Deducing Certain Fixes to Graphs

Wenfei Fan' 2+ Ping Lu?
'University of Edinburgh 2Beihang University

Chao Tian?

Jingren Zhou?

SAlibaba Group “SICS, Shenzhen University

wenfei@inf.ed.ac.uk, luping@buaa.edu.cn, {tianchao.tc, jingren.zhou}@alibaba-inc.com

ABSTRACT

This paper proposes to deduce certain fixes to graphs G
based on data quality rules ¥ and ground truth I" (i.e., val-
idated attribute values and entity matches). We fix errors
detected by ¥ in G such that the fixes are assured correct
as long as ¥ and I' are correct. We deduce certain fixes in
two paradigms. (a) We interact with users and “incremen-
tally” fix errors online. Whenever users pick a small set Vj
of nodes in G, we fix all errors pertaining to V4 and accumu-
late ground truth in the process. (b) Based on accumulated
I', we repair the entire graph G offline; while this may not
correct all errors in G, all fixes are guaranteed certain.

We develop techniques for deducing certain fixes. (1) We
define data quality rules to support conditional functional
dependencies, recursively defined keys and negative rules on
graphs, such that we can deduce fixes by combining data re-
pairing and object identification. (2) We show that deducing
certain fixes is Church-Rosser, i.e., the deduction converges
at the same fixes regardless of the order of rules applied. (3)
We establish the complexity of three fundamental problems
associated with certain fixes. (4) We provide (parallel)
algorithms for deducing certain fixes online and offline, and
guarantee to reduce running time when given more proces-
sors. Using real-life and synthetic data, we experimentally
verify the effectiveness and scalability of our methods.

PVLDB Reference Format:

Wenfei Fan, Ping Lu, Chao Tian, Jingren Zhou. Deducing Cer-
tain Fixes to Graphs. PVLDB, 12(7): 752-765, 2019.

DOI: https://doi.org/10.14778/3317315.3317318

1. INTRODUCTION

It is common to find semantic inconsistencies in real-life
graphs such as knowledge bases and e-commerce networks.
A host of graph dependencies have been proposed to catch
the inconsistencies as violations of the dependencies [14, 3,
24, 51, 11, 30, 26]. These dependencies can detect common
errors. However, they do not tell us how to fix the errors.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 7

ISSN 2150-8097.

DOT: https://doi.org/10.14778/3317315.3317318

752

(cookie)

records records

(order) (order)
item: 57761
customer: Zoe Holt
is_fraud: false

item: 39273
customer: Allan Fox

urchase purchase

(product)

name: Raul Cain
gender: male

(account)

name:
gender:_male

(account)

address

(address)

Figure 1: A fraction of an e-commerce network

Example 1: A fraction of an e-commerce network is de-
picted as graph G in Fig. 1, where each node denotes an en-
tity carrying a tuple of attributes. It shows that the product
p1 is purchased in orders 01 and oz with seller account a; and
buyer account ag, respectively. The network often contains
errors and has information missing. A dependency ¢ is: if
a product is purchased in an order, then its attribute no#
must be the same as the attribute item of the order.
Dependency @1 detects an inconsistency pertaining to
product p1, between its no# (57761) and the attribute item
(39273) of order o1. However, it does not tell us which at-
tribute is wrong and to what value it should be updated.
Worse still, incorrect fixes may even introduce new errors,
e.g., changing pi.no# to 39273 by taking the value of o1.item
adds a new violation of ¢ by product p; and order os. O

Is there a systematic method to fix errors in graphs de-
tected by dependencies such that the fixes are justified? To
the best of our knowledge, no prior work has studied how to
clean graphs with correctness justification.

To answer the question, we model certain fixes relative to
data quality rules ¥ and ground truth I'. Here I' consists
of entity matches and attribute values that have been vali-
dated by users, domain experts or crowd-sourcing, and are
accumulated over time. A fix is certain if it is a logical con-
sequence of ¥ and I, i.e., it is assured correct if 3 and I" are
validated. Moreover, the deduction of certain fixes should
be Church-Rosser, i.e., the process converges at the same
certain fixes regardless of the order of rules applied.

We compute certain fixes to a graph G in two settings.

Online mode. Users iteratively pick a small set Vp of vertices
in G, i.e., entities of their interest, e.g., items to search or
terms updated. We correct all errors pertaining to V4 and
detected by X, by deducing certain fixes from I and X. The
process may ask users to check ground truth if necessary;
it expands I with newly validated ground truth and fixes.

Offtine mode. Employing accumulated ground truth I', it
fixes errors in the entire G without user interaction. It may
not fix all errors in G when I' is not inclusive, but it guar-
antees that each and every fix deduced is certain.

Both modes are practical paradigms for repairing graphs
[52, 12]. The online mode interacts with users and “incre-
mentally” repairs graphs; it accumulates ground truth con-
tinuously. We repair the entire graph offline periodically,
once I' accumulates sufficient new ground truth.

Example 2: A network analyst suspects that the orders of
products are “fraudulently” created, e.g., the sellers of p:
purchase it themselves to increase merchandise popularity,
and requests to check Vo = {p1}. To verify this, the incon-
sistency in Example 1 has to be correctly fixed in the first
place. The analyst may inspect and confirm that pi.no# is
accurate as ground truth. Thus both orders 0; and 02 must
carry an attribute item of 57761 by rule ¢1, which are in-
deed certain fixes and expand ground truth. As will be seen
later, these further help identify objects and repair other at-
tributes, e.g., 01 and o2 should refer to the same order since
they share the same attribute item and are recorded in the
same system cookie. It proceeds until all the errors related
to p1 are fixed and all the fraudulent orders of p; are caught,
by combining data repairing and object identification.
Analysts repeatedly inspect entities and get “local” fixes
in the online mode. Employing ground truth I" accumulated
in this way, we can improve the quality of the entire G pe-
riodically offline, by deducing certain fixes to all errors that
are “covered” by I', without user involvement. a

Contributions & organization. This paper is a step
towards effective methods to deduce certain fixes to graphs.

(1) Rules (Section 2). We introduce a class of graph qual-
ity rules for graphs, referred to as GQRs, such that we
can simultaneously (a) repair data, i.e., fix attribute val-
ues, by using graph functional dependencies (GFDs [26])
along the same lines as conditional functional dependencies
(CFDs [19]) for cleaning relations, (b) identify objects, i.e.,
determine whether two vertices in a graph refer to the same
entity, by using recursively defined keys [16], and moreover,
(c) deduce entities that do not match, to reduce false posi-
tives, with a form of forbidding constraints (FCs).

(2) Certain fizes (Section 3). At the conceptual level, we
model deducing certain fixes as chasing graph G with a set
Y. of GQRs and a block I' of ground truth, by extending the
chase on relations (cf. [2]). It integrates data repairing and
object identification in a single process. We show that the
chase is Church-Rosser, i.e., it guarantees to converge at the
same certain fixes no matter how the GQRs are applied.

(3) Fundamental problems (Section 4). We settle three
problems for deciding whether ¥ and I' are consistent,
whether a fix can be deduced from ¥ and I', and whether
all errors pertaining to a given set Vi of nodes can be fixed
by ¥ and I'. We establish matching bounds for their com-
bined and data complexity, from PTIME (polynomial time),
coNP-complete and NP-complete to PHP—complete.

(4) Practical algorithms (Sections 5-6). We develop algo-
rithms for deducing certain fixes to graphs in the two modes.

(a) Online mode (Section 5). We give a sequential (single-
machine) algorithm to fix all the errors pertaining to a small
set Vo of vertices of users’ interest. While our chase can de-
duce certain fixes in theory, it is nondeterministic and typ-
ically incurs excessive and expensive graph homomorphism
checking. We make it practical by proposing deterministic
selection of GQRs to be enforced, and incremental expansion
of certain fixes. These substantially reduce the cost.

753

(b) Offline mode (Section 6). We develop a parallel algo-
rithm to clean the entire graph G, by using the ground truth
I" accumulated in the online mode or acquired from other
high-quality sources, without user involvement. We show
that the algorithm is parallel scalable [35] relative to the se-
quential algorithm of (a), i.e., it takes O(¢t(|G|, |Z|, |T])/p)
time, where t(|G/, |2|, |T'|) is the cost of the algorithm of the
online mode pertaining to all vertices in G, and p is the
number of processors used. It aims to scale with real-life
graphs G by adding more processors when G grows big.

(6) Ezperimental study (Section 7). Using real-life and syn-
thetic graphs, we empirically verify the effectiveness and
scalability of our methods. We find the following. (a) De-
ducing certain fixes online is effective: all errors pertaining
to Vo (]Vo|<12) can be corrected in 3 user interaction rounds
using a small number of rules and ground truth (|X| < 200
and |I'| < 10); and each round needs 6s on average. (b)
By interleaving data repairing and object identification, our
methods outperform attribute repairing and entity resolu-
tion taken separately, by 37.6% and 44.7%, respectively. (c)
Offline repairing with certainty is feasible in practice. It
takes 877s to deduce certain fixes to entire graphs with up to
120 million nodes and edges using 16 processors, as opposed
8000s by other methods, and achieves F-measure of 0.924 on
real-life graphs. (d) Our parallel algorithm is scalable: it is
3.9 times faster when 20 processors are used instead of 4.

To the best of our knowledge, this work is the first
effort to deduce certain fixes to graph-structured data, from
foundation to (parallel) algorithms. As demonstrated in [43]
and confirmed by our industry collaborators, the quality
rules play a vital role in industrial data cleaning tools. Our
empirical study suggests that the approaches are promising
for cleaning large-scale graphs in different paradigms.

Related work. We categorize related work as follows.

Graph dependencies. Various graph dependencies have been
studied [11, 36, 2, 14, 3, 6, 51, 30, 26, 16, 44, 27). We de-
fine GQRs by extending graph entity dependencies (GEDs) of
[24] since GEDs can express GFDs [26] and keys [16], to sup-
port both data repairing and object identification; moreover,
GEDs are defined for general graphs, not limited to RDF.
This work differs from [24] as follows. (1) We extend GEDs
with negative rules (Section 2), which reduce false positives
in object identification as observed in [22, 5]. (2) We settle
fundamental problems for deducing certain fixes to graphs
(Section 4), which are not studied in [24]. (3) We develop
chase to find certain fixes, with syntax and semantics quite
different from the chase of [24] for static analyses (see Sec-
tion 3). We also parallelize the chase to make it scale with
large graphs. (4) We provide practical techniques to clean
graphs online and offline, a topic not studied in [24].

Data cleaning. Prior work has mostly focused on cleaning
relations (see [18] for a survey). Heuristic methods are typi-
cally used to fix violations of relational dependencies [9, 19]
with minimum cost; user feedback is adopted in GDR [50],
FALCON ([31] and DANCE [7]. Rule-based approaches and
machine learning are combined in [40] to minimize changes
and statistical distortion. Similarly, HoloClean [42] unifies
qualitative and quantitative techniques to repair relations.
There has also been a host of work on entity resolution [39,
47,17, 49, 41, 5], possibly with user interaction [32]. Closer
to this work are [23, 22], where [23] repairs relations with

certain fixes based on master data and CFDs, and [22] uni-
fies entity resolution and data repairing to clean relations
by using CFDs [19] and matching dependencies [17].

The work differs from [23, 22] in the following. (1) We use
graph quality rules that cannot be expressed as CFDs [23] or
matching dependencies [22]. (2) We compute certain fixes
based on the chase with ground truth, while [23, 22] do
not use chase, and assume the availability of master data.
(3) We find certain fixes by means of both object identifi-
cation and repairing, where [23] focuses on repairing only.
(4) Some fundamental problems for deducing certain fixes
to graphs have different complexity from repairing relations
with CFDs (Section 4). (5) Our algorithm leverages the lo-
cality of graph homomorphism (Section 2), a property that
is not explored by relational methods. (6) We develop par-
allel scalable algorithms, which are not studied in [23, 22].

On graphs, [44] enforces neighborhood constraints to re-
strict labels on adjacent nodes. Unsupervised clustering is
studied for entity resolution in bibliographic datasets [8].
Based on a form of tuple generating dependencies (TGDs)
and a class of contradiction detecting dependencies, [6] pro-
poses a user-guided approach to resolving conflicts in knowl-
edge bases. Closer to this work are [16, 12], where [16] uses
keys for object identification, and [12] cleans graphs by ap-
plying a class of graph repairing rules (GRRs) recursively.

We make the first effort to fix graphs with certainty. As
opposed to [6, 16, 8], we support both data repairing and ob-
ject identification. We fix inconsistencies among attributes
of different entities, beyond node labeling [44]. In contrast

o [12], (1) we clean graphs online and offline with ground
truth. (2) [12] offers no correctness guarantees and may even
produce different results depending on the orders of GRRs
applied. In contrast, our methods deduce certain fixes and
are Church-Rosser. (3) Since GRRs of [12] subsume TGDs,
their implication problem is undecidable, and chasing with
GRRs may not terminate. We use GQRs to strike a balance
between the types of errors fixed and the complexity.

Parallel data cleaning. Parallel algorithms have been stud-
ied for entity resolution [34, 4, 16, 13]. BigDansing [33]
repairs relations on top of MapReduce. There has also been
work on error detection in distributed relations [20] with
CFDs, and in partitioned graphs [26] using GFDs.

None of these targets fixing inconsistencies in graphs. We
present a simple workload partition strategy for deducing
certain fixes to graphs, and guarantee parallel scalability
that has not been accomplished by previous methods.

2. DATA QUALITY RULES

We now introduce GQRs as data quality rules for graphs.

2.1 Preliminaries

Assume three countably infinite sets ©, T and U, denoting
labels, attributes and constant values, respectively.

Graphs. We consider directed graphs G = (V,E, L, Fa)
with labeled nodes and edges, where (a) V is a finite set of
nodes; each node v € V carries a label L(v) € ©; (b) E C
V x © x V is a finite set of edges, in which each e = (v,t,v")
denotes an edge from node v to v’ labeled with ¢; we write
e as (v,v") and L(e) = ¢ if it is clear in the context; (c) each
node v € V carries a tuple Fa(v) = (A1 = a1,...,An = an)
of attributes (properties), where A; € T and a; € U, written

754

(order) (cookie) (order) : (address) (address) (order)

purcliase ool vekords ;m{m/ d% dz wlleroj§lmyerof

(product) : (order) (order) {accolmt)

Q Q,
Figure 2: Graph patterns of GQRS

as v.A; = a;, and A; # Aj if i # j. In particular, each node
v has a special attribute id denoting its node identity.

Patterns. A graph pattern is a graph Q[z] = (Vo, Eo,
Lq), where (1) Vg (resp. Eq) is a finite set of pattern nodes
(resp. edges); (2) Lg is a function that assigns a label Lg(u)
(resp. Lg(e)) to each node u € Vi (resp. edge e € Eg); and
(3) & denotes the nodes in Vg as a list of distinct variables.
Labels Lg(u) and Lg(e) are drawn from the alphabet ©.
Moreover, we allow wildcard ‘.’ as a special label in Q.

Pattern matching. We say that a label . matches ', de-
noted by ¢ < ¢/, if either (a) both ¢t and " are in © and ¢ = ¢/,
or (b) ¢ € © and ¢ is *_, i.e., wildcard matches any label.

A match of pattern Q[Z] in graph G is a homomorphism
h from @ to G such that for each node u € Vg, Lg(u) =<
L(h(u)); and for each edge e = (u,t,u’) in Q, there exists
an edge € = (h(u),',h(v')) in G such that ¢ < /.

We denote the match as a vector h(Z) if it is clear from the
context, where h(Z) consists of h(x) for all variables = € Z.
Intuitively, h(Z) is a list of entities identified by pattern Q.

2.2 Graph Quality Rules

A graph quality rule ¢ (GQR) is defined as Q[Z](X — Y),
where Q[Z] is a graph pattern, and X and Y are (possibly
empty) sets of literals of Z. For z,y € Z, a literal of T is

(a) z.A = cor z.A # ¢, where c is a constant, and A is an

attribute in T that is not id;

(b) z.A=y.Borxz.A # y.B, where A and B are attributes

in YT that are not id; or

(¢) z.id = y.id or z.id # y.id.

We refer to x.A = ¢, x.A = y.B and x.id = y.id as equality
literals, and x.A # ¢, x.A # y.B and x.id # y.id as inequality
literals. We refer to Q[z] and X — Y as the pattern and
attribute constraint of GQR ¢, respectively.

Intuitively, ¢ combines pattern @ to identify entities in
a graph, and attribute constraint X — Y to be applied to
the entities identified by @. Literals like z.A = ¢ enforce
constant bindings like in CFDs [19]. A literal of the form
z.id = y.id states that « and y denote the same node (entity).

GQRs extend the graph entity dependencies (GEDs of [24])
by supporting inequality literals, to reduce false positives in
object identification, i.e., entities that do not match.

Example 3: Consider the following simple GQRs defined in
terms of graph patterns shown in Fig. 2.

(1) v1 = Qi[z,y](0 — x.item = y.no#). It states that if an

order z is to purchase product y, then the value of attribute

x.item coincides with the value of attribute y.no#.

(2) p2 = Q2[z,y,y](y.item = y'.item — y.id = y'.id). It

says that the orders y and y’ should denote the same node,
e., be identified, if they have the same attribute item and

are recorded in the same system cookie (entity).

(3) p3=Qs[x, y](D—z.customer = y.name). This GQR states
that the value of attribute customer of order x must be the
same as the value of attribute name of its buyer account y.

(4) o1 = Qu[z,7’,y,9y'](z.id = 2'.id, y.name = y'.name —
y.id = 9/.id). It says that an account can be uniquely identi-
fied by its attribute name and the id of its address (entity).

(5) 5 = Qs[x, y](0 — z.is_fraud = true). It says that order
x is a fraud if it is bought and sold by the same account.

(6) w6 = Q¢lz,y](x.gender “male”, y.gender = “female”
— x.id #y.id), where Qs is a pattern of two isolated account
nodes z and y (not shown). It states that x and y cannot be
the same account if they differ in the attribute gender. o

Semantics. Consider a GQR Q[z](X — Y), a match h(Z) of
Q in graph G, and a literal [of Z. We say that h(Z) satisfies
I, denoted by h(Z) |= 1, if (a) when [is . A = ¢, there exists
an attribute A at node v = h(z), and v.A = ¢; (b) when [is
x.A = y.B, nodes v = h(z) and v’ = h(y) carry attributes
A and B, respectively, and v.A = v'.B; and (c) when [is
z.id = y.id, h(x) and h(y) denote the same node; thus they
have the same set of attributes. Similarly we define h(Z) =1
for an inequality literal I, e.g., when [is z.A # ¢, h(Z) =1
if v = h(x) has an attribute A and v.A # c.

We write h(Z) = X if h(Z) satisfies all literals in X. In
particular, if X is §, h(Z) | X for any match h(Z) of Q in
G. We write h(Z) = X — Y if h(Z) = X implies h(Z) E Y.

Given a GQR ¢ = Q[z](X — Y), a graph G and a node v
in G, we say that a match h(Z) of Q in G is a violation of
@ pertaining to node v if h(Z) £ X — Y and v = h(zx) for
some z € Z, i.e., v is involved in the violation (match).

A graph G satisfies GQR ¢ w.r.t. a set Vj of nodes, denoted
by G Ev, ¢, if for all matches h(Z) of @ in G such that
h(z) € Vo for some pattern node z € Z, h(Z) E X — Y.

A graph G satisfies a set ¥ of GQRs w.r.t. Vj, denoted by
G Evw %, ifforall p € X, G v, .

We write G = ¢ (resp. G EX) if G =v ¢ (resp. G Ev
¥), where V is the set of all nodes in G.

Example 4: Recall graph G and Vo = {p1} of Example 1
and the GQRs of Example 3. Then G v, ¢1 as h(z).item #
h(y).no# at h: z +— p1 and y — o1. In contrast, G Fv, 2
since there is no match of pattern Q)2 pertaining to Vj. O

Remark. It is more challenging to clean graphs with GQRs
than to clean relations with rules used in practice, e.g.,CFDs.

(1) As opposed to relations, real-life graphs typically do not
have a schema. A schemaless graph does not specify what at-
tributes exist. To cope with this, GQRs enforce the existence
of certain attributes, and can fix limited edge errors (since
edges can be coded as attributes like in RDF). In light of the
existential semantics, GQRs cannot be expressed as CFDs or
even as equality generating dependencies (EGDs [2]). In con-
trast, GQRs can express all EGDs and CFDs if we represent
relation tuples as nodes in a graph [26].

(2) To clean a graph, we have to inspect not only its at-
tribute values but also its topological structures. In partic-
ular, when two nodes are identified by literals like z.id=y.id,
their attributes have to be pairwise equal. Worse yet, pat-
terns in GQRs can be of unbounded size to specify correlated
or co-occurred entities, making the graph cleaning problem
harder due to the intractability of graph homomorphism.

(3) In addition, it demands methods different from repairing
relations. For instance, to check whether a (connected) @
has a match h(Z) pertaining to a node v, i.e., h(z)=v for

755

Table 1: Notations

symbols notations
G, Qlz] graph and graph pattern, respectively
0, X a GQR ¢ = Q[z](X — Y), X is a set of GQRs
h(iz) EX =Y a match h(Z) of Q[z] satisfies X — Y
T a block of ground truth
Vo a set of nodes of users’ interest
Eq, NEq the relations of certain fixes
[x]eq, [x-Algq the certain fixes for node z and attribute z.A
GEq the repair of G' by Eq
h(Zs) a partial match of Q[z] with z, C &

TET, we can inspect nodes within |Q| hops of v. In contrast,
relation repairing does not use this locality of graph homo-
morphism, but uses (expensive) joins to correlate entities.

Special cases. We highlight some special cases of GQRs.

GFDs. Following [26], we refer to GQRs without id literals
as GFDs, i.e., neither X nor Y contains z.id = y.id or z.id #
y.id. In Example 3, ¢1, @3 and @5 are GFDs.

As shown in [19], GFDs extend CFDs [19] and can hence
repair data by correcting attribute values along the same
lines as CFDs. They are able to catch fraud as well, e.g., ¢s
can decide whether e-commerce orders are fraudulent.
Keys. A key is a GQR Q[z](X — zo.id = yo.id), where
Zo,Yo € T are two nodes in @Q; e.g., p2 and 4 are keys.

Keys are used to identify vertices that refer to the same
entity, i.e., object identification [16]. As shown in Example 3,
4 identifies accounts using node id’s of addresses. Keys may
be recursively defined, e.g., there is another key to identify
address entities using the node id’s of accounts (not shown).
Forbidding constraints (FCs). An FC is a GQR Q[z](X —

x.id # y.id), to deduce node pairs that should not be iden-
tified, e.g., we tells us when two accounts do not match.

Summing up, GFDs help us repair inconsistent attribute
values. Keys perform object identification. Negative rules
FCs reduce false positives in object identification. The need
for all these constraints has been verified by the experience
of relational data cleaning (see, e.g., [18] for a survey).

The notations of this paper are summarized in Table 1.

3. CERTAIN FIXES WITH THE CHASE

We define fixes (Section 3.1) and propose a model for de-
ducing certain fixes by using GQRs (Section 3.2).

3.1 Fixes to Graphs

We start with a representation of fixes. Consider a graph
G = (V,E,L,Fa). We use z,y to range over nodes in G.

Fixes. We represent fixes as an equivalence relation, de-
noted by Eq. It includes equivalence classes [z]gq for nodes
zin V, and [z.A]gq for attributes z.A in Fa(z). More specif-
ically, [z]gq is a set of nodes y € V, including «z for all x € V
in particular; and [z.A]gq is a set of attributes y.B and con-
stants ¢, including x. A for all z.A in Fa(z).

Intuitively, for each y € [z]gq, the pair (z,y) is a match
for object identification. For each y.B € [z.Algq, ©.A = y.B;
and if ¢ € [z.A]gq, then z.A has value ¢, for data repairing.
The relation Eq is reflexive, symmetric and transitive.

We also use relation NEq to keep track of entities that do
not match. Here [z]ngq includes nodes y such that x.id #
y.id, and [z.A]ngq includes ¢ (resp. y.B) such that .4 # ¢
(resp. z.A # y.B). The relation is symmetric and “transi-
tive” via Eq, e.g., for z € [x]gq and w € [z]ngq, 2.id # w.id.

For x € [y]eq or = € [y]neq, We refer to (z,y) as a fir.

Cleaning. We clean G by applying the fixes of Eq as follows.

(1) For each [z]gq in Eq and y € [z]gq, @.€., if £ matches y,
we merge x and y into a single node zgq, which retains the
attributes and adjacent edges of x and y.

(2) For each [z.A]gq, if constant ¢ € [z.A]gq, we generate new
attribute x. A if x.A does not yet exist, and repair z.A with
correct value ¢ by letting xgq.A = ¢, no matter whether z.A
has a value or not. Here zgq is identical to node « if it has
not been joined with others as in (1).

(3) For each [x.A]gq and y.B € [x.A]gq, We generate new
attributes when necessary. Moreover, we equalize x.A and
y.B by letting xgq. A = yeq.B = c if there exists ¢ € [z.A]gq;
otherwise we let xgq.A = yeq.B = #, denoting value to be
assigned to zgq and yeq like labeled nulls.

The process proceeds until all equivalence classes [z]gq and
[z.A]gq of Eq are enforced on G. It yields a graph, referred
to as the repair of G by Eq, denoted by Geq. The process
supports object identification (when y € [z]gq) and data
repairing (when ¢ € [z.A]gq or y.B € [r.A]gq) at the same
time, and may generate and instantiate new attributes.

3.2 Deducing Certain Fixes

We next revise the chase to deduce (certain) fixes.

The chase. We compute fixes by chasing graph G with a
set ¥ of GQRs, starting from a designated set V{ of nodes
and a block I' of ground truth represented as an equivalence
relation Eq as in Section 3.1. For simplicity, we assume an
initial NEq = (. The chase is a classical tool in the relational
database theory [2]. Below we extend it and make it a tool
for deducing (certain) fixes to graphs. Intuitively, starting
from nodes of Vj in G and ground truth in I'; the chase steps
inductively deduce fixes by enforcing GQRs in ¥ on G.
Formally, a chase step of G by ¥ at (Eq, NEq, Vgq) is

(Eq7 NEq7 VECI) :>(<p,h) (qu7 NEq/a VEq/)'

Here ¢ = Q[z](X — Y) is a GQR in X, Vgq (resp. Vi) is a
set of nodes in the repair Ggq (resp. Ggy) of G by Eq (resp.
Eq'), and h(Z) is a match of Q in Geq with h(z) € Viq for
a node x € T, satisfying the conditions below:

(1) X is entailed by (Eq, NEq) at h(Z), i.e., for each literal
leX,if lis .A = ¢, then ¢ € [h(x).A]gq; similarly for other
literals with Eq and inequality literals with NEq. Abusing
the notations, here h(z) and h(y) range over all nodes of
[h(z)]eq and [h(y)]eq in the original graph G, respectively.

(2) Either Eq’ extends Eq or NEq' extends NEq with fixes.

(2.1) Eq’ extends Eq by instantiating one equality literal
leY;eyg.,iflis z.id = y.id and h(y) & [h(z)]eq, then add
h(y) to [h(z)]eq and h(y).A to [h(x).A]gy for each attribute
A of h(y) in Geq; similarly for other literals. We make Eq” an
equivalence relation (reflexive, symmetric and transitive).

(2.2) NEq' extends NEq by instantiating an inequality literal
l €Y asin (2.1); e.g., if l is z.id # y.id and h(y) & [h(z)|neq,
then NEq’ extends NEq by adding h(y) to [h(z)|neq -

(3) The set Vgq extends Vgq with vy, if it is not there, where
vp is the node updated in the chase step, i.e., it has an at-
tribute or id different from its counterpart in Ggq. It also
removes those nodes that no longer exist in Ggq -

Validity. We say that the chase step (Eq,NEq, Veq) = (4,n)

(Eq’,NEq’, Vey) is walid if none of conflicts below occurs:

756

o there exists y € [z]gy such that L(z) # L(y), i.e., Eq’
merges nodes with distinct labels;

o there exist y.B € [z.Algy, ¢ € [z.A]gy and d € [y.Blgy
such that ¢ # d, i.e., Eq’ assigns distinct values to the
same attribute; or

o either [x]gq N [z|neqr 7# O or [z Algy N [x.Alney # 0, i€,
Eq’ and NEq’ must be disjoint for all z and x.A.

Otherwise we say that Eq’ is inconsistent.

One can verify that when Eq’ is consistent, the repair Ggy/
of G by fixes Eq’ is well defined. In particular, if A is an
attribute of both z and y, and if y € [z]gy, then z.A = y.A.

Chasing. A chasing sequence p of G by (£,T') from Vj is

(qu, NEq07 VECIo)7 ceey (Eqk7 NEqk7 VE%)'
Here Eqy =T, NEq, =), Veq, = Vb, and moreover, for all
i € [1,k], there exist a GQR ¢ = Q[Z](X — Y) in ¥ and a
match h of @ in the repair Geq, _, such that (Eq,_;,NEq;_;,
VEa;_1) = (e.h) (Eq;, NEq;, Vig,) is a valid chase step.

This is used to deduce fixes to errors pertaining to V4 and
recursively resolves violations related to the nodes updated
in the chase steps. That is, we focus on local fixing of the
errors related to a set Vj of vertices picked by users.

The sequence is terminal if there exist no GQR ¢ in X,
match h of Q in Ggq, and (Eqy 1, NEqy ;, Vi, ,) such that
(Eqy, NEqy, Veq,,) = (o,n) (Eqgy1; NEGy 1, Veg,,,) is valid.

Example 5: Consider the GQRs of Example 3 and graph
G of Fig. 1 with a block I' of ground truth including those
attributes underlined. Then [z]gq, = {z} and [z.A]gq, =
{z.A,T'(z.A)} U{y.B | I'(z.A) = I'(y.B)} for each node x
and attribute z.A in G, where I'(x.A) (resp. I'(y.B)) is the
confirmed value of z.A (resp. y.B) in T if it exists.

From Vo = {p1}, a chasing sequence p starts with step (1):
(Edg; NEq, {p1}) = (41 ,n,) (Eay, NEq, {p1,01}), where NEq =
0; hi: = — o1, y — p1; and Eq; extends Eq, by letting
[o1.item]gq, = [p1.no#]eq, = {o01.item, p1.no#,57761}. This
first chase step repairs the value of o1.item to 57761, i.e.,
or.item is updated and hence included in Vgq, .

The sequence p can further (2) repair (i.e., confirm) the
value of oz.item in Eq,; (3) identify entities 01 and o2 in
Eqs; (4) include “Allan Fox” in [a2.name]eq,; (5) identify ay
and a2 by combining equivalence classes of a1 and a2 along
with their attributes in Eqy; and finally (6) add true to both
[o1.is_fake]gq, and [02.is_fake]gqy.

The chase interleaves data repairing and object identifica-
tion: correcting as.name in step (4) helps identify accounts in
step (5), which in turn helps deduce certain fix to attribute
is_fake to catch fraudulent orders in step (6). O

Chasing sequence p terminates in one of the cases below.

(a) No GQRs in ¥ can be further applied. If so, we say that p

is valid, and refer to (Eq, NEqy, Geq,,, Viq,) as its result.
One can verify that Gqu is well-defined.

(b) Either Eq, is inconsistent or there exist ¢, h, Eqyq,
NEq, ., and Vg, such that (Eqy,NEqy, Veq,) =(e.n)
(Eds41,NEqy 1, Veq,,,) but Eqy; is inconsistent. Such
p is tnvalid, with result L (undefined).

Church-Rosser property. It is natural to ask whether the
chase always terminates with the same fixes. Following [2],
we say that chasing with GQRs has the Church-Rosser prop-
erty if for all ¥, I', G and Vi in G, all terminal chasing se-
quences of graph G by (3,T) from Vp converge at the same
result, regardless of in what order the GQRs are applied.

item: 57761
customer: Allan Fox
is_fraud: true selle

name: Allan Fox
gender: male

address
(account) (address)

records
(cookie) (ord

puxchase

no#: 57761

(product)
Figure 3: The repair of graph G

Theorem 1: For any graph G, any set ¥ of GQRs, any
block T' of ground truth, and any set Vo of nodes within G,
all chasing sequences of G by (X,T) from Vo are terminal,
and moreover, converge at the same result.]

Thus we can define the result of chasing G by (X,T") from
Vo as the result of any terminal chasing sequence of G by
(X,T) from Vp, denoted by chase(G, X, T, V5).

For instance, Figure 3 depicts the repair Ggq, of graph
G of Fig. 1 from Vo={p1}, by the GQRs of Example 3 and
the ground truth of Example 5. The result of chasing is
(Eqg, NEq, Geqg, {p1, 01, a1}); it remains the same no matter
what rules of ¥ are used and how they are applied. Now all
attributes in Ggq, have correct values (underlined).

Proof: We show that in any chasing sequence p of G by
(S, T) from Vo, [Eq,| < 4|G|S|+2|T and NEq,| < (4/G|[S|+
2|T'|)? at any chase step. Based on the size bounds, we show
that the length of p is at most 8(2|G||Z| + |T|)3.

We prove the Church-Rosser property by contradiction.
Suppose that there exist two chasing sequences that end up
with different results. Then one of them is not terminal. O

Remark. As opposed to the chase of [24] for the satisfiability
and implication analyses of GEDs, (a) a chase step by GQR
Q[z](X — Y) is applied only if X has been validated (con-
dition (1) of the chase step), i.e., Y is enforced only after all
literals of X are deduced from ground truth T'; (b) we revise
the chase to identify objects and repair attributes for errors
arisen by a particular set of nodes (entities), rather than
for the static analyses of dependencies; and (c) Theorem 1
extends the result of [24] to GQRs with inequality literals.

Certain fixes. When chase(G, 3, T, V) # L for any set Vo
of nodes in G, we say that (X,T") is consistent for G. Given
consistent (X,T"), all terminal chasing sequences of G by
(3,T) from V; are valid, and end up with the same result
chase(G, X, T, Vo) (Eq, NEq, Geq, Veq) by Theorem 1. In
this case, we refer to Eq and Geq as the certain fizes and the
repasr of graph G by (X, T') w.r.t. Vo, respectively.
Intuitively, a chasing sequence p deduces fixes to errors
pertaining to Vy from confirmed matches and attributes
by iteratively applying GQRs, using ground truth I". The
fixes in Eq are certain since they are logical consequences of
(X,T), i.e., as long as ¥ and T are correct, so are the fixes.

4. FUNDAMENTAL PROBLEMS

We now outline a framework to clean graphs with cer-
tainty. We also identify three fundamental problems under-
lying certain fix deduction, and settle their complexity.

Framework. We propose a model for cleaning graphs, re-
ferred to as GFix and shown in Fig. 4. Given graphs G, it
starts with offline preprocessing. (a) It discovers a set X of
GQRs by using discovery algorithms (e.g., [21]), and solicits
initial ground truth I' by consulting experts, crowd-sourcing,
and referencing high-quality knowledge bases [29]. (b) It val-
idates the rules and ground truth by a consistency analysis,
to ensure that ¥ and I' have no conflicts (see below).

Online. When ¥ and initial I" are in place, GFix interacts
with users in the online mode. Users iteratively pick a small

757

="~ 7777777 77— -~
online mode

fixes

loffline prepossing

Figure 4: GFix: A model for cleaning graphs

set Vp of nodes in GG, which represent entities of their interest

or entities newly updated. GFix deduces certain fixes to all

errors pertaining to Vo. The repairing problem is as follows.

o Input: A graph G, a small set Vj of nodes in G of users’

interest, a set ¥ of GQRs, and a block I of ground truth
such that (X,T") is consistent for G.

o Output: Certain fixes and repair of G by (3,T") w.r.t. V.

GFix may not be able to fix all errors pertaining to Vo
if I' does not have adequate information to cover Vy. If
this happens, GFix asks users to inspect a small number
of attributes or entities. It expands I' with the validated
fields, incrementally checks the consistency of ¥ and I', and
continues to fix remaining errors. The interaction iterates in
rounds until all violations of ¥ pertaining to V, are fixed.

Offiine. Periodically GFix repairs the entire graph G in the
backend, after I' accumulates sufficient ground truth, or if
graph G has been substantially changed over time. This
is the repairing problem above when Vj is the entire set of
nodes in G. When user interaction is turned off and if T'
is not informative enough, GFix may not be able to fix all
violations of ¥ in G. However, GFix generates only certain
fixes and hence guarantees to improve the quality of G.

We remark the following. (1) In practice, the number of
GQRs in X is small, and X is validated by domain experts be-
fore it is used. (2) Consistency checking is invoked automat-
ically to check whether (3,T") is consistent for G before each
run online or offline. (2) GFix also periodically consults do-
main experts, conducts crowd-sourcing and references high-
quality knowledge bases to both validate the changes that
have been made to GG, and expand ground truth I'.

Fundamental problems. We will provide practical algo-
rithms for the online and offline mode of GFix in Sections 5
and 6, respectively. Below we first settle fundamental prob-
lems underlying GFix for deducing certain fixes.

Consistency. We start with the consistency problem.
o Input: A set ¥ of GQRs and a block I" of ground truth.
o Question: Is (X,T") consistent for G?7

It is to decide whether the GQRs discovered and the ground
truth accumulated have no conflicts.

The problem has the same complexity as its relational
counterpart using extended CFDs [23]. That is, our choice of
data quality rules on graphs does not make our lives harder.

Theorem 2: The consistency problem is coNP-complete. O

Proof: We give an NP algorithm to check whether (X,T) is
inconsistent for GG, based on the Church-Rosser property and
the upper bound on the length of chasing sequences given
in the proof of Theorem 1. The problem is shown coNP-
hard by reduction from the satisfiability problem for GEDs,
which is coNP-complete [24]. It is to decide, given a set X
of GEDs, whether there exists a graph G such that G = ¥
and for each Q[z](X — Y) in ¥;, Q has amatchin G. O

Cleaning. The certain fix problem is stated as follows.
o Input: A graph G, a set Vo of nodes in G, a fix I, GQRs
¥ and block I" such that (3,T") is consistent for G.
o Question: Does v € [u]gq (resp. v € [u]ngq) when [is an
equality fix u = v (resp. an inequality fix u # v)?
Here Eq and NEq are certain fixes in chase(G, X, T, Vo).
This is to settle the complexity of deducing certain fixes.
We study the combined complexity, when graph G, nodes
Vo, GQRs X and ground truth I' may all vary; and the data
complexity, when the X is fixed, but G, Vo and I" may vary.
The problem was not studied for relations [23].

Theorem 3: The certain fix problem is NP-complete, and
its data complexity is in PTIME. a

Proof: We give an NP algorithm that guesses a chasing
sequence of bounded length and checks whether v € [u]gq or
v € [u]ngq, by Theorem 1. When ¥ is fixed, we can compute
chase(G, 3, T, Vo) in polynomial time in |G/, |Vo| and |T'|, and
hence the data complexity is in PTIME. We prove the lower
bound by reduction from the 3-colorability problem, which
is NP-complete [28]. The latter problem is to decide, given
an undirected graph G1, whether there exists a 3-coloring v
of G1 such that for each edge (u,v) in G1, v(u) # v(v). O

Coverage. Does I' have enough information to fix all viola-
tions of 3 pertaining to V47 In particular, can GFix correct
all errors in G without user interaction when Vj is the set
of nodes in G? This gives rise to the coverage problem.

o Input: G, Vp, ¥ and I' as in the certain fix problem.

o Question: Does Ggq [Fvg, 2 for the repair Ggq of graph

G by (X,T) w.r.t. Vo?

Here Vgq is the set of nodes in the result of chase(G, X, T, V).

For relations, the data complexity was not studied, and
the combined complexity of a stronger problem is coNP-
complete [23], to decide whether all instances of a relation
schema can be fixed with certainty. We show that unless P
= NP, the coverage problem is harder for graphs, in PHP.

The complexity class PHP consists of decision problems
that can be solved by a PTIME Turing machine making poly-
nomially many queries to an NP oracle in parallel, i.e., all
queries are formed before knowing the results of the oth-
ers [48]. The class PHP is a subclass of A5 = PN? [38].

Theorem 4: The coverage problem is PHP—complete; and
its data complexity is in PTIME. a
Proof: This proof is quite involved.

Upper bound. It suffices to compute chase(G, X, T, Vp), and
check whether GEq ':VEq 3.. There are polynomially many
fixes in chase(G, X, T, Vo) (see proof of Theorem 1). Thus
we can check fixes in chase(G, X, T, Vo) in parallel using an
NP oracle by Theorem 3. We use another query to check
whether Geq Fvg, 2 in coNP [24]. These yield an algo-
rithm using two rounds of parallel queries. As using constant
rounds of parallel queries is equivalent to using one round of
parallel queries [10], the algorithm is in PHP. The data com-
plexity follows from that computing chase(G,%, T, V) and
checking Geq Fvg, 2 are both in PTIME when ¥ is fixed.

Lower bound. We show the lower bound by reduction from
the odd max true 3SAT (OMT3) problem, which is PHP—
complete [45]. OMT3 is to decide, given a 3-CNF formula
¢ with variables T, whether there is a truth assignment u
of Z such that p satisfies ¢ with maximum true among all
assignments, and it sets an odd number of variables true. O

758

S. DEDUCTION ALGORITHM

We now provide a practical single-machine algorithm for
the online mode of GFix, referred to as GMend, to deduce
certain fixes pertaining to a small set Vi of nodes.

Overview. The chase of Section 3 provides a conceptual-
level method. However, it is too costly to be practical. Each
chase step starts from scratch: it (a) nondeterministically
picks a GQR ¢ = Q(Z)(X—=Y) from X, (b) finds a mapping
h from Q[Z] to G pertaining to some nodes in Vp, and (c)
checks whether X is entailed by (Eq,NEq) at h(Z). Among
these, step (b) is costly given the intractability of graph
homomorphism (cf. [28]). After computing h, the chase may
find that X is not entailed by (Eq,NEq) and ¢ cannot be
enforced; then it has to start steps (b) and (c¢) again.

To make the chase practical, algorithm GMend adopts two
strategies. (a) It deterministically picks GQRs from X to
expand fixes in the current chase step by capturing the im-
pacts of GQRs enforced in prior steps. (b) It incrementally
expands Eq and NEq, i.e., a chase step is taken only if it is
“triggered” by newly generated fixes. These reduce redun-
dant computation of costly graph homomorphism.

(a) Selection of GQRs. To carry out deterministic selection,
we use a notion of templates. For an equality literal [in GQR
QZ](X — Y), we define its template ¢;(I) by substituting
label Lg(z) for each node = in I, e.g., Lg(x).A=c for xz.A=c
and Lg(z).A = Lg(y).B for z.A = y.B. We also extend
t; to fixes (u,v) in Eq and NEq along the same lines. The
templates are used to catch precedence on the constraints
of GQRs, by “generalizing” nodes to their labels.

Consider a pair of GQRs ¢; = Q;[Z](X; — Yi)(i € [1,2]).
Then firing @1 can cause the firing of po at a later chase
step only if Y1 and X: use the same attributes after the
“generalization”. More specifically, 2 is a successor of 1
in the precedence relationship only if (i) there exist y.A in
Y7 and z.A4 in X, such that Lg,(x) < Lo, (y); or (ii) there
exist literal y.id = 3’.id in Y7 and pattern node z in Q-
such that Lg,(z) < Lo, (y) < Lo, (y'); or (iii) there exists
a constant ¢ that appears in both Y7 and Xos.

Example 6: Consider GQRs ¢}=QI[7](z.A=y.B—z.C=
x.D) and p5=Q|[z](z.C=y.D—x.A=y.A), where Q consists
of two nodes labeled ‘a’. Templates of literals in)] and 5
are ‘a’. A=‘a’.B, ‘a’.C=‘a’.D, ‘a’.C=‘a’.D, and ‘a’.A=‘a’ A.
We can verify that ¢4 is a successor of ¢}, since they have
the same attribute ‘a’.C satisfying condition (i). O

Based on the precedence relation, GMend applies a GQR
o at one step only when ¢ is a successor for some GQR that
has been already enforced during the last step.

(b) Incremental expansion. To achieve this, GMend only
finds mappings h that involve nodes updated in the last step.
For instance, after ¢} of Example 6 is applied, it enforces
5 to the area surrounding the nodes involved in newly gen-
erated fixes (see procedures filterPAns and Match below).

Algorithm. As shown in Fig. 5, GMend first initializes
fixes Eq, repair Geq, a set Vg of “designated” nodes by tak-
ing ground truth I', graph G and nodes Vp, respectively
(line 1). It then iteratively selects active GQRs from ¥ based
on precedence and applies the GQRs to deduce fixes of graph
G w.r.t. Vo (lines 3-11). It invites users to inspect a set of
fields for expanding I" when errors persist (lines 13-14), and
continues to compute fixes with I" revised by users (line 15).

Input: Graph G, set Vj of nodes in G, GQRs %, ground truth T
Output: The repair Ggq of G w.r.t. Vp.

1. Eq:=T; NEq:=0; Ggq:=G; Vy:=Vp;

2. A=) g :=T;

3. repeat

4. while g4 is not empty do

5. Anext 1= @§ cur ‘= 0;

6. for each GQR ¢ = Q[z](X — Y) in A do

7. Sy := filterPAns(X, Eq, NEq, 0gq);

8. F := Match(Q[z], Geq, Sy, Va);

9. Scur 1= Ocur U F; Anext := Anext U SO-SUCC[tl(F)]§
10. (Eq, NEq, 0gq) := cEqv(dcur, Eq, NEq);

11. mutate Ggq by 0gq; expand Vg with dgq; A 1= Anext;
12. € :=Vio(Z, Geq, Va); /* user interaction */

13. if £ # () then invite users to inspect fields relevant to &;
14. expand I' with validated fields;

15. update Eq, NEq, dgq, Vg, Ggq; update A with dgq;
16. until £ = 0;

17. return Ggg;

Figure 5: Algorithm GMend

The process proceeds until all the violations pertaining to Vo
and nodes updated in the process are fixed (line 16). Then
GMend returns the repair Ggq w.r.t. Vo (line 17).

We next present its procedures filterPAns and Match, and
the details of user interaction in GMend (lines 12-14).

Procedure filterPAns. The procedure finds partial matches
that involve nodes in dgq, which were updated in the last
iteration. More specifically, it takes the following as input:
X from GQR Q[z](X—Y), Eq, NEq, and fixes dgq newly
added. It finds a set S, of homomorphic mappings h(Zs)
from variables that appear in X to nodes in Eq and NEq,
refereed to as partial matches. It ensures that each h(Z;) in
S, satisfies X and contains at least one node from dgq.

To speed up this process, filterPAns dynamically maintains
an inverted index from templates t to fixes with the same
t. It combines newly enforced fixes with previous ones to
incrementally find partial matches where X is validated.

Procedure Match. It completes partial matches S, of @ that
were computed by filterPAns. Following generic subgraph
matching [37], it verifies graph homomorphism by checking
edge connections. It also deduces new fixes to be included in
Eq and NEq. The procedure only incrementally enumerates
matches by accessing nodes within |@Q| hops of the desig-
nated nodes V; by the locality (Section 2). If S, = 0, it
ensures that the matches involve lately merged nodes.

User interaction. When no more fixes can be found, GMend
checks whether all violations of ¥ pertaining to V; are fixed
by calling procedure Vio (line 12). Similar to Match, Vio
adopts the locality to enumerate matches wviolating the at-
tribute constraints X — Y. For each such violation h, users
are invited to inspect a field relevant to h, which includes
a subset of attributes and entities in A instantiating the lit-
erals of X and Y only (line 13). The small confirmed field
helps us fix violation h and expand ground truth I' (line 14).
Then these newly validated fixes are added to dgq directly,
and fixes Eq, NEq, designated nodes V; and repair Ggq are
updated accordingly (line 15). At the end of GMend, I is
also expanded with deduced certain fixes.

Example 7: Given graph G of Fig. 1, GQRs X of Exam-
ple 3, ground truth I" of Example 5 (excluding ai.name), and
product p; picked by user, GMend computes chase(G,%, T,
{p1}) iteratively, guided by the precedence of GQRs.
Consider the processing of 2. After op.item is updated
by ¢1 (see Example 5), procedure filterPAns first selects a fix

759

o01.item=o2.item from Eq that has the same templates as for
y.item=y/.item of 2. It finds a partial match h(Zs) in which
y (resp. y') is mapped to o1 (resp. 02). It then completes
this partial match via procedure Match, which maps z to
s1 and returns a fix 01.id=02.id. Thus GMend updates G
by merging o1 and o2, and GQR 3 is reserved for the next
iteration due to the inclusion of an order node in Q3.

Since there still is a violation of w4 between the node id’s
of accounts a1 and as after all fixes are deduced, GMend asks
the user to check their name values to expand I'. It proceeds
to find fixes once ai1.name is validated and added to T. O

Analyses. Algorithm GMend checks all the applicable chase
steps that can extend Eq or NEq at some point, guided by the
precedence of X. Its correctness follows from Proposition 5,
which is verified by induction on the number of chase steps.

Proposition 5: All the fizes are included in Eq and NEq
following the shortest sequences by algorithm GMend. a

Algorithm GMend is in O(|%||G|™!) time (excluding user
interaction time), since both deducing fixes and checking
violations take O(|2||G|'™!) time, dominating the cost.

6. PARALLEL SCALABLE ALGORITHM

Theorem 3 tells us that deducing certain fixes to graphs
is intractable. Algorithm GMend works in the online mode
when the set Vy of entities of users’ interest is small. How-
ever, when V; is large or when we want to repair entire
graphs in the offline mode, it is often necessary to use par-
allel algorithms. Below we first review a characterization of
parallel algorithms (Section 6.1). We then parallelize algo-
rithm GMend, with a performance guarantee (Section 6.2).

6.1 Parallel Scalability

One might be tempted to think that a parallel algorithm
would run faster given more resources. However, few algo-
rithms in the literature guarantee this. Worse still, for some
computation problems, no parallel algorithms run much
faster no matter how many processors are added [25]. This
suggests that we characterize the effectiveness of parallel
algorithms. To this end we revise a notion of parallel scala-
bility introduced by [35] and widely used in practice.

A parallel algorithm A, for deducing certain fixes is said
to be parallel scalable relative to the sequential algorithm
GMend if its running time can be expressed as:

p

T(|G|,|Z|,|F‘,|V@|,p):0():

where ¢(|G], |X], [T, |Vo|) denotes the cost of GMend, and p
is the number of processors used for parallel computation.

Intuitively, a parallel scalable A, reduces the cost when p
increases, by taking sequential GMend as a yardstick. Hence
A, is able to run faster when adding more processors, and
thus makes it feasible to scale with large graphs G.

6.2 Parallelizing Algorithm GMend

We provide an algorithm, denoted as PMend, by paralleliz-
ing algorithm GMend. It fixes graphs that are fragmented
and distributed across workers (processors) Wo, ..., Wp_1.
We show that PMend is parallel scalable relative to GMend.

Algorithm PMend runs in supersteps, in which GQRs that
are inspected in the same iteration of GMend are processed
in parallel in the same superstep. Similar to algorithm
GMend, PMend expands Eq and NEq incrementally, guided

by the precedence relationship of GQRs, while the proce-
dures of partial match identification and completion are par-
allelized by using a workload partition strategy. Relations
Eq and NEq are also distributed across p workers, such that
each worker W; maintains Eq®” and NEq®”, and each fix in
the local copies contains at least one node stored at W;.

We next show how to parallelize filterPAns for partial
match identification and Match for partial match comple-
tion, to evenly partition their computations across p work-
ers, which dominate the cost of algorithm GMend.

Parallel partial match. This is to identify partial matches
that satisfy the entailment condition of the chase. It is per-
formed in parallel by procedure PFilter. The challenges here
are that a partial match may be deduced from fixes that are
filtered and maintained at different workers,

Procedure PFilter takes a set A of active GQRs as part of
its input. Consider GQR Q[Z](X — Y) in A, and a literal
[in X. At each worker W;, PFilter inspects the fixes in the
local Eq‘” and NEq‘ that share the same template t(l) of
l, referred to as the fizes by t(l). Since fixes are scattered
all over the p workers, in contrast to sequential filterPAns
that combines them directly to construct partial matches,
W; broadcasts its local fixes filtered to other workers. Upon
receiving the fixes, all workers sort the set of fixes by t(1),
denoted by Eq[t;], based on a predefined order.

It then assembles these fixes to construct partial matches
in parallel. Let t1, ..., t,, be the templates of literals in X.
Since the cardinality |Eqt;]| of each Eqlt;] is known, PFilter
evenly partitions the assembling work, in which each worker
W; is assigned an index IDX; (range) for sorted Eqlt;], such
that the indices {IDX; | ¢ € [1,m]} of its groups satisfy

S5 (IDX, - 1741 |Eq(t.]]) + IDX,, mod p = j.
That is, the combinations of fixes are evenly partitioned
across p workers in a “round-robin” manner. The partial
matches with nodes from newly deduced fixes are returned.

Example 8: Consider GQR g of Example 3, a graph G’
with accounts mo—mg, where mo—ma (resp. ms—mg) have
value “male” (resp. “female”) for gender as ground truth.

Given these, PFilter first picks from ground truth Eq[t1] =
{m;.gender=“male” | i € [0,4]} and Eq[t2]={m;.gender =
“female” | j € [5,9]}, where 1 (resp. t2) is a template of
account.gender="“male” (resp. “female”). Then it evenly dis-
tributes the work of combining fixes in Eq[t;] and Eqlts],
25 in total, to derive partial matches. Assume that there
are 5 workers, and Eq[t1] (resp. Eq[tz]) is such sorted that
m;.gender=“male” (resp. m;.gender=“female”) is assigned
index 7 (resp. j — 5). By the equation above, each worker
W), validates 5 partial matches consisting of m; and m; with
5i4+j mod 5 = k, for k € [0,4], i.e., x (resp. y) in Qs is
mapped to account m; (resp. m;). O

Parallel match completion. PMend invokes procedure
PMatch to complete the partial matches and to find fixes to
be added, in parallel. PMatch works as follows.

(1) For each partial match h(Zs) of Q[Z] assembled at worker
Wi, PMatch identifies the candidates Cp,(u) for pattern nodes
u that remain to be matched in Ggq, by breadth first search
from the designated nodes Vg, i.e., local search. Here Cp(u)
consists of nodes v such that L(v) matches Lo(u); and there
exists v’ € Cp(u') or v’ matches v’ in h(Zs) such that edge
(v, ¢,v) (resp. (v,t,v")) is in Ggq and ¢ matches label ¢/ of
(', ¢, u) (resp. (u,¢/,u’)) in Q[Z]. When reaching “borders”

760

Input: A fragmented graph G, and Vp, ¥ and T" as in GMend.
Output: The repair Ggq of G w.r.t. Vp.
1. initialize Eq, NEq, Ggq, Vi; Agq:=0; A:=13;
while there exist violations of ¥ pertaining to V; do
repeat /*one superstep*/
S p:=PFilter(A, Eq, NEq, Agq); /*parallel identification™/
Agq:=PMatch(A, Ggq, S 4, Va); /*parallel completion™/
expand Eq and NEq with Agg;
update Ggq, Vg by Agq; update A with Agg;
until Agq is empty;
expand I' via user interaction (if in the online mode);

2
3
4
5.
6.
7
8
9
10. return Ggg;

Figure 6: Algorithm PMend

of the partitioned graph, e.g., nodes with crossing edges to
other fragments, it notifies other workers the next pattern
node to match, and the traversal continues there.

Then h(Zs) is broadcast along with the candidates and
connecting edges. It does not broadcast those complete
matches, which will be validated locally. Each worker sorts
the candidates like how PFilter treats Eq[t;].

(2) Procedure PMatch then completes the partial matches by
combining and verifying candidates for pattern nodes that
remain to be matched, in parallel. For each partial match
h(zs) of Q[z], worker W; groups candidates from Cp,(u) for
each u € T \ Zs, along the same lines as combining fixes
in PFilter. It adopts the same workload partition strategy
as PFilter. That is, the indices of each group of candidates
processed by W satisfy the same equation presented there
by treating Cn(u) as Eq[t;]. Like Match, it incrementally
expands matches with newly added fixes. It then checks
edge connections for homomorphism, and returns fixes from
the qualified matches. For those complete matches h(Zs),
only homomorphic checking is performed locally.

Algorithm. The main driver of PMend is shown in Fig. 6.
After initializing distributed fixes and repair (line 1), it
deduces fixes in supersteps following the precedence of ¥
(lines 3-8). In each superstep, PFilter identifies partial
matches (line 4) and PMatch completes those matches per-
taining to designated Vg (line 5), in parallel at all work-
ers. The new fixes Agq returned are used to extend Eq and
NEq (line 6), and each worker mutates its fragment of Ggq
by identifying objects and repairing attributes accordingly
(line 7). The set A of active GQRs is adjusted based on the
new fixes as in GMend (line 7). If not all errors pertaining
to Vg are fixed, it asks users to expand ground truth in the
online mode, along the same lines as GMend (line 9); in the
offline mode, user interaction is turned off. Finally, each
worker returns its local copy of repair Ggq (line 10).

Parallel scalability. To see that PMend is parallel scalable
relative to GMend, we can show that PFilter and PMatch take
O(|¢||G|'?! /p) time for each GQR ¢ € X. If it holds, by p <
|G|, PMend is in O(|2||G|"®! /p) = O(t(|G|, =], T, [Vo])/p)
time; note that costs of updating Eq, NEq and Ggq are much
less in each superstep.

7. EXPERIMENTAL EVALUATION

Using real-life and synthetic graphs, we evaluated the ac-
curacy, efficiency and (parallel) scalability of our methods
for deducing certain fixes online (Section 7.1) and offline
(Section 7.2). We also conducted a case study from indus-
try to show the effectiveness of our proposed approaches
(Section 7.3). We focus on fixing erroneous attributes and
identifying duplicates, a type of common errors in graphs.

7.1 Online Mode
We start with the setting and results for the online mode.

Experimental setting. We used the following datasets.
Real-life graphs. We used two real-life graphs: (a) DBpedia
[1], a knowledge graph with 28 million entities of 200 types
and 33.4 million edges of 160 types; and (b) Yago2, an ex-
tended knowledge base of YAGO [46] with 2 million entities
of 13 types and 5.7 million edges of 36 types.

GQRs. We discovered a set 3 of GQRs for each graph G by
extending algorithms of [21]. Starting from frequent single-
node GQRs, we find GQRs by interleaving vertical spawning
to extend graph patterns), and horizontal spawning to gen-
erate attribute constraints X —Y with a generation tree. We
selected GQRs of high support, i.e., GQRs that can be fre-
quently applied to G and capture the regularity. We mined
200 and 150 GQRs from DBpedia and Yago2, respectively, in
which the graph patterns consists of at most 4 nodes and 8
edges, and the number of literals is at most 7. All GQRs in
3. were examined manually to guarantee correctness.

These GQRs detected 324 and 366 errors in DBpedia and
Yago2, respectively, e.g., a soccer player has multiple career
records although the records associate with the same team.

We chose V) from vertices involved in errors detected by X.
We resolved true attribute values and id’s of vertices that vi-
olate ¥ directly or indirectly. These validated attributes and
entities were used as “gold standard” in our experiments.

Measurements. The accuracy of the algorithms is evaluated
by precision, recall, and F-measure defined as 2 - (precision -
recall)/(precision + recall). Here precision is the ratio of true
fixes to all fixes derived; and recall is the ratio of errors
correctly fixed to all the errors pertaining to Vp. Note that
precision is always 100% for our methods by the nature of
certain fixes, given that ¥ and I' are validated; but recall
depends on how informative GQRs and ground truth are.
Algorithms. We implemented three sequential algorithms in
Java: (1) GMend (Section 5); (2) GRepair of [12], in which we
transformed each GQR into a GRR [12] retaining the seman-
tics; and (2) ChaseG that implements the chase (Section 3)
directly. The latter two do not allow user interaction.

We conducted the experiments on a single processor pow-
ered by Intel Xeon E5-2670v2 with 61 GB memory and 122
GB SSD storage. All the experiments (Sections 7.1 and 7.2)
were run 3 times. The average is reported here.

Experimental results. We evaluated the accuracy and
efficiency of the three algorithms, and the number r of user
interaction rounds needed by algorithm GMend.

Accuracy. Fixing |Vo| = 4 and initial |I'| = 10, the F-measure
on DBpedia and Yago? is reported in Figures 7(a) and 7(b),
respectively. We can see that a large percentage of the er-
rors can be correctly fixed by GMend and ChaseG without
user involvement, e.g., in round 0, the F-measure is 0.586 for
DBpedia and 0.681 for Yago2, as opposed to 0.411 and 0.439
by GRepair, respectively. This is because GRepair applies
GRRs indistinguishably, i.e., it treats all the data surround-
ing Vp as ground truth. As remarked earlier, a fix generated
in this way may not be correct and worse yet, may introduce
new inconsistencies. In contrast, both GMend and ChaseG
compute certain fixes from validated ground truth.

Efficiency. Fixing |[['|=10 (resp. |Vo|=4), we varied |Vb|
(resp. |I'|) from 2 to 6 (resp. 4 to 12), to evaluate the impact

761

GRepair ez
1 { GMend
ChaseG mum—

1 GMend
ChaseG m—

Accuracy (F-measure)
ANN\\\\\Y

Accuracy (F-measure)
My

|
%

o

1 2

v

0

(b) Yago2: Varying r

¥
w

(a) DBpedia: Varying r

GMend —e— GMend —e—
GRepair — - GRepair — -

-40 ChieG —o- _-9 -40 ChiseG —o-

3 o 3

30 . = 30

s e wT S p-

go 3/";@:_/—-’/ ézo e Il

o :;;,/r/*/‘ Sop————

0 0

2 3 4 5 6 4 6 8 10 12

(c) DBpedia: Varying |Vp| (d) DBpedia: Varying |T|

Figure 7: Performance of the online mode

of |Vo| (resp. |I'|) on algorithms over DBpedia. As shown in
Figures 7(c) and 7(d), (1) GMend takes longer with larger
|[Vo| or smaller |T'|, due to more user interactions. (2) GMend
needs 8s when |Vp|=4 and |I'|=10 despite using a single ma-
chine. In contrast, GRepair and ChaseG take 17s and 26s, re-
spectively. The results on Yago2 are consistent (not shown).

User intervention. At most three rounds of user interactions
suffice to fix all errors related to Vo when |Vo| < 12 (not
shown). In each round, at most 8 attributes or matches re-
quire user inspection (see Section 5), and less is needed in
later rounds. On average, I' is expanded with 30 pieces of
ground truth after fixing errors pertaining to each Vp, in-
cluding fields validated by users and certain fixes generated.

7.2 Offline Mode

We next evaluated our method in the offline mode, includ-
ing the accuracy, the effectiveness of combining data repair-
ing and object identification in deducing certain fixes, and
the efficiency and scalability of parallel algorithm PMend.

Experimental setting. In addition to two real-life graphs
DBpedia and Yago2, we used larger synthetic graphs.

Synthetic graph. We designed a generator to produce syn-
thetic graphs G, controlled by the number of nodes |V| (up
to 50 million) and the number of edges |E| (up to 100 mil-
lion), with labels L and attributes Fl4 drawn from an alpha-
bet of 100 symbols. Each node in G is assigned 5 attributes
with values drawn from a domain of 200 distinct constants.
We took G with 40 million nodes and 80 million edges
as default. We also discovered a set ¥ of 100 GQRs from
synthetic graphs along the same lines as in Section 7.1.
Noises. To evaluate the accuracy and efficiency of PMend for
fixing a large number of errors, apart from the errors caught
in the real-life graphs (Section 7.1), we introduced noises to
the graphs. More specifically, we randomly (a) updated val-
ues of the attributes that appear in GQRs X, controlled by
inconsistency rate err%, the ratio of the number of updated
attributes to the total number of such attributes; and (b)
added duplicate entities, controlled by duplicate rate dup%,
the percentage of duplicate entities in the entire graph.
Ground truth. We sampled a block I from the following. (1)
Validated attributes and entities that are accumulated in the
online mode when fixing violations of GQRs in the original
graphs. (2) Attributes and matches that are unchanged by
injected errors, without the need of manual checking. In
both cases, the GQRs X and ground truth I' are consistent.
Algorithms. In addition to the algorithms in Section 7.1,
we implemented the following. (1) PMend (Section 6) and

PMend —*%—
GRepair — -

PMend —*—
GRepair — -

S o
(=N~
s o
[= N~
|
[|
"
]
!
|

<

=

<

=
w
i
\

\

o
o
L)
\
o
o

Accuracy (F-measure)
\
i
i
i
i
n
Accuracy (F-measure)

40 80 120 160 200 30 60 90 120 150

<09 <09

3 3

$0.8 $08

s <

£0.7 207

S N

306 D 306

S PMend —%— S PMend —%—

<05 | PMendy, -0 * <05 | PMend, -0
04 GRepairy, --—+-- 04 GRepairpy -+~

0.4 0.8 12 1.6 2 0.4 0.8 1.2 1.6 2

(e) DBpedia: varying err% (f) Yago2: varying err%

5000 i GMend —%— 4000 ; GMend —¥—
| GRepair -4~ i GRepair -4
—~4000 53200 h PMend —5—
< < PMend,,, —4&-
$3000 $2400
v v
Z 4 <
32000 $1600 |-
51000 = 800 §
0 &== 0 5SS
40 80 120 160 200 30 60 9 120 150
(i) DBpedia: varying |3| (j) Yago2: varying |Z|
4000 1000
PMend —H— PMend —5—
3200 PMend,,, — - = 800 A FMendy, —&-
ENR RS =
;2400 el §
31600 T A N
& =g 5
= 800 =
0
4 8 12 16 20

(m) DBpedia: varying p (n) Yago2: varying p

1
-~ ~ PMend —*%—
S0s W Sos W
g g
v v
506 506] [=
&] =] =
204 204
g g
£02 302
< <
< <
0 0
6K 7K 8K 9K 10K 6K 7K 8K 9K 10K
(c) DBpedia: varying |T| (d) Yago2: varying ||
1 1
<09 %\X 209 W
g PMend —%— g
o U PMendg --O-- -
~ i EMyp @
GuaphER - g
Ziifg-.. GRepairy —w— RO
—- @g::‘\“g,,, g §0‘6 PMendy) --O-- \8\\“ g
- S EM, 3 TSS
. <05 Graphl_gl]{{ —A-
04 04 GRepairg —-¥—
04 08 12 16 2 2 4 6 8 10
(g) DBpedia: varying dup% (h) Yago2: varying dup%
4000 CMend —%— 4000 GMehd —%—
. GRepair ---&-- PMend —B—
—=3200 PMend —85— ~3200 PMend,,,, —&-
E . PMend,,, —&- § GRepair ---&---
$2400 2400
2 A 2
gleoo 51600
& 00 ¢ S 500 M
A I —
Tt o e AT T T)
0 = 0 =
5 6 7 8 9 6K 7K 8K 9K 10K
(k) Yago2: varying |Q| (1) Yago2: varying ||
5000 5000
\\ P\/l;l'v[:nd A GMend —%—
~4000 EN W — 8 4000 PMend —o—
bS] b 3 PMend,,, —4&-
$3000 $£3000
5 E
EZOOO gZOOO
S1000 S1000

=

0

(o) Synthetic: varying p (p) Synthetic: varying |G|

Figure 8: Performance of the offline mode

three variants: (a) PMendp, which applies GFDs to correct
attribute values only; (b) PMendo, which only identifies enti-
ties by using keys; and (c) PMend,,, that uses random work-
load partition. (2) The entity matching algorithm EMpug
of [16] and an entity resolution algorithm GraphER by graph
clustering [8]. (3) Two variants GRepairp and GRepairg of
sequential GRepair [12] for data repairing and object identi-
fication, respectively, adopting the same strategy as in (1).
The algorithms were deployed on a cluster of up to 20
processors; each had the same setting as that in Section 7.1.

Experimental results. We next report our findings.

Exp-1: Effectiveness. We first evaluated the quality of
the fixes derived by PMend versus the repairing method
GRepair. We conducted the experiments on real-life graphs
and fixed err% = 2%, dup% = 2%, |I'| = 10K and used
the entire set ¥ of GQRs unless stated otherwise. We found
16.8K and 9.5K errors in total in the two graphs using .
Among these, 7.1K and 3K involved duplicates, and 9.7K
and 6.5K involved inconsistent values, respectively.

Varying |X|. We varied |||, the number of GQRs, from 40 to
200 over DBpedia and from 30 to 150 over Yago2. As shown
in Figures 8(a)-8(b), (1) the more GQRs are available, the
higher F-measure gets by both methods, as expected; and (2)
PMend consistently outperforms GRepair in quality by 58.3%
on average, and the improvement becomes more substantial
with the increase of |X| for the same reason as given in

Section 7.1, i.e., GRepair outputs more erroneous fixes when
more GQRs (GRRs) are available for its indistinguishable
enforcement of GRRs to unvalidated part of the graphs.
Varying |U'|. Varying |T'| from 6K to 10K, we report results
on DBpedia and Yago?2 in Figures 8(c) and 8(d), respectively.
As shown there, PMend does better when given a larger
block of ground truth, as expected. In contrast, GRepair is
indifferent to |I'| for the same reason given above.

Exp-2: Interleaving attribute repairing and object
identification. We next tested the accuracy (recall) of
PMend against different methods for (1) graph repairing only
and (2) object identification (duplicate detection) only. For
repairing attributes only, recall is the ratio of attributes cor-
rectly fixed to all the erroneous attributes in the graph, with-
out considering duplicates; similarly we specialize recall for
object identification only. We used the same real-life graphs
and ground truth I' as in Exp-1, and all the GQRs discovered.

Deduplication helps repairing. Fixing the duplicate rate
dup% = 2%, we varied the inconsistency rate err% from
0.4% to 2%. The results on DBpedia and Yago2 are re-
ported in Figures 8(e) and 8(f), respectively. We find the
following. (a) PMend consistently outperforms PMendp and
GRepairp; it is up to 63.7% more accurate in correcting at-
tributes. Thus object identification indeed helps attribute
repairing. (b) The accuracy (recall) of the three algorithms
decreases when err% grows, as expected. However, PMend is

762

less sensitive to the increase of err%. This also benefits from
the combination of repairing and deduplication since true
attribute values can be taken from the matching entities.

Repairing helps deduplication. Fixing err% = 2%, we varied
dup% from 0.4% to 2%. As shown in Figures 8(g) and 8(h)
on DBpedia and Yago2, respectively, (a) algorithm PMend
outperforms PMendo, EMwmgr, GraphER, and GRepairo by
38.6%, 42.7%, 51.2% and 46.2% on average in matching enti-
ties, respectively. In addition, EMugr, GraphER and GRepairg
identify a number of false positives based on incorrect at-
tribute values (not shown), although EMur and GraphER
are designed for entity matching. (b) The larger dup% is,
the less accurate is for each algorithm. However, the ac-
curacy gaps between PMend and others get larger with the
increase of dup%, i.e., more entities are matched using the
repaired attribute values. These verify that data repairing
helps object identification in real-life graphs.

Exp-3: Efficiency and scalability. Finally, we evaluated
the efficiency and (parallel) scalability of the algorithms in
cleaning entire graphs. We used the same default settings
as in Exp-1 and p = 8 processors unless stated otherwise.
We do not report ChaseG as it is sequential and far slower
than the others for its redundant enforcement of GQRs. It
could not run to completion within 2.5 hours in most cases.

Impact of |£|. Varying |X| in the same way as in Exp-1,
we evaluated the impact of GQRs on the efficiency. We find
the following from Figs. 8(i) and 8(j) on DBpedia and Yago2,
respectively. (1) All algorithms take longer to process more
GQRs, as expected. (2) PMend does the best in all cases, and
is on average 6.9 times faster than the sequential GMend
(without user interaction). In contrast, GRepair does not
terminate in 100 minutes when applying 90 GQRs on Yago2
since GRepair does not support parallel processing.

Impact of |Q|. Fixing |X| = 80, we varied the average size
|Q| of graph patterns in ¥ from 5 to 9 over Yago2. Results
in Fig. 8(k) show that all algorithms take longer to process
GQRs with more pattern nodes and edges. We also find that
they are less sensitive to the number of literals (not shown).
Impact of |I'|. We varied |I'| from 6K to 10K on Yago2. The
result in Fig. 8(1) shows that (1) the larger |T'| is, the longer
time is taken by algorithms GMend, PMend and PMend,.
(2) Again, PMend outperforms the others, while GRepair
does not terminate within 100 minutes in all the cases.

Parallel scalability. We evaluated the parallel scalability of
the algorithms by varying the number p of processors from 4
to 20. As shown in Fig. 8(m) over DBpedia (resp. 8(n), 8(o)
over Yago2, Synthetic), (1) PMend scales well with p: the im-
provement is 3.6 (resp. 4.0 and 4.2) times when p increases
from 4 to 20; this validates the parallel scalability of al-
gorithm PMend. (2) PMend outperforms PMendn, by 3.02
times on average, verifying the effectiveness of our workload
partition strategy. (3) Algorithm PMend works well on real-
life graphs. For example, it needs less than 6 minutes to
process DBpedia over 20 processors, while none of GMend,
GRepair and ChaseG completes within 2 hours.

Impact of |G|. Using synthetic graphs G, we varied |G| with
scale factors from 0.2 to 1 and used 16 processors. Fig-
ure 8(p) tells us the following. (1) Parallel algorithm PMend
scales well with |G| and is feasible on large graphs despite
the exponential theoretical cost. It takes 877 seconds when

763

(shoe style) (shoe) (manufacturer)

style
(shoe style),

styl

Q
Figure 9: Real-life GQRs

G has 40 million nodes and 80 million edges, as opposed

to more than 8000 seconds taken by GMend and GRepair.

(2) PMend performs better than its counterpart PMendnw,

which is consistent with Figures 8(i) to 8(o).

7.3 Case Study

In the last decade, e-commence companies, e.g., Alibaba
[63] and Amazon [15] have built product graphs to an-
swer questions about products and their related knowledge.
For instance, the shoes of brand Under Armour should
be returned when a customer searches for “Stephen Curry
Shoes”, since Curry is a spokesman of Under Armour.

Model GFix can be used to clean such graphs. Consider
three GQRs with patterns shown in Fig. 9: (1) pa = Qa[Z](0
— x.upper = y.upper), saying that if shoe y has shoe style x
and both x and y refer to manufacturer z, then z and y have
the same upper; (2) ¢» = Qp[Z](z.color = y.color, z.size =
y.size — z.id = y.id), i.e., two shoes can be identified by
their colors and sizes if they have the same style; and (3)
Yo = Qc[Z](0 — z.id = y.id), i.e., two manufacturers can be
identified if they have the same athlete as the spokesman.

When a new manufacturer or shoe style is added to the
product graph, it is put into Vi, and the GQRs above are
enforced in the online mode to fix errors related to the
uppers of shoes, and to remove those duplicate shoes and
manufacturers that are possibly created by different sellers.
In the product graph, entities related to shoes typically have
common structures and attributes, e.g., GQR ¢, still applies
for other properties in shoe styles besides upper.

(shoe)

(shoe) Qc(mnnufacturer)

The users of GFix in the online mode are typically peo-
ple in charge of maintaining the product graph. They only
need to manually check a limited number of values for the
shoe styles, and are knowledgeable enough to validate the
styles and manufactures of shoes. The changes made by
them are also periodically inspected by domain experts. The
validated changes are included in I' as ground truth.

Using the accumulated ground truth, the offline mode is
invoked periodically to “clean” the whole set of shoes. This
process can be applied to other products analogously.

8. CONCLUSION

We have made a first effort to clean graphs with certainty,
by proposing GFix. We have extended GEDs [24] to express
positive and negative rules. We have settled the complexity
of fundamental problems for deducing certain fixes. We have
developed (parallel scalable) algorithms underlying GFix.
Our experiments have verified that the method is promising.

One topic for future work is to fix errors in connection
with invalid and missing edges, which introduce challenges
to rule-based method since it is hard for the graph patterns
in the rules to simultaneously catch such edge errors.

Acknowledgments. The authors are supported in part by
ERC 652976, 973 Program 2014CB340302, NSFC 61421003,
EPSRC EP/M025268/1, Shenzhen Institute of Computing
Sciences, and Beijing Advanced Innovation Center for Big
Data and Brain Computing. Lu is also supported in part by
NSFC 61602023.

9.

1]
2]

3]

[4]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

REFERENCES

DBpedia. http://wiki.dbpedia.org.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

W. Akhtar, A. Cortés-Calabuig, and J. Paredaens.
Constraints in RDF. In SDKB, 2010.

Y. Altowim and S. Mehrotra. Parallel progressive
approach to entity resolution using mapreduce. In
ICDE, 2017.

A. Arasu, C. Ré, and D. Suciu. Large-scale
deduplication with constraints using dedupalog. In
ICDE, 2009.

A. Arioua and A. Bonifati. User-guided repairing of
inconsistent knowledge bases. In EDBT, 2018.

A. Assadi, T. Milo, and S. Novgorodov. DANCE: data
cleaning with constraints and experts. In ICDE, 2017.
I. Bhattacharya and L. Getoor. Entity resolution in
graphs. Mining graph data, 2006.

P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In SIGMOD, 2005.
S. R. Buss and L. Hay. On truth-table reducibility to
SAT. Inf. Comput., 91(1):86-102, 1991.

D. Calvanese, W. Fischl, R. Pichler, E. Sallinger, and
M. Simkus. Capturing relational schemas and
functional dependencies in RDFS. In AAAI 2014.

Y. Cheng, L. Chen, Y. Yuan, and G. Wang.
Rule-based graph repairing: Semantic and efficient
repairing methods. In ICDE, 2018.

X. Chu, I. F. Ilyas, and P. Koutris. Distributed data
deduplication. PVLDB, 9(11):864-875, 2016.

A. Cortés-Calabuig and J. Paredaens. Semantics of
constraints in RDFS. In AMW, 2012.

X. L. Dong. Challenges and innovations in building a
product knowledge graph. In KDD, 2018.

W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for
graphs. PVLDB, 8(12):1590-1601, 2015.

W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic
constraints for record matching. VLDB J.,
20(4):495-520, 2011.

W. Fan and F. Geerts. Foundations of Data Quality
Management. Morgan & Claypool Publishers, 2012.
W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing
data inconsistencies. TODS, 33(2):6:1-6:48, 2008.

W. Fan, F. Geerts, S. Ma, and H. Miiller. Detecting
inconsistencies in distributed data. In ICDE, 2010.
W. Fan, C. Hu, X. Liu, and P. Lu. Discovering graph
functional dependencies. In SIGMOD, 2018.

W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction
between record matching and data repairing. In
SIGMOD, 2011.

W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards
certain fixes with editing rules and master data.
VLDB J., 21(2):213-238, 2012.

W. Fan and P. Lu. Dependencies for graphs. In
PODS, 2017.

W. Fan, X. Wang, and Y. Wu. Distributed graph
simulation: Impossibility and possibility. PVLDB,
7(12):1083-1094, 2014.

764

[26]

27]

(28]

(32]

(33]

[41]

42]

(43]

W. Fan, Y. Wu, and J. Xu. Functional dependencies
for graphs. In SIGMOD, 2016.

L. A. Galarraga, C. Teflioudi, K. Hose, and F. M.
Suchanek. AMIE: Association rule mining under
incomplete evidence in ontological knowledge bases. In
WWW, 2013.

M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
1979.

S. Hao, N. Tang, G. Li, and J. Li. Cleaning relations
using knowledge bases. In ICDE, 2017.

B. He, L. Zou, and D. Zhao. Using conditional
functional dependency to discover abnormal data in
RDF graphs. In SWIM, 2014.

J. He, E. Veltri, D. Santoro, G. Li, G. Mecca,

P. Papotti, and N. Tang. Interactive and deterministic
data cleaning. In SIGMOD, 2016.

S. R. Jeffery, M. J. Franklin, and A. Y. Halevy.
Pay-as-you-go user feedback for dataspace systems. In
SIGMOD, 2008.

Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden,

M. Ouzzani, P. Papotti, J. Quiané-Ruiz, N. Tang, and
S. Yin. BigDansing: A system for big data cleansing.
In SIGMOD, 2015.

L. Kolb, A. Thor, and E. Rahm. Load balancing for
MapReduce-based entity resolution. In ICDFE, 2012.
C. P. Kruskal, L. Rudolph, and M. Snir. A complexity
theory of efficient parallel algorithms. T'CS,
71(1):95-132, 1990.

G. Lausen, M. Meier, and M. Schmidt. SPARQLing
constraints for RDF. In EDBT, 2008.

J. Lee, W. Han, R. Kasperovics, and J. Lee. An
in-depth comparison of subgraph isomorphism
algorithms in graph databases. PVLDB, 6(2):133-144,
2012.

C. Papadimitriou and S. Zachos. Two remarks on the
power of counting. T'CS, pages 269-275, 1982.

T. Papenbrock, A. Heise, and F. Naumann.
Progressive duplicate detection. TKDE,
27(5):1316-1329, 2015.

N. Prokoshyna, J. Szlichta, F. Chiang, R. J. Miller,
and D. Srivastava. Combining quantitative and logical
data cleaning. PVLDB, 9(4):300-311, 2015.

V. Rastogi, N. N. Dalvi, and M. N. Garofalakis.
Large-scale collective entity matching. PVLDB,
4(4):208-218, 2011.

T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré.
Holoclean: Holistic data repairs with probabilistic
inference. PVLDB, 10(11):1190-1201, 2017.

S. Schelter, D. Lange, P. Schmidt, M. Celikel,

F. BieBmann, and A. Grafberger. Automating
large-scale data quality verification. PVLDB,
11(12):1781-1794, 2018.

S. Song, H. Cheng, J. X. Yu, and L. Chen. Repairing
vertex labels under neighborhood constraints.
PVLDB, 7(11):987-998, 2014.

H. Spakowski. Completeness for parallel access to NP
and counting class separations. PhD thesis, University
of Diisseldorf, Germany, 2005.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago:
A core of semantic knowledge. In WWW, 2007.

[47] V. Verroios, H. Garcia-Molina, and

Y. Papakonstantinou. Waldo: An adaptive human
interface for crowd entity resolution. In SIGMOD,
2017.

K. W. Wagner. Bounded query classes. SICOMP,
19(5):833-846, 1990.

S. E. Whang and H. Garcia-Molina. Joint entity
resolution on multiple datasets. VLDB J.,
22(6):773-795, 2013.

M. Yakout, A. K. Elmagarmid, J. Neville,

M. Ouzzani, and I. F. Ilyas. Guided data repair.

[48]

[49]

[50]

765

[51]

[52]

[53]

PVLDB, 4(5):279-289, 2011.

Y. Yu and J. Heflin. Extending functional dependency
to detect abnormal data in RDF graphs. In ISWC;
2011.

G. Zhang, D. Jimenez, and C. Li. Maverick:
Discovering exceptional facts from knowledge graphs.
In SIGMOD, 2018.

C. Zhou, Y. Liu, X. Liu, Z. Liu, and J. Gao. Scalable
graph embedding for asymmetric proximity. In AAAI
2017.

