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ABSTRACT

The specific characteristics of graph workloads make it hard
to design a one-size-fits-all graph storage system. Systems
that support transactional updates use data structures with
poor data locality, which limits the efficiency of analytical
workloads or even simple edge scans. Other systems run
graph analytics workloads efficiently, but cannot properly
support transactions.

This paper presents LiveGraph, a graph storage system
that outperforms both the best graph transactional systems
and the best solutions for real-time graph analytics on fresh
data. LiveGraph achieves this by ensuring that adjacency
list scans, a key operation in graph workloads, are purely
sequential: they never require random accesses even in pres-
ence of concurrent transactions. Such pure-sequential oper-
ations are enabled by combining a novel graph-aware data
structure, the Transactional Edge Log (TEL), with a concur-
rency control mechanism that leverages TEL’s data layout.
Our evaluation shows that LiveGraph significantly outper-
forms state-of-the-art (graph) database solutions on both
transactional and real-time analytical workloads.
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INTRODUCTION

Graph data is one of the fastest-growing areas in data
management: applications performing graph processing and
graph data management are predicted to double annually
through 2022 [1]. Applications using graph data are ex-
tremely diverse. We can identify two broad classes of graph
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workloads with different requirements: transactional graph
data management and graph analytics.

Transactional graph data management workloads contin-
uously update and query single vertices, edges, and adja-
cency lists.! Facebook, for example, stores posts, friendship
relationships, comments, and other critical data in a graph
format [12, 20]. Write transactions incrementally update
the graph, while read transactions are localized to edges,
vertices, or the neighborhood of single vertices. These ap-
plications require a graph storage system to have very low
latency and high throughput, be it a key-value store, a rela-
tional database management system, or a specialized graph
database system. The system must also have classic transac-
tional features: concurrency control to deal with concurrent
updates and durability to persist updates.

Graph analytics tasks run on a consistent read-only graph
snapshot and their performance highly depends on efficient
scans of the neighborhood of a vertex (i.e., the adjacency list
of the vertex). A particular class of analytics, real-time ana-
lytics on fresh dynamic graph data, is becoming increasingly
important. For example, consider recommendations, where
a website needs to find relevant products/connections based
on users’ properties and most recent interactions, which re-
flect their interests at the moment.

Other applications in this class include privacy-related
data governance (where “expired” data needs to be excluded
from analytics for GDPR compliance), finance (where fi-
nancial institutions establish if groups of people connected
through common addresses, telephone numbers, or frequent
contacts are issuing fraudulent transactions), or systems
security (where monitoring systems detect whether an at-
tacker has performed a sequence of correlated steps to pen-
etrate a system).

It is increasingly attractive to have a graph storage system
that simultaneously supports both transactional and (real-
time) analytical workloads. Unfortunately, common data
structures adopted separately in the two worlds do not fare
well when crossing into unfamiliar territory.

Data structures used in state-of-the-art DBMSs and key-
value stores do not support well adjacency list scans, a cru-
cial operation in graph analytics and graph database queries.

'We call a workload “transactional” if it consists of simple
read/write operations that must be interactive and require
very low latency, regardless of whether the transactions ac-
cess only one object or multiple objects atomically.



More specifically, popular structures such as B+ trees and
Log-Structured Merge Trees (LSMTs) yield significantly
worse performance in graph analytics than graph-aware
data structures like Compressed Sparse Rows (CSR) [52].
We performed micro-benchmarks and a micro-architectural
evaluation comparing alternative data structures for storing
graph data, and in particular adjacency lists. The results
show that contiguous in-memory storage of adjacency lists
not only improves caching efficiency, but also allows better
speculation and prefetching, reducing both memory access
costs and the number of instructions executed.

At the other end of the spectrum, analytical graph engines
often use sequential memory layouts for adjacency lists like
CSR. They feature efficient scans but do not support high-
throughput, low-latency concurrent transaction processing.
In fact, most existing graph engines do not target muta-
ble graphs at all. Adding concurrency control to deal with
concurrent updates is not straightforward. The concurrency
control algorithm is on the critical path of every operation
and thus directly impacts the performance of adjacency list
scans. It should not disrupt otherwise sequential scans with
random accesses or a complex execution flow. There has
been much recent work on in-memory concurrency control
and transactional support for relational data [28, 39, 42,
45, 59, 61], but none of the existing studies has specifically
targeted the unique requirements of graph workloads.

This paper is a first step towards filling this gap. It pro-
poses LiveGraph, a graph storage system supporting both
transactional and (real-time) analytical workloads. A key
design goal of LiveGraph is to ensure that adjacency list
scans are purely sequential, that is, they never require ran-
dom accesses even in the presence of concurrent transac-
tions. To this end, we co-design the system’s graph-aware
data structure and its concurrency control algorithm. Live-
Graph stores adjacency lists in a new data structure called
the Transactional Edge Log (TEL). The TEL combines
multi-versioning with a sequential memory layout. The con-
currency control of LiveGraph leverages the cache-aligned
timestamps and counters of the TEL to preserve the se-
quential nature of scans even in the presence of concurrent
transactions. It is an efficient yet simple algorithm whose
regular execution flow enables speculation and prefetching.

Our evaluation compares LiveGraph with several state-
of-the-art systems, including specialized graph databases,
graph database solutions built on key-value stores or tradi-
tional RDBMSes, and graph engines. Results demonstrate
that LiveGraph outperforms the current leaders at their spe-
cialty, in particular outperforming Facebook’s RocksDB [2]
by up to 7.45x using Facebook’s social graph bench-
mark [12]. In addition, LiveGraph dramatically outperforms
(up to 36.4x better than the runner-up) all systems that
have implemented the LDBC SNB interactive workload [27],
ingesting updates and performing real-time analytics queries
concurrently. We further perform micro-benchmarking and
extensive profiling to understand the performance differ-
ences. Finally, LiveGraph allows lower end-to-end process-
ing time by conducting in-situ iterative graph analytics (like
PageRank) on its latest snapshot, as the expensive ETL cost
can now be eliminated. More details can be found in [66].

2. PURELY SEQUENTIAL SCANS

A key design choice of LiveGraph is ensuring purely se-
quential adjacency list scans: scans should never entail ran-
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Table 1: Adjacency list scan properties of different data
structures. N is the size of the tree.

Cost Seek Scan (per edge)
B+ Tree | O(logN) random | sequential w. random
LSMT O(log N) random | sequential w. random
Linked List O(1) random random
CSR o(1) random sequential
TEL o) random sequential

dom accesses. Before introducing the details of LiveGraph,
we motivate why purely sequential adjacency list scans are
important. We use single-threaded micro-benchmarks and
micro-architectural analysis to compare different commonly
used data structures and quantify the advantage of a se-
quential memory layout. Then, we discuss how concurrency
control algorithms introduce additional complexity in the
form of random accesses and branching.

2.1 The Benefits of Sequential Edge Storage

Adjacency lists contain the key topological information in
a graph. Full or partial scans of these lists are fundamen-
tal operations in graph workloads, from simple queries to
full-graph analytics. Graph storage must balance fast scans
with efficient edge insertions, which are frequent in graph
writes [20, 12]. In the following, we compare the scan per-
formance of different data structures used for graph storage.

Graph data representations. Graph data consists of
two types of objects: vertices and edges.

The CSR representation consists of two arrays, the first
storing the adjacency lists of all vertices as sequences of des-
tination vertex IDs, while the second storing pointers to the
first array, indexed by source vertex ID. CSR is very com-
pact, leading to a small storage footprint, reduced mem-
ory traffic, and high cache efficiency. Also, unlike most
other data structures, it enables pure sequential adjacency
list scans. These properties make it a top choice for graph
engines [46, 31, 65], which target read-only analytical work-
loads. On the flip side, it is immutable, making it unsuitable
for dynamic graphs or transactional workloads.

Linked list is an intuitive choice for adjacency lists and is
used by Neo4j [3], a popular transactional graph database.
It easily supports edge insertions but suffers from random
accesses during scans when traversing through pointers.

Other state-of-the-art graph stores adopt general-purpose
data structures such as the B+ tree and the LSMT (Log-
Structured Merge-Tree). The adjacency list is represented
as a single sorted collection of edges, whose unique key is a
(src,dest) vertex ID pair.

In this work, we propose a new data structure, the Trans-
actional Edge Log (TEL), which simultaneously allows se-
quential adjacency list scans and fast edge insertion. Unlike
existing structures used in graph systems, it features purely
sequential, yet mutable, edge storage. For this discussion,
it suffices to say that edges in the same adjacency list are
stored sequentially in contiguous blocks with empty slots at
the tail. Edge insertions and updates are appended at the
tail of the block until it fills up, at which point the TEL
is upgraded to a larger block. Like CSR, TEL has purely
sequential adjacency list scans.

Table 1 compares major operation complexities of the
aforementioned data structures. Each adjacency list scan
consists of a one-time seek operation, which locates the first
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Figure 1: Adjacency list scan micro-benchmark

edge of the adjacency list, followed by an edge scan, a se-
quence of edge accesses. Note that the initial seek cost often
cannot be amortized, especially considering that most real-
world graphs exhibit power-law degree distributions so most
vertices have few edges. For a more detailed comparison, we
refer to a comprehensive survey of data structures used in
graph databases [18].

Micro-benchmark results. To see the impact of data
structure choices on actual graph systems, we use a micro-
benchmark that performs 10 adjacency list scans, where
each start vertex is selected randomly under a power-law
distribution. Graphs are generated using the Kronecker gen-
erator [41] with sizes ranging from 220 to 226 vertices, and
an average degree of 4 (similar to those generated by Face-
book’s LinkBench [12] benchmark). All graphs fit in the
memory of a single socket. For accurate cache monitoring,
we perform single-thread experiments, with the workload
driver running on a separate socket.

We evaluate LMDB [4] and RocksDB [2], embedded stor-
age systems that adopt B+ trees and LSMTSs respectively.
To fairly isolate the impact of data structure choices, we
disable compression in RocksDB, and also implement an ef-
ficient in-memory linked list prototype in C++4 rather than
running Neodj on a managed language (Java). For reference,
we also include CSR, which is widely used by state-of-the-art
graph engines, though CSR is read-only.

We consider two metrics: seek latency and edge scan la-
tency. Seek latency is the time needed to locate the adja-
cency list of a vertex. Edge scan latency is the time required
to access the next edge in the adjacency list. Figure 1 shows
that using different data structures results in orders of mag-
nitude gaps in these metrics.

The sequential data layout of TEL is clearly superior to
other pointer-based data structures. To locate the first edge
of the range (seek), B+ trees have a logarithmic number
of random accesses. RocksDB’s implementation of LSMTs
uses a skip list as memtable, which has a similar behavior
for seeks. However, LSMTs also require reading the (on-
disk) SST tables for seeks, since only the first part of the
edge key is known (the source vertex ID) while the second
part is unknown (the destination ID). This explains the bad
performance of LSMT in Figure la. For linked-lists and
TELSs we consider one data structure instance per adjacency
list, as done in Neo4j and LiveGraph, respectively. For CSR,
the beginning of an adjacency list is stored in the offset array.
Reading it requires only a constant-time index lookup.

Systems using B+ trees and LSMTs store edges in a single
sorted collection, which corresponds to a single edge table.
An adjacency list scan becomes a range query where only
the first component of an edge key, the source vertex ID,
is given. To iterate over all edges of a vertex (scans), a

B+ tree sequentially scans elements of the same node but
it needs random accesses whenever an adjacency list spans
multiple nodes. LSMTSs require scanning SST tables also for
scans because, similar to seeks, only the first component of
the edge key is known. Skip Lists and Linked List require
random accesses for each edge scan. By contrast, scans in
TEL and CSR are always sequential. Figure 1b shows that
TEL has a scan speedup larger than 29x over linked list,
20x over LSMT, and 6x over B+ tree. CSR’s latency for
scans is 43% that of TEL. The gap is mainly from TEL’s
larger memory footprint and the overheads of checking edge
visibility to support transactions (our double timestamps
design, which we will discuss later).

We performed a more detailed micro-architectural analy-
sis on the 22% scale graph to further understand the behav-
ior of data structures. B+ trees and LSMTs trigger 7.09x
and 11.18x more last-level cache misses than TEL. Linked
Lists with mostly random memory accesses are the worst,
incurring 63.54x more LLC-misses than TEL. TEL has a
simpler sequential execution flow, leveraging CPU pipelin-
ing+prefetching and reducing branch mispredictions. This
profiling confirms the huge gap between pointer-based data
structures and a sequential data structure like TEL. Com-
pared with CSR, TEL triggers 2.42x more LLC-misses due
to our memory footprints: a single edge in TEL takes 2x
memory than CSR in our micro-benchmark.

In total adjacency list scan latency, TEL yields, on av-
erage among different graph scales, a 22x performance im-
provement over LSMT, 46x over linked list, 5.6 over B+
tree, and 40% higher than CSR. For seeks, there is a signifi-
cant gap between tree-based (logarithmic) and graph-aware
(constant) data structures. For scans, TEL performs much
better as its accesses are purely sequential, while others in-
volve random accesses and additional branching.

These results show that existing dynamic data structures
used by transactional systems leave a lot of performance on
the table for graph workloads, which can be harvested by
using a graph-aware storage layout like TEL.

2.2 Transactions with Sequential Access

The previous experiments show the importance of elimi-
nating random accesses during adjacency list scans through
graph-aware data structures. However, they consider a
single-threaded setting without concurrency. In transac-
tional workloads, it is necessary to preserve the benefits of
sequential scans in the presence of concurrent transactions.

Real-time graph analytics feature read-only transactions
that need to access a consistent snapshot of the graph.
These transactions may be long-running and access a large
fraction of the graph, but they should not hinder the
progress of concurrent transactions. Multi-versioning is a
common approach to ensure this property and many efficient
concurrency control algorithms have been proposed for re-
lational databases [28, 39, 42, 45, 61]. However, they target
data with flat layouts (i.e., indexed records). Representing
each adjacency list as a whole record with multiple versions
would make edge updates prohibitively expensive because
every time the entire list would have to be written again.

Enabling multi-versioned sequential accesses to adjacency
lists is to our knowledge an open topic encompassing mul-
tiple challenges: (1) different versions of edges belonging to
the same adjacency list must be stored in contiguous mem-
ory locations; (2) finding the right version of an edge should
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not require auxiliary data structures that, in turn, require
random access to be visited; (3) the concurrency control al-
gorithm should not require random access during scans.

LiveGraph is the first system that guarantees these prop-
erties, achieved by co-designing a graph-aware data struc-
ture (Section 3) and the concurrency control algorithm (Sec-
tions 4 and 5) to ensure purely sequential scans even in the
presence of concurrent transactions.

3. LIVEGRAPH DATA LAYOUT

LiveGraph implements both in-memory and out-of-core
graph storage on a single server. It adopts the property
graph model [51], where each object (vertex or edge) can
have associated properties (i.e., arbitrary key-value pairs).

Edges have a special type of property called label. Each
edge can have only one label. Edges that are incident to the
same vertex are grouped into one adjacency list per label.
Labels can be used to separate edges that are scanned sep-
arately, e.g., “is-friend-with” and “has-posted” edges in a
social graph. For simplicity, our discussion depicts the case
where all edges have the same label.

Edge storage is particularly critical since (1) usually
graphs have more edges than vertices and edge operations
are more frequent [20], and (2) efficient edge scan is cru-
cial, as shown earlier. Therefore, LiveGraph adopts a 2-D
approach: vertices are stored individually whereas all the
edges incident on the same vertex are grouped in a single
Transactional Edge Log (TEL).

Figure 2 shows the data structures of LiveGraph, which
mainly consist of vertez blocks (VB) and TELs. These are
stored in a single large memory-mapped file managed by
LiveGraph’s memory allocator. The blocks are accessed via
two index arrays, a verter inder and an edge index, storing
pointers to appropriate blocks by vertex ID. Though not de-
picted in Figure 2, there is an additional level of indirection
between the edge index and TELs, called label index blocks,
used to separate the storage of per-vertex edges with dif-
ferent labels. Since vertex IDs grow contiguously, we use
extendable arrays for these indices. We have not found this
to be a limiting factor in any of our experiments.

Vertices. LiveGraph stores each vertex separately into the
vertex block. Updates to vertices are relatively infrequent
and transactions typically access the latest version. There-
fore, for vertices we use a standard copy-on-write approach,
where the newest version of the vertex can be found through
the vertex index, and each version points to its previous ver-
sion in the vertex block.

Adjacency lists. A TEL is a fixed-size memory block with
free space that is resized when filled. Different versions of a
TEL are linked with “previous” pointers like vertex blocks.

This organization combines efficient sequential scans of read-
optimized formats for analytics (like CSR) with support for
updates of dynamic arrays. Instead of just storing edges
constituting the current adjacency list, a TEL represents
all edge insertions, deletions, and updates as log entries ap-
pended at the tail of the log. Note that while our discussion
focuses on using TEL for adjacency list storage, ideas pro-
posed here can be used to implement a general key-value set
data structure with sequential snapshot scans and amortized
constant-time inserts.

The layout of a TEL block is depicted in Figure 3. Edge
log entries are appended backwards, from right to left, and
scanned forwards, from left to right. This is because many
scan operations benefit from time locality, as in Facebook’s
production workload [12], where more recently added ele-
ments are read first. Edge log entries have fixed size with
cache-aligned fields. This is required by our transaction pro-
cessing protocol, as to be discussed later. Each entry has two
timestamps, a creation timestamp and an invalidation times-
tamp, indicating its lifecycle. Edge properties have variable
lengths and are appended from the beginning of the block
forwards. These property entries are stored separately from
the edge log entries to preserve the data layout alignment
of the latter, again as required by transaction processing.
Their content is opaque to LiveGraph.

For a new vertex, its adjacency list starts small, with 64-
byte blocks that accommodate a single edge in our imple-
mentation. When a block is full, LiveGraph copies the log to
an empty block of twice its current size. Similar to dynamic
arrays, appends to the log have a constant amortized cost.
The worst-case cost is linear, but copying contiguous blocks
of memory is fast and does not result in high tail latency, as
our evaluation shows.

This design is particularly suited to power-law degree dis-
tributions that are common in real-world graphs. The ma-
jority of vertices, being low-degree and less active, will grow
slowly in degree, with limited space waste. The high-degree
vertices are likely to grow faster and incur higher data copy-
ing costs when “upgraded”, but such relocation happens at
decreasing frequency with exponentially growing block sizes.
The power-law degree distribution also implies that only a
small fraction of vertices occupy large log blocks. We de-
scribe the details of LiveGraph’s memory management and
log relocation in Section 6.

4. SINGLE-THREADED OPERATIONS

We first describe LiveGraph’s operations in the absence
of concurrency. LiveGraph uses a multi-versioned data store
and each transaction is associated with a read timestamp,
which determines the version of the data it operates on.
This timestamp is determined by the transaction processing
mechanism (to described in Section 5).

Vertex operations. Vertex reads access the vertex index
and then the vertex block; writes create a new version of
the vertex block in the block storage, including a pointer to
the current version, and set the vertex index to point to the
new version. In the uncommon case where a read requires
a previous version of the vertex, it follows the per-vertex
linked list of vertex block versions in backward timestamp
order until it finds a version with a timestamp smaller than
its read timestamp.
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entry). The edge is later updated at time 7. The previous entry is invalidated and a new property block is appended.

Adding a new vertex first uses an atomic fetch-and-add
operation to get the vertex ID, fills in empty pointers in the
corresponding locations of vertex and edge indices, and sets
the lock status. If the vertex needs to store properties or
add edges, it asks the storage manager to allocate a block
according to the size it needs, whose details will be shown
in Section 6. Garbage collection to reuse the IDs of deleted
vertices can be achieved by using techniques described later
in Section 6. Since vertex deletions are rare, we leave the
implementation of this mechanism to future work.

Sequential adjacency list scans. Scanning adjacency
lists efficiently is a key requirement of analytics workloads.
LiveGraph achieves purely sequential adjacency list scans by
combining log-structured storage of the adjacency list and
double timestamps.

A log structure is a more convenient multi-versioned rep-
resentation of the adjacency list compared to alternative ap-
proaches. For example, a coarse-grained copy-on-write ap-
proach to multi-versioning would create a new copy of the
entire adjacency list every time an edge is updated. This is
the approach used by Grace [49]. However, it makes updates
very expensive, especially for high-degree vertices.

Storing multiple versions of the adjacency list in contigu-
ous memory locations as a log is key to achieving purely
sequential adjacency list scans, but it is not sufficient. The
same edge can now correspond to multiple entries in the
log, as shown in Figure 3. When a thread executing an ad-
jacency list scan reads an edge entry, it cannot tell whether
the entry is still valid or if it has been deleted or modified
at a later position in the log. The thread could keep a hash
map to progressively update the latest version of each edge
during the scan. But accessing the map would again require
random accesses, which we strive to avoid.

To this end, LiveGraph stores a double timestamp for each
edge. A read operation with timestamp 7' considers only
edge entries such that 7 is within the entry’s creation and
invalidation timestamps. These two timestamps determine
if the entry is valid for the read timestamp of the transaction
(see Figure 3). Such a design makes TEL scans sequential:
a transaction can check the validity of an edge entry simply
by checking the embedded timestamp information. Scans
that access edge properties require two sequential scans, one
forwards from “tail” (as shown in Figure 3) to the right end,
for edge log entries, and one backwards from the end of the
property entries, for properties.

Edge updates and constant-time insertions. To sup-
port fast ingestion of new edges, LiveGraph inserts edges in
amortized constant time. Insertions in a regular log-based

data structure are simple appends, which can be done in
constant time. TELs sometimes require resizing in order to
append new entries, but the amortized cost of appends is still
constant, like in dynamic arrays (see Section 3). The dual
timestamp scheme of LiveGraph, while useful for sequen-
tial scans, makes updating the adjacency list more complex.
Appending log entries is not always sufficient any longer. If
an operation updates or deletes an existing edge, it must
also update the invalidation timestamp of the previous en-
try for that edge, which entails scanning the log. However,
if a new edge is inserted, the scan is not necessary and a
constant-time append is still sufficient.

LiveGraph includes a Bloom filter in the TEL header to
determine whether an edge operation is a simple insert or a
more expensive update. Inserting a new edge appends an en-
try at the end of a TEL and updates the Bloom filter as well
as the adjacency list block size. Edge deletions/updates first
append a new entry to the TEL and check, using the Bloom
filter, if a previous version of the edge is present in the TEL.
If so, its invalidation timestamp needs to be updated. The
Bloom filter is also handy to support fast “upsert” semantics
(such as in the Facebook LinkBench workload [12]), where
a lookup is needed to check whether the entity to be in-
serted already exists. It allows distinguishing which of them
are “true insertions” that add new edges, such as “likes” in
social networks or new purchases in online stores. Inserts
often compose the majority of write operations and LiveG-
raph processes them in amortized constant time.

Upon a “possibly yes” answer from the Bloom filter, how-
ever, finding the edge itself involves a tail-to-head TEL scan,
traversing the entire adjacency list in the worst case. In
practice though, edge updates and deletions have high time
locality: edges appended most recently are most likely to
be accessed. They are the closest to the tail of the TEL,
making average cost fairly low for edge updates/deletions.

Each Bloom filter is fixed-sized: 1/16 of the TEL for each
block larger than 256 bytes. A blocked implementation [50]
is adopted for cache efficiency considerations.

Reading a single edge. Reading a single edge involves
checking if the edge is present using the Bloom filter. If so,
the edge is located with a scan. As with adjacency list scans,
the scan skips any entries having a creation-invalidation in-
terval inconsistent with the read timestamp.

S.  TRANSACTION PROCESSING

Next, we discuss concurrent execution of transactions,
each consisting of one or more of the basic read/write opera-
tions described in Section 4. The major innovation of Live-
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Graph here lies in its integrated design: unlike traditional
MVCC solutions [61], which adopt auxiliary data structures
to implement concurrency control, LiveGraph embeds the
information required for transactional adjacency list scans
within its main TEL data structure. This leads to signifi-
cant performance advantages because it enables sequential
access even in the presence of concurrent transactions.

We first present this integrated data layout, followed by
the corresponding transaction management algorithms.

Data layout and coordination. LiveGraph stores ad-
jacency lists as multi-versioned logs to efficiently support
snapshot isolation [16], which allows read operations to pro-
ceed without interfering with each other and with write op-
erations (proof of isolation guarantee in [66]). Snapshot iso-
lation is stronger than read committed, the default isolation
level of Neo4j and many other commercial DBMSs [15].

In LiveGraph, basic read operations on edges do not ac-
quire locks. Coordination with basic write operations on
edges occurs only through cache-aligned 64-bit word times-
tamps, written and read atomically. Cache-alignment is
done by separating the variable-size edge properties and
fixed-size edge log entries, which grow from the opposite
ends of TEL blocks (Figure 3). Thus all timestamps in the
log entries are cache-aligned. Basic read operations on ver-
tices access different versions as described in Section 4.

Two additional cache-aligned per-TEL variables are used
for coordination: the log commit timestamp CT and the log
size LS. They are both stored in a TEL’s fixed-size header.

Write-write conflicts are detected using per-vertex locks,
implemented with a futex array of fixed-size entries (with a
very large size pre-allocated via mmap). We also explored
other choices, such as concurrent hashtables or spinlock
arrays, but found the futex array method most scalable.
For write-intensive scenarios when many concurrent writers
compete for a common lock, spinning becomes a significant
bottleneck while futex-based implementations utilize CPU
cycles better by putting waiters to sleep. The space con-
sumption for locks is acceptable: under 0.5% of the overall
dataset size in our evaluation.

Transactions.  LiveGraph keeps a pool of transaction-
serving threads (henceforth referred to as “workers”), plus
one transaction manager thread. All threads share two
global epoch counters, GRE for reads and GWE for writes, both
initially set to 0. They also share a reading epoch table to
establish a safe timestamp for compaction.

A transaction has two local variables: a transaction-local
read epoch counter TRE, which the worker initializes to GRE,
and a transaction-local write epoch counter TWE, which is
determined by the transaction manager at commit time.
The worker assigns to the transaction a unique transaction
identifier TID, by concatenating its unique thread ID and a
worker-local logical transaction count.

Basic read operations access a snapshot determined by
their TRE. When they read a vertex, transactions visit the
linked list of vertex versions until they find the right version.
In practice, a transaction needs to visit the list only in the
rare case in which there are concurrent vertex writes. Reads
need not acquire locks.

Adjacency list scans are strictly sequential. =~ When
they scan a TEL, read operations only consider edge log
entries such that either (0 <= CreationTS <= TRE) AND
((TRE < InvalidationTS) OR (InvalidationTS < 0))
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(entry is valid at time TRE), or (CreationTS -TID) AND
(InvalidationTS != -TID) (a transaction sees its own
earlier writes, more details below). The scan starts from
the end of the log, using the LS size variable within the TEL
header, and proceeds backwards towards the beginning.

Basic write operations initially store their updates in a
transaction-private working version, in the same TEL as
committed updates, to keep adjacency list scans sequential.
Transaction-private updates are made visible to other trans-
actions only after commit.

A write transaction goes through three phases: work, per-
sist, and apply. In the work phase, it starts by computing its
unique transaction identifier TID and acquiring write locks.
To avoid deadlocks, a simple timeout mechanism is used: a
timed-out transaction has to rollback and restart. The write
transaction then executes write operations as discussed in
Section 4, using the timestamp -TID to make the updates
private. This phase concludes by calling the transaction
manager to persist the changes.

In the persist phase, LiveGraph adopts standard group
commit processing [17] to enhance throughput. The trans-
action manager first advances the GWE counter by 1, then
appends a batch of log entries to a sequential write-ahead
log (WAL) and uses fsync to persist it to stable storage.
Next, it notifies the involved transactions by assigning them
a write timestamp TWE, set as GWE.

Now the write transaction enters the final apply phase, by
updating the commit timestamp of the TEL, which is set to
TWE, and the log size LS in the header. For vertex blocks, it
also updates the version pointers and sets the vertex index
pointer to the latest version. Next, it releases all its locks
before starting the potentially lengthy process of making its
updates visible by converting their timestamps from -TID to
TWE. After all transactions in the commit group make their
updates visible, the transaction manager advances the global
read timestamp GRE, exposing the new updates to upcoming
transactions. This also guarantees that the read timestamp
of a transaction is always smaller than the write timestamp
of any ongoing transaction.

Figure 4 shows an example of a write operation executed
concurrently with reads in two of its phases (the persist
phase is done by the transaction manager/logger and omit-
ted due to space limitations). It shows that (1) read opera-
tions do not need to use locks and (2) multi-version trans-
action management is done as part of the sequential TEL
scan. Both aspects significantly contribute to LiveGraph’s
processing speed and throughput.

To ensure consistent versioning, it is necessary to guaran-
tee the invariant that each entry’s invalidation timestamp is
always larger than its creation timestamp. Write operations
having a timestamp 7" must abort if they try to invalidate
an entry with creation timestamp larger than 7. LiveG-
raph stores the latest timestamp that has modified a TEL
in a commit timestamp variable CT in the TEL header. This
way, write operations can simply compare their timestamp
against CT instead of paying the cost of scanning the TEL
only to later find that they must abort.

Whenever a transaction aborts, it reverts the updated in-
validation timestamps from -TID to NULL, releases all ac-
quired locks, and returns any newly allocated blocks to the
memory manager. An aborted transaction never modifies
the log size variable LS so its new entries will be ignored by
future reads and overwritten by future writes.



‘W2: append new entry with W3 scan from tail and search
CreationTS = -TID for previous version of <VsVp>

W4 set InvalidationTS = -TID

‘W get lock (in index)
(atomically)

(source
vertex

R3: read entry, since TRE > T, and

RI: get read dmestamp TRE InvalidationTS either NULL or negative

from transaction manager

(assume TRE >T,) R2: scan from tail

(a) Work phase

RI: get read tin;nestamp TRE
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(source
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entry since :
TWE >TRE @.
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-TID or TWE >TRE

from transaction manager
(guarantee:TWE >TRE)
(assume: TRE >T))

R2: scan from either new or old tail

(b) Apply phase

Figure 4: Example of concurrent access to the same TEL. A transaction is executing a basic write operation (see notes
above the TEL) while another concurrent transaction executes a basic read operation (notes below) on the same TEL. Each
operation is illustrated in steps. Concurrency can happen in the work/apply phase of the writing transaction. Accesses to

cache-aligned timestamps are guaranteed to be atomic.

6. STORAGE MANAGEMENT

Currently, LiveGraph uses a memory-mapped file to store
graph data, comprising vertex blocks, which store single ver-
tices, and TEL blocks, each storing a TEL (see Figure 2),
as well as per-vertex label index blocks storing pointers to
TELs with different labels of each vertex. This allows Live-
Graph to store graphs that do not fit in memory and rely on
the operating system to decide how data is cached in mem-
ory and evicted. We plan to replace mmap with a managed
page cache [40] to enable more robust performance on very
large datasets backed by high-speed I/O devices.

Compaction. The TEL is not just an adjacency list
but also, implicitly, a multi-version log record of the adja-
cency list with entries sorted by creation timestamps. Inval-
idated entries are useful for retrieving and analyzing histor-
ical snapshots, but their accumulation will eventually bloat
the TEL size and impede in-memory processing. Therefore,
LiveGraph performs periodic compaction.

LiveGraph provides the capability of a user-specified level
of historical data storage, trading off disk space and check-
pointing overhead, to allow full or partial historical snapshot
analysis. In the prototype evaluated, we performed rather
aggressive garbage collection (GC), without saving invali-
dated copies to disk. LiveGraph periodically (every 65536
transactions in our default setting) launches a compaction
task. FEach worker thread in LiveGraph maintains a dirty
vertex set, marking vertices whose corresponding blocks have
been updated since the last compaction executed within this
thread. When doing compaction, a thread scans through its
local dirty set and compacts or garbage-collects blocks based
on version wvisibility. Each worker stores the transaction-
local read epoch counter (the TRE) used by its ongoing trans-
action (if any) in a table with one entry per worker. Future
transactions will get a TRE that is greater or equal to the
current global read epoch counter (the GRE). A thread doing
compaction accesses all these epoch counters to determine
version visibility for all transactions.

The compaction processes one block at a time, asyn-
chronously and independently, with only minimal interfer-
ence with the regular workload. If a TEL block is not vis-
ible any longer to any ongoing or future transaction, it is
garbage-collected. Otherwise, the thread removes all entries
that will not be visible to future transactions. A thread first
scans the block to compute the new capacity (sometimes the
block could shrink after many edges being deleted). A new
block is then allocated and only the entries visible to fu-
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ture transactions are copied (sequentially) to this new block.
Like in a regular write transaction, the corresponding vertex
lock of the TEL is held to temporarily prevent concurrent
writes to that specific block. Writes to the new blocks are
also committed like with write transactions. Once the copy
to the new TEL block is committed, the compacting thread
releases the lock and moves to the next vertex in the dirty
set. New transactions that start after the commit access the
new version. Ongoing transactions continue having read-
only access to the old versions, which are kept until they
are no longer visible by any transaction. At that point, in
a future compation cycle, the thread garbage-collects them.
Compaction only occurs in a lightweight vertex-wise fashion:
unlike LSMT, LiveGraph never needs to compact multiple
on-disk files through merging.

Compactions for vertex blocks are similar to existing
MVCC implementations. Invalidated blocks that will never
be visible to any existing or future transactions are simply
garbage collected (to be reused later) and any related “pre-
vious pointers” are cleared simultaneously.

Space overhead for timestamps. Using two times-
tamps (which are not explicitly used by graph analytics algo-
rithms themselves) dilutes TEL’s storage density and lowers
its bandwidth/caching efficiency compared to compact data
structures such as CSR. This results in a performance gap
between running analytics on top of LiveGraph compared to
state-of-the-art engines for static graphs such as Ligra [54]
or Gemini [65]. However, analytics on top of LiveGraph
do not need to perform expensive ETL (Extract-Transform-
Load) operations to load the graph into a dedicated tool.
Compared to systems that support transactional graph up-
dates and use pointer-based data structures, LiveGraph uses
sequential memory regions and thus saves the storage cost
of keeping many pointers, in addition to supporting multi-
versioning. Overall, our evaluation shows that LiveGraph
has a similar memory overhead as these systems.

Memory management. In selecting the adjacency list
block size, there is a trade-off between the cost of repeated
data relocation and space utilization. In making this deci-
sion, we seize a rare opportunity offered by the power-law
degree distribution found in many real-world graphs [23, 29,
55]. Inspired by the buddy system [37], LiveGraph fits each
TEL into a log block of the closest power-of-2 size.
LiveGraph has TELs starting from a size of 64 bytes (a 36-
byte header plus a 28-byte log entry, whose contents were de-



scribed earlier). This minimal configuration accommodates
one edge and occupies one cache line in common processors
today. An array of lists L is used for keeping track of the
free blocks in the block store, where L[i] (i = 0,1,...,57)
contains the positions of blocks with size equal to 2° x 64
bytes. When a block of a certain size is needed, LiveGraph
first checks the corresponding free list, allocating new blocks
from the tail of the block store only when that list is empty.
Vacated blocks or those that do not contain any valid data,
meanwhile, are recycled into the proper free lists.

Again considering the power-law degree distribution, we
accelerate the allocation process by differentiating the free
list management of smaller and larger blocks. We define a
tunable threshold m, with each thread maintaining its pri-
vate free list array {S[0], .» S[m]} and sharing a global
free list array {S[m+1], ., S[571}. This significantly re-
duces the contention over the free lists for allocating highly
popular small blocks, while mitigating waste by centralized
large block management. Measurements on our 24-core (48
hardware threads) test platform show that block allocation
is not a performance bottleneck (with m set at 14).

Recovery. The recovery mechanism of LiveGraph is sim-
ilar to write-ahead-logging systems. A checkpointer (which
can be configured to use any number of threads) periodically
persists the latest consistent snapshot (using a read-only
transaction) and prunes the WAL entries written before the
epoch of the snapshot. When a failure happens, LiveGraph
first loads the latest checkpoint and then replays the WAL
to apply committed updates.

7. EVALUATION

7.1 Experimental Setup

Platform. We set up experiments on a dual-socket server,
whose specification is given in Table 2. The persistence fea-
tures are enabled for all the systems, except when specified
otherwise. We evaluate two alternative SSD devices for per-
sistence, with the Intel Optane as the default.

Table 2: Testbed specification

Processor 2-socket Intel Xeon Gold 6126 CPU
12 cores per CPU
Memory 192 GB DDR4 RAM
Storage Intel Optane P4800X 750 GB SSD
Dell Express PM1725a 1.6 TB SSD
Workloads.  For lightweight graph accesses, we use

LinkBench [12], a Facebook benchmark based on its social
graph interactive workloads. Besides its default configura-
tion (DFLT) with 69% read and 31% write operations, we
add a “read-mostly” workload (TAO) with 99.8% of reads,
with parameters set according to the Facebook TAO pa-
per [20]. All experiments start on a 32M-vertex, 140M-edge
base graph generated by the LinkBench driver, each client
sends 500K query requests to the server.

For real-time graph analytics, we use the interactive work-
load in LDBC Social Network Benchmark (SNB) [27], which
simulates the users’ activities in a social network for a period
of time. Its schema has 11 entities connected by 20 relations,
with attributes of different types and values, providing a rich
benchmark dataset. The SNB data generator is designed to
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produce directed labeled graphs that mimic the character-
istics of real-world social graphs. We set 10 as the Scale
Factor, with 30M vertices and 177M edges in the generated
initial graph. Its requests are classified into three categories:
short reads (similar to LinkBench operations), transactional
updates (possibly involving multiple objects), and complex
reads (multi-hop traversals, shortest paths, and analytical
processing such as filters, aggregations, and joins). Finally,
we run two popular iterative analytical algorithms on top
of the generated graph, PageRank and Connected Compo-
nents (ConnComp). PageRank runs for 20 iterations, while
ConnComp runs till convergence.

Choice and rationale of baselines. For LinkBench,
we first tested MySQL (v5.7.25) and MyRocks (v5.6.35)
using their official adaptor, but found that inter-process
communication between the server and client (benchmark
driver) amplifies latencies. Thus we compare LiveGraph
with three embedded implementations,> LMDB (v0.9.22),
RocksDB (v5.10.3), and Neo4j (v3.5.4), as representatives
for using B+ tree, LSMT, and linked list respectively. This
way we focus on comparing the impact of data structure
choices. For Neo4j, we use its Core API rather than Cypher,
to eliminate potential query language overhead.

For SNB, besides graph databases including Neo4j [3],
DBMS S, and DBMS T (anonymized due to licensing re-
strictions), we also compared with PostgreSQL (v10.7) [5]
and Virtuoso (v7)® [6], two relational databases. DBMS S
is based on the RDF model and uses a copy-on-write B4
tree similar to LMDB as the storage backend; DBMS T is
a commercial graph database that provides the highest per-
formance among graph databases according to benchmark
reports; PostgreSQL is among the most popular relational
databases for OLTP; Virtuoso is a multi-modal database
that has published its SNB results (and offers state-of-the-
art SNB results, based on our survey and experiments).

The implementations for these systems are included in the
official SNB repository [7], except for DBMS T, whose im-
plementation is from its own repository, and currently only
implements read-only queries and the driver is limited to
running one type of query each time rather than the mix
of concurrent queries spawned by the official driver. There-
fore, its throughput is estimated by a weighted sum accord-
ing to each query’s frequency (given by the official driver)
and measured average latency. Neo4j and DBMS S’s results
are omitted as they are several orders of magnitude slower,
echoing the findings in existing literature [47].

PostgreSQL and Virtuoso implement the requests with
SQL plus stored procedures, and interact with the bench-
mark driver through JDBC. DBMS T calls RESTful APIs
to serve queries by pre-installed stored procedures. LiveG-
raph’s implementation uses a fixed query plan for each type
of request. We build a server with the Apache Thrift RPC
framework to communicate with the benchmark driver.

We enable transactional support on all systems. LiveG-
raph guarantees snapshot isolation. LMDB and DBMS T do
not support concurrent write transactions, so they provide
serializable isolation. We configure the other systems to use

2We record traces collected from MySQL runs and replay
them for each system. Thinking times (i.e., the time to
generate each request) are also recorded and reproduced.
3The feature/analytics branch from https://github.com
/vTfasttrack/virtuoso-opensource.git, which is about
10x faster than v7.2.5 from master branch.



Table 3: Latency w. LinkBench TAO in memory (ms)

Storage Optane SSD NAND SSD

System | LiveGraph RocksDB LMDB | LiveGraph RocksDB LMDB
mean 0.0044 0.0328 0.0109 0.0051 0.0309 0.0098
P99 0.0053 0.0553 0.0162 0.0058 0.0526 0.0161
P999 1.0846 4.8716 2.0703 1.1224 4.1968 1.5769

Table 4: Latency w. LinkBench DFLT in memory (ms)

Storage Optane SSD NAND SSD

System | LiveGraph RocksDB LMDB | LiveGraph RocksDB LMDB
mean 0.0449 0.1278 1.6030 0.0588 0.1459 1.6743
P99 0.2598 0.6423  9.3293 0.2838 0.8119  9.8334
P999 0.9800 3.5190 12.275 1.4642 4.8753 13.365

either snapshot isolation like LiveGraph, if available, or a
default (usually weaker) isolation level. More precisely we
use read committed for Neo4j, MyRocks, and PostgreSQL,
and repeatable read for MySQL and Virtuoso.

7.2 Transactional Workloads

In-memory latency. First we evaluate transaction pro-
cessing. Tables 3 and 4 give the average latency mea-
sured from LMDB, RocksDB, and LiveGraph in memory,
with the LinkBench TAO and DFLT workloads respec-
tively, using 24 client threads for request generation and
Optane/NAND SSD for transactional durability. The av-
erage latencies for MySQL/MyRocks/Neo4j using Optane
SSD as the backing storage are 0.187/0.214/0.236 ms for
TAO, and 0.708/0.280/1.231 ms for DFLT. As these systems
are clearly slower than LiveGraph, RocksDB, and LMDB,
their detailed results and analysis are omitted.

The results demonstrate LiveGraph’s significant perfor-
mance advantage for both workloads. For the almost read-
only TAO, LiveGraph improves the average latency by
2.47x from the runner-up (LMDB). TEL’s major advan-
tage here comes from storing edges by time order, facilitating
fast-backward partial scans returning latest edges. This type
of query is common not only in social network workloads [20]
but also in other transactional graph applications (such as
traffic maps and financial records). Not only does this ac-
celerate memory accesses, it also improves both spatial and
temporal locality, achieving more effective prefetching. In
addition, compared to B+ trees and LSMTs, TEL has lower
complexity for most operations, and avoids pointer chasing
through the use of sequential data structures.

For DFLT, which contains 31% writes, LiveGraph remains
a consistent winner across all categories. Due to its write-
friendly sequential storage, its margin of advantage is even
higher, beating the runner-ups in average, p99, and p999 la-
tency by 2.67x, 3.06x and 4.99x respectively. Here LMDB
suffers due to B+ tree’s higher insert complexity and its
single-threaded writes, while both LiveGraph and RocksDB
benefit from their write-friendly log-structured design. How-
ever, as DFLT’s majority of transactions are still reads,
RocksDB’s overall performance is severely dragged down by
its inferior read performance in-memory.

LiveGraph has linear complexity (in terms of adjacency
list size) when searching for a single edge, as opposed to the
logarithmic cost of B+ trees or LSMTs. However, these op-
erations (i.e., read/update/delete a specific edge of a high-
degree vertex) are rare in the two LinkBench workloads.
In particular, insertions can usually (in more than 99.9%
of the cases, as found by our profiling) skip such searches,
thanks to early rejection enabled by its embedded Bloom fil-
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Table 5: Latency w. LinkBench TAO out of core (ms)

Storage Optane SSD NAND SSD

System | LiveGraph RocksDB LMDB | LiveGraph RocksDB LMDB
mean 0.0166 0.0420 0.0364 0.0725 0.1065  0.1322
P99 0.1856 0.1135 0.3701 0.4830 0.2535 0.8372
P999 1.9561 4.9366 3.3600 2.5112 4.6701 4.9119

Table 6: Latency w. LinkBench DFLT out of core (ms)

Storage Optane SSD NAND SSD

System | LiveGraph RocksDB LMDB | LiveGraph RocksDB LMDB
mean 0.0735 0.1312 2.4099 0.2184 0.2526 2.2824
P99 0.7923 0.6364 13.799 1.6543 2.2387  12.557
P999 3.0133 3.5250 17.794 5.0363 5.4436 16.698

ters. Therefore, these operations do not impact tail latency
much. LiveGraph’s use of compaction also does not result in
significantly higher tail latency than other systems. This is
because its compaction only scans a small subset of blocks:
the dirty vertex set maintained by each thread.
Out-of-core latency Tables 5 and 6 list the out-of-core
(OOC) results, enabled by limiting memory (using Linux
cgroup tools) to 4GB, which is about 16% of LiveGraph’s,
9% of LMDB’s and 28% of RocksDB’s memory usage. This
cap is the minimal memory for RocksDB to run with 128
client threads while delivering its peak throughput.

RocksDB is optimized for OOC writes, by dumping sorted
blocks of data sequentially and performing compression for
better I/O bandwidth usage. LiveGraph’s design prioritizes
reads instead. It performs sequential writes within an adja-
cency list but it does not ensure sequential storage of multi-
ple dirty adjacency lists. It also issues smaller I/O requests
by doing page write-back, with write size starting at 4KB,
as opposed to the several MBs of RocksDB’s LSMT. For-
tunately, low-latency SSDs like our Optane device or byte-
addressable NVM alleviate such problems.

Test results confirm the rationale above. With the more
read-heavy TAO, LiveGraph wins across the board, cutting
average latency by 2.19x from the runner-up LMDB on Op-
tane. On NAND SSD, RocksDB beats LMDB, being more
bandwidth-efficient with its compression. Still, its average
latency is 1.46x higher than LiveGraph. For DFLT, LiveG-
raph outperforms RocksDB by 1.15x on NAND SSD, and
by 1.79% on the faster Optane SSD.

Across the latency tests, by checking the top 2 finish-
ers, it becomes apparent that among existing solutions, the
B+-tree-based LMDB and LSMT-based RocksDB offer good
performance under mostly-read and mixed workloads, re-
spectively. However, when placed under unfavorable con-
ditions, they switch places, with a 2x to 10x performance
gap in between for each latency category. LiveGraph, in con-
trast, provides clearly better performance both in memory
and out of core with Optane SSD or with the TAO workload.
Scalability and throughput. We examine the multi-core
scalability of LiveGraph by running LinkBench with an in-
creasing number of clients. Figure 7a gives the result. We
can see that LiveGraph’s throughput scales smoothly with
more cores being used until 24 clients when all the physical
cores are occupied. For TAO, the scalability curve is very
close to the ideal one. For DFLT, the write-ahead-logging
bottleneck makes it hard for LiveGraph to achieve perfect
scalability. We expect the emergence of NVM devices and
related logging protocols [13, 14] would resolve this issue.

We then saturate the systems to measure throughput un-
der the two workloads, removing the think time between re-
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quests. Figures 5 and 6 show latency and throughput when
increasing the number of clients from 24 (the number of
cores in our server) until the peak throughput is reached,
which required up to 256 clients.

For TAO (Figure 5), when in-memory on top of Optane
(for durability), LMDB saturates at 32 clients (i.e., near to
the number of physical cores) with a throughput of 3.24M
requests/s, after which the contention on the single mu-
tex intensifies. LiveGraph’s throughput peaks at 8.77M re-
quests/s with 48 clients, strained by context switch overhead
afterwards. We get similar results with NAND.

Out of core, running TAO on top of Optane, RocksDB
beats LMDB and reaches the peak point at 48 clients with
a throughput of 584K requests/s, LiveGraph reaches 860K
requests/s at 64 clients. With NAND, LiveGraph still im-
proves the throughput by 1.31x from RocksDB.

For DFLT (Figure 6), RocksDB reaches 228K requests/s
in memory and saturates at 48 clients, when compaction
starts to pause writes frequently and write/read amplifica-
tion becomes more significant. By contrast, LiveGraph is
able to push beyond 460K at 24 clients, as TEL does not
have such limits. NAND SSD results are similar, showing
LiveGraph 4.83x and 1.43x faster than the runners-up, re-
spectively. Out of core with Optane, LiveGraph peaks at
300K requests/s with 32 client threads and RocksDB sat-
urates at 212K with 48 clients. With NAND, LiveGraph
reaches 96.1% of RocksDB’s peak throughput.

Memory consumption. Using our default compaction fre-
quency every 65536 transactions, the DFLT workload, 24
client threads, and 12M transactions total, LiveGraph con-
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Figure 8: LinkBench throughput with varying writing ratio

sumed 24.9GB in total, against 44.8 GB and 14.4 GB for
LMDB and RocksDB, respectively. For LiveGraph, 706 MB
space is recycled but not yet used at the end of the DFLT
run. Of the allocated space, the aggregate over-provisioned
space is about 4.6GB, leading to 81.2% final occupancy.

Figure 7b gives the TEL block count distribution at dif-
ferent sizes for this workload, which matches the power-law
degree distribution among vertices [29], validating TEL’s
“buddy-system” design.

Effectiveness of compaction. When compaction is com-
pletely turned off, LiveGraph’s footprint sees a 33.7% in-
crease, requiring 33.3GB space. Compaction only scans a
small dirty set so its time overhead is fairly small: vary-
ing the compaction frequency brings insignificant changes
in performance (<5%).

Write-intensive workloads. To test more write-intensive
workloads, we scale the write ratio, starting from LinkBench
DFLT’s 31% to 100%, and use 24 clients.

Figure 8a plots the in-memory throughput of LiveGraph
and RocksDB (winners of DFLT according to Tables 3-6),
with Optane SSD. It shows that LiveGraph’s advantage
weakens as the write ratio grows, but still significantly out-
performs RocksDB (113K over 73K requests/s, at 1.54x)
even with a write-only workload.

Figure 8b gives the out-of-core results on both SSDs. Here
due to the write amplification and random write patterns on
disk when out of core, LiveGraph is overtaken by RocksDB
at write ratios of 75% (Optane SSD) and 50% (NAND SSD).
Considering that LiveGraph’s design favors read-intensive
workloads, which are common in real-world graph database



Table 7: Throughput w. SNB in memory (reqs/s). ) For
DBMS T we extrapolated an optimistic estimate.

System LiveGraph Virtuoso PostgreSQL DBMS T
Complex-Only 9,106 292 3.79 59.3()
Overall 9,420 259 52.4 -

applications [20, 12], it fares reasonably well with an uncom-
mon, extremely write-intensive workload. At 100%-write,
LiveGraph reaches 88.8% of RocksDB throughput with Op-
tane (78.3% with NAND).

We also profile disk output volume to measure write am-
plification and compare with RocksDB, which compresses
SSTs to reduce disk I/O. LiveGraph writes 3.02x as much
data as RocksDB: while the latter flushes only sorted up-
dates, the former performs random writes of entire dirty
pages and writes larger updates. However, the bandwidth
of both our SSD devices is larger than the maximum band-
width used by LiveGraph (522 MB/s), nearly removing the
performance impact of write amplification. Given the com-
mon low write-ratio in commercial workloads, increasing
SSD capacities, and falling storage price per GB, we ar-
gue that LiveGraph provides much improved latency and
throughput at a small cost for average use cases.
Long-running transactions and checkpoints. Our
design supports low overhead read-only transactions with
snapshot isolation. In the following test, we let a check-
pointer continuously scan the whole graph and dump the
latest snapshot to the NAND SSD, while simultaneously
running LinkBench DFLT (in-memory with Optane).

Dumping a snapshot with a single thread to shared-
memory takes 16.0s, without concurrent LinkBench queries.
With concurrent queries with 24 clients (one per core), it
takes 20.6s (22.5% slower). Meanwhile, LinkBench through-
put only slows down by 6.5% when running concurrent, con-
tinuous checkpointing. We get similar results on NAND
SSD, with 10.9% and 3.6% slowdown in checkpointing and
LinkBench processing, respectively. Users may choose to
configure LiveGraph to use more threads for faster check-
pointing, at the cost of higher interference. E.g., with 24
checkpointing threads, LiveGraph completes a 12GB check-
point in 6.5s, fully utilizing the NAND SSD write bandwidth
(2GB/s), while still delivering 86.4% of the full LinkBench
throughput (the one obtained without checkpointing).

7.3 Real-Time Analytics Workloads

Real-time analytics. Table 7 gives the throughput mea-
sured from LiveGraph, Virtuoso, PostgreSQL, and DBMS
T in memory, with only complex reads (referred to as
Complex-Only) and all three categories of requests (referred
to as Overall), using 48 client and 48 worker threads and
Optane SSD for persistence. DBMS T has its own SNB
driver that only runs requests sequentially. We extrapolate
throughput by running it with one worker and then opti-
mistically assume that the system scales linearly to 48 work-
ers. The Overall workload uses SNB’s official mix: 7.26%
complex queries, 63.82% short queries, and 28.91% updates.
RocksDB and LMDB are skipped as (1) these two K-V
stores do not have official SNB implementations, and (2)
our earlier micro-benchmark and LinkBench results of their
basic graph database operations (upon which more complex
queries are built) significantly lags behind LiveGraph. We
only report DBMS T’s Complex-Only results as its imple-
mentation for SNB update requests is still absent. DBMS T
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Table 8: Throughput w. SNB out of core (reqs/s)

System LiveGraph Virtuoso
Complex-Only 31.0 291
Overall 350 14.7

Table 9: Average latency of queries in SNB (ms)

System LiveGraph Virtuoso PostgreSQL DBMS T
Complex read 1 7.00 23,101 371 7
Complex read 13 0.53 2.47 10,419 19.4

Short read 2 0.22 3.11 3.31 3.22

Updates 0.37 0.93 2.19 —

is single-writer so it is unlikely that it would outperform the
other baselines on update requests. LiveGraph outperforms
the runner-up, Virtuoso, by 31.19x and 36.43x, producing
gains far larger than those observed in microbenchmarks or
LinkBench. Meanwhile, Virtuoso beats DBMS T by 4.92x
and beats PostgreSQL by 77.05x and 4.94x.

We found fast edge scans are even more critical with
complex analytics workloads. This also explains why Post-
greSQL underperforms, since it does not support clustered
indexes [8]. Second, MVCC is crucial for fast analytics
when these complex queries are mixed with write transac-
tions. Compared to Complex-Only, Overall has more short
queries/updates, so LiveGraph and PostgreSQL both pro-
duce higher throughput (the reason for LiveGraph’s small
Complex-Only vs. Overall difference is that Overall is more
write-intensive and throughput is limited by persisting the
WAL). Virtuoso, on the other hand, performs worse by
spending over 60% of its CPU time on locks. Of course,
MVCC comes with its space overhead: for this workload,
LiveGraph consumes about 30GB, PostgreSQL 19GB, and
Virtuoso only 8.3GB. Compared to PostgreSQL, which also
performs MVCC, LiveGraph’s space overhead comes from
its longer timestamps, plus its overprovisioning in adjacency
lists (a key design choice that helps in query performance).

One may argue that Virtuoso’s smaller memory footprint
helps with out-of-core execution. Table 8 (with 3GB DRAM
cap, persisting on Optane) shows a heavy performance hit
for both LiveGraph and Virtuoso when going out-of-core,
and the gap between them does shrink. However, LiveGraph
is still an order of magnitude better, and for the Overall mix,
beats Virtuoso’s in-memory performance by 1.35x.

Again, though results are not listed, Neo4j and DBMS S
lose to all three systems by another 2-3 orders of magnitude.
This is in part due to their use of Java, which is not ideal
for data-intensive workloads, and in part because of their
choice of data structures: Neo4j uses linked list and DBMS
S builds on copy-on-write B+ trees similar to LMDB. Our
examination reveals that multi-hop graph queries dramati-
cally stress Java’s garbage collection.

Query case study. Due to space limits, we present brief
case studies on selected queries in the SNB mixes, with their
average latencies listed in Table 9.

“Complex read 1”7 accesses many vertices (3-hop neigh-
bors). Here the benefit of MVCC stands out, with Virtuoso
suffering lower throughput caused by locks.

“Complex read 13” performs pairwise shortest path (PSP)
computation. Virtuoso’s implementation uses its custom
SQL extension, with well-optimized PSP primitive, but still
loses to LiveGraph by 4.68x. PostgreSQL is limited to only
recursive SQL for PSP and loses to other approaches by or-
ders of magnitude. This demonstrates the benefit of having
a graph specific query language or extensions.



Table 10: ETL and execution times (ms) for analytics

System LiveGraph  Gemini
ETL - 1520
PageRank 266 156
ConnComp 254 62.6

“Short read 2” is a 1-hop query with many short neighbor-
hood operations. Here latency relates to seek performance,
demonstrated to be LiveGraph’s forte in the microbench-
mark results.

“Updates” shows average latencies of all requests contain-
ing updates. Though LiveGraph is designed mainly toward
fast reads, it performs well in writes too, leading Virtuoso
by 2.51x and PostgreSQL by 5.92x.

7.4 Iterative Long-Running Analytics

Finally, we evaluate LiveGraph’s capability of perform-
ing iterative long-running analytics directly within its pri-
mary graph store. Table 10 presents its performance in run-
ning two common graph algorithms, PageRank and Con-
nected Components (ConnComp), on a subgraph (with
3.88M edges) of the SNB SF10 dataset, involving all the
Person nodes and their relationships.

LiveGraph performs iterative analyses directly on the lat-
est snapshot, finishing both tasks under 300 milliseconds, us-
ing 24 threads. For comparison, we give the results of Gem-
ini [65], a state-of-the-art graph engine dedicated to such
static graph analytics. Without the compact yet immutable
CSR-based graph storage used by Gemini, LiveGraph man-
ages to reach 58.6% and 24.6% of Gemini’s performance for
PageRank and ConnComp, respectively. In addition, to en-
joy Gemini’s superior performance, one has to export to its
data format, then load the graph into its memory. We mea-
sured this ETL overhead (converting from TEL to CSR)
for this specific graph to be 1520ms, greatly exceeding the
PageRank/ConnComp execution time, not to mention the
difference between LiveGraph and Gemini.

8. RELATED WORK

Transactional Systems. Graph databases can be
grouped into two categories. Native graph databases [3,
9, 10, 11] are designed from scratch for storing/querying
graphs. Non-native graph databases store graphs using
general-purpose stores, sometimes using a layer on top of
an existing RDBMS or key-value store [20, 56, 6, 33, 26].

All these systems support transactional graph workloads
and some of them support analytical graph workloads [18].
As discussed in the motivation, these systems adopt tree-
based [9, 10, 20, 56, 6, 33, 36, 35, 26] or pointer-based [3]
data structures and, therefore, suffer a major limitation of
requiring pointer chasing for adjacency list scans. Even
state-of-the-art systems designed for low latency do not op-
timize for purely sequential scans of adjacency lists [21].

There are efforts on improving the analytical performance
of existing transactional systems [36, 30, 35, 64]. These sys-
tems generally compare with and offer comparable perfor-
mance to GraphLab, while reducing loading time. However,
GraphLab is not a state-of-the-art baseline, as shown by
existing literature [54, 46, 65].

Analytics on Dynamic Graphs. Several graph engines
support graph analytics over an evolving graph, to study
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graph evolution or to update computation results incremen-
tally. Kineograph [24] supports incremental graph analysis
by periodically applying updates and generating snapshots.
Chronos [34] and ImmortalGraph [44] are designed to an-
alyze graph evolution, processing a sequence of predefined,
read-only graph snapshots. LLAMA [43] applies incoming
updates in batches and creates copy-on-write delta snap-
shots dynamically for temporal graph analysis. Grace [49]
supports transactional updates but uses an expensive copy-
on-write technique: every time an adjacency list is modified,
the entire list is copied to the tail of the edge log. This makes
scans purely sequential but it also makes updates very ex-
pensive, especially for high-degree vertices. GraphOne [38]
serializes edge updates by appending them onto a single edge
log. It does not support transactions or durability.

These systems focus primarily on graph analysis. LiveG-
raph supports real-time transactional workloads with better
performance than existing graph databases, while support-
ing whole-graph analytics on the same primary graph store.
Many incremental analytics techniques above can readily be
incorporated, leveraging LiveGraph’s multi-versioning.

Graph engines. Graph engines perform analytical pro-
cessing, such as graph processing [31, 32, 65, 54, 46, 57,
62] or graph mining [60, 58, 22]. Their design assumes
an immutable graph topology, hence widely adopting read-
optimized CSR/CSC representations. As discussed ear-
lier, this delivers superior analytics performance, but does
not handle updates/insertions. Hence existing graph en-
gines have been limited to processing static, stale snapshots
dumped from the data source. In contrast, LiveGraph sup-
ports analytics on dynamic graphs without costly ETL.

9. CONCLUSION AND FUTURE WORK

Our work shows that it is possible to design graph data
management systems that are fast at both transactional and
analytical workloads. The key is using data structures that
are tailored to the operations of graph workloads, as well as
associated algorithms for transactional support. Our eval-
uation confirms the strength of LiveGraph as a potential
all-around choice across multiple graph workloads.

The next steps of LiveGraph include adapting relational
concurrency control and storage techniques optimized for
modern hardware [45, 14, 42, 40]. LiveGraph’s design is
amenable to scaling out, leveraging techniques in distributed
graph query processing [53, 63, 26] and distributed transac-
tion management [48, 25, 19, 26]. In addition, LiveGraph
can be extended in another direction: the multi-versioning
nature of TELs makes it natural to support temporal graph
processing [34, 44], with modifications to the compaction al-
gorithm to efficiently store and index older graph versions.
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