, the number of executions
required for the exploratory planner to find the optimal plan only
grows in polynomial fashion, e.g., just 31 runs for 7 join inputs.
The reason is that our exploratory planner picks the plan that max-
imizes the number of newly observed subgraph templates, which
grows polynomially with the number of inputs. Once the planner
has built cardinality models for most subgraph templates, it can
produce the optimal plan.

During our experiments, we observe negligible difference in the
runtime between the baseline planner and the exploratory planner,
which is consistent with our analysis in Section 4.1; the exploratory
planner only adds a small constant time overhead, still satisfying
requirement R3 from Section 2.

We repeated the above evaluation on TPC-H [43] dataset using
a query that denormalizes all tables [41, 37]. the exploration plan-
ner was able to explore and build all relevant cardinality models
using just 36 out of 759 possible runs. In summary, the exploratory
planner is able to efficiently prune the search space and explore al-
ternate subgraph templates, thereby avoiding the bias in learning
cardinalities and eventually producing the optimal plans.

7. RELATED WORK
Dynamic Query Re-optimization. Dynamic query re-optimization
has been studied extensively in the past [19, 28, 8, 46]. The core
idea is to monitor the cardinality, data distribution statistics, e.g.,
max, min, distinct values, and CPU performance counters during
the query execution and compare it to the optimizer’s estimates.
If the estimates are found to be inaccurate, the optimizer uses the
observed statistics and the intermediate results to re-optimize the
query. Thus, the optimization phase and the execution phase can
interleave multiple times during query processing, also referred to
as adaptive query processing in commercial databases [38, 12, 32].

Dynamic query re-optimization has three major drawbacks: (i) car-
dinality estimation errors are known to propagate exponentially and
a large portion of the query may have already been executed (us-

ing a suboptimal plan) before the system performs re-optimization,
(ii) adjusting the query plan, in case of re-optimization, is tedious
in a distributed system, since intermediate data needs to be materi-
alized (blocking any pipelined execution), and stitched to the new
plan, and (iii) the plan adjustments overheads are incurred for every
query, even when portions of query plans overlap across multiple
queries, as often observed in production workloads [22, 21, 20].

Therefore, instead of re-optimizing a single query on-the-fly, our
approach is based on leveraging feedback, i.e., optimize the current
query using the statistics collected from past query executions.
Feedback-based Query Optimization. One of the early works
on feedback-based query optimization, LEO [39], considers ad-
justing the cardinalities for different operators. As discussed in
Section 3.1, this approach suffers from the linearity assumption
and the lack of a rich feature set to capture the complex cardinal-
ity functions in production workloads. More recently, ROPE [2]
considered using feedback from both data and code properties to
re-optimize queries. The idea in ROPE is to observe and feedback
subgraph matches. As a result, ROPE improves over LEO in terms
of the accuracy of the feedback, since the exact same subgraphs
(and their statistics) are fed back. However, it has much less cover-
age (applicability) due to strict exact subgraph match requirement.
ROPE also requires an online feedback loop, where statistics are
collected and fed back as soon as the query finishes. This is tedious
in production environments due to extra coordination between the
runtime and the optimizer to collect and apply the feedback.

Finally, both LEO and ROPE suffer from learning bias, i.e., they
never try alternate plans which have higher estimated cardinalities/-
costs but lower actual cardinalities/costs. As a result, they may
be trapped in local optima. Proactive monitoring [10] explores al-
ternate execution plans by modifying the optimizer to collect ad-
ditional statistics when executing the original plan. However, the
proposed techniques are only applicable to single-table expressions
with filter predicates and join expressions whose join predicates are
restricted to primary-key/foreign-key. Hence, a more general ap-
proach is required to explore and discover alternate query plans.
Moreover, proactive monitoring only benefits the same queries that
have been executed in the past, again leading to low applicability.
Learned Optimizations. There is a recent trend of applying ma-
chine learning techniques to improve different components of a
data system. The most prominent being learned indexes [25], an
approach to overfit a given stored data and create an index struc-
ture that provides faster lookup as well as smaller storage footprint.
Other examples include physical design and database administra-
tion using learning techniques [45, 1]. In this paper, we leverage
machine learning techniques to replace cardinality estimation, one
of the core components of a query optimizer.

8. CONCLUSION
Cardinality estimation is a well-known problem in traditional

databases. It becomes further challenging in big data systems due
to massive data volumes and the presence of unstructured data and
user code. In this paper, we presented CARDLEARNER, a radi-
cally new approach to learn cardinality models from previous job
executions, and use them to predict the cardinalities in future jobs.
Our motivation comes from the overlapping and recurring nature of
production workloads in shared cloud infrastructures at Microsoft,
and the idea is to learn a large number of small models for sub-
graph templates that overlap across multiple jobs. We introduced
the learned cardinality models, presented an exploration technique
to avoid learning bias, described the end-to-end feedback loop, and
presented a detailed experimental evaluation that demonstrates five
orders of magnitude lower error with learned cardinality models.
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