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ABSTRACT
MongoDB is a popular distributed database that supports

replication, horizontal partitioning (sharding), a flexible doc-

ument schema and ACID guarantees on the document level.

While it is generally grouped with “NoSQL” databases, Mon-

goDB provides many features similar to those of traditional

RDBMS such as secondary indexes, an ad hoc query lan-

guage, support for complex aggregations, and new as of

version 4.0 multi-statement, multi-document ACID trans-

actions.

We looked for a well understood OLTP workload bench-

mark to use in our own system performance test suite to

establish a baseline of transaction performance to enable

flagging performance regressions, as well as improvements

as we continue to add new functionality. While there exist

many published and widely used benchmarks for RDBMS

OLTP workloads, there are none specifically for document

databases.

This paper describes the process of adapting an exist-

ing traditional RDBMS benchmark to MongoDB query lan-

guage and transaction semantics to allow measuring trans-

action performance. We chose to adapt the TPC-C bench-

mark even though it assumes a relational database schema

and SQL, hence extensive changes had to be made to stay

consistent with MongoDB best practices. Our goal did not

include creating o�cial TPC-C certifiable results, however,

every attempt was made to stay consistent with the spirit of

the original benchmark specification as well as to be com-

pliant to all specification requirements where possible.

We discovered that following best practices for document

schema design achieves better performance than using re-

quired normalized schema. All the source code used and

validation scripts are published in github to allow the reader

to recreate and verify our results.
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1. INTRODUCTION
MongoDB is a popular non-relational database providing

many of the same features as relational databases including

ACID transactions[14] and complex ad hoc query language

and aggregation syntax[2].

At MongoDB we have not dedicated much e↵ort to stan-

dard benchmarks because they frequently measure an ex-

tremely limited set of functionality of a database, only di-

rectly relevant to a specific workload, and results can easily

be misused to decide on suitability of the database for a

di↵erent workload. In “NoSQL” world the best example of

this is YCSB [5] which was created to measure performance

of key-value stores and which has extremely limited repre-

sentation of “typical” data and mainly runs simple read and

write operations by primary key, which is not very typical

for MongoDB users. In RDBMS world there have been stan-

dard established benchmarks overseen by independent orga-

nizations[33] for decades, but they haven’t been a good fit for

“NoSQL” database like MongoDB either, due to the spec-

ification requiring normalized relational schema and SQL

operations.

However, when we added multi-document transactions to

MongoDB in version 4.0 in 2018, we wanted to use a set

of performance tests to establish a performance baseline for

transactions and to be able to monitor such performance

in our continuous integration and test suite [15]. There is

a shortage of well defined general workloads to benchmark

“NoSQL” databases [27] so we looked to accepted RDBMS

benchmarks. A natural candidate for that was one of the

better known TPC workloads: TPC-C [9]. TPC-C[32] is

meant to emulate a commerce system with five types of

transactions involving customers, orders, warehouses, dis-

tricts, stock, and items represented with data in nine nor-

malized tables. At first glance it may not seem like a good

candidate since its requirements are articulated in terms of

specific relational schema and SQL statements, but with rea-

sonable number of changes, we believe we created a perfor-

mance test suite that incorporates MongoDB best practices

while executing a workload familiar to those who’ve worked

extensively with TPC-C benchmark and staying consistent

with its ACID requirements.

This paper describes in detail the process of adapting

a specific existing implementation of TPC-C workload to

MongoDB best practices and enumerates things that we dis-

covered which had a positive impact on performance as well

as some that failed to produce positive e↵ect counter to our

expectations.
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Table 1: SQL and MQL operations

SQL MQL Comments

SELECT find for single collection selects

SELECT aggregate for aggregations

INSERT insert single or batch

UPDATE update single document by default

DELETE delete

2. RELATED WORK
Database benchmarking has been an old but enduring

topic in academic publications as well as in industry[8]. Many

researchers focused on MapReduce paradigms[6] as a natural

platform for any parallel processing of “big data”, while oth-

ers applied existing benchmarks and methodology to their

own parallel distributed systems[25]. There have been spe-

cific proposals to create benchmark specifications in a way

that can apply to relational as well as “big data” systems

[3] [26]. While some have assumed that YCSB[4] is a de-

facto standard for “NoSQL” systems, it’s limited to testing

single isolated read and write operations, all of which rely

exclusively on primary key access to documents. There have

been proposals to improve YCSB[24] but we didn’t find any

that included multi-document transactions as an option.

It’s common to find assumptions that “NoSQL” access

operations are a simple subset of SQL features [28] which

may hold for key-value stores, but break down when rich

JSON documents are supported extensively.

We also found TPC-C implementations that had been

adapted for parallel distributed systems[10] but still assumed

SQL and relational schema. Published e↵orts to use such

adapted benchmarks[11] generally ignored either the trans-

actional requirements of the specification or the durability

requirement.[29]

An implementation that did not assume SQL was Python-

based framework of the TPC-C benchmark for NoSQL sys-

tems[1]. It was originally written by Brown University stu-

dents for a graduate seminar course on NoSQL Systems.

The framework was designed to be modular to allow for

new drivers to be written for di↵erent data stores.

3. SYSTEM MODEL
MongoDB 4.0 replica sets support the following features

which allow implementation of the TPC-C specification.

3.1 MongoDB Query Language
MongoDB query language does not map directly to SQL,

but it supports a similar set of CRUD operations[19]. Table

1 shows corresponding operations in SQL and MQL (Mon-

goDB Query Language).

In addition, MongoDB supports bulk write operations[16]

on a single collection.

3.2 MongoDB Indexes
MongoDB supports primary as well as secondary indexes

and can speed up queries by looking up documents in indexes

including returning full result from index alone (covered in-

dex queries)[20]. Indexes can be created on regular fields as

well as fields embedded inside arrays. MongoDB also sup-

ports special indexes such as geo-spatial, text search, partial

indexes, though none of them were utilized in this work. The

query subsystem supports ability to explain a query plan

which shows which indexes were used for a query (if any)

and the number of index entries and documents accessed to

produce results.

3.3 MongoDB writeConcern
MongoDB provides a way for an application to specify for

any particular write how durable it needs to be and will only

acknowledge such write as being successful when the speci-

fied level of durability is achieved. In a replica set, the rec-

ommended way to ensure durability is to use writeConcern
"majority" which ensures that when a write is acknowl-

edged as being successful, it’s been replicated to majority

of the replica set (counting the primary). Majority write

concern also guarantees the write has been flushed to disk

on each of the acknowledging node before acknowledgement

is returned.

3.4 MongoDB readPreference
Application can specify which nodes it would like to read

data from[21]; by default MongoDB always reads from the

primary and only when application specifies a di↵erent read

preference can a read be directed to a secondary node. A

common read preference for applications requiring low la-

tency may be "nearest" which means either primary or

secondary node can be read from based on the lowest ping

time from the client.

3.5 MongoDB readConcern

3.5.1 Read Concern
Read concern setting allows the application to specify

what data it wants to be able to read[17]. It is indepen-

dent from the read preference setting. A common setting

to use is "majority" which means that only data that’s been

committed to “majority” of the replica set can be seen. This

ensures that any data read by client will not be rolled back

during an election such as might happen when a primary

node fails and an automatic election selects a new primary

out of the remaining nodes.

3.5.2 Causal Consistency
An application that’s reading from a primary, secondary

or either node (whichever is nearest) can switch from one

node to another between any two operations. This can hap-

pen when a primary fails or a closer secondary is selected

by the driver. Even when reads are only of majority com-

mitted data, it’s possible during such a switch-over to read

data that is from time that is not monotonically increasing -

i.e. second read could read data that represents state earlier

than the first read. To avoid such “back in time” sequence,

MongoDB implements causal consistency guarantees in log-

ical sessions[18].

3.6 MongoDB Transactions
MongoDB transactions provide the expected ACID guar-

antees which TPC-C requires for correctness.[7] A single

snapshot of the data is used for the duration of the transac-

tion. A snapshot is a single point in time view of the data at

a distinct cluster time maintained via a cluster-wide logical

clock[34]. Once a transaction begins with a snapshot at clus-

ter time, no subsequent writes outside of that transaction’s

context occurring after that cluster time will be seen within

the transaction. However, transactions will be able to view
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their own subsequent writes that occur after the snapshot’s

cluster time, providing the ‘read your own writes’ guarantee.

Once a transaction starts, its snapshot view of the data is

preserved until it either commits or aborts. When a trans-

action commits, all data changes made in the transaction

are saved and visible outside the transaction. Until a trans-

action commits, the data changes made in the transaction

are not visible outside the transaction. When a transac-

tion aborts, all data changes made in the transaction are

discarded without ever becoming visible.

This ensures atomicity, consistency and isolation [22]. Our

testing included multiple ways of forcing rollbacks of trans-

actions, both while running the benchmark via forcing a

node failure and/or failover to another primary in the replica

set, and by manually executing part of a transaction with-

out a corresponding commit, while checking consistency of

the data.

Within MongoDB transactions, readConcern is always set

to "snapshot".
Multi-document transactions in MongoDB are committed

with an explicit commit statement which specifies desired

writeConcern or the level of durability required before suc-

cess is acknowledged. We used "majority" writeConcern
which in case of a three node replica set means two of the

nodes must commit all operations from the transaction for

it to be considered successful. Until the commit, none of

the writes within transaction can be seen outside the trans-

action. Only committed writes are replicated to the secon-

daries where they can only be read after all of them commit.

Transactions immediately obtain locks on documents be-

ing written, or abort if the lock cannot be obtained. This

ensures that attempts by two transactions to write to the

same document will immediately fail for the second transac-

tion at which point it can choose to retry as is appropriate

for the application.

4. METHODOLOGY

4.1 Code
We used PyTPCC[1], a Python-based framework of the

TPC-C benchmark for NoSQL systems originally written

by Brown University students for a graduate seminar course

on NoSQL Systems, now maintained by CMU on github.
The modular framework already had an initial driver imple-

mentation for MongoDB which became our starting point.

4.2 Hardware

4.2.1 Database Hardware
For our database hardware, we deployed a three node

replica set in MongoDB Atlas[12] - hosted database as a

service, which meant that all the configuration was stan-

dard and pre-selected once we selected what “size” cluster

to use. We chose to use MongoDB hosted service to make

it easier for others to reproduce our results, as well as to

benefit from built-in monitoring for observing performance

of the cluster and its potential bottlenecks. We went with

Google Cloud Platform rather than AWS or Azure due to

slightly lower cost for comparable hardware and we picked

M80 cluster in us-east1 region to start with which gave

us 120 GB RAM and 750 GB storage with 32 vCPUs per

node in replica set, which would allow us to test scaling the

number of connections up without overwhelming the server.

Standard MongoDB replica set deployment is three nodes,

one of which acts as the primary, the other two being secon-

daries and replicating all writes from the primary. In Atlas

when all nodes in a replica set are in the same geographic

region they are automatically placed in di↵erent availability

zones [13]. We repeated all the same tests with M60 and

M50 replica sets (60GB RAM 16 vCPUs and 30GBs RAM

8 vCPUs respectively). Comparing di↵erent size clusters al-

lowed us to compare throughput with the cost of running

each cluster.

4.2.2 Client Hardware
For our client machine we selected GCE n1-highcpu-16

instance in the same region us-east1 to reduce latency be-

tween client and the database. Our monitoring and obser-

vations suggested the client was not the limiting factor in

any of our tests.

4.3 Configuration
The database configuration was provided to us by Atlas,

and no server parameter changes were made.

On the client side, we ran tests varying the following con-

figuration parameters: number of warehouses (scaling fac-

tor) the number of client threads, read preference, read con-

cern, write concern (durability setting), causal consistency,

and several settings on how PyTPCC should execute, mea-

suring both overall throughput as well as for each transac-

tion the throughput and latency (minimum, p50, p75, p90,

p95, p99 and maximum) to make sure we selected reasonable

settings to maximize overall performance.

Tests were run with number of warehouses varied from 4

to 1000, number of clients from 1 up to 1000. The database

would be loaded once for particular number of warehouses,

and then all the tests would be run continuously, duration of

permutation of options ranging from minimum of 5 minutes

to maximums of over an hour. The only setting we var-

ied in the client configuration was readPreference, which
we ran as primary, secondaryPreferred and nearest. We

varied multiple settings for PyTPCC workload as we made

changes to the implementation to measure the impact the

changes made and when appropriate introduced a configu-

ration setting to enable running the test with our choice of

setting.

4.4 Collecting Measurements
Data was loaded only once, then execution portion was

run for many days continuously, varying combination of

configuration parameters. For every period of at least five

minute, we recorded Tpm-C rate (number of new orders

processed per minute, as per TPC-C specification). We

also recorded total number of NEW ORDER operations, total

number of aborted transactions, total number of retries in

a transaction, and total number of all operations both on

the client and on the server to confirm they match up, as

well as output of multiple verification scripts described in

the Verification of Results section. A sample of a set of

metrics representing a single run is included in Appendix

D. We did not include in our analysis the collected Tpm-

C metrics during runs the verification scripts were running

against, as many verification queries are unindexed and in-

e�cient resulting in significant impact on the throughput of

the benchmark.
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After verifying correctness of each run the summary of

results were loaded into its own Atlas cluster where we used

MongoDB Charts[23] to generate visual analysis of results

and compare di↵erent scenarios.

4.5 PyTPCC Code Modifications
Extensive modifications were made to PyTPCC codebase,

both in MongoDB driver implementation and other classes.

4.5.1 Transaction Support
Since PyTPCC was written for “NoSQL” systems in 2011,

there was no support for transactions in the original im-

plementation even though they are required by the TPC-

C specification. None of the “NoSQL” systems, including

MongoDB supported transactions at that time. Initially,

we added a wrapper around each TPC-C transaction to do

each operation in transaction with retries, but later we re-

moved this wrapper from Stock Level check as it has no

writes and did not require transaction, only correct isola-

tion guarantees. When MongoDB transactions return fail-

ure, we test for "TransientTransactionError" label since

that’s expected in several scenarios, like write conflicts (to

avoid causing deadlocks) and we continue to retry in a loop

on any such error. We added a counter to keep track of, and

report the number of retries at the end of each transaction.

The number of retries for each transaction type was included

in tracked data in summary reports of each run along with

other logging, tracking and performance output details.

4.5.2 Standard MongoDB Options Support
Options for authentication, connecting to replica set, set-

ting write concern, read preference, read concern and all

other standard MongoDB options were added to configura-

tion file including connecting to MongoDB URI supporting

full set of authentication options, as well as read preference

and write concern options.

4.5.3 Schema Design
The original implementation provided a normalized op-

tion which mirrored the RDMBS schema exactly, and a de-

normalized option which embedded all customer related in-

formation (orders, order lines, history) into the customer

document. This is an anti-pattern as the customer record

will grow unbounded and performance will get worse and

worse the longer the system is operational. We changed

things to be more consistent with recommended MongoDB

schema practices by restoring most of the normalized model

and only embedding order lines inside order documents for

the “denormalized” option. This is a very common docu-

ment database best practice, since it’s extremely likely that

when we fetch an order we also want to get all of its or-

der lines, and that order lines within each order won’t grow

unbounded, in fact the array length won’t change once the

order is “placed”. We noted database sizes at the end of the

load and each run as well as throughput and latencies. This

is where we noted that denormalized schema was smaller

than normalized, due to every order line not repeating the

same information that’s in the parent order record. We men-

tion this because conventional wisdom about “denormaliza-

tion” is that it takes up more space, not less. As performance

summaries show, embedding array of order lines into orders

provided one of significant performance improvements, along

with optimizing indexes. Denormalizing the schema is an

obvious performance win since the number of round trips to

the database is reduced - you can think of it as pre-joining

order lines into the orders table. We show the performance

di↵erence in results section Figure 2. While TPC-C explic-

itly prohibits such schema alterations in its implementation

rules[31], this sort of schema design pattern is one of the

core advantages of using a document database like Mon-

goDB, and it wouldn’t be in line with our best practices to

use a di↵erent schema.

4.5.4 Optimal Indexes
Next was extensive examination of indexes and replacing

most existing indexes with ones that better served the ex-

pected queries. Since MongoDB supports both compound

indexes as well as covered index queries, this involved ex-

amining the query plans for all operations and noting which

fields were involved in the predicates, and which needed to

be returned. You can see the indexes we settled on in Ap-

pendix B.

4.5.5 Reordering and Replacing Operations
Next we examined the code and the logs from each run to

understand where additional reduction in latency could be

achieved. A number of simple improvements involved redun-

dant queries, unnecessary operations and failure to request

only needed fields from the database. Next we looked at

causes of frequent retries during transaction attempts: the

more operations were performed inside a transaction before

a write conflict would cause a roll-back, the more unneces-

sary work would be undone. We re-ordered write operations

to expose a write conflict as early in the transaction as pos-

sible, as well as moving such writes before reads where pos-

sible, again to reduce the number of operations that would

have to be repeated. One pattern that several transactions

had was a sequence:

1. Select record “X” from database

2. Update record “X” in database

MongoDB supports an operation findAndModify[14] which
is equivalent to updating a record and then returning that

exact record in a single database roundtrip

1
- either pre- or

post-update document can be returned. A variation of this

operation is “find and delete” which returns the document

that’s deleted in the database in the same operation. Re-

placing two round trips to the database with one of course

made the overall benchmark run faster - again while disqual-

ifying the results from “o�cial” consideration for certifica-

tion, we nonetheless find it more useful to take advantage

of operations that we would recommend our users rely on

in their real-life implementations rather than artificially con-

strain the code as the results then would be less useful to the

users. We provide the comparison of performance with and

without findAndModify modification in the results section

Figure 3.

4.5.6 Batching Writes
When creating a new order, the specification assumes we

will have to perform as many writes to two tables as there are

order lines in order, those tables are ORDER LINES and STOCK.

1
in MongoDB “select” equivalent is “find” so this is equiv-

alent to saying do a SELECT and UPDATE in the same

operation
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When we use denormalized schema, we are inserting order

lines into an array inside order object and therefore only

do a single insert once the order is completely constructed.

When the PyTPCC is run with normalized schema option,

or when we are updating the STOCK table with information

for each item in the order lines, we added a configuration op-

tion batch writes and when it’s true rather than perform-

ing updates one at a time as we loop over order lines, we

accumulate them inside an array which we then send to the

server once at the end of order creation as a BulkWrite[16].
We note here that we observed the e↵ect of batched writes

and findAndModify modification was much more prominent

when the writeConcern setting was {w=1} and less so for

{w="majority"}. The e↵ect of reducing number of round

trips to the database would have a bigger impact if the la-

tency of the client to the cluster was measurably larger than

the intra-cluster latency.

4.6 Verification of Correctness of Results
We set out to make sure that the code was as compliant

with TPC-C requirements as we could make it. We used the

following methods of validating correctness of the results and

verifying accuracy our metrics.

4.6.1 Asserts in Code
PyTPCC already had asserts throughout the code if any

operation didn’t match the expected number of records or

didn’t return a value consistent with specification. We al-

ways ran the benchmark in the mode that would throw an

error and stop the program when encountering any such

conditions.

4.6.2 Verification of Consistency
We created a script of queries representing twelve consis-

tency tests enumerated in section 3.3.2 in TPC-C specifica-

tion.[30] This was one of the scripts we ran after load, during

runs and after test runs.

4.6.3 Verification of Atomicity
We manually performed the atomicity tests described in

section 3.2.2 of TPC-C specification.

4.6.4 Verification of Isolation
We performed nine isolation tests described in section

3.4.2 of TPC-C specification.

4.6.5 Verification of Durability
While running the benchmark, we had frequent occasions

to test data durability in the following anticipated and unan-

ticipated scenarios. We liberally exercised Atlas failover
feature where you can click a test button in the UI and

simulate a primary “crashing”. After bringing down the

current primary the service allows one of the secondaries to

be elected as the new primary at which point the original

primary rejoins the replica set as a secondary and catches

up replaying any operations it missed. Using majority
writeConcern we fully expected that all of our acknowledged

(successfully recorded) transactions would be in the server

after the failover and comparing the number of expected

records in the database with our client output confirmed it.

In addition, since Atlas applies security patches to the

OS and minor bug fix versions to MongoDB without prior

notice we occasionally encountered an unexpected fail-over

during our runs and were able to verify they had no impact

on correct reporting of the benchmark. We considered these

durability tests to be equivalent to those described in section

3.5.4 of the specification.

We did benchmark the performance of the system with

{w:1} writeConcern which means the transaction commit

returns as soon as the transaction is committed on the pri-

mary without waiting for acknowledgement from any of the

secondaries. These metrics are included in the complete set

of results on github.

4.6.6 Verification of Metrics Accuracy
We employed scripted and manual checks to verify the

number of transactions reported by the client corresponded

to the observed number of records impacted in the database

as well as matched the metrics provided by the server.

4.7 Results
We report overall performance for M60 Atlas replica set

with writeConcern "majority" for durability along with

readConcern "snapshot" for most transactions, and com-

mitted reads equivalent (readConcern "majority", causal
consistency true) for STOCK LEVEL transaction. Figure 1

shows tpmC values for di↵erent number of warehouses and

client threads running. This demonstrates the throughput

increasing as we increased the number of threads with color

representing varying number of warehouses. Two runs are

compared at each thread-warehouse combination, one with

readPreference "primary" the other with readPreference
"nearest" and the di↵erence is observed to be minimal since

only Stock Level transaction can run on secondary nodes.

This was initially a surprising result but given that all reads

inside transactions must happen on the primary, we realized

we should not have expected to see any performance boost

from being able to o✏oad a small number of queries to the

secondary nodes.

Figures 2 and 3 show side-by-side comparisons varying

a single setting with all other parameters being the same,

figure 2 compares performance using normalized vs denor-

malized schema, figure 3 compares findAndModify against

corresponding select followed by update.

In figure 4 we map TPMC by number of warehouses for

three di↵erent instance types in Atlas: M50, M60 and M80.

Each is roughly double the capacity of the prior one in

amount of RAM and CPU, and M60 is approximately twice

the cost of M50 (98%) but M80 is only 85% more expensive

than M60. We can clearly see that the increase in through-

put does not proportionally correspond to the increase in

costs. As with most cloud hosted hardware the price is

hourly, we list the exact costs in Appendix C.

4.8 Future Work
Current version of MongoDB (4.0) only supports multi-

document transactions on a replica set. The next produc-

tion release 4.2 will support sharded transactions. As the

next step we plan on extending these tests to measure per-

formance in a sharded cluster where the data is partitioned

across multiple replica sets.

Once we are able to apply this benchmark to a sharded

cluster we plan to scale the data to 10,000 warehouses or

more to see how the system scales on very large data sets.

We plan to use this work to test how much secondary

reads improve performance when latency between the client
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Figure 1: TPMC by number of threads on M60

Figure 2: Normalized vs denormalized schema

Figure 3: findAndModify vs update+select

Figure 4: Throughput by Instance Type

and primary node is significantly larger than latency to the

nearest secondary - such as would be the case with a globally

distributed cluster.

Additional improvements can be incorporated to the veri-

fication code, automating some of the process we performed

manually, like failing over the primary in the middle of the

run based on configured settings and running isolation and

atomicity verification scripts automatically during and after

each run.

Lastly, we would like to evaluate whether any other TPC

benchmarks would provide value if adapted to MongoDB

workloads and best practices.

5. CONCLUSIONS
While it is possible to adapt RDBMS targeted bench-

marks to document database such as MongoDB with min-

imal changes to schema and queries, it is likely to pro-

duce sub-optimal results unless a significant e↵ort is spent

to make extensive modifications to be consistent with best
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practices of a particular non-relational data platform. Hav-

ing done that, we believe it is possible to achieve perfor-

mance that’s more representative of document model capa-

bilities and this benchmark will serve us well as we extend

functionality of MongoDB going forward.
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APPENDIX
A. RESULTS OF ALL RUNS

A.1 Best result each config, durable settings
Instance Warehouses Threads tpmC ops/sec

M50 100 10 11104 414.347

M50 100 20 16260 604.448

M50 100 30 19520 724.677

M50 100 40 21260 791.357

M50 100 50 23027 858.175

M50 100 60 24448 908.332

M50 100 64 25630 952.603

M60 100 4 5336 197.99

M60 100 8 9445 353.693

M60 100 16 14951 556.077

M60 100 32 22802 848.43

M60 100 48 28304 1053.74

M60 100 64 31549 1172.32

M60 100 96 34385 1285.54

M60 300 4 4988 184.93

M60 300 8 8546 318.19

M60 300 16 13391 497.15

M60 300 32 19797 739.027

M60 300 48 24570 914.177

M60 300 64 26585 986.363

M60 300 96 26666 993.347

M60 500 4 4724 174.723

M60 500 8 7989 297.747

M60 500 16 11966 445.353

M60 500 32 16947 628.563

M60 500 48 19491 726.413

M60 500 64 21709 807.123

M60 500 96 22668 845.21

M60 1000 4 4112 152.943

M60 1000 8 6826 256.74

M60 1000 16 10146 379.337

M60 1000 32 13806 513.96

M60 1000 48 15535 577.45

M60 1000 64 16024 598.03

M60 1000 96 16406 611.49

M80 100 64 46449 1733.35

M80 100 84 50924 1892.72

M80 100 94 52329 1945.06

This is sampling of results, due to their large size, the

complete set of results are available in the github repo at

https://github.com/mongodb-labs/py-tpcc.

A.2 Best result for M60, 100 warehouses
Batch findAndModify Threads tpmC ops/sec

true true 64 31549 1172.32

true true 96 34385 1285.54

false false 64 26959 1001.93

false false 96 30427 1137.12
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B. INDEXES
Tables and Indexes

ITEM
{I ID:1}
WAREHOUSE
{W ID:1,W TAX}
DISTRICT
{D W ID:1,D ID:1,D NEXT O ID:1,D TAX:1}
CUSTOMER
{C W ID:1,C D ID:1,C ID:1}
{C W ID:1,C D ID:1,C LAST:1}
STOCK
{S W ID:1,S I ID:1,S QUANTITY:1}
NEW ORDER
{NO W ID:1,NO D ID:1,NO O ID:1}
ORDERS
{O W ID:1,O D ID:1,O ID:1,O C ID:1}
{O W ID:1,O D ID:1,O C ID:1,O ID:1,O CARRIER ID:1,
O ENTRY ID:1}
In addition, for normalized schema runs there were addi-

tional indexes on ORDER LINE collection:

{OL O ID:1,OL D ID:1,OL W ID:1,OL NUMBER:1}
{OL O ID:1,OL D ID:1,OL W ID:1,OL I ID:1,OL AMOUNT:1}

C. ATLAS CLUSTERS USED
Atlas Cluster Costs

Instance RAM vCPU Cost

M50 30GBs 8 $1.66/hour
M60 60GBs 16 $3.29/hour
M80 120GBs 32 $6.13/hour

D. SAMPLE COMPLETE RUN OUTPUT

{
"denorm" : true,
"batch_writes" : false,
"write_concern" : "majority",
"duration" : 300,
"total" : 327852,
"tpmc" : 29324.695419676675,
"causal" : true,
"warehouses" : 100,
"find_and_modify" : false,
"read_concern" : "majority",
"aborts" : 1480,
"read_preference" : "nearest",
"DELIVERY" : {
"latency" : {

"p99" : 526.0539054870605,
"p75" : 193.16411018371582,
"min" : 96.54998779296875,
"p90" : 254.01616096496582,
"max" : 1.7082939147949219,
"p95" : 296.47088050842285,
"p50" : 169.342041015625

},
"retries_total" : 1048,
"total" : 13200

},
"threads" : 96,
"date" : ISODate("2019-02-20T23:46:35Z"),

"ORDER_STATUS" : {
"latency" : {

"p99" : 249.05085563659668,
"p75" : 52.83713340759277,
"min" : 8.626937866210938,
"p90" : 95.8399772644043,
"max" : 0.8874139785766602,
"p95" : 144.97995376586914,
"p50" : 31.63313865661621

},
"retries_total" : 5692,
"total" : 12973

},
"NEW_ORDER" : {
"latency" : {

"p99" : 339.57695960998535,
"p75" : 99.37191009521484,
"min" : 29.464006423950195,
"p90" : 164.55507278442383,
"max" : 1.9620850086212158,
"p95" : 198.83394241333008,
"p50" : 76.35188102722168

},
"retries_total" : 5692,
"total" : 146626

},
"retry_writes" : false,
"STOCK_LEVEL" : {
"latency" : {

"p99" : 27.664899826049805,
"p75" : 12.211084365844727,
"min" : 6.609916687011719,
"p90" : 15.162944793701172,
"max" : 0.16511201858520508,
"p95" : 18.207073211669922,
"p50" : 10.541915893554688

},
"retries_total" : 25246,
"total" : 13269

},
"PAYMENT" : {
"latency" : {

"p99" : 465.4970169067383,
"p75" : 85.53123474121094,
"min" : 14.782905578613281,
"p90" : 172.29509353637695,
"max" : 2.0620100498199463,
"p95" : 240.23890495300293,
"p50" : 43.65897178649902

},
"retries_total" : 25246,
"total" : 141784

},
"SERVER": {
"DELETED" : 132000,
"INSERTED" : 435075,
"RETURNED" : 5240273,
"UPDATED" : 2307556,
"COMMIT" : 314583,
"ABORT" : 26726

}
}
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