Cost-efficient Data Acquisition on Online Data
Marketplaces for Correlation Analysis

Yanying Li, Haipei Sun
Stevens Institute of
Technology
1 Castle Point Terrace
Hoboken, New Jersey 07030

yli158,hsun15@stevens.edu

ABSTRACT

Incentivized by the enormous economic profits, the data
marketplace platform has been proliferated recently. In this
paper, we consider the data marketplace setting where a
data shopper would like to buy data instances from the data
marketplace for correlation analysis of certain attributes.
We assume that the data in the marketplace is dirty and
not free. The goal is to find the data instances from a large
number of datasets in the marketplace whose join result not
only is of high-quality and rich join informativeness, but
also delivers the best correlation between the requested at-
tributes. To achieve this goal, we design DANCE, a mid-
dleware that provides the desired data acquisition service.
DANCE consists of two phases: (1) In the off-line phase,
it constructs a two-layer join graph from samples. The join
graph includes the information of the datasets in the mar-
ketplace at both schema and instance levels; (2) In the on-
line phase, it searches for the data instances that satisfy the
constraints of data quality, budget, and join informative-
ness, while maximizing the correlation of source and target
attribute sets. We prove that the complexity of the search
problem is NP-hard, and design a heuristic algorithm based
on Markov chain Monte Carlo (MCMC). Experiment results
on two benchmark and one real datasets demonstrate the
efficiency and effectiveness of our heuristic data acquisition
algorithm.

PVLDB Reference Format:

Yanying Li, Haipei Sun, Boxiang Dong, Wendy Hui Wang. Cost-
efficient Data Acquisition on Online Data Marketplaces for Cor-
relation Analysis. PVLDB, 12(4): 362-375, 2018.

DOI: https://doi.org/10.14778/3297753.3297757

1. INTRODUCTION

With the explosion in the profits from analyzing the
data, data has been recognized as a valuable commodity.
Recent research [4] predicts that the sales of big data and
analytics will reach $187 billion by 2019. Incentivized by
the enormous economic profits, the data marketplace model

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 4

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3297753.3297757

Boxiang Dong
Montclair State University
1 Normal Ave
Montclair, New Jersey 07043

dongb@montclair.edu

362

Hui (Wendy) Wang
Stevens Institute of
Technology
1 Castle Point Terrace
Hoboken, New Jersey 07030

Hui.Wang@stevens.edu

was proposed recently [6]. In this model, data is considered
as asset for purchase and sale. Data marketplaces in the
cloud enable to sell the (cheaper) data by providing Web
platforms for buying and selling data; examples include Mi-
crosoft Azure Marketplace [3] and BDEX [1].

In this paper, we consider the data shopper who has a
particular type of data analytics needs as correlation analy-
sis of some certain attributes. He may own a subset of these
attributes already. He intends to purchase more attributes
from the data marketplace to perform the correlation analy-
sis. However, many existing cloud-based data marketplaces
(e.g., Microsoft Azure Marketplace [3] and Google Big Query
service [2]) do not support efficient exploration of datasets
of interest. The data shopper has to identify the relevant
data instances through a non-trivial data search process.
First, he identifies which datasets are potentially useful for
correlation analysis based on the (brief) description of the
datasets provided by the data marketplaces, which normally
stays at schema level. There may exist multiple datasets
that appear relevant. This leads to multiple purchase op-
tions. Based on these options, second, the shopper has to
decide which purchase option is the best (i.e., it returns the
maximum correlation of the requested attributes) under his
constraints (e.g., data purchase budget). Let us consider the
following example for more details.

ExAMPLE 1.1. Consider the data shopper Adam, a data
research scientist, who has a hypothesis regarding the corre-
lation between age groups and diseases in New Jersey (NJ),
USA. Adam only has the information of age, zipcode, and
population in his own dataset Ds (Figure 1 (a)). To test
his hypothesis, Adam plans to purchase additional data from
the marketplace. Assume that he identifies five instances D1
- Ds (Figure 1 (b)-(f)) in the data marketplace as relevant.
There are several data purchase options, with four of them
shown below:

e Option 1: Purchase D1 and Ds;

e Option 2: Purchase three attributes (Gender, Disease,

of cases) of D3 and (Age, Gender, Population) of
D47’

e Option 8: Purchase three attributes (Race, Disease, #

of cases) of D3 and (Age, Race, Population) of Da;

e Option 4: Purchase Ds;

For each option, the correlation analysis is performed
on the join result of the purchased data and the shopper’s
local one. In general, the number of possible join paths is
exponential to the number of datasets in the marketplace.
The brute-force method that enumerates all join paths to

(a) Dg: Source instance owned

Age [ZipcodePopulation] 7 15 State Disease [# of cases

35, 40] 10003 | 7,000 ipcodeptatd MA Flu 300
07003 | NJ [correct

20, 25| 01002 3,500 07304 TNT leorrect NJ Flu 400

55, 60] 07003 1,200 T000T TNY leorrect Florida [Lyme disease| 130

35, 40| 07003 5,800 10001 | NJ |wrong CaliforniaLyme disease| 40

35, 40| 07304 2,000 NJ Lyme disease| 200

(b) D1: Zipcode table

(c) D2: Data and statistics of diseases

by data shopper Adam by state
Gender] Race |Disease [# of cases Age |Gender] Race [Population| -
M | White | Flu 200 35,40] M | White | 400,000 Age | Address _Insurance _[Diseasq
- : 35, 40]10 North St|UnitedHealthCare Flu
F Asian | AIDS 30 20,25 F Asian | 100,000 - -
- . : 20, 25| 5 Main St. MedLife HIV
M White [Diabetes 4,000 20,25 M White | 300,000 3510125 South StlUnitedHealthCard FTu
M [Hispanic Flu 140 40,45 M [Hispanid 50,000 : -

(

) D3: Data and statistics of diseases
of New Jersey (NJ) State by gender

(e) Dg4: Census dataset of New
Jersey (NJ) State

(f) Ds: Insurance & disease data instance

Figure 1: An example of data acquisition

find the one that delivers the best correlation between source
and target attributes is prohibitively expensive. Besides the
scalability issue, there are several important issues for data
purchase on the marketplace. Next, we discuss them briefly.

Meaningful joins. Different joins return different amo-
unts of useful information. For example, consider Option 2
and 3 in Example 1.1. The join result in Option 2 is grouped
by gender, while that of Option 3 is grouped by race. Both
join results are considered as meaningful, depending on how
the shopper will test his hypothesis on the join results. On
the other hand, the join result of Option 4 is meaningless, as
it associates the aggregation data with individual records.

Data quality. The data on the data marketplaces tends
to be dirty [14]. In this paper, we consider data consistency
as the main data quality issue. Intuitively, data quality
(in terms of its consistency) is measured as the percentage
of data content that is consistent with the given integrity
constraints which take the form of functional dependency
(FD) [11, 8]. Consider D; in Table 1 (b) that has a FD:
Zipcode — State (i.e., the same Zipcode values are associated
with the same State value). The last record is inconsistent
with the FD. Thus Option 1 in Example 1.1 can lead to
errors in the hypothesis on the join results. A naive solution
is to clean the data in the marketplace off-line before data
purchase. However, we will show that join indeed can impact
the data quality significantly: the join of high-quality (low-
quality, resp.) data instances can become low-quality (high-
quality, resp.). Therefore, the data quality issue has to be
dealt online during data acquisition.

Constrained budget. We assume the data shopper is
equipped with a limited budget for data purchase. We follow
the query-based pricing model [6] used by some commercial
cloud-based data marketplaces (e.g., Google Big Query ser-
vice [2]): a data shopper submits SQL queries to the data
marketplaces and pays for the query results. This pricing
model allows the data shopper to only purchase the nec-
essary attributes instead of the whole dataset. However,
choosing which attributes to purchase under budget con-
straint introduces additional complexity to data purchase.

Data scalability, data quality, join informativeness, and
budget constraints make data purchase from the data mar-
ketplaces extremely challenging for the data shoppers, es-
pecially for those common users who do not have much ex-
perience and expertise in data management. The existing
works on data exploration [37, 28, 27] mainly focus on find-
ing the best join paths among multiple datasets in terms of
join size and/or informativeness. However, these solutions
cannot be easily adapted to data marketplaces, since it is

363

too expensive to construct the schema graph [28] for all the
data on the marketplace due to its large scale. Furthermore,
the search criteria for join path is different. While these ex-
isting works on data exploration try to find the join path
of the best informativeness, our work aims to find the best
join path that maximizes the correlation of a set of specific
attributes, with the presence of the constraints such as data
quality and budgets.

Contributions. We design a middleware service named
DANCE, a Data Acquisition framework on oNline data mar-
ket for CorrElation analysis, that provides cost-efficient data
acquisition service for the budget-conscious search of the
high-quality data on the data marketplaces, aiming to max-
imize the correlation of certain attributes. DANCE consists
of two phases: (1) during the off-line phase, it constructs
a join graph of the datasets on the data marketplace. The
join graph contains the information of these datasets at both
schema and instance levels. To deal with the data scalabil-
ity issue of data acquisition, DANCE collects samples from
the data marketplace, and constructs the join graph from
the samples; (2) during the online phase, it accepts the data
shoppers’ correlation request as well as the constraints (bud-
gets, data quality, and join informativeness). By leveraging
the join graph, it estimates the correlation of a certain set of
attributes, as well as the join informativeness and quality of
the data items to be purchased. Based on these estimated
information, DANCE recommends the data items on the
data marketplace that deliver the best correlation while sat-
isfying the given constraints to the data shopper.

We make the following contributions. First, we design a
new sampling method named correlated re-sampling to deal
with multi-table joins of large intermediate join size. We
show how to unbiasedly estimate the correlation, join in-
formativeness, and quality based on the samples. Second,
we design a new two-layer join graph structure. The join
graph is constructed from the samples collected from the
data marketplace. It includes the join relationship of the
data instances at schema level, as well as the information
of correlation, join informativeness, quality, and price of the
data at instance level. Based on the join graph, third, we
transform the data acquisition problem to a graph search
problem, which searches for the optimal subgraph in the join
graph that maximizes the (estimated) correlation between
source and target nodes, while the quality, join informative-
ness (in format of edge weights in the graph), and price sat-
isfy the specified constraints. We prove that the problem of
searching for such optimal subgraph is NP-hard. Thus, we
design a heuristic algorithm based on Markov chain Monte

DANCE

Request for samples

Construction of join graph

Samples

Data marketplace

Join graph

! !
.
Source instances S H [

Data acquistion |

a

\ Correlation (As, A1), Budget B

} Data shopper
Data purchase query (SQL)

Data purchase query (SQL) ‘

Purchased data

Figure 2: Framework of DANCE

Carlo (MCMC). Our heuristic algorithm first searches for
the minimal weighted graph at the instance layer of the join
graph, which corresponds to a set of specific instances. Then
it finds the optimal target graph at the attribute set layer
of the join graph, which corresponds to the attributes in
those instances that are to be purchased from the market-
place. Last but not least, we perform an extensive set of
experiments on large-scale datasets. The results show that
our search method can find the acquisition results with high
correlation efficiently.

The rest of the paper is organized as following. Section
2 introduces the preliminaries. Section 3 presents the data
sampling method. Section 4 and Section 5 present the off-
line and online phases of DANCE respectively. Section 6
shows the experiment results. Section 7 discusses possible
extensions and future work. Section 8 discusses the related
work. Section 9 concludes the paper.

2. PRELIMINARIES

2.1 System Overview

We consider a data marketplace M that stores and main-
tains a collection of relational database instances D = {Dl,
...,Dy}. A data shopper may own a set of relational data
instances S locally, which contain a set of source attributes
As. The data shopper would like to purchase a set of target
attributes A7 from M, so that the correlation between As
and A7 is maximized. In this paper, we only consider ver-
tical purchase, i.e., the shopper buys the whole set of data
values of certain attributes from the data marketplaces. We
assume the data shoppers fully trust DANCE. Figure 2 illus-
trates the framework of DANCE. It consists of two phases:
off-line and online phases.

Off-line phase. DANCE collects a set of samples from
M, and constructs a data structure named join graph that
includes the join relationship among the samples at schema
level, and the join informativeness at instance level.

Online phase. DANCE accepts the acquisition re-
quests from data shoppers. Each acquisition request consists
of: (1) the source dataset S that is owned by the shopper
and the source attributes As € S; (2) the target attributes
A1 € D, and (3) the budget B of data purchase from M,
to DANCE. The data shopper can also specify his require-
ment of data quality and join informativeness by the setup
of the corresponding threshold values. Both S and As are
optional. The acquisition request without S and As aims to
find the best correlation of A+ in D.

After DANCE receives the acquisition request, it first
processes the request on its local join graph by searching for

364

a set of target instances T = {T1,...,Tk}, where: (1) for
each T;, there exists an instance D; € D such that T; C Djy;
(2) the correlation between As and A7 is maximized in
J =>vr;esur T3, where < denotes the equi-join operator;
(3) each T; € T is assigned a price, which is decided by a
query-based pricing function [6]. The total price of T should
not exceed B; and (4) the quality and join informativeness
of J satisfy the thresholds specified by the data shopper.
If no such target instance can be identified from its current
join graph and data samples, DANCE purchases more sam-
ples from M, updates its local join graph, and performs the
data search again. The iterative process continues until ei-
ther the desired T is found or the data shopper changes his
acquisition requirement (e.g., by relaxing the data quality
threshold).

After DANCE identifies the target instances T, it gener-
ates a set of SQL projection queries Q, where each instance
T; € T corresponds to a query Q € Q. Each Q € 9, denoted
as ma,(D;) (7 : the projection operator), selects a set of at-
tributes A; from the instance D;. We call the attribute set
A; the projection attribute set. In the paper, we use D.A to
specify the values of attribute A of the instance D.

Upon receiving the purchase option Q from DANCE,
the client sends Q to M directly for data purchase, and
obtains the corresponding instances.

2.2 Correlation Measurement

Quite a few correlation measurement functions (e.g. Pear-
son correlation coefficient , token inverted correlation [31],
and cross correlation (autocorrelation) [25]) can evaluate the
correlation of multiple attributes. However, they only can
be used to deal with either categorical or numerical data,
but not both. Therefore, we use the entropy based corre-
lation measure [26] to quantify the correlation as it deals
with both categorical and numerical data. We assume the
readers’ familiarity with information theory concepts.

DEFINITION 2.1. [Correlation [26]] Given a dataset
D and two attribute sets X and Y, the correlation of X and
Y CORR(X,Y) is measured as

e CORR(X,Y)=H(X)— H(X|Y) if X is categorical,

e CORR(X,Y) = h(X) — h(X|Y) if X is numerical,
where H(X) is the Shannon entropy of X in D, and H(X|Y")
is the conditional entropy:

H(X|Y) =) H(X|y)p(y),

Furthermore, h(X) is the cumulative entropy of attribute X

h(X) = —/P(X < z)logP(X < z)dz,

and
h(X|Y) = — / h(X|y)p(y)dy.

Intuitively, the entropy H(X)/h(X) measures the uncer-
tainty of values in attribute X, and the conditional entropy
H(X|Y)/h(X|Y) quantifies the uncertainty of X given the
knowledge of Y. The correlation CORR(X,Y) computes
the reduction in uncertainty of X given the knowledge of Y.
If X and Y are highly correlated, CORR(X,Y) is large.

2.3 Join Informativeness

Quantifying how informative the join results are is chal-
lenging. Evaluating join informativeness simply by join size
is not suitable. For example, consider Option 5 in Exam-
ple 1.1 (i.e. join of Dg and Ds in Table 1). The join is
meaningless since it associates the aggregation data with
individual records. But its join size is larger than the other
options (e.g., join Dg with D7) that are more meaningful.
Therefore, we follow the join informativeness measurement
in [37], which measures the join informativeness by using
the well-known concepts from information theory. Briefly
speaking, given a joint distribution (X,Y’), let I(X,Y) and
H(X,Y) denote the mutual information and entropy respec-
tively. Then D(X,Y) = HEHET) — g — S0
distance function [20]. This distance function has several
nice properties (e.g., non-negative and symmetric) that also
hold on the join results. The join informativeness is formally
defined below.

DEFINITION 2.2. [Join Informativeness [37]] Given
two instances D1 and D2, let J be their join attribute(s).
The join informativeness of D1 and D is defined as

I(D1.J, Ds.J)
H(D1.J, Da.J)’

The join informativeness value always falls in the range [0,
1]. It is worth noting that the smaller JI(D1, Dg,J) is, the
more informative is the join connection between D; and Ds.

2.4 Data Quality

In this paper, we consider the setting where data on the
marketplaces is dirty. In this project, we mainly consider
one specific type of dirty data, the inconsistent data, i.e.,
the data items that violate integrity constraints [5, 29]. A
large number of existing works (e.g., [11, 8]) specify the data
consistency in the format of functional dependency (FD).
Formally, given a relational dataset D, a set of attributes Y
of D is said to be functionally dependent on another set of
attributes X of D (denoted X — Y) if and only if for any
pair of records 71,72 in D, if 1[X] = r2[X], then m[Y] =
ro[Y]. For any FD F : X — Y where Y contains multiple
attributes, F' can be decomposed in to multiple FD rules
F': X - Y', with Y’ containing a single attribute of Y.
Thus for the following discussions, we only consider FDs
that contain a single attribute at the right hand side.

Based on FDs, the data inconsistency can be measured
as the amounts of data that does not satisfy the FDs. Before
we formally define the measurement of data inconsistency,
first, we formally define partitions. We use r.A to denote
the value of attribute A of record r.

DEFINITION 2.3. [Equivalence Class (EC) and Par-
titions] [15] The equivalence class (EC) of a tuple r with
respect to an attribute set X, denoted as eq’y, is defined
as eq’y {r'|r.A = v" AVA € X,Vr' € D}. The set

is a

JI(Dy,Dy) =1— (1)

365

mx = {eqx|r € D} is defined as a partition of D of the
attribute set X. Informally, mx is a collection of disjoint
sets (EC's) of tuples, such that each set has a unique repre-
sentative value of the set of attributes X, and the union of
the sets equals to D.
Given a dataset D and an FD F' : X — Y, where X and

Y are a set of attributes, the degree of data inconsistency
by F' can be measured as the fraction of records that do not
satisfy this FD. Following this, we define the data quality
function Q(D, F) for a given FD F on an instance D.

DEFINITION 2.4. [Data quality of one instance w.r.t.
one FD] Given a data instance D and a FD F : X —
Y on D, for any equivalence class eq, € mwx, the correct
equivalence class in Txuy s

CV(D7 X — Y, eqz) :{eqzy|eqzy € TXUY, €qzy c €4z,
ﬂeq;y € mxuy S.t. eq;y C eqy and

|6q/zy‘ > [eqayl}-
(2)
In other words, C(D,X — Y, eqs) is the largest equivalence
class in mxuy with the same value on X attributes as eqz. If
there are multiple such equivalence classes of the same size,
we break the tie randomly.
Based on the definition of correct equivalence class, the
set of correct records in D w.r.t. F is defined as:

C(D,X »Y)= U C(D,X =Y, eq).

eqzETX

3)

The quality of a given data instance D w.r.t. F: X =Y
is measured as:

|IC(D, X = Y)|
1D

ExAMPLE 2.1. Consider the data instance D1 in Table 1
(b) and the FD F : Zipcode — State. We refer the four tu-
ples in D1 ast1 -ta by following their order in the table. The
partition Tzipcode ncludes three equivalence classes, eqlz =
{t1}, eq% = {t2} and eqy = {ts,ts}. The partition
T ZipcodeUState CONSISts of four equivalence classes, i.e., eq%s
={t:1}, eqzs = {t2}, eqzs = {t3}, and eqzs = {ta}. Thus,
we have Q(D1,F) = 0.75. Note that eqyg is considered as
an error.

Based on the definition of data quality of one instance
w.r.t to one FD, now we are ready to define data quality of
several joinable instances w.r.t to a set of FDs.

DEFINITION 2.5. [Data quality] Given a set of in-
stances D, let J = vp,ep Di, and F be the set of FDs
that hold on J. The set of correct records of D w.r.t. F
is defined as C(J,F) = (\yg,er C(T, Fi), where C(T, Fy)
follows Equation (3). Then the quality of D w.r.t. F is
measured as

QDX —Y)=

9.7, W

Intuitively, the quality is measured as the portion of the
records that are correct among all the FDs (i.e., C(J,F) =
(Vrer C(J, Fi)) on the instance.

Impact of join on data quality. To provide high-quality
data for purchase, a naive solution is to clean the incon-
sistent data off-line before processing any data acquisition
request online. However, this solution in incorrect, since join
can change data quality: high-quality datasets may become
low-quality after join, and vice versa. Example 2.2 shows an
example of such quality change.

QD) =

Table 1: An example: join of two high-quality data in-
stances becomes low-quality
TO[A[B[C| LR CIDIE
11 c1 dq el
t1 ap | bo | ca n d
2 c1 1| e
to ai | ba | c1 n d
3 c2 1| e2
t3 a1 bo | c2 7 d
ta a1 bs | c3 4 a3 L 2
ts c3 dy €2
(a) D1: A— B (b) D2: D — FE
(Q(D1) = 0.75) Q(D2) =06
TID | A B C D E
t1 al ba | c1 | di €1
to al ba | c1 | di €1
t3 ap | bo | c2 | di | e2
t4 a1 | b3 | c3 | di | e2
ts a1 | b3 | c3 | di | e2

(C) Dy X Dy: A—B,D— FE
Q(Dl X DQ) =0.2

EXAMPLE 2.2. In Table 1 (a) and (b), we display two
datasets with good quality. The correct records in D1 in-
clude {t1,t2,t3}. Thus Q(D1) = 0.75. Similarly, the correct
records in Ds include {t3,ts,ts}. Thus Q(D2) = 0.6. The
join of D1 and Dy (Table 1 (c)) consists of 5 tuples. Ap-
parently, C(D1 X Dg, A — B) = {t1,t2,t3}, while C(D1 X
Dy, D — E) = {t3,ta,t5}. Only record ts is correct for both
FDs A — B and D — E. Therefore, Q(D1 X D) = 0.2.
Apparently, the quality of join results becomes much lower
than that of D1 and Da.

Example 2.2 shows that performing data cleaning before
join is not acceptable. Thus data quality has to be measured
on the join result online during data acquisition.

2.5 Problem Definition

Intuitively, the data shopper prefers to purchase the
high-quality, affordable data instances that can deliver good
join informativeness, and most importantly, the best correla-
tion. We assume the data samples have been obtained from
the data marketplace. Formally, given a set of data samples
D = {D1,...,Dn} collected from the data marketplace, a
set of source instances S with source attributes As, a set of
target attributes A7, and the budget B for data purchase,
the data acquisition problem is defined as the following: find
a set of database instances T such that

maxqirmize CORR(As, AT)
subject to VT; € T,3D; € D s.t. T; C Dy,

> JIT,Ti) < o,
T; ESUT
p(T) < B,

where o and 8 are the user-specified thresholds for join in-
formativeness and quality respectively. We will discuss how
to guide the data shopper to specify appropriate parameter
values for a and (in Section 7.1. The output T will guide
DANCE to suggest the data shopper of the SQL queries for
data purchase from the data marketplaces.

3. DATA SAMPLING AND ESTIMATION

In this section, we discuss how to estimate join infor-
mativeness, data quality, and correlation based on samples.

366

We use the correlated sampling [35] method to generate the
samples from the data marketplace. General speaking, for
any tuple t; € D1, let ¢;[J] be its join attribute value. The
record t; is included in the sample S; if hash(t;[J]) < p1,
where hash() is the hash function that maps the join at-
tribute values uniformly into the range [0, 1], and p: is the
sampling rate. The sample Sz of D3 is generated in the same
fashion.

For a pair of data instances D; and Da, let S; and Ss
be the samples of D; and D2 by using correlated sampling.
Then the join informativeness JI(D1, D2) is estimated as:

JI(D17D2) = JI(SI»S2)7

where JI() follows Equation (1).

Next, we have Theorem 3.1 to show that the estimated
join informativeness is unbiased and is expected to be accu-
rate.

THEOREM 3.1. Let D1 and D2 be two data instances, and
S1 and Sz be the samples of D1 and D2 by using correlated
sampling with the same sampling rate. Then the expected
value of the estimated join informativeness E(JI(S1,S2))
must satisfy that E(JI(S1,S2)) = JI(D1, D2).

The correctness of Theorem 3.1 relies on the fact that each
tuple is sampled with the same probability. We present the
proof of Theorem 3.1 in our full paper [23].

One weakness of the correlated sampling for estimation
of the correlation and data quality is that the size of join
result from samples can be extremely large, especially for the
join of a large number of data instances. Note that this is not
a problem for estimation of join informativeness as it only
deals with 2-table joins. To deal with the large join result,
we design the correlated re-sampling method by adding a
second-round sampling of the join results. Intuitively, given
a set of data instances (D1, ..., Dp), for any intermediate
join result IJ, if its size exceeds a user-specified threshold
71, we sample IJ’ from IJ by using a fixed re-sampling rate,
and use IJ' for the following joins. In this way, the size of
the intermediate join result is bounded.

For the sake of simplicity, for now we only focus on the
re-sampling of 3-table joins (i.e., D1 X Dy X D3). Let Si,
S2 and S3 be the samples of D1, D2, and D3 respectively.
Let S1, denote the re-sampling result of S; X Sy if its size
exceeds 7, or S1 X S5 otherwise. The estimated correlation
and quality are

CORRD, wpyp,(As, Ar) = CORRs; s, (As, A7),

and
Q(D1, Ds, D3) = Q(S} 5, S3).

The estimation can be easily extended to the join paths
of arbitrary length, by applying sampling on the interme-
diate join results. Next, we show that the correlation and
data quality estimation by using correlated re-sampling is
also unbiased.

THEOREM 3.2. Given a join path (D1, D2, D3), let S
be the sample of S1 ™M Sa. It must be true that the expected
value of the estimated correlation E(CORRsi,zmsg) satisfies

the following:

E(CORRg; ,ms,(As, AT)) = CORRD mpymps (As; AT),

Figure 3: An example of attribute set lattice

and the expected value of the estimated quality E(Q(S] 2, S3))
satisfies the following:

E(Q(S1,2,53)) = Q(D1, D2, D3),

where As and A1 are the source and target attribute sets.
The correctness of Theorem 3.2 is similar to that of The-
orem 3.1. We include the proof of Theorem 3.2 in our full
paper [23] due to the space limit. We must note that the
estimation is unbiased, regardless of the value of 7.

4. OFF-LINE PHASE: CONSTRUCTION OF
JOIN GRAPH

In this section, we present the concept of join graph, the
main data structure that is used for our search algorithm
(Section 5). First, we define the attribute set lattice of a
single data instance.

DEFINITION 4.1. [Attribute Set Lattice (AS-lattice)]
Given a data instance D that has m attributes A, it corre-
sponds to an attribute set lattice (AS-lattice) L, in which
each vertex corresponds to a unique attribute set A" C A.
For the vertex v € L whose corresponding attribute set is
A', it corresponds to the projection instance w4 (D). Given
two lattice vertices vi,v2 of L, va is v1’s child (and linked
by an edge) if (1) A1 C Az, and (2) |Az2| = |A1] + 1, where
A1 and Az are the corresponding attribute sets of v1 and va.
v1 is an ancestor of ve (linked by a path in L) if A1 C As.
v1 and vz are siblings if they are at the same level of L.

Given D and its m attributes A, the height of the at-
tribute set lattice of D is m — 1. The bottom of the lattice
contains a single vertex, which corresponds to .4, while the
top of the lattice contains (’;) vertices, each correspond-
ing to a unique 2-attribute set. Figure 3 shows an exam-
ple of the attribute set lattice of an instance of four at-
tributes {A, B,C, D}. In general, given an instance of m
attributes, its attribute set lattice consists of (Zl) + ... +
(2) = 2™ —m — 1 vertices.

Next, we define join graph. In the following discussion,
we use AS(v) to denote the attribute set that the vertex v
corresponds to.

DEFINITION 4.2. [Join Graph] Given a set of data in-
stances (samples) D = {D1,...,Dyn}, it corresponds to an
undirected, weighted, two-layer join graph G:

(1) Instance layer (I-layer): each vertex at this layer,
called instance vertex (I-vertex), represents a data instance
D; € D. There is an edge e;j, called I-edge, between any
two I-vertices v; and v; if AS(v;) N AS(v;) # 0.

(2) Attribute set layer (AS-layer): for each I-vertex
v;, it projects to a set of vertices, called attribute set ver-
tex (AS-vertez), at the AS-layer, each corresponding to an
unique attribute set of the instance D;. The AS-vertices that
was projected by the same I-vertex construct the AS-lattice

367

- (8, 0.45)
(Dl\ /DZ
_/ Instance level

(8C,05) °

(8,0.45) .

Attribute set level

Figure 4: An example of a join graph for two instances
D,(ABC) and D2(BCDE). Dotted rectangles represent ta-
bles. Only the node BC of instance D; has all edges. The
edges of other nodes are omitted for simplicity.

(Def. 4.1). Each AS-vertex v; is associated with a price p;.
For any two AS-vertices v; and v; that were projected by
different I-vertices and AS(v;) NAS(v;) # 0, there is an edge
€ij, called AS-edge, that connects v; and vj. FEach AS-edge
is associated with a pair (J,w; ;), where J = AS(v;)NAS(vj),
and the weight w; ; is the join informativeness of D; and D;
on the join attributes J.

Definition 4.2 only specifies the weight of AS-edges. Next,
we define the weight of I-edges. For any two I-vertices v;
and vj, let AE be the set of AS-edges {(vk,v:)} where vy
(vi, resp.) is an AS-vertex that v; (vj;, resp.) projects to.
The weight of the I-edge (vs;,v;) is defined as the w;; =
min(y, v)eAE Wk,i-

The I-layer can be constructed from the schema infor-
mation of datasets in the marketplaces. Many existing mar-
ketplace platforms (e.g., [3, 2]) provide such schema infor-
mation. AS-layer will be constructed from the data samples
obtained from the marketplace. Intuitively, there exists the
trade-off between accuracy and cost. We will discuss this
trade-off in Section 7.3.

Given a set of n data instances D , its join graph con-
tains n instance vertices and i (2™* —m; — 1) AS-vertices,
where m; denotes the number of attributes in D;. Figure
4 shows an example of the join graph. An important prop-
erty of the join graph is that all the AS-edges that connect
the AS-vertices in the same instances with the same join
attributes always have the same weight (i.e., the same join
informativeness). For instance, the edges (D1.AB, D2.BC)
and (D1.BC, D2.BD) have the same weight. Formally,

PROPERTY 4.1. For any two AS-edges (vi,v;) and (v, v}),
if v; and v, were associated with the same I-vertex, as well
as for v; and vi, and AS(v;) N AS(v;) = AS(v;) N AS(v})
(i.e., they have the same join attributes), then the two edges
(vi,v5) and (v,v}) are associated with the same weight.
Property 4.1 is straightforward by following the definition
of the join informativeness. For example, consider the join
graph in Figure 4, the edge (D1.BC, D2, BD) has the same
weight as (D1.BC, Da2, BDE), as well as (D1.AB, D2, BE)
(not shown in Figure 4). Property 4.1 is in particular use-
ful since it reduces the complexity of graph construction to
exponential to the number of join attributes, instead of ex-

ponential to the number of all attributes. We will also make
use of this property during graph search (Section 5) to speed
up the search algorithm. We must note that the join infor-
mativeness does not have the monotone property (i.e., the
join on a set of attributes J has higher/lower join infor-
mativeness than any subset J' C J). As shown in Figure
4, the join informativeness of join attributes BC' is higher
than that of join attribute B, but lower than that of the join
attribute C.

Given a join graph, the source and target attributes As
and A7 can be represented as special vertices in the join
graph, formally defined below.

DEFINITION 4.3. [Source/target vertex sets] Given
the source instances S, the source attributes As, and the
target attributes A1, and a join graph G. An instance ver-
tex v € G is a source [-vertex if its corresponding instance
D € 'S. An instance vertex v € G is a target I-vertex if
its corresponding instance D is a source instance in S that
contains at least one target attribute A € Ar. A set of
AS-vertices V'S is a source (target, resp.) AS-vertex set if
Uve;evsAS(vi) = As (Ar, resp.). In other words, the AS-
vertex set covers all source (target, resp.) attributes.

Since some attributes may appear in multiple instances,
there exist multiple source/target AS-vertex sets. Based on
the join graph and the source/target AS-vertex sets, the
data acquisition problem is equivalent to finding a subgraph
named target graph in the join graph, which corresponds to
the instances for purchase. Next, we formally define the
target graph.

DEFINITION 4.4. [Target Graph] Given a join graph
G, a set of source AS-vertex sets SV, and a set of target AS-
vertex sets TV, a connected sub-graph TG C G is a target
graph if there exists a source AS-vertex set SV € SV and a
target AS-vertex set TV € TV such that TG contains both
SV and TV .

The target graph requires that it covers all source and
target attributes. Next, we define the price, weight, and the
quality of the target graph. Given a target graph TG, the
price of TG is defined as p(T'G) = ZVWGTG pi. The weight
of TG is defined as: w(TG) = ZV(Ui’vj)eTG w(i,). And the
quality of TG, denoted as Q(T'G), is defined per Equation 4.
Based on these definitions, now the data purchase problem
can be mapped to the following graph search problem.
Problem statement Given a join graph G, a set of source
AS-vertex sets SV, a set of target AS-vertex sets TV, and
a budget B, find the optimal target graph (OTG) G* C G
that satisfies the following constraint:

Maximize CORR(As, AT)

Subject to w(G") < a, 5)
Q(G") > B,
p(G7) < B,

where « and (8 are user-specified threshold for join informa-
tiveness and quality. We have the following theorem to show
the complexity of the graph search problem.
THEOREM 4.1. The OTG search problem is NP-hard.

The correctness of Theorem 4.1 follows the fact that
CORR(As, Ar) is a submodular function. According to
[36, 21], it is NP-hard to maximize a submodular function
under a matroid constraint. The details of the proof are
included in the full paper [23].

368

S. ONLINE PHASE: DATA ACQUISITION

Given the acquisition request (As,.A7) with the source
data S, the brute-force approach is to search all possible tar-
get graphs in the join graph to find the best one (i.e., As
and A7 have the largest correlation). Obviously this ap-
proach is not scalable, given the fact that there is a large
number of data instances in the data marketplace, and each
data instance has exponentially many choices of attribute
sets. Therefore, we design a heuristic algorithm based on
Markov chain Monte Carlo (MCMC). The intuition is that
with fixed (As, A7), a large target AS-vertex set usually
renders the join with small correlation and high join infor-
mativeness over longer join paths. Our algorithm consists
of two steps. First, we find the minimal weighted I-layer
graphs (I-graphs) (i.e., minimal join informativeness and
thus higher correlation). Second, we find the local optimal
target graph at the AS-layer (AS-graphs) from the minimal
weighted I-graphs. Next, we present the details of the two
steps.

5.1 Step 1: Find Minimal Weighted Graphs
(I-graphs) at I-layer

Given the source and target vertices, our graph search
problem can be transformed to the classic Steiner tree prob-
lem that searches for a minimal tree that connects the source
and target vertices. The Steiner tree problem is NP-hard.
The complexity of the approximation algorithm [34] is quad-
ratic to the number of nodes, which may not be acceptable
for large graphs. In this paper, we design a heuristic al-
gorithm whose complexity is logarithmic to the number of
nodes in the graph. Our algorithm extends the approximate
shortest path search algorithm [13]. The key idea is to ran-
domly pick a set of I-vertices as the landmarks. For each
I-vertex in G, our algorithm pre-computes and stores the
minimal weighted paths to these landmarks, by using the
shortest path search algorithm [13]. Then given the source
and target AS-vertex sets As and Ap, for each landmark
U, the algorithm constructs a graph by connecting each ver-
tex in As U A7 and vy, via their minimal weighted paths.
The output I-graph is constructed as the union of all the
minimal weighted paths. If the total weight of the I-graph
exceeds «, there does not exist a target graph that satisfies
the join informativeness constraint. The algorithm returns
no output for this case.

5.2 Step 2: Find Optimal Target Graphs (AS-
graphs) at AS-layer

Based on the data instances selected by Step 1, Step 2
further selects the projection attributes of these instances by
searching at the AS-layer of the minimal weighted I-graph.
Algorithm 1 shows the pseudo code of Step 2. The key idea
of Step 2 is to generate a sample of the target graph at AS-
layer iteratively by replacing the join attribute set of one
edge e;; with a different join attribute set. The algorithm
runs / iterations and keeps the target graph of the largest
correlation between the source and target vertices (Line 11 -
14). Some target graphs may not satisfy the constraints on
weights, quality, and/or price. For each new target graph,
we first check if it satisfies these constraints (Line 8). After
that, we use a Markov Chain Monte Carlo (MCMC) pro-
cess to generate target graphs with high correlation, so as
to maximize the utility of the output. In particular, for
each graph, the algorithm randomly picks an edge e; ; (Line

Algorithm 1: FindJoinTree_AttSet(): find optimal tar-
get graph at attribute set layer

Require: A minimal weighted I-graph ZG
Ensure: A target graph G* at the AS-layer

1: G*=NULL

2: Max =0

3: TG=1IG

4: for i =1to ¢ do

5: Randomly pick an edge e;,; € TG

6: Randomly pick a different edge e;,j between (v;, v;
7: Let TG’ be the new target graph

8 if p(TG) < BAw(TG)<aAnQTG) > then
9: if accept e; ; by probability min(1, %)

then

10: TG =TG

11: if CORR(TG) > Maz then

12: G =TG

13: Maz := CORR(G™)

14: end if

15: end if

16: end if

17: end for

18: return G*

5), which represents the join between two instances D; and
Dj. From all the possible join attributes between D; and
Dj, the algorithm randomly picks one, which corresponds
to the AS-edge €; ;, and replaces e; ; with € ; by the accep-

1,5
tance probability min(1, CC%#%) (Line 9). Intuitively,
the target graph of high correlation is accepted with high

probability.

5.3 Complexity Analysis

The complexity of Step 1 is O(k(]As| + |AT])log, n),
where k is the average size of the minimal weighted graphs
at the I-layer, and n is the number of data instances on the
marketplace (i.e., the number of vertices at the I-layer of the
join graph). In the experiments, we observe that k is much
smaller than n, especially when n is large. The complexity
of Step 2 is O(¢C), where £ is the number of iterations, and
C is the average join cost of the instances in the I-graph
returned by Step 1. Note that C'; depends on both the size
of I-graphs, and the size of each instance in the I-graph. The
total complexity of the graph search algorithm is dominated
by Step 2, which is O(¢C'y).

6. EXPERIMENTS

6.1 Experimental Setup

Implementation & testbed. We implement the algo-
rithms in Python. All the experiments are executed on a
machine with 2 x Intel(R) Xeon(R) Silver 4116 CPU @
2.10GHz, 12 cores, 24 processors, and 128 GB memory.

Datasets. We use three datasets, including TPC-E!, TPC-
H? benchmark datasets, and IMDB dataset®, in our experi-
ments. The details of the three datasets are shown in Table
2. The longest path of TPC-H and TPC-E join graphs are

Thttp://www.tpc.org/tpce/
2http://www.tpc.org/tpch/
https://www.imdb.com/interfaces/

369

of length 8 and 9 respectively, and 2 for IMDB join graph.
IMDB join graph include seven nodes. Six nodes form a
clique. The remaining single node (corresponding to the ta-
ble name) connects with only one node (corresponding to
the table principals) in the clique.

Functional Dependency (FD). We implemented the FD
discovery algorithm in [15] to find the FDs. The number of
discovered FDs is shown in Table 2.

Data quality. To introduce inconsistency into the tables,
we modified 30% of records of 6 tables in TPC-H dataset
(except region and Nation tables), 20 out of 29 tables in
TPC-E dataset, and all tables in IMDB dataset.

Data acquisition queries. For TPC-H and TPC-E datas-
ets, we define three queries Q1, Q2 and Q3 for short, medium,
and long join paths respectively. Q1, Q2 and @3 for TPC-H
dataset are of join path length 2, 3, and 5, while for TPC-E
dataset, @1, Q2 and @3 are of join path length 3, 5, and
8. Furthermore, to measure the impact of instance size on
the performance of data acquisition, the source/target at-
tributes of Q1, Q2, Qs for TPC-H dataset are associated
with instances of various sizes: the source and target at-
tributes of)1 are associated with the instances of medium-
(150K records) and large-size (1.5M records) respectively;
the source and target attributes of Q2 are associated with
small- (25 records) and medium-size (800K records) tables;
and the source and target attributes of Q3 are associated
with the tables of large (1.5M records) and small (5 records)
sizes. The two queries (1 and Q2 for IMDB dataset are de-
fined to measure the impact of number of join-able tables
of the source/target attributes on the performance of data
acquisition. For @1, both source and target attributes can
join with 5 tables. For @2, the source attribute belongs to
the table that only has one join-able partner, while the tar-
get attribute can join with 5 tables. The source, target, and
semantics of all the queries are shown in Table 3.

Pricing function & budget. We use the well-known
entropy-based pricing function [19]. To simulate various
budget settings, for each acquisition query, first, we measure
the lowerbound LB and upperbound U B of the total budget
as the minimum and maximum price of all possible paths
between source and target nodes. We define the shopper’s
budget as r x UB, where r € (0, 1] is the budget ratio. Intu-
itively, the larger r is, the more budget that the shopper is
equipped for data purchase. We require that r x UB > LB,
i.e., the shopper can afford to purchase the instances of at
least one join path in the join graph.

Evaluation metrics. To evaluate the performance of our
sampling-based heuristic algorithm, we compare the corre-
lation of the identified data instances by our algorithm and
two optimal algorithms, namely the local optimal (LP) al-
gorithm and the global optimal (GP) algorithm. Both LP
and GP algorithms are the brute-force algorithms that enu-
merate all paths to find the one of the highest correlation.
LP algorithm uses the samples as the input, and the GP
algorithm uses the original datasets as the input. For all
the algorithms, we measure the real correlation, not the es-
timated value. Let Xopr and X be the correlation of the
output by the (LP/GP) optimal approach and our heuristic
approach respectively. The correlation difference of is mea-
sured as CD = %. Intuitively, the smaller correlation
difference is, the more accurate our heuristic algorithm is.
Baseline. As this is the first work on data acquisition for
data marketplaces, we do not find any state-of-the-art work

Table 2: Dataset description (the tables that are of the minimum/maximum number of records/attributes are shown in a
pair of parentheses).

of |Min. instance sizeg Max. instance size |Avg. instance sizd Max. # of |Avg # of FDgTotal # of]

instances (# of records) (# of records) (# of records) attributes per table |join edges
TPC-I 8 5 (Region) | 6,000,000 (Lineitem) 1,082,655 |20 (Lineitem) 39 11
TPC-E| 29 4 (Exchange) [10,001,048 (Watchitem) 672,353 28 (Customer) 33 72
IMDB 7 866,657 (Ratings) | 30,007,771(Principals) 8,218,165 8(akas,basics) 27 16

Table 3: Query description

DatasetiQuery Source Target Explanation
Q1 |customer.account_balance] orders.clerk link customers’ account with responsible clerks
TPC-H| Q2 nation.name partsupp.availqty link parts with the nation of their suppliers
Q3 orders.total_price region.name associate orders’ price with the origin region
Q1 address.ad_linel customeraccount.ca_name pair customers with addresses
TPC-E| Q2 newseref.ni_id watchlist.w_id find news relevant to securities in customers’ watchlist
Q3 | customertaxrate.tx_id zipcode.zc_town associate tax with zipcode
IMDB Q1 crew.directors ratings.averageRating associate movie’s ratings with director
Q2 | name.knownForTitles akas.language associate actors’ famous movies with languages
1x107 ‘ 10000 10000
- G-Heuritc Q2Heursle —— Q3-Heuristc . . Ql —
§ 1x108 F S Q2GP = = = Q3-GP -4 § ? Q2 - - _
8 Lo ii:sssesssssasaiaiic = § 1000 5] .-
§ 100000 f - o:szas 8 & 1000 | .- E
= F - - - ~ ~ -
[0} 10000 f, -2 = =_=-="="% 3 [} [-
] - % 100] .
g 1000 F 4 3 3 L
S 100 |] S g 1op E
o) 10 F Ql — ©
E 10 k = £ Q2 - - £
[[Q3 ---- [
1 ‘ ‘ 1 ‘ ‘ ‘ 10 ‘ ‘
5 6 7 8 10 15 20 25 0.07 0.1 0.15 0.19
Number of Instances Number of Instances Budget Ratio
(a) TPC-H (b) TPC-E (c) IMDB
Figure 5: Time performance w.r.t. various # of instances and budget ratios
1 ‘ 1 ‘ 1 ‘
Heuristicv.s. LP = = Heuristicv.s. LP = = Heuristicv.s. LP = =
Heuristic v.s. GP = = = = Heuristic v.s. GP = = - - Heuristic v.s. GP = = = =
§ 08 - euristic v.s. G) § 08 - euristic v.s. G) § 08 I euristic v.s. G)
o ° o
2 2 2
£ o6 1 £ o6 1 £ o6 1
5 5 5
E 04 | 1 E 04 1 E 04 | 1
2 [~ 2 £
3 02 . 1 8 o2p 1 3 02fs 1
T R A e e e - el
0 = = = —_— - o L L 0 L e SN
0.1 0.4 07 1 0.1 0.4 07 1 0.1 0.4 07 1
Sampling Rate Sampling Rate Sampling Rate
(a) Q1 (b) Q2 (©) Qs

Figure 6: Correlation difference w.r.t. various sampling rate (TPC-H dataset)

20 10 T =
18 b 9 s
16 b 8 I
c 14 R c 7
2 12F B 2 6
S 0| omvele T O g 5
2 Q1-GP Q2-GP = = = Q3-GP 2 Q1-Heuristic
§ 8hb— e ea-ceonenn = 8§ 4r Q1-LP
6] 3 Q1-GP :
4 2 Q2-Heuristic i
s L i 1 Q2-LP = - |
Q2-GP - - - -
0 0 . . |
0.07 0.09 0.11 0.13 0.15 0.07 0.09 0.11 0.13 0.15
Budget Ratio Budget Ratio

(a) TPC-H (b) IMDB

Figure 7: Correlation w.r.t. various budget ratio

370

Table 4: Comparison between our search algorithm and GREEDY algorithm (TPC-E dataset)

Query Approach Correlation | Quality | Join Informativeness | Price
Our Approach 16.87 0.94 1.76 84.82
A GREEDY Algorithm 16.87 0.94 1.76 84.82
Our Approach 15.51 0.96 2.03 104.52
Q2 GREEDY Algorithm 5.85 0.67 3.78 175.03
Our Approach 2.25 1 5.10 134.53
Q3 "GREEDY Algorithm 0 0 7.06 168.42
24 9 4
23 k g
22 (\ — 85 | 1 381 1
"% ar) % % 36| ,
s o200 1 s 8| - --=-=-=-- S 2 o=
g 19 N i g L - (‘53 34 F =
18 - Se e - -7 — 75 |- g szl |
17 + With Re-Sampling = = | With Re-Sampling = = With Re-Sampling = =
16) Without‘Re—SampIin‘g -) Without Be—SampIing 3) Without Be—SampIing

0.3 0.5

0.7 0.1

Re-sampling Rate

(a) Q1

0.3 0.5

0.7 0.9

Re-sampling Rate

(b) Q2

0.1 0.3 0.5

Re-sampling Rate

(c) Q3

0.7

Figure 8: Correlation with and without re-sampling w.r.t. various re-sampling rates (TPC-H dataset)

Table 5: Comparison between data acquisition with DANCE and purchase from the data marketplace directly (TPC-H
dataset, budget ratio=0.13)
Query Approach Correlation | Quality | Join Informativeness | Price
With DANCE 12.51 0.07688 0.8906 60.65
Q1 Purchase from data marketplace 18.18 0.3819 0.8268 63.12
With DANCE 7.216 0.3968 1.248 59.78
Q2 Purchase from data marketplace 7.965 0.4244 1.040 103.2
With DANCE 3.609 0.08632 2.063 100.5
Qs Purchase from data marketplace 4.592 0.1026 2.104 106.4

Table 6: Comparison between data acquisition with DANCE and purchase from the data marketplace directly (IMDB
dataset, budget ratio=0.14)
Query Approach Correlation | Quality | Join Informativeness | Price
With DANCE 6.94 1 0.946 61.94
Q Purchase from data marketplace 7.31 1 1.798 82.29
With DANCE 9.094 1 1.715 111.391
Q2 Purchase from data marketplace 9.957 1 2.663 136.824

0.9

to compare with. Thus we design the GREEDY algorithm
that picks the edge in the join graph with the minimum
weight at each step of graph traversal, until the target is
reached. The GREEDY algorithm allows backward traver-
sal if the current path is not reachable to the target.

6.2 Scalability

First, we measure the time performance of our heuristic
algorithm with various number of data instances. In Figure
5 (a), we compare the time performance of our heuristic
algorithm against LP and GP on TPC-H data. First, we
observe that our heuristic algorithm is significantly more
efficient than the two optimal algorithms, especially when n
(the number of instances) is large. For example, when n = 8,
our heuristic algorithm can be 2,000 times more efficient
than LP, and 20,000 times more efficient than GP. We are
aware that for Qs3, the heuristic algorithm has comparable
time performance to LP when n = 5. This is because for this
case, there is only one single I-graph that connects the source
and target vertices, which leads to the same search space of
our heuristic algorithm and LP. Second, we observe that the

371

time of both LP and GP increase with the growth of n. This
is not surprising since the number of I-graphs that connect
the source and target vertices increase with the growth of n.
However, the time performance of the heuristic algorithm
keeps stable when n increases. This is because the minimal
weighted I-graph identified by Step 1 (Section 5.1) keeps.

Figure 5 (b) shows the time performance of our approch
on TPC-E dataset. Since the two optimal algorithms do
no halt within 10 hours on this large dataset, we only show
the time performance of our heuristic algorithm. An im-
portant observation is that the time performance does not
increase with the growth of number of instances for some
queries (e.g., @1 and Q3). This is because while the time
performance of our heuristic algorithm depends on the I-
graph size, the increase of the number of instances does not
necessarily increase the I-graph size. For example, consider
Q1 in Figure 5 (b), the I-graph size drops 57% when the
number of instances changes from 15 to 29.

We also measure the time performance of our heuristic
algorithm with regard to various budget ratios. Figure 5

(c) shows the time performance of our heuristic algorithm
with various budget ratios on IMDB dataset. We vary the
budget ratio from 0.07 to 0.19, where 0.07 is the minimum
budget ratio that can find at least one solution for either of
the two queries @1 and @2, while 0.19 is the budget ratio
that can cover all the join paths in the search space of these
two queries. From the results, we observe that DANCE
takes more time when the budget ratio grows. However, the
time performance may keep stable when the budget ratio
is sufficiently large. For example, when the budget ratio
is larger than 0.11, the time performance of)1 keeps un-
changed. This is because when the budget ratio is 0.11 or
larger, the search space of Algorithm 1 remains the same.
We also measure the time performance on TPC-H and TPC-
E dataset with various budget ratios, and have similar ob-
servation. Due to the space limit, we present the detailed
results in our full paper [23].

6.3 Correlation

First, we measure the difference of the correlation of
source and target attribute sets in the datasets returned by
our heuristic algorithm and the two optimal algorithms with
regard to various sampling rates. Intuitively, we want the
correlation difference to be close to 0. The results are shown
in Figure 6. First, we notice that the correlation difference is
very small. In all cases, it never exceeds 0.31. Recall that in
Figure 5, our heuristic algorithm can be 20,000 times more
efficient than the optimal methods. This demonstrates that
our method can efficiently find the datasets of correlation
that is comparable to the optimal results. Second, we ob-
serve that the correlation difference decreases when the sam-
pling rate grows. This is straightforward as more samples
lead to more accurate correlation estimation.

Second, we measure the correlation between source and
target attributes in the data acquisition result returned by
our heuristic algorithm, as well as in the two optimal al-
gorithms, on TPC-H and IMDB datasets. The comparison
results are displayed in Figure 7. First, we notice that the
correlation by our heuristic algorithm is close to that of both
optimal algorithms. In all cases on both datasets, the differ-
ence is at most 5.9 (the maximum correlation is around 19).
Second, with the increase of the budget ratio, the correlation
of the results by all the three algorithms gradually rise (i.e.,
the correlation gets stronger). This is straightforward, as
higher budget can afford to purchase more data with better
utility. We do not show the correlation measurement results
on TPC-E dataset, due to the long execution time of the
GP algorithm.

Third, we compare the performance of our heuristic al-
gorithm with GREEDY algorithm in terms of correlation as
well as quality, join informativeness and price of the acqui-
sition results on TPC-E dataset. The results are shown in
Table 4. For queries of short path (e.g., Q1), the GREEDY
algorithm finds the same acquisition results as our approach.
For queries of longer path (e.g., Q2), the correlation, quality,
join informativeness and price of the acquisition results by
the GREEDY algorithm is much worse than our approach.
For the worst case, the GREEDY algorithm returns a path
whose join result is totally meaningless (e.g, Q3).

We also measure the impacts of re-sampling on the corre-
lation by changing the re-sampling rate on TPC-H dataset.
The result is presented in Figure 8. We observe that the
correlation with re-sampling oscillates around the correla-

372

tion without re-sampling. The difference gradually reaches
0 with the growth of the re-sampling rate. Overall, the
estimated correlation with re-sampling is accurate. The dif-
ference with the estimated correlation without re-sampling
never exceeds 4.5.

6.4 Data Acquisition with DANCE vs. without
DANCE

We compare the data acquisition results (correlation,
data quality, join informativeness, and price) by DANCE
with direct purchase from the data marketplace on TPC-
H and IMDB datasets. We use the GP algorithm to find
the data acquisition results on the data marketplace. The
comparison result for TPC-H dataset is displayed in Ta-
ble 5. First, we observe a large overlap between the data
acquisition results returned by DANCE and directly from
data marketplace. For instance, for)3, the two results has
91% overlap. Due to the space limit, we include the de-
tails of the acquisition results in the full paper [23]. Second,
we observe that the correlation of the data acquisition re-
sults returned by DANCE is comparable to that returned
from the data marketplace. It can be as high as 90% of
the optimal result. Third, the join informativeness of the
data acquisition by both DANCE and from the data mar-
ketplace is also close, which demonstrates the superiority of
our correlated re-sampling method. The price of the data ac-
quisition results returned by DANCE is always lower than
that from the data marketplace. For example, it is 42%
lower than the price of Q2 directly from the data market-
place. This shows that DANCE is able to find the data of
high utility (correlation) at a lower price. We acknowledge
that in some cases, the quality of the data acquisition results
returned by DANCE (e.g., Q1) is significantly lower than
from the marketplace directly, due to the error introduced
by the sampling-based estimation. However, in most cases,
the accuracy is still satisfying (Q2 and @Q3). The comparison
result for IMDB dataset is displayed in Table 6. The main
observations are similar to the TPC-H dataset. We omit the
detailed discussion here.

7. EXTENSIONS
7.1 Parameter Setup

Providing appropriate parameter values (e.g., the thresh-
old of data quality and join informativeness) for the data
acquisition requests is challenging for ordinary users who
lack expertise and background in database management.
DANCE can recommend the threshold settings to the users.
These recommended threshold settings can be generated via
optimal experimental design (OED) techniques [12]. In par-
ticular, given a set of design samples, each associated with a
set of parameter values and the performance measure, OED
aims to find a design of parameter settings that maximizes
the performance measure in expectation. DANCE can col-
lect the design samples either in the off-line phase by per-
forming multiple trials on the data samples, or in the online
phase by collecting users’ data acquisition requests and their
results. The optimal parameter settings can be learned by
applying active learning on the collected design samples [38].

7.2 System Plug-in with More Settings

New data quality metrics. In this paper, we mainly con-
sider FD-based metrics [15, 9]. Other metrics that measure

data dependencies (e.g., CFDs [11] and CINDs [7]) can be
easily adapted to DANCE by simply replacing FDs with
these metrics. Our sampling approaches (Section 3) can es-
timate the quality for these metrics. Changing data quality
metrics only impacts the calculation of data quality during
search. Our search algorithm keeps unchanged.

New data pricing functions. In the paper we employ the
entropy-based data pricing function [19], due to its arbitrage-
free property. Other pricing functions [10, 22] can be easily
plugged into DANCE for price calculation. Changing pric-
ing functions only impacts the calculation of prices. It will
not change our search algorithm.

7.3 Acquisition Cost Model

Purchasing data samples from the data marketplace in
the off-line phase is not free. Apparently, purchasing more

samples can better serve the data shoppers’ acquisition needs.

But it occurs higher cost. There exists the trade-off between
the performance of data acquisition and the cost of sample
purchase. Nevertheless, first, the cost of sampling purchase
can be amortized over multiple data acquisition queries in
the online phase. Second, sampling purchase is not necessar-
ily a one-time process. DANCE can keep purchasing more
samples from the data marketplace to improve its quality
of data acquisition service. An interesting observation from
our empirical study is that the sampling rate as small as 0.3
indeed can provide satisfying estimation accuracy. This ob-
servation can be used as the guidance to decide how many
samples should be purchased.

7.4 Dealing with Data Updates

In practice, the data marketplace is highly volatile as
new data are produced rapidly. When there are data up-
dates in the marketplace, the join graph should be updated
accordingly. For example, new data instances in the mar-
ketplace introduces new nodes and edges inserted into the
join graph. This requires DANCE to purchase new samples
from the data marketplace, which incurs monetary costs.
Using outdated data for analysis can avoid the data acquisi-
tion costs, but the analysis results may be inaccurate. This
raises the decision making problem of when to acquire new
data from the marketplace and when to use existing data
for data analysis. Intuitively, a data item that is likely out-
dated and significantly affects query result, as well as a data
item that is likely used often in queries in the near future,
should be purchased for join graph update. We can quantify
the reward of new data in terms of data correlation, which
can help to decide whether it is worth to purchase new data
samples from the marketplace. Machine learning methods
(e.g., reinforcement learning [24]) can be adapted to solve
the decision making problem.

8. RELATED WORK

The concept of data marketplace is firstly formally de-
fined in [6]. Kanza et al. [16] envision a geo-social data mar-
ketplace that facilitates the generation and selling of high-
quality spatio-temporal data from people. Koutris et al. [19]
propose a query-based data pricing model for the market,
considering the complicated queries that involve conjunc-
tive sub-queries. Ren et al. [30] focus on the joint problem
of data purchasing and data placement in a cloud data mar-
ket. None of them studies the correlation-driven purchase
on the data marketplace. Balazinska et al. [6] propose the

373

data pricing model in which the buyers are charged based
on the queries. QueryMarket [18] demonstrates the superi-
ority of such a query-based data pricing model in real-world
applications.

A relevant line of work is to explore the databases that
contain complex database schemas via joins. Intuitively,
given a database with schema graph, in which two tables are
specified as the source and destination tables, the problem
is to find a valid join path between the source and destina-
tion. Procopiuc et al. [27] compute a probability for each
join path that connects a given source table to a destina-
tion table. To speed up the exploration over the complex
schema graph, Yang et al. [37] summarize the content of
a relational database as a summary graph. The most rele-
vant tables and join paths can be computed from the sum-
mary graph. It defines the importance of each table in the
database as its stable state value in a random walk over the
schema graph, where the transition probability is defined
based on the entropies of table attributes. Zhang et al. [39]
take the reverse-engineering approach. In particular, given
a database D with schema graph G and an output table
Out, the problem is to compute a join query @ that gen-
erates Out from D. Unlike these works that mainly focus
on the join informativeness of data instances, we take multi-
ple factors, including join informativeness, data quality, and
price, into consideration for the data acquisition on the data
marketplace.

Regarding the related work on subgraph search, the work
on centerpiece subgraphs [33, 32], and on entity-relationship
subgraphs [17] partially share with our goal: for a given set
of query nodes and a budget constraint, output a connecting
subgraph that meets the budget and maximizes some good-
ness measure. These work mainly focus on mining the pat-
terns of some specific subgraphs, while we focus on finding
the optimal subgraph with regards to the given constraints
on informativeness, quality, and price.

9. CONCLUSION

In this paper, we study the data acquisition problem for
correlation analysis in the data marketplace. We consider
quality, join informativeness, and price issues of data acqui-
sition, and model the data acquisition problem as a graph
search problem under various constraints. We prove that the
graph search problem is NP-hard, and design a heuristic al-
gorithm based on Markov chain Monte Carlo (MCMC). Our
experiment results demonstrate the efficiency of our method.

For the future, there are quite a few interesting research
directions to explore. For example, instead of the best acqui-
sition scheme, DANCE may recommend a number of acqui-
sition options of the top-k scores to the data buyer, where
the scores can be defined as a combination of correlation,
data quality, join informativeness, and price. This raises
the issues of how to define a fair score function, as well as
the design of efficient top-k search algorithm when the score
function is not be monotone. Furthermore, an important
issue is the privacy of the data marketplaces. In particular,
when DANCE is not fully trusted, how can the data shop-
per exchange the information of the source instances with
DANCE in a privacy-preserving way, and find correlated in-
stances in the data marketplace? How to verify if the data
in the marketplace is genuine (i.e., it is not fabricated)?

10.

[1]
2]

[14]

[15]

[16]

[17]

REFERENCES

Bdex. http://www.bigdataexchange.com/.

Google bigquery data warehouse.
https://cloud.google.com /bigquery/.

Microsoft azure data marketplace.
https://azuremarketplace.microsoft.com.

Idc’s worldwide semiannual big data and analytics
spending guide taxonomy.
http://wuw.informationweek.com/big-data/, 2016.
M. Arenas, L. Bertossi, and J. Chomicki. Consistent
query answers in inconsistent databases. In
Proceedings of the ACM Symposium on Principles of
Database Systems, pages 68-79, 1999.

M. Balazinska, B. Howe, and D. Suciu. Data markets
in the cloud: An opportunity for the database
community. PVLDB, 4(12):1482-1485, 2011.

L. Bravo, W. Fan, and S. Ma. Extending dependencies
with conditions. PVLDB, 4(11):243-254, 2007.

F. Chiang and R. J. Miller. Discovering data quality
rules. PVLDB, 1(1):1166-1177, 2008.

F. Chiang and R. J. Miller. A unified model for data
and constraint repair. In IEEFE International
Conference on Data Engineering, pages 446-457, 2011.
S. Deep and P. Koutris. The design of arbitrage-free
data pricing schemes. In International Conference on
Database Theory, pages 1-18, 2017.

W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing
data inconsistencies. ACM Transactions on Database
Systems (TODS), 33(2):6, 2008.

V. Fedorov. Optimal experimental design. Wiley
Interdisciplinary Reviews: Computational Statistics,
2(5):581-589, 2010.

A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum.
Fast and accurate estimation of shortest paths in large
graphs. In Proceedings of ACM International
Conference on Information and Knowledge
Management, pages 499-508, 2010.

P. N. Hague, N. Hague, and C.-A. Morgan. Market
research in practice: How to get greater insight from
your market. Kogan Page Publishers, 2013.

Y. Huhtala et al. Tane: An efficient algorithm for
discovering functional and approximate dependencies.
The Computer Journal, 42(2):100-111, 1999.

Y. Kanza and H. Samet. An online marketplace for
geosocial data. In Proceedings of the ACM
International Conference on Advances in Geographic
Information Systems, pages 10-13, 2015.

G. Kasneci, S. Elbassuoni, and G. Weikum. Ming:
mining informative entity relationship subgraphs. In
Proceedings of the ACM Conference on Information
and Knowledge Management, pages 1653—1656, 2009.
P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe,
and D. Suciu. Querymarket demonstration: Pricing for
online data markets. PVLDB, 5(12):1962-1965, 2012.
P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe,
and D. Suciu. Query-based data pricing. Journal of
the ACM, 62(5):43, 2015.

A. Kraskov and P. Grassberger. Mic: mutual
information based hierarchical clustering. In
Information Theory and Statistical Learning, pages

374

29]

(30]

(31]

(32]

(33]

101-123. Springer, 2009.

A. Krause and D. Golovin. Submodular function
maximization., 2014.

C. Li and G. Miklau. Pricing aggregate queries in a
data marketplace. In WebDB, pages 1924, 2012.

Y. Li, H. Sun, B. Dong, and W. H. Wang.
Cost-efficient data acquisition on online data
marketplaces for correlation analysis (full version).
Technical report, 2018. Available at
https://msuweb.montclair.edu/~dongb/
publications/dacron-full.pdf.

Z. Li and T. Ge. Stochastic data acquisition for
answering queries as time goes by. PVLDB,
10(3):277-288, 2016.

S. K. Mitra and Y. Kuo. Digital signal processing: a
computer-based approach, volume 2. McGraw-Hill New
York, 2006.

H. V. Nguyen, E. Miiller, P. Andritsos, and K. Béhm.
Detecting correlated columns in relational databases
with mixed data types. In Proceedings of the
International Conference on Scientific and Statistical
Database Management, pages 30-42, 2014.

C. M. Procopiuc and D. Srivastava. Database
exploration using join paths. In IEEE International
Conference on Data Engineering, pages 31-33, 2008.
L. Qian, M. J. Cafarella, and H. Jagadish.
Sample-driven schema mapping. In Proceedings of the
ACM International Conference on Management of
Data, pages 73-84. ACM, 2012.

E. Rahm and H. H. Do. Data cleaning: Problems and
current approaches. IEEE Data Engineering Bulletin,
23(4):3-13, 2000.

X. Ren et al. Joint data purchasing and data
placement in a geo-distributed data market. arXiv
preprint arXiv:1604.02533, 2016.

S. Song and L. Chen. Efficient set-correlation operator
inside databases. In Proceedings of the International
Conference on Information and Knowledge
Management, pages 139-148. ACM, 2010.

H. Tong and C. Faloutsos. Center-piece subgraphs:
problem definition and fast solutions. In Proceedings
of the ACM International Conference on Knowledge
Discovery and Data Mining, pages 404-413, 2006.

H. Tong, C. Faloutsos, and Y. Koren. Fast
direction-aware proximity for graph mining. In
Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 747-756, 2007.

V. V. Vazirani. Approzimation algorithms. Springer
Science & Business Media, 2013.

D. Vengerov, A. C. Menck, M. Zait, and S. P.
Chakkappen. Join size estimation subject to filter
conditions. PVLDB, 8(12):1530-1541, 2015.

J. Vondrak. Submodularity in combinatorial
optimization. 2007.

X. Yang, C. M. Procopiuc, and D. Srivastava.
Summary graphs for relational database schemas.
PVLDB, 4(11):899-910, 2011.

K. Yu, J. Bi, and V. Tresp. Active learning via
transductive experimental design. In Proceedings of
the 23rd International Conference on Machine

learning, pages 1081-1088. ACM, 2006.

[39] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join
queries. In Proceedings of the ACM International
Conference on Management of Data, pages 809-820,
2013.

375

