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ABSTRACT
Modern Internet of Things (IoT) applications generate massive
amounts of time-stamped data, much of it in the form of discrete,
symbolic sequences. In this work, we present a new system called
TOP that deTects Outlier Patterns from these sequences. To solve
the fundamental limitation of existing pattern mining semantics
that miss outlier patterns hidden inside of larger frequent patterns,
TOP offers new pattern semantics based on contextual patterns that
distinguish the independent occurrence of a pattern from its occur-
rence as part of its super-pattern. We present efficient algorithms
for the mining of this new class of contextual patterns. In particu-
lar, in contrast to the bottom-up strategy for state-of-the-art pattern
mining techniques, our top-down Reduce strategy piggy backs pat-
tern detection with the detection of the context in which a pattern
occurs. Our approach achieves linear time complexity in the length
of the input sequence. Effective optimization techniques such as
context-driven search space pruning and inverted index-based out-
lier pattern detection are also proposed to further speed up con-
textual pattern mining. Our experimental evaluation demonstrates
the effectiveness of TOP at capturing meaningful outlier patterns
in several real-world IoT use cases. We also demonstrate the effi-
ciency of TOP, showing it to be up to 2 orders of magnitude faster
than adapting state-of-the-art mining to produce this new class of
contextual outlier patterns, allowing us to scale outlier pattern min-
ing to large sequence datasets.
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1. INTRODUCTION
Motivation. With the increasing prevalence of sensors, mobile
phones, actuators, and RFID tags, Internet of Things (IoT) applica-
tions generate massive amounts of time-stamped data represented
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as discrete, symbolic sequences of data. Examples include con-
trol signals issued to Internet-connected devices like lights or ther-
mostats, measurements from industrial and medical equipment, or
log files from smartphones that record complex behavior of sensor-
based applications over time. In these applications, finding outlier
patterns that represent deviations from normal behavior is critical.
Such outlier patterns may indicate devices or agents not performing
as expected based on their configurations or operational require-
ments. To further motivate outlier patterns, we describe two real-
world applications that require this functionality:

Example 1. A startup company we work with collects log
files from hundreds of thousands of phones running a sensor-
based mobile application that records data from users as they
drive. Fig. 1 shows examples of log files. After the user starts
a trip, the system continuously reports driver’s status and is
expected to terminate when the trip finishes. This typical sys-
tem behavior is represented by a frequent sequential pattern P
= 〈StartTrip(A),RecordTrip(B),ReportLoc(C ),Terminate(D)〉
as shown in the top portion of Fig. 1. An infrequent pattern
Q = 〈StartTrip(A), RecordTrip(B),ReportLoc(C )〉 instead
signals an erroneous system behavior, since the expected success-
ful termination action is missing. Thus, pattern Q as a sub-pattern
of P corresponds to an outlier pattern that violates the typical
expected behavior represented by P . In addition to the missing of
the expected event, the behavior of the system is also suspicious if
the events do not occur in the expected order, for example if the
ReportLoc(C) event occurs after Terminate(D) event. Failing to
capture such problems hidden in the system can lead to increased
power consumption on devices or missed recordings, and thus a
poor customer experience and decreased revenue.
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Figure 1: Log file pattern mining example showing examples of
contextual frequent patterns & outliers.
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Example 2. We have access to data from a hospital infec-
tion control system [31] that tracks healthcare workers (HCWs)
for hygiene compliance (for example sanitizing hands and wear-
ing masks) using sensors installed at doorways, beds, and dis-
infectant dispensers. In this setting, a HCW is required to
wash her hands before approaching a patient. This hygiene
compliance protocol is modeled by a frequent pattern P =
〈HandWash(A), Enter(B),ApproachPatient(C )〉. An infre-
quent pattern Q = 〈Enter(B),ApproachPatient(C )〉 represents
a violation of the hygiene compliance protocol, namely not per-
forming the HandWash(A) action before approaching a patient.
Therefore, Q should be captured as an outlier pattern that as a sub-
pattern of typical pattern P , violates the hygiene compliance proto-
col represented by P . Missing this type of outlier risks healthcare
costs and potentially human life caused by avoidable infection.

Therefore, it is critical to capture the outlier patterns that violate
the typical patterns modeling the expected behavior of the applica-
tion or devices, e.g., a sub-pattern or a different event type permu-
tation of a typical pattern.
State-of-the-Art & Challenges. To the best of our knowledge,
the problem of detecting outlier patterns from sequence data that
violate the typical system behavior has not been solved in the liter-
ature, as discussed in our related work (Sec. 7).

Designing an outlier pattern detection approach that is both ef-
fective and efficient is challenging, for several reasons. First, we
need to detect typical patterns. It may seem that the typical pat-
terns can be captured by directly applying existing frequent pattern
mining techniques (e.g. [1]). Unfortunately, relying on the existing
semantics [3, 13, 32, 11, 12, 5] to detect outlier patterns is not ef-
fective because existing semantics do not distinguish between the
independent occurrence of a patternQ and its occurrence as part of
its super-pattern P . Therefore, any sub-patternQ of a frequent pat-
tern P is also designated as a frequent pattern by existing seman-
tics, since the frequency of Q will never be smaller than the fre-
quency of its super-pattern P . This is the basis of the well-known
Apriori property upon which most pattern mining algorithms are
built [10]. Unfortunately, these semantics miss outlier patterns, be-
cause as described in our motivating examples above, an indepen-
dent occurrence of the sub-pattern Q of a typical pattern P tends
to correspond to an outlier representing anomalous behavior. Thus,
to meet this requirement of detecting outlier patterns, new pattern
mining semantics are required.

Second, designing an efficient outlier pattern mining technique
is challenging. The pattern-growth strategy (Growth) that builds
patterns from short to long – widely adopted by the pattern min-
ing algorithms [29, 15, 16, 37, 4, 9], prunes unpromising long
pattern candidates based on the Apriori property. Unfortunately
it is not effective in our outlier pattern detection scenario. During
the bottom up mining process, Growth produces a large number of
short patterns. However, to detect outlier patterns we need to ex-
clude short patterns from typical patterns when they occur as part of
their super-patterns. Therefore, a post-processing step is required
to filter such short patterns. Doing so wastes CPU and memory re-
sources by producing a large number of short patterns that are sub-
sequently discarded. Furthermore, detecting outlier patterns, i.e.,
violations of the typical patterns, is also challenging because of
the enumeration of infrequent patterns, of which there is an over-
whelming number in a large dataset, and for which there is no clear
property that can be used to prune away unpromising candidates.
Proposed Approach and Contributions. In this work, we de-
scribe our system, TOP, designed to effectively and efficiently
deTect Outlier Patterns. It has been deployed in the data analyt-
ics platform of Philips Lighting. TOP features novel contextual

pattern semantics for the effective detection of abnormal system
behavior. New mining strategies are also proposed to mine contex-
tual patterns from sequence data. Our key contributions include:
•We define novel contextual pattern semantics. By introducing

the concept of a contextual constraint, whether an instance of a pat-
tern P is counted for frequent pattern mining purposes depends on
the context in which P occurs. In particular, it is not counted if it
appears in a larger pattern found to be typical or abnormal. This
contextual constraint separates out the independent occurrences of
a contextual outlier (CO) pattern from the occurrences as part of its
super-patterns. Thus, a CO pattern will not be misclassified as typ-
ical simply because it occurs frequently as part of its super-pattern.
This ensures that only the patterns capturing typical system behav-
ior in their own right are considered frequent, so called contextually
frequent (CF) patterns.
• Instead of using a two-step bottom-up (Apriori) style solu-

tion (Growth), we design a customized top-down pattern min-
ing strategy (Reduce) that directly mines the CF patterns in one
step (Sec. 4.2). Starting from the longest possible contextual pat-
terns, our Reduce strategy recursively constructs patterns from the
longest to the shortest. By this, Reduce effectively avoids the un-
necessary generation of the large number of short patterns that vi-
olates the contextual constraint. Moreover, it saves the extra over-
head introduced by the post-processing step.
• Using an event availability-based pruning strategy in the iter-

ative top-down mining process of Reduce, we turn the contextual
constraint into a powerful tool to prune all unpromising CF pattern
candidates much more rapidly – than otherwise would have been
possible (Sec 4.2.2). Our theoretical analysis shows that our Re-
duce strategy achieves linear time complexity in the length of the
input sequence compared to the quadratic complexity of Growth.
• Our approach detects both CF and CO patterns at the same it-

eration —- rather than mining the sequences twice for each pattern
type. In particular, we show that the candidates of CO can be pro-
duced almost for free as a by-product of the top-down CF pattern
mining process (Sec. 4.3).
• Leveraging the relationships between the CO patterns and the

CF patterns potentially violated by CO, we design a customized
indexing mechanism to speed up the process of mining CO patterns
from the CO candidates.
• We perform empirical studies using a mobile app and a light-

ing app that demonstrate the effectiveness of our TOP system in
capturing anomalous patterns in these real world applications.
• We demonstrate a two orders of magnitude performance gain

for our Reduce strategy over the state-of-the-art Growth strategy
across a wide range of parameter settings on various datasets with
both strategies returning identical results.

2. CONTEXTUAL PATTERN SEMANTICS

2.1 Basic Terminology
Let S = 〈(e1 , t1 )(e2 , t2 ) . . . , (en , tn)〉 denote a sequence gen-

erated by one device, with (ei , ti) as an event of type Ei occurring
at time ti. An example of an event (ei, ti) may be a log entry of
a certain type or a user interaction like “purchase” or “click”. As
alternative to the timestamp ti in an event (ei , ti), we reference the
relative position of the event in sequence S as (ei , i). Events in
sequence S are ordered by time. A sequence dataset D is a set
of event sequences Si, each generated by one device, denoted as
D = {S1 ,S2 , . . . ,SN }.

A sequence pattern (or in short, pattern) P = 〈E1E2 . . .Em〉
corresponds to an ordered list of event types Ei. An occur-
rence of P in sequence S, denoted by OP = 〈(e1 , t1 ) (e2 , t2 ) . . .
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(em , tm)〉 is a list of events ei ordered by time ti, where ∀ (ei , ti)
∈ OP , ei corresponds to event type Ei ∈ P and (ei , ti) ∈ S.

A pattern Q = 〈E ′1E ′2 . . .E ′l 〉 is a sub-pattern of a pattern
P = 〈E1E2 . . .Em〉 (l ≤ m), denoted Q v P , if integers 1 ≤ i1
< i2 < · · · < il ≤ m exist such that E ′1 = Ei1 , E ′2 = Ei2 , . . . ,
E′l = Eil . P is also said to be a super-pattern of Q. For example,
pattern Q = 〈AC 〉 is a sub-pattern of P = 〈ABC 〉.

2.2 Contextual Patterns
We first define the notion of a contextual constraint. Based on

this concept, we then define the contextually frequent (CF) and
contextual outlier (CO) pattern semantics used in TOP. Both CO
patterns and CF patterns are called contextual patterns in general.

2.2.1 Contextual Constraint
The contextual constraint determines whether an instance of a

pattern is a valid occurrence of this pattern based on the context
in which it occurs. The definition of an outlier pattern or frequent
pattern only considers its occurrence satisfying the contextual con-
straint, so called contextual outlier (CO) patterns or contextually
frequent (CF) patterns.

The contextual constraint excludes an occurrence OQ of pattern
Q from Q’s support if all events in OQ are contained in the oc-
currences of pattern P , where P is frequent and longer than Q.
This distinguishes between an independent occurrence OQ of Q
and an occurrence OQ as a sub-occurrence of P . Intuitively, Q
is contextually frequent only when it occurs frequently indepen-
dent from some frequent super-patterns. This avoids reporting ab-
normal sub-patterns as typical system behavior. For example, the
outlier sub-pattern Q = 〈ABC 〉 in Fig. 1 would not be reported as
typical system behavior (i.e., as contextually frequent by itself), be-
cause most of its occurrences occur only as sub-occurrences of the
frequent super-pattern P = 〈ABCD〉. Similarly, if an occurrence
OQ of Q is a sub-occurrence of an outlier super-pattern P , OQ

should not be counted to the support of Q when mining frequent or
outlier patterns.

Difference between contextual constraint and the
closed/maximal patterns. As the extensions to the basic
frequent pattern semantics, closed pattern [13, 32, 35] and max-
imal pattern [11, 12, 26] limit the number of output patterns by
applying some hard-coded rules. However, unlike our contextual
constraint, neither of these notions separate the independent
occurrences of a sub-pattern from the sub-occurrences of its
super-pattern.

In particular, the closed pattern semantics [13, 32, 35] exclude
a frequent pattern from the output if its support is identical to the
support of one of its super-patterns. Therefore, even if only one
independent occurrence of pattern Q exists, Q will still be reported
as frequent, despite the fact that Q might be an outlier pattern vi-
olating the typical pattern P . Therefore, the outlier sub-pattern
Q = 〈ABC 〉 in the above example would still be erroneously re-
ported as a typical pattern by closed pattern semantics.

The maximal pattern semantics [11, 12, 26] keep only the largest
frequent patterns, discarding all sub-patterns of P when P is
frequent. However, sometimes a sub-pattern of a frequent pat-
tern P may actually be frequent in its own right. For example
in the mobile app (Fig. 1), the sub-pattern Q = 〈StartTrip(A),
Terminate(D)〉 (Q v P ) may also be frequent, because the app
may start a trip and immediately terminate it if some condition
(e.g., low battery) occurs. Therefore, Q should also be considered
typical. Unfortunately,Q is discarded by the maximal pattern. This
might lead us to miss the outlier patterns that violate Q. Instead,
our contextual constraint enables us to report both a pattern and its

sub-pattern as conceptually frequent when the sub-pattern Q also
represents typical system behavior in that it frequently occurs inde-
pendently from any super-pattern P .

The contextual constraint is formalized in Def. 2.1.

DEFINITION 2.1. Contextual Constraint. Given a sequence
S and all length-M frequent/outlier patterns in S denoted as P,
an occurrence OQ = 〈(e1 , t1 ) (e2 , t2 ) . . . (eL, tL)〉 of a length-L
pattern Q = 〈E1 ,E2 , ...,EL〉 where L < M , is said to satisfy the
contextual constraint, if there exists an event ej ∈ OQ such that
ej 6∈ OP , for any P ∈ P.

Beyond the contextual constraint, other constraints in the litera-
ture continue to be applicable, such as the gap constraint [5].

DEFINITION 2.2. Gap Constraint. Given a pattern P = 〈E1

E2 . . .Em〉 and a sequence gap constraint seqGap, an occurrence
OP = 〈(e1 , t1 ) (e2 , t2 ) . . . (em , tm)〉 of P has to satisfy the con-
dition: tm-t1-1 ≤ seqGap.

The sequence gap constraint accounts for the gap between the
first event and the last event. It can be expressed either by the
count of the events or by the time difference. OP is not con-
sidered a valid occurrence of P if it does not satisfy the gap
constraint. The gap constraint models the timeliness of the sys-
tem behavior in IoT. In our infection control app. [31], the pat-
tern 〈HandWash,Enter ,ApproachPatient〉 representing the hy-
giene compliance regulation (Sec. 1) restricts the time between the
hand hygiene and approaching patient. Otherwise the hand hygiene
behavior of the HCW might not assure the cleanliness required
when approaching the patient.

2.2.2 Contextual Pattern Semantics
Next, we formally define our contextually frequent (CF) pattern

and contextual outlier (CO) pattern semantics.
First, we define the notion of contextual support used in both CF

and CO semantics.

DEFINITION 2.3. Contextual Support. Given a length-L pat-
tern Q = 〈E1 ,E2 , ...,EL〉, the contextual support of Q in se-
quence S denoted as CSupS (Q) is defined as the size of the oc-
currence set OQ of pattern Q in S. Here each OQ ∈ OQ satisfies
the condition: (1) OQ satisfies the contextual constraint; (2) OQ ∩
O′Q = ∅, ∀ O′Q ∈ OQ and O′Q 6= OQ.

By Def. 2.3, given a pattern Q when computing its contextual
support in a sequence S (CSupS (Q)), only the occurrences that
satisfy the contextual constraint are considered. Further, following
the common practice used in sequential pattern mining [23, 27, 30,
34], these occurrences are not allowed to overlap with each other.

DEFINITION 2.4. Contextually Frequent (CF) Pattern.
Given a minimal support threshold minSup, a pattern
Q = 〈E1 ,E2 , ...,Em〉 is said to be contextually frequent
(CF) in sequence S if CSupS (Q) ≥ minSup.

Intuitively, a pattern Q will be a CF pattern in sequence S if Q
occurs frequently in S independent of any of its CF super-patterns.

The contextual outliers capture the patterns that occur rarely and
violate the typical patterns in the system as formally defined next.

DEFINITION 2.5. Contextual Outlier (CO) Pattern. Given a
count threshold cntThr , a pattern Q in a sequence S is said to be
a contextual outlier w.r.t. a CF pattern P in S, if Q satisfies the
following conditions:

(1) Q < P ; or ∀ event type Ei ∈ Q, Ei ∈ P and length(Q) =
length(P ) and Q 6= P ;

(2) CSupS (Q) ≤ cntThr ;
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By Def. 2.5, a pattern Q is a contextual outlier w.r.t. P , if Q is a
sub-pattern or a different event type permutation of P (Condition 1)
and Q occurs rarely in sequence S of D (Condition 2). For exam-
ple, given a CF pattern P = 〈ABBC 〉 in S, pattern Q = 〈ABB〉
and pattern R = 〈ABCB〉 are CO w.r.t. P if Q and R are rare in
S. Of course a CO pattern has to satisfy the contextual constraint
defined in Definition 2.1.

The CO definition captures sub-pattern outliers that have miss-
ing expected events. For example the outlier pattern in the mobile
application that misses the expected termination action after finish-
ing a trip, or, in the infection control system the outlier pattern that
misses the hand-wash event before the approaching-patient event.

CO also captures the outlier pattern O = 〈DatabaseUpdate,
LocationUpdate〉 in the mobile app, where two threads mon-
itor the driver’s location and the database operations sepa-
rately. Usually the operation of reporting a location update
is followed by a database update operation. Therefore P =
〈LocationUpdate,DatabaseUpdate〉 tends to frequently occur
and represent typical system behavior. However, occasionally – al-
though rarely– the database updates occur earlier than the location
report due to a scheduling error. This violates the time dependency
between location update operation and database update operation
represented by pattern P . It is captured by CO semantics, because
O is a different event type permutation of typical pattern P .

3. THE OVERALL APPROACH

Produce
CO patterns

Length-L
CF	patterns

Reduce	
Strategy
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CF	pattern

Length-L
CO	candidates
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Figure 2: The architecture of TOP
TOP employs a one-pass outlier pattern detection strategy that

successfully discovers the CO patterns by mining the sequence data
only once. We now describe the overall structure of TOP.

As shown in Fig. 2, the core of TOP is a top-down contextual
pattern mining strategy, called Reduce. Starting from the longest
possible contextual patterns, Reduce recursively constructs shorter
patterns in descending order from the longest to the shortest. In
each iteration it ensures that the largest possible patterns are dis-
covered.

First, built upon the Reduce strategy, TOP produces the CF pat-
terns in one step by piggybacking pattern detection with the detec-
tion of its context in which a pattern occurs, in contrast to the two-
step Growth method. This will be further described in Sec. 4.2. At
the same time, TOP produces the infrequent contextual patterns,
as the candidates of CO, almost for free as a by-product of the top-
down CF pattern mining process. This will be further demonstrated
in Sec. 4.3. The mining of CF patterns and the generation of CO
candidates correspond to the contextual pattern mining component
in Fig. 2.

Then, the outlier detection component produces the CO patterns
using the CF patterns and CO candidates as input. The detection of

contextual outliers is embedded into the iterative top-down mining
process of Reduce. In other words, the length-L CF and CO pat-
terns are mined in the same iteration of Reduce as shown in Fig. 2.
Hence, TOP successfully discovers the CO patterns by mining the
input sequence only once. The details are presented in Sec. 5.

4. CONTEXTUAL PATTERN MINING
We now present the Reduce strategy for mining contextually fre-

quent (CF) patterns and producing the contextual outlier (CO) can-
didates from one sequence S. We first introduce how Reduce mines
CF patterns. Then we show how to extend Reduce to produce the
CO candidates almost for free.

4.1 Challenges with Adopting Traditional
Strategies for CF Pattern Problem

The contextual constraint complicates the CF pattern mining
process. The contextual support of a short pattern is influenced
by the status of patterns longer than it. This contradicts the well-
known idea of Apriori, where if a short pattern is infrequent, then
its super-patterns are guaranteed to also be infrequent and can be
excluded from frequent pattern candidates. Thus, Apriori relies on
the status of the short patterns to predict the status of the longer
patterns. However, we now have the important observation that in
CF semantics the contextual support of a short pattern which de-
termines whether it is a CF pattern cannot be determined without
mining longer patterns first.

LEMMA 4.1. Given a pattern Q and the number of its occur-
rences in sequence S denoted as supS(Q) (supS (Q) ≥ minSup),
Q is not a CF pattern if its supper pattern P is a CF pattern, where
the contextual support of P CSupS(P ) > supS(Q)−minSup.

PROOF. By the definition of CF patterns (Definition 2.4), an
occurrence of pattern Q is not counted to its contextual support
CSupS(Q) if it is a sub-occurrence of pattern P , where P is a CF
pattern and P is a super-pattern of Q. Therefore, CSupS(Q) ≤
supS(Q) − CSupS(P ). Since CSupS(P ) > supS(Q) −
minSup, we get CSupS(Q) ≤ supS(Q) − CSupS(P ) <
supS (Q)− supS (Q) +minSup = minSup. Therefore, Q is not
a CF pattern in this case.

Two-step Apriori Style Solution. One solution to this problem
would be to mine the CF patterns in two steps. As shown at the
left of Fig. 3, the first step is a traditional Apriori-based mining
strategy that finds a set of frequent patterns that are not subject to
the contextual constraint. It is a superset of the final contextual
frequent pattern set. Since Apriori still holds, the classic pattern-
growth strategy widely used in the traditional pattern mining tech-
niques [16, 37, 4] can be used to find these patterns. The second
step then filters these frequent patterns that violate the contextual
constraint. We call this pattern growth-based strategy Growth.

Drawbacks of Growth. Although this basic Growth approach
prunes the search space based on the Apriori property, it has sev-
eral drawbacks. First, when a large number of long and frequent
patterns are generated, it wastes significant CPU and memory re-
sources to generate and then maintain all of the shorter, frequent
sub-patterns, most of which are discarded in the second step. Given
a length-n pattern, in the worst case it may have to produce and
maintain (2 n − 2 ) sub-patterns. As confirmed in our experiments,
this requires a significant amount of memory – sometimes causing
an out-of-memory error – when handling long input sequences.

Worst, the backward filtering introduces extra cost associated
with recursively updating the support of these shorter patterns and
filtering those that do not conform to the contextual constraint.
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Figure 3: Growth vs Reduce

It may seem that this filtering operation can be supported by
traversing backward along the path that grows from the first event
in the prefix of P to P . An example is given in Fig. 4. We can tra-
verse from 〈ABC 〉 to 〈A〉 to adjust the support of the sub-patterns
in 〈ABC 〉. However, this method does not work, because this path
only contains the sub-patterns of P that have A as prefix. Other
sub-patterns of P may exist outside of the path from A. For exam-
ple in Fig. 4, 〈BC 〉 is a sub-pattern of CF pattern 〈ABC 〉. How-
ever, 〈BC 〉 is not in the path from 〈A〉 to 〈ABC 〉. Therefore, given
an occurrence of CF pattern P , the backward filtering has to be
conducted by searching for all its sub-patterns and matching each
of its occurrences with each occurrence of any of its sub-patterns.
This tends to introduce prohibitive costs due to the potentially huge
number of sub-patterns.

4.2 Reduce: Reduction-based CF pattern
Mining

To address these drawbacks in Sec. 4.1, we develop a top-down
pattern mining approach that directly mines the CF patterns in one
step. The key innovation of this reduction-based approach, called
Reduce, is that instead of treating the contextual constraint as a
performance bottleneck that requires an expensive post-processing
step, Reduce leverages it to effectively prune the search space of
pattern mining by ensuring longer patterns are found before min-
ing a shorter one. During the top-down mining process, pruning is
continuously applied in each iteration. This way, Reduce constructs
short patterns only when necessary. Also, Reduce terminates im-
mediately once no available event exists that can form a valid CF
pattern. Both our theoretical analysis and experimental evaluation
confirm Reduce’s efficiency in processing complex sequence data.
It has two steps: search space construction and CF pattern mining
as described in detail below.

Table 1: Search space and Growth & Reduce Strategies

Event Search space Growth Reduce CF

A

〈(a, 0)(b, 1)(c, 2)〉
〈(a, 4)(b, 5)(c, 6)(a, 7)〉
〈(a, 7)(c, 8)(b, 9)〉
〈(a, 11)(c, 12)〉

〈A〉 〈AB〉
〈ABC〉 〈AC〉 〈ABC〉 〈ABC〉

B
〈(b, 1)(c, 2)(a, 4)〉

〈(b, 5)(c, 6)(a, 7)(c, 8)〉
〈(b, 9)(a, 11)(c, 12)〉

〈B〉 〈BA〉
〈BAC〉 〈BC〉
〈BCA〉

〈BAC〉
〈BCA〉

〈BAC〉
〈BCA〉

C

〈(c, 2)(a, 4)(b, 5)〉
〈(c, 6)(a, 7)(c, 8)(b, 9)〉
〈(c, 8)(b, 9)(a, 11)〉

〈(c, 12)〉

〈CA〉 〈CAB〉
〈CB〉 〈CAB〉 〈CAB〉

4.2.1 Reduce Search Space Construction
Given a sequence S, we construct a search space SSi for each

frequent event type Ei in S. The search space SSi of each Ei

is composed of a set of sequence segments (or subsequences).
Each subsequence starts with a different Ei type event as pre-
fix. The reasons are twofold. First, using this search space, the
largest possible pattern with Ei as prefix can be easily determined.

A AB ABC

B BA

C CA

AC

BC

BAC

BCA

CB

CAB

Figure 4: Backward filtering

Finding the largest possible pattern is critical for Reduce. Sec-
ond, it is for the ease of counting the occurrences of a pattern,
as we will show in Lemma 4.2. To illustrate the search space,
we use a running example with the input sequence S = 〈(a, 0 )
(b, 1 )(c, 2 )(d , 3 )(a, 4 )(b, 5 ) (c, 6 )(a, 7 )(c, 8 ) (b, 9 ) (e, 10 )
(a, 11 ) (c, 12 )〉. The minSup and seqGap are both set as 2.

First, in one scan of the sequence, all event types with frequency
≥ minSup are identified as frequent event types. All infrequent
event types are filtered from S such as D and E, because they can-
not appear in any CF pattern. Next, given a frequent event type Ei,
the filtered sequence is divided into multiple subsequences. Each
subsequence starts with one type Ei event and stops whenever its
length reaches seqGap + 2 or it hits the end of S. The search
spaces for each Ei in the example are shown in the second column
of Tab. 1. Note the subsequences could overlap with each other.

Intuitively for each event type Ei, the largest possible pattern
with Ei as prefix corresponds to the longest subsequence in SSi,
because no subsequence longer than it would satisfy the gap con-
straint defined in Def. 2.2. In other words its length is at most
seqGap + 2 .

Next, we show that each occurrence of P with prefix Ei can be
found from one subsequence in search space SSi of Ei.

LEMMA 4.2. Given a sequence S and a pattern candidate P
with prefix Ei, any two occurrences O1

P and O2
P of P in S can be

found from two different subsequences S1 and S2 in the SSi of Ei.

Proof. First, any occurrence OP of P in S is guaranteed to be
contained in a subsequence S′ of SSi that starts with the first event
of OP (type Ei event). Otherwise OP will violate the gap con-
straint, because the gap between the first event and the last event of
OP is larger than seqGap. Therefore no valid occurrence OP of
P will be missed when searching for each occurrenceOP indepen-
dently in each subsequence in the search space SSi.

Second, given two occurrences O1
P and O2

P , which by definition
are not overlapping, the first event ofO1

P andO2
P must correspond-

ing to two different type Ei events. Since any type Ei event ei has
one distinct subsequence in SSi that starts from ei, O1

P and O2
P

must be from two different subsequences. Lemma 4.2 is proven. �
Lemma 4.2 not only proves that all occurrences of any given pat-

tern can be discovered from the search spaces, it also inspires an ef-
ficient occurrence-based search method. That is, given a candidate
pattern P with prefixEi and the search space SSi corresponding to
Ei, when searching for the occurrence of OP in one subsequence
Si, we only have to search for an occurrence that starts from the
first event of Si and stop immediately once we find it.

For example, given a sequence S = 〈(a, 0 )(b, 1 )(a, 2)(b, 3)
(a, 4 ) (b, 5 )〉, suppose seqGap = 2, then the search space
SS w.r.t. event type A is composed of subsequences S1 =
〈(a, 0)(b, 1)(a, 2)(b, 3)〉, S2 = 〈(a, 2)(b, 3)(a, 4)(b, 5)〉, and
S3 = 〈(a, 4)(b, 5)〉. Given a pattern candidate AB, it has three
occurrences: 〈(a, 0)(b, 1)〉, 〈(a, 2)(b, 3)〉 and 〈(a, 4)(b, 5)〉. Each
corresponds to one subsequence in SS. Although S1 contains two
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occurrences of AB, the second one 〈(a, 2)(b, 3)〉 is not counted. It
is captured in subsequence S2 that starts with event (a, 2). Simi-
larly, the occurrence 〈(a, 4)(b, 5)〉 in S2 is ignored. It is found in
S3 that starts with event (a, 4).

4.2.2 The Reduce Strategy
The Reduce approach features two key ideas, namely top-down

mining and event availability-based pruning.
Top-down Mining Strategy. The top-down mining strategy en-

sures that in each iteration of the mining process, only the largest
CF patterns are generated. Since their contextual supports will not
be influenced by any shorter pattern produced later, this saves the
post-processing for support adjustment. To achieve this, unlike the
traditional Growth strategy which constructs frequent patterns of
different prefixes independently, Reduce mines the patterns with
different prefixes simultaneously. This ensures that the CF patterns
with the same length are produced in the same iteration even if they
have different prefixes.

Event Availability-based Pruning. Reduce prunes the subse-
quences in the search space that cannot or do not contain a valid
occurrence of a CF pattern. This amounts to an alternative pruning
strategy to the Apriori property from traditional bottom up pattern
mining. Reduce performs this pruning by dynamically maintaining
and updating the “availability” of each event in sequence S, where
an event is available if it has not been used by a longer pattern. The
event availability is shared by all patterns with different prefixes,
which we call global availability. In each iteration of the top-down
mining process, after the length-L CF patterns are produced, all
events utilized by the length-L CF patterns are marked as unavail-
able. In this way, the subsequences in the search space that do not
contain any event that is still “available” can be safely discarded as
shown in Lemma 4.3.

LEMMA 4.3. Given a search space SSi of event type Ei, after
producing the length-L CF patterns, a subsequence Sj ∈ SSi can
be discarded if ∀ event ex ∈ Sj , ex ∈ occurrence OP of P , where
P is a CF pattern.

PROOF. By the definition of contextual constraint (Defini-
tion 2.4), an occurrence of a patternQ is invalid if all events ex ∈Q
have been utilized by the patterns P , where length(P) > length(Q).
Since all events ej ∈ Sj have been used by the length-Ll patterns
where Ll ≥ L, Sj cannot produce any valid occurrence in the min-
ing of length-Ls patterns, where Ls < L. Therefore, Sj can be
removed in the later iterations.

This event availability-based pruning significantly reduces the
search space for the later evaluation of shorter pattern candidates.
The Overall Reduce Algorithm. Alg. 1 shows the overall pro-
cess. We explain Reduce by our running example with input
sequence S = 〈(a, 0 )(b, 1 )(c, 2 )(d , 3 ) (a, 4 )(b, 5 )(c, 6 )(a, 7 )
(c, 8 )(b, 9 )(e, 10 )(a, 11 )(c, 12 )〉, minSup = 2 and seqGap = 2
used in the gap constraint (Def. 2.2). The global availability (Line
2) is initialized as [1111111111111].

(1) Start. Reduce starts by mining the longest possible patterns,
whose lengths are determined as follows. Reduce first computes for
each frequent event typeEi ∈ E the maximum length of any subse-
quence in its search space, denoted as eMax . Then a global maxi-
mum length gMax max{eMax |Ei ∈ E}} is computed. gMax is
at most equal to seqGap + 2 . This corresponds to the length of
the longest possible pattern, because no valid pattern can be longer
than the longest subsequence due to the gap constraint (Def. 2.2).

In our example, gMax = 4 , since the longest subsequences are
〈abca〉, 〈bcac〉 and 〈cacb〉 (See Tab. 1).

Algorithm 1 Reduction-based approach

1: function REDUCE(seqGap, minSup, prefixSet)
2: globalAvail[1 . . . n]← global availability, init all true
3: gMax = computeGlobalMaxPatternLength(seqGap,prefixSet)
4: currentLen = gMax← global maximum pattern length
5: while currentLen > 0 & prefixSet .size() > 0 do
6: curFreq = []
7: for ∀ prefixSet[i] ∈ prefixSet do
8: if prefixSet[i].maxLen≥ currentLen then
9: curFreq.add(CONSTRUCTCF(prefixSet[i], currentLen, minSup,

globalAvail))
10: for ∀ej ∈ curFreq do
11: globalAvail[j]=false
12: for ∀ prefixSet[i] ∈ prefixSet do
13: UPDATEPREFIX(prefixSet[i], globalAvail)
14: if prefixSet[i].SS == null then
15: prefixSet.remove(prefixSet[i])
16: freqPatterns.addAll(curFreq)
17: currentLen = currrentLen-1
18: return freqPatterns

Once gMax is determined, Reduce starts mining the length-
gMax patterns (Line 4). Reduce examines whether the longest
subsequences can form CF patterns by grouping together the sub-
sequences that are the occurrences of the same pattern and counting
the subsequences in each group.

In our example, there exits only one subsequence with length
≥ 4 in the search space of each event type, that is 〈abca〉 for event
typeA. Since the support threshold minSup is set to 2, no length-4
CF pattern can be generated.

(2) Search Space Pruning. If a length-gMax sequence P is
found to be frequent, then the events in each occurrence of P are
marked as unavailable in the global availability array by our event
availability maintenance strategy. This takes constant time for each
event. This operation is conducted only after all length-gMax pat-
terns are processed (Lines 10-11). The search space associated with
each prefix is updated based on the latest global availability (Lines
12-13). By Lemma 4.3 the subsequences in the search space that do
not contain any event that is still “available” are discarded. There-
after those prefixes that have an empty search space are removed
from the prefix list (Lines 14-15).

(3) CF Pattern Construction. After processing the length-
gMax patterns, Reduce recursively constructs shorter patterns in
a descending order from length-(gMax -1) to length-1 (Line 17).
This mining process terminates when length-1 patterns are gener-
ated or no prefix is available in the prefix list (Line 5). The details
are shown in Alg. 2 (constructCF subroutine).

Algorithm 2 CF pattern construction for prefix i

1: function CONSTRUCTCF(Object prefix[i], int currentLen, int minSup, boolean[]
globalAvail)

2: subseqs← HashMap<String, Integer>
3: usedPositions← HashMap<String,BitMap>
4: freqSeqs = []
5: for seq ∈ prefix[i].SS do . Iterate each sequence
6: Set subs = FINDSUBSEQS(seq, currentLen, globalAvail)
7: for OP ∈ subs do
8: if NOTUSED(OP , usedPositions.get(P )) then
9: subseqs.put(P , subseqs.get(P )+1)

10: SETUSED(OP , usedPositions.get(P ))
11: for P ∈ subseqs do
12: if subseqs.get(P )≥ minSup then
13: freqSeqs.add(P )
14: return freqSeqs

The ConstructCF subroutine mines length-l CF patterns for a
prefix Ei. First, it generates all length-l occurrences from the
search space of Ei. Only the subsequences containing at least l

925



events are considered. Since the subsequences in the search space
of Ei are indexed by length, locating subsequences with length
more than l can be done in constant time. In the running exam-
ple, to generate length-3 CF patterns for prefix-〈B〉, all three sub-
sequences, namely 〈bcac〉, 〈bca〉 and 〈bac〉 would be considered.
The length-4 subsequence 〈bcac〉 could generate occurrences of the
three length-3 sub-patterns 〈BCA〉, 〈BCC 〉, and 〈BAC 〉. The two
length-3 subsequences could generate occurrences of 〈BCA〉 and
〈BAC 〉 respectively. Each occurrence has to contain the first event
of the corresponding subsequence by Lemma 4.2.

Next, constructCF evaluates whether each occurrence satisfies
the contextual constraint. We have maintained the availability of
each event. Therefore, to determine whether an occurrence OP of
pattern P satisfies the contextual constraint, we check whether all
events inOP have been marked as unavailable. If at least one event
remains available, then OP satisfies the contextual constraint.

Further, besides the contextual constraint, given one occurrence
we also need to examine if it overlaps with any existing occurrence
of the same pattern P , because the subsequences in one search
space might overlap with each other. For the efficiency of this ex-
amination, given one pattern P , we utilize a bitmap to maintain the
event availability specific to pattern P , so called local availability.
The events used by all previous occurrences of P are marked as
unavailable (Line 3). An occurrence OP is valid only if all events
in it remain valid (Line 8). The non-overlapping occurrences OP

of pattern P are inserted into a pattern candidate hash map using
the pattern as key and the number of occurrences as value (Line 9).
If OP is valid, the local availability bitmap is updated. All events
used by OP are marked as unavailable (Line 10).

After all length-l non-overlapping pattern occurrences that sat-
isfy the contextual constraint have been generated, the CF patterns
are discovered by traversing the pattern candidate hash map. A pat-
tern is a CF if its count (value in hash map) is larger or equal to the
minSup threshold (Lines 12-13).

For example, for prefix-〈B〉 patterns, the supports of 〈BCA〉
and 〈BAC 〉 are 2. Therefore 〈BCA〉 and 〈BAC 〉 are CF patterns,
while 〈BCC 〉 only has support 1 and is not a CF pattern.

Finally, after all length-l CF patterns w.r.t. all prefixes have been
generated, the search space pruning (Step 2 of Alg. 1) is triggered.
In our example, besides the two length-3 CF patterns with 〈B〉 as
prefix, prefix 〈A〉 has one length-3 CF pattern 〈ABC 〉. Prefix 〈C〉
has one length-3 CF pattern 〈CAB〉. All events covered by the
occurrences of the four length-3 patterns are marked as unavail-
able in the global availability bitmap. In this case, it is updated
to [0001000000100]. Since now all events of the frequent event
types are unavailable, the process terminates without attempting to
generate length-2 and length-1 pattern. Therefore, Reduce avoids
generating patterns shorter than 3, in contrast to Growth as shown
at the right of Fig. 3. None of the patterns produced at the early
iteration will be pruned during the later iterations.

4.2.3 Further Optimization of Reduce
We further enhance Reduce with two optimization strategies,

called Start Length Minimization and Pattern Candidate Pruning.
Our experiments in Sec. 6.4 confirm the effectiveness of these op-
timizations in speeding up the basic Reduce approach.

Start Length Minimization. As noted in Sec. 4.2.2, the start
pattern length gMax determines the number of iterations of the
top-down mining process. Therefore minimizing gMax has the
potential to significantly improve the efficiency of Reduce. Re-
duce should start with a gMax as close as possible to the actual
length of the final longest CF pattern. As shown in Algorithm 1,
our basic Reduce approach uses as gMax the length of the longest

subsequence in the search spaces of all prefixes. Although it is
guaranteed to generate the correct results, gMax is often far from
the optimal start length. Our start length minimization optimization
solves this problem based on the observation in Lemma 4.4.

LEMMA 4.4. Given an event typeE, the maximum length of the
frequent pattern with E as prefix, denoted as ME , is guaranteed to
be no larger than the length of the minSup-th longest subsequence
in the search space of E, denoted as LE , that is ME ≤ LE .

Proof Sketch. This lemma holds because given a length-ME

sequence pattern P under prefix E, P cannot be frequent unless
there are at least minSup subsequences equal to or longer than
ME in the search space of E. Since there are at most minSup
length-LE subsequences, no frequent pattern longer than LE can
be formed. �
LE tends to be much smaller than the length of the longest sub-

sequence in the search spaces of all prefixes. Therefore replacing
gMax with LE as the start length for the corresponding prefix E
helps reduce the start length.

Based on the above observation, we devise a lightweight mech-
anism to compute a customized start length for each prefix E.
Specifically, given a prefix E, we first sort all subsequences in its
search space in descending order of length. Then the start length
of prefix E patterns is set as LE , where LE represents the length
of its minSup-th longest subsequence. In the example shown in
Tab. 1, since minSup = 2 , for each prefix the start length is set as
the length of the second longest subsequence in its search space. In
this case, the start lengths of prefixes A B, C are all set to 3 instead
of gMax = 4 .
Pattern Candidate Pruning. An event is filtered out from the orig-
inal input sequence S if its total frequency is smaller than minSup.
This is done because it cannot be part of any frequent pattern. Al-
though this simplistic total frequency based optimization reduces
the number of events to be considered in the mining process, it
fails to capture other optimization opportunities to further reduce
the number of CF pattern candidates.

The insight here is that a stricter filtering criteria can be derived if
we scrutinize the count of the events at the subsequence granularity.

LEMMA 4.5. Given a prefix Ei and another event type Ej , Ej

cannot be involved in any length-l frequent pattern with Ei as pre-
fix, if Ej does not appear in at least minSup subsequences in the
search space ofEi, where the length of each subsequence has to be
at least l.

Proof Sketch. By Lemma 4.2 each length-x subsequence
(x ≥ l ) in the search space of Ei can only form at most one oc-
currence of a length-l frequent pattern with Ei as prefix. Therefore
if type Ej events are not found in at least minSup length-x subse-
quences contained in the search space ofEi, no length-l CF pattern
can be formed that has Ei as prefix and contains Ej . �

This optimization can be applied in each stage of the CF pattern
mining process at each iteration of decreasing length. The subse-
quence count of each event type can be dynamically updated when
refreshing the global availability and pruning the subsequences (Al-
gorithm 1). This keeps the cost of this optimization low.

Further, after the events are pruned, the gap between each adja-
cent event in an occurrence of a pattern candidate increases. There-
fore the gap threshold seqGap (Def. 2.2) becomes more effective
at pruning the candidates that violate the gap constraint.

4.2.4 Time Complexity Analysis
Let N be the length of the input sequence S. M = seqGap + 2

denotes the maximum length of possible frequent sequences. E
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denotes the number of unique events. minSup denotes the min-
imum support threshold. One length-M occurrence can generate
CM−2

M−1 = (M − 1 ) length-(M-1) candidate sub-patterns. Gener-
ating each candidate takes O(M − 1 ). Since the input sequence
has no more than N length-M occurrences, the time complexity of
generating all length-(M-1) sub-patterns from length-M sequences
is N (M − 1 )2 . Similarly, generating length-(M-2) sub-patterns
from length-(M-1) sequences takes N (M − 2 )2 . Overall the time
complexity of generating all sub-pattern candidates (from length-
M − 1 to length-1) is NM (M+1)(2M+1)

6
.

Discovering frequent sub-patterns out of these candidates re-
quires one scan of all candidates. So the time complexity depends
on the total number of candidate frequent sequences. Given length
l, the number of length-l sequence candidates is O( N

minSup
) in the

worst case. Therefore, the total number of candidates from length-
M to length-1 pattern is O( NM

minSup
).

The time complexity of updating the event availability depends
on the number of occurrences and the length of each occurrence.
Since S cannot have more than N length-M occurrences, event
availability update for all length-M sequences takes at most NM .
In the worst case event availability update has to be conducted on
all occurrences of all patterns from length-M to length-1. In total,
it takes O(NM (M+1)

2
).

In general, the total time complexity of Reduce is
O(NM (M+1)(2M+1)

6
+ NM

minSup
+ NM (M+1)

2
). Therefore, it

is linear in the length of the input sequence, while the Growth
strategy adapted from the literature is shown to have a time
complexity quadratic in both the sequence length and the number
of event types.

4.3 CO Candidate Generation
In this section we show how to produce the infrequent patterns

as the CO candidates from each sequence. By extending the Re-
duce strategy the CO candidates are produced during the CF pat-
tern mining process almost for free. It avoids the mining of the
input sequence twice.

As described in Sec. 4.2, Reduce recursively constructs shorter
patterns in descending order from length-(gMax-1) to length-1. In
the iteration of mining length-L patterns, after producing the CF
patterns, we also maintain infrequent patterns with local support
no larger than cntThr (Def. 2.5). It is straightforward. As shown
in Sec. 4.2.2, in each iteration Reduce stores all possible patterns
in a hash map with the pattern as the key and the number of subse-
quences containing the occurrences of this pattern as value. There-
fore, the infrequent patterns are naturally discovered almost for
free when Reduce scans the candidate hash map to find CF pat-
terns. Namely, a pattern is infrequent if its value in the hash map
is no larger than the cntThr threshold. Furthermore, as shown in
Sec. 4.2.2, when producing the occurrence of each pattern, Reduce
already evaluates whether the occurrence satisfies the contextual
constraint. Therefore, the captured infrequent patterns must meet
the contextual constraint. This way, Reduce not only detects CF
patterns but also generates the infrequent CO candidates.

Note this simplistic CO candidate generation method relies on
our important observation on the search space of the CO patterns
as shown below.

LEMMA 4.6. Given a sequence S, the search space constructed
for mining CF patterns is sufficient to mine all CO patterns.

PROOF. By the definition of CO (Def. 2.5), a CO pattern Q is
a sub-pattern or a different event type permutation of a CF pattern
P . Therefore, ∀ event type Ei ∈ Q, Ei ∈ P . Therefore, each Ei

∈ Q is guaranteed to be a frequent event type. Therefore, using

the search space constructed only based on the frequent event types
will not miss any CO. Lemma 4.6 is proven.

5. MINING CONTEXTUAL OUTLIER PAT-
TERNS

Next, we present our outlier pattern detection approach, which
generates contextual outlier (CO) patterns for each sequence S.
Leveraging the property of our top-down Reduce strategy, we show
that the length-L CO patterns are discovered in the same iteration
as mining length-L CF patterns. This effectively solves the com-
plication caused by the interdependence between CF patterns and
CO patterns. By the contextual constraint if an occurrence OQ of
Q is a sub-occurrence of an outlier super-pattern P , it should not
be counted to the support of Q when mining CF patterns. That is,
the mining of the CF patterns also relies on the CO patterns.

LEMMA 5.1. Given any length-L patternQ, ifQ is an CO, then
it can be discovered immediately after Reduce produces the length-
L CF patterns.

PROOF. By the definition of CO (Definition 2.5), a length-L in-
frequent pattern Q is a candidate CO only if Q is a sub-pattern of
CF pattern longer than it or a different permutation of a CF pat-
tern that has the same length with Q. Therefore, once an infre-
quent length-L pattern Q is acquired, we can immediately deter-
mine whether it has a chance to be a CO, because all CF patterns
with length ≥ L have already been found in the top-down mining
process of Reduce. The CF patterns discovered in the future will
not turn Q into a CO. Lemma 5.1 is proven.

Therefore, by Lemma 5.1 the CO pattern mining can be inter-
leaved with each iteration of the CF pattern mining. That is, after
the length-L CF patterns are produced, the length-L CO patterns
are mined based on the CF patterns produced so far and the length-
L CO candidates. Once an infrequent CO candidate is acquired,
we determine immediately whether it is a CO pattern. An infre-
quent length-L CO candidate will be discarded immediately if it
is confirmed not to be a CO, since it will not have chance to be a
CO anymore in the future iteration. This significantly reduces the
number of CO candidates to be maintained in each iteration.

Next, we show how producing length-L CF and CO patterns
in one iteration solves the complication caused by the interdepen-
dence between CF patterns and CO patterns. After the length-L
CO patterns are mined, the events used by the occurrences of the
CO patterns are marked as unavailable. Then when mining the
length-(L-1) contextual patterns in the next iteration, the contex-
tual constraint can be simply evaluated based on the event avail-
ability using the strategy described in Sec. 4.2.2. This is because
by Definition 2.3 the contextual support of length-(L-1) patterns are
influenced only by the CF and CO patterns with length ≥ L, while
all events that are used by such CF and CO patterns have already
been marked as unavailable.

Similarly, the event availability-based pruning (Lemma 4.3,
Sec. 4.2.2) can be equally applied here to prune the search space
of contextual patterns. The subsequences that do not contain any
available event are discarded immediately from the search space.

5.1 Discovering CO with Inverted Index
To discover CO patterns from the CO candidates, we have to

examine each CO candidate Q to see whether there is a CF pattern
P that is a super-pattern or a different event type permutation ofQ.
A naive solution will be comparing Q against each CF pattern in
the CF pattern list. This tends to be expensive, especially when the
number of CO candidates and CF patterns is large.
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To accelerate this process, we build an inverted index on the ex-
isting CF patterns. Given a CO candidate Q, the inverted index
assists Reduce to quickly discover a small subset of CF patterns
that are sufficient to prove if Q is a CO.
Build Index. We first show how to build an inverted index on the
CF patterns stored in the CF pattern list CF. The inverted index is a
HashMap with the event type E as key and a bitmap as value. This
bitmap records what patterns event type E is involved in. Thus,
each bit in it corresponds to one CF pattern. If one type E event is
involved in the i-th pattern of the CF pattern list denoted as CF[i],
the i-th bit in the bitmap is set to “1”. Otherwise, it is set to “0”.

ID CF Pattern

1 ABAB

2 ACAC

3 BCBC

CF Pattern List

Key Value (BitMap)

A 1 1 0

B 1 0 1

C 0 1 1

Inverted Index

Figure 5: Inverted Index on CF Patterns
Fig. 5 shows an example of an inverted CF pattern index. The

CF patterns with IDs 1 and 2 both contain “A” event. Therefore, the
first and second positions of A’s bitmap are set to 1, while the third
position corresponding to the CF pattern with ID 3 is set to 0. The
bitmaps of B and C are constructed in the same fashion.
Index-based CO candidate Examination. Next, we show how
to use the inverted index to efficiently determine whether a pat-
tern Q is a CO. To do this, we first get the bitmaps correspond-
ing to the event types in Q using the inverted index, denoted as
{B1, B2, . . . , Bm}, whereBi ( 1 ≤ i ≤ m) represents the bitmap
of event type Ei in Q. Then we generate a new bitmap Bn by bit
operation: Bn = B1&B2& . . .&Bm . If the i-th bit of Bn Bn[i]
is “0”, then it is not necessary to examine the corresponding i-th
pattern in the CF pattern list CF[i] when evaluating whether Q is a
CO as shown in Lemma 5.2.

LEMMA 5.2. Given the bitmap Bn = B1&B2& . . .&Bm , if
Bn[i] = 0, then CF′ is sufficient to prove whetherQ is a CO, where
CF′ = CF \ {CF[i]}.

PROOF. As shown in Def. 2.5, an infrequent pattern Q is a CO
only if either it is a sub-pattern or a different permutation of one
CF pattern. In both cases, the corresponding CF patterns that Q
violate must include all event types that Q contains. Therefore,
to determine whether Q is a CO, we only have to examine the
CF patterns that contain all event types in Q. Since Bn[i] = 0,
∃ Ej ∈ Q : Ej 6∈ CF[i]. Therefore, it is not necessary to evaluate
CF[i]. Lemma 5.2 is proven.

By Lemma 5.2, a CF pattern in the CF pattern list is potentially
a super-pattern or a different permutation of Q only if its corre-
sponding bit in Bn is “1”. When evaluating whether Q is a CO
pattern, only these CF patterns have to be examined. This signifi-
cantly speeds up the CO pattern detection process.

In the example shown in Fig. 5, given an infrequent pattern
Q = 〈ABB〉, we first get the two bitmaps BA = [110 ] and BB =
[101 ] for event types “A” and “B” from the inverted index. Then
bitmap Bn is computed as Bn = BA&BB = [100 ]. Only the first
bit is set to “1’ in Bn. Therefore, only the first pattern in the CF
pattern list, namely 〈ABAB〉, contains all event types in Q and
hence should be contrasted against Q.

6. EXPERIMENTAL EVALUATION

We experiment with both real-world and synthetic datasets. The
results of the synthetic data experiments confirm the efficiency of
Reduce in handling datasets with a rich variety of characteristics.
Real Datasets. We experiment with two real datasets: logs from a
mobile app that tracks driver behavior (used in our previous exam-
ples) and the lighting dataset that contains network messages ex-
changed between the lighting devices and the servers in a city envi-
ronment. These datasets are confidential datasets from our industry
collaborators. The collaborators are interested in finding anomalies
in their systems to capture software bugs and faulty devices.

The log file dataset is obtained from 10,000 devices (|D | =
10,000) with 1,790 types of events (|E | = 1790 ). The event types
are classified into three categories, namely information, warning,
and error. The average length of each sequence is 34,097 with the
longest being 100,000 events.

The lighting dataset is obtained from 283,144 lighting devices
(|D | = 283 , 144 ) with 13 types of events (|E | = 13 ). The aver-
age length of each sequence is 456.
Synthetic datasets. We generated sequence data with various prop-
erties to evaluate the efficiency of our Reduce strategy. We design
a new sequence generator that is able to control the key properties
of the generated sequence datasets as listed in Tab. 2.

Table 2: Input Parameters to Sequence Data Generator.
Symbol Description
|D| Number of devices (Number of sequences)
|S| Average length of sequences
|E| Number of event types
|F | Number of frequent patterns
|O| Number of outliers
|L| Average length of frequent patterns
e noise rate

Experimental Setup. Since the generation of the contextual pat-
terns for each sequence is independent of other sequences, con-
textual pattern mining is amenable to parallel processing. There-
fore we leverage a distributed computing platform to mine CF
patterns. The experiments are run on a Hadoop cluster with one
master node and 24 slave nodes. Each node consists of 4 x 4
AMD 3.0GHz cores, 32GB RAM, and 250GB disk. Each node
is configured with up to 4 map and 4 reduce tasks running concur-
rently. Note the reason for using a distributed computing platform
to mine CF patterns is simply to speed up the process of our ex-
perimental evaluation. It does not effect the performance gain of
our proposed strategy over the baseline. All code used in our ex-
periments including the sequence generator is available at GitHub:
https://github.com/OutlierDetectionSystem/TOP.
Algorithms. We evaluate (1) Growth (G): the traditional growth-
based mining strategy adapted to mine CF patterns (Sec. 4.1); (2)
Reduce (R): our proposed reduction-based strategy (Sec. 4.2).
Metrics. First, we evaluate the effectiveness of our contextual pat-
tern semantics in detecting outliers by measuring the number of
detected true outliers (NTO for short) and precision. Recall is also
measured on the lighting dataset. Second, we measure the execu-
tion time averaged on each sequence of Growth and Reduce strate-
gies. The peak memory usage is also measured.

Table 3: Effectiveness Evaluation.

Methods Dataset Number of true outliers
(NTO) Precision Recall

TOP Log file 93 58% X
Max Log file 47 38% X

Closed Log file 35 29% X
TOP Lighting 32 97% 85.4%
Max Lighting 24 77% 58.5%

Closed Lighting 19 61% 46.3%
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(INFO)carrier: XXX   
(INFO)server_base_url: XXX
(INFO)aws_region: XXX    
(INFO)language: XXX   
(INFO)locale: XXX    
(INFO)userid: unknown_user
(INFO)log file generation: int

(a) Typical Pattern

(INFO)carrier: XXX    
(INFO)log file generation: int
(INFO)server_base_url: XXX    
(INFO)aws_token: XXX    
(INFO)language: XXX    
(INFO)locale: XXX    
(INFO)userid: unknown_user

(b) Outlier Pattern
Figure 6: Example of CF & CO Patterns in Log File

6.1 Effectiveness Evaluation
We evaluate the effectiveness of our TOP system at detecting

contextual outlier (CO) patterns by comparing against the maximal
pattern mining [11, 12] and closed pattern mining [13, 32] seman-
tics denoted as Max and Closed. We used our definition of COs on
the frequent patterns produced by Max/Closed. The same sets of
parameters are applied in all approaches (Log file data: minSup =
100, seqGap = 8; Lighting data: minSup = 10, seqGap = 8).

NTO and Precision Evaluation. As shown in Table 3, TOP
outperforms Max and Closed in both the number of detected true
outliers (NTO) and precision on both datasets. The reason is that
our contextual constraint enables TOP to effectively capture the CO
outliers, because it never misses an infrequent sub-pattern outlier
which violates its typical super-pattern because of the separation of
its independent occurrences and the constrained sub-occurrences.
This leads to the high NTO of TOP.

However, Closed erroneously considers almost all CO patterns
as frequent patterns. On the other hand, Max blindly discards all
patterns if its super-pattern is frequent. Therefore, it tends to miss
the typical patterns and in turn the CO patterns that violate the
missed typical patterns. Therefore, the NTOs of Closed and Max
are both low.

Further, the contextual constraint also ensures the high precision
of TOP for two reasons. First, it does not generate false typical pat-
terns, because it will not consider a pattern to be a CF pattern if it
mostly occurs as part of a super-pattern. Second, the detected COs
are guaranteed to be independent pattern occurrences. The preci-
sion of Closed is low, because Closed incorrectly reports some of
the sub-patterns of the typical patterns as typical, which only occur
as part of their super-patterns and hence should be suppressed. The
outlier patterns that violate these false typical patterns tend to be
false alarms. The precision of Max is better than Closed, although
it is lower than TOP. In Max many false alarms are produced from
the typical sub-patterns suppressed by their frequent super-patterns,
because the events in these sub-patterns are erroneously used to
construct infrequent violation outliers.

Compared to Closed, Max is more effective in capturing CO, be-
cause it will not mis-classify a CO as a frequent pattern. Therefore,
Max has relatively higher NTO than Closed.

In particular, for the log file dataset, manual analysis by the de-
velopers of the logging software revealed that 58% were surprising,
or likely indicative of an issue or faulty devices. As an example of
one issue that was found, the entries shown in Fig. 6(a) are com-
mon on most devices, and happen at initialization time in the dis-
played order. Surprisingly, one device reported the pattern shown
in Fig. 6(b). In this case, further analysis revealed an unexpected
anomaly in the logging code itself, which the developers of the
logging code subsequently fixed. Several other issues, including
application crashes, were also identified via this analysis.

Although in this case TOP has a lower precision compared to
the Lighting data, we find this still encouraging given the complex
interactions and state transitions represented in these log files. First,

in the mobile app multiple threads were performing independent
actions writing to the log at the same time, which usually but not
always happens in a certain order. Second, versions of the app that
ran on only a few devices had a different sequence of log events.

As shown in Table 3, the NTO and precision of Max/Closed are
much lower than TOP for the reasons described above.

As for the Lighting data, the manual evaluation by domain ex-
perts shows that TOP achieves almost perfect results. This is be-
cause Lighting contains only 13 event types with relatively regular
input sequences. This reduces the chance of getting false outliers.
Here, TOP continuously outperforms Max and Closed for the same
reasons described above.

Recall Evaluation. We evaluate the Recall on 100 input se-
quences selected from the lighting dataset. This subset includes all
35 sequences that were found to contain outlier patterns by at least
one of the three methods in the above evaluation. Other sequences
were randomly picked from the dataset. The ground truth outliers
were labeled by non-expert labelers who were given the business
rules provided by the domain experts. In total, we identified and
then labeled 41 outlier patterns.

As shown in Table 3, our TOP significantly outperforms Max
and Closed, because TOP discovers much more true outliers than
Max and Closed.

6.2 Efficiency Evaluation on Real Data
We investigate how the input parameters including minSup

(Fig. 7) and seqGap (Fig. 8) influence the performance of Reduce
using both the log file and Lighting datasets. The parameters are
fixed as minSup = 100 seqGap = 10 unless otherwise specified.

When varying minSup, Reduce is at least 13 and 199 times
faster than Growth w.r.t. the log file and the Lighting datasets as
shown in Figs. 7 and 9. Further, Reduce uses less memory than
Growth in all cases. This demonstrates the advantages of the top-
down strategy adopted by Reduce. Namely, it avoids producing
shorter patterns that eventually get pruned. This saves both the
processing time and memory usage.

When varying seqGap, Reduce outperforms Growth by up to
29x and 266x in processing time w.r.t. the log file data and the
Lighting data as shown in Figs. 8 and 10. As seqGap increases,
both Reduce and Growth use more CPU time and memory. The
processing time of Reduce increases faster than Growth, because
larger seqGap enlarges its search space due to its top-down strat-
egy. Even in the worst case Reduce outperforms Growth by 9x
and 68x. Furthermore, when seqGap increases to 12, Growth fails
due to out-of memory errors in the Lighting dataset case because
of the large number of short patterns produced in the bottom up
mining process. In the log file dataset case, the memory usage of
Growth increases significantly when seqGap reaches 12 and then
fails when seqGap grows.

6.3 Efficiency Evaluation on Synthetic Data
We generate 10 synthetic datasets to evaluate how Growth and

Reduce perform on datasets with varying characteristics such as
varying the number of event types and the average pattern length.
The parameters utilized to generate these synthetic datasets are
set to |D| = 200, |S| = 100, 000, |E| = 2000, |F | = 2000,
|O| = 400, |L| = 20 except for varying the corresponding dataset
properties. The input parameters are set to minSup = 20, seqGap
= 20, because these parameters are effective in capturing outliers.
The results are shown in Fig. 11.
Varying Sequence Lengths. Fig. 11(a) demonstrates the results
of varying sequence lengths from 10,000 to 50,000. As shown
in Fig. 11(a), Reduce consistently outperforms Growth up to 30x
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Figure 7: Varying Minimum Support on Logfile Dataset
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Figure 8: Varying Sequence Gap on Logfile Dataset
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Figure 9: Varying Minimum Support on Lighting Dataset
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Figure 10: Varying Sequence Gap on Lighting Dataset

(note logarithmic time scale). The longer the sequences are, the
more Reduce wins. This confirms that our top-down Reduce strat-
egy performs well when handling long sequences. Even when the
sequence length is as a very small value such as 10, Reduce is still
about 2x faster than Growth (not shown in the figure).
Varying Number of Event Types. Fig. 11(b) shows the results
when varying the number of event types |E | from 1000 to 5000. To
ensure each event type can form frequent patterns in each sequence,
|F | is set to 5000 and |L| is set to 50. Again Reduce continuously
outperforms Growth-based methods by at least 80x in all cases. In
particular when |E| increases to the largest number of event types
(5000), Reduce is 126x faster than Growth. This shows that Reduce
scales better than Growth also in the number of event types.
Varying Pattern Lengths. Fig. 11(c) represents the results when
varying average pattern lengths. Reduce outperforms Growth up
to 131x. Furthermore, as shown in Fig. 11(c), Reduce is not sen-
sitive to the pattern length. On the contrary, the processing time
of Growth increases dramatically as the pattern length gets larger.
Worst yet, Growth runs out of memory when the average pattern
length is 100. The increasing processing time of Growth results
from both its growth-based pattern generation step and its back-
ward filtering step. The pattern generation of Growth is a recursive
process that continuously grows the patterns from length-1 patterns
to the longest possible patterns. As the average pattern length gets
larger, a large number of shorter patterns will be generated in the
growth process. This substantially increases the processing time.
Furthermore, this also increases the costs of backward filtering,
since now it has more patterns to examine.

In conclusion, Reduce consistently outperforms Growth by 2 or-
ders of magnitude under a rich variety of data properties.

6.4 Evaluation of Reduce Optimizations
Then, we evaluate the effectiveness of the two optimizations of

Reduce, namely start length minimization and pattern candidate
pruning. Due to space constraints we only report the results on the
log file dataset. Here seqGap is varied, since Reduce is sensitive to
seqGap based on our complexity analysis (Sec. 4.2.4).

We compare (1) Both OPT: full-fledged Reduce with both op-
timizations; (2) No OPT: Reduce without any optimization; (3)
Length Minimization: Reduce with only start length minimization;
(4) Candidate Pruning: Reduce with only pattern candidate prun-
ing. As shown in Fig. 12(a), compared to Reduce without any opti-
mization, the start length minimization cuts nearly 10% of the total
processing time, while the pattern candidate pruning cuts nearly
20% of the time. The two optimizations together cut the total pro-
cessing time by up to 30%. Specifically, the start length minimiza-
tion effectively minimizes the length of the patterns that Reduce
starts to mine in the top down process. Therefore it minimizes the
search space of Reduce. The candidate pruning strategy improves
the performance of Reduce, because it continuously prunes the pat-
tern candidates during the top down mining process.

6.5 Evaluation of Inverted Index.
We compare our inverted index-based CO discovery method

with a baseline method that does not use an index when evaluat-
ing if a CO candidate violates a CF pattern. Again we measure the
average processing time over each input sequence. In the experi-
ment, we vary both the minSup and seqGap parameters. Due to
space constraints we only report the results on the log file dataset.

As shown in Fig. 13(a), our inverted index-based approach out-
performs the baseline by 9x to 101x. The reason is that with the
help of the inverted index our method only needs to compare each
CO candidate against a small subset of CF patterns, while the base-
line has to compare each CO candidate against all CF patterns. In
particular, when varying minSup, the smaller the minSup is, the
more our index-based method wins as shown in Fig. 13(a). This
is because a large number of CF patterns will be generated when
minSup is small. For the same reason, the processing times of both
methods increase when minSup gets smaller. Fig. 13(b) shows the
results when varying seqGap. As seqGap increases, the process-
ing times of both methods increase, because more CF patterns will
be generated with a larger seqGap.

7. RELATED WORK
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Figure 11: Evaluation of Processing Time on Various Synthetic Datasets
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Figure 13: Evaluation of Inverted Index.

Frequent Pattern Mining Semantics. Existing semantics [3, 29,
15, 16, 37, 4] determine whether a pattern is frequent purely based
on the number of its occurrences. As already noted in Sec. 1 and
Sec. 2.2.1, directly applying the existing pattern mining seman-
tics [3, 29, 15, 16, 37, 4, 9, 14, 36, 22, 28, 13, 32, 35, 11, 12,
26] to detect typical patterns does not adequately capture outlier
patterns, because they do not distinguish between an independent
occurrence of a pattern Q and its occurrence as part of some fre-
quent super-pattern P .

Frequent Pattern Mining Algorithms. Frequent pattern min-
ing was first proposed in [3] to mine typical purchase patterns from
a customer transaction dataset. Two Apriori-based mining algo-
rithms, namely AprioriSome and AprioriAll were proposed in [3]
to reduce the search space of frequent patterns. Since then, tech-
niques have been proposed such as GSP [29], FreeSpan [15], Pre-
fixSpan [16], SPADE [37], SPAM [4] and their extensions CM-
SPADE, CM-SPAM [9] to scale frequent pattern mining to large
transaction datasets. In particular, PrefixSpan [16] avoids multiple
scans of the whole dataset while still utilizing the pruning capa-
bility of the Apriori property [1]. In this work, the Growth strat-
egy leverages this idea and decomposes the mining process of our
new CF pattern semantics into two steps. However, our experiment
shows it performs significantly worse than our Reduce strategy.
Top-down Frequent Pattern Mining Approaches. In [25, 18]
top-down approaches were presented for frequent pattern mining.
Given a dataset with n sequences, they first look at the patterns that
occur in all n sequences, and then look at the n− 1 sequence com-
binations out of the n sequence to mine the patterns that occur in all
sequences of any such combination. This recursive process stops
until reaching minSup sequence iteration, where minSup repre-
sents the support threshold. The idea stands in contrast to our Re-
duce strategy which constructs patterns from long to short. Further,
this approach is efficient only when the dataset contains a small
number of sequences, while our Reduce is shown to be efficient
also in large scale sequence data.
Outlier Detection in Sequence Data. Although in [17, 33, 6]
the authors proposed methods to detect outliers from symbolic
sequence datasets, in their work outliers are defined as input se-

quences that are different from any other sequence based on dis-
tance measures such as edit distance, unlike our outlier patterns that
correspond to finding abnormal patterns in each input sequence. In
[7], the authors surveyed some methods that identify anomalous
subsequences within a long sequence [19, 20] or identify a pattern
in a sequence whose frequency of occurrences is abnormal [21, 24].
However, these methods all focus on time series data composed
of numerical values instead of symbolic sequence data. Further,
adapting these methods to symbolic sequence data cannot solve our
problem of detecting infrequent patterns that violate the expected
system behavior. First, in [19, 20], the input sequences are first
divided into fixed length segments. Each segment is assigned an
anomaly score based on the similarity to the other segments. Ob-
viously this strategy is not effective in detecting outlier patterns
with various lengths. Second, in [21, 24], the anomaly detection
problem is defined as: given a short query pattern α, a long test
sequence t, and a training set of long sequences S, determine if
the frequency of occurrence of α in t is anomalous with respect to
frequency of occurrence of α in S. In our work, we instead focus
on automatically discovering all outlier patterns without requiring
the users to specify candidate outlier patterns. Further, we do not
assume a normal training set is given beforehand.
Gap Constraint. Besides the sequence gap constraint (Def 2.2,
Sec. 2.2.1) used in our TOP, there are other gap constraints in se-
quential pattern mining, such as the event gap constraint [5]. They
all are applicable in our approach. In addition, gap constraint is
also used in time series analysis [2, 8] which different from the
sequence data we focus on, is composed of continuous numerical
values. In [2], the gap constraint is used when measuring the sim-
ilarity of two sub-sequences from two different time series. Given
two sequences S and T , to determine whether S and T are simi-
lar, the small non-matching regions (so called gaps) in S and T are
ignored. In addition, time window used in Dynamic Time Warping
(DTW) [8] also can be considered as one type of gap constraint.
These constraints could potentially be adapted to our system.

8. CONCLUSION
In this work we design the TOP system for the effective discov-

ery of abnormal sequence patterns from IoT generated sequence
data. TOP features new pattern semantics called contextual pat-
terns. It effectively solves the problem of existing pattern mining
semantics that tend to miss the abnormal patterns violating the typ-
ical patterns. Further, we design novel top-down pattern mining
strategy Reduce that naturally captures the context in which an out-
lier pattern occurs. This enables TOP to efficiently discover the
outlier patterns by mining the sequence only once in contrast to
the traditional pattern growth based mining strategy (Growth) that
has to mine the sequence twice. Our experimental evaluation with
real datasets demonstrates the effectiveness of our new semantics
in capturing outlier patterns, and the efficiency of Reduce in dis-
covering them.
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