
Realtime Top-k Personalized PageRank over Large Graphs
on GPUs

Jieming Shi†, Renchi Yang∗, Tianyuan Jin‡, Xiaokui Xiao†, Yin Yang§

†School of Computing, National University of Singapore, Singapore
∗School of Computer Science and Engineering, Nanyang Technological University, Singapore

‡University of Science and Technology of China, Hefei, China
§College of Science and Engineering, Hamad Bin Khalifa University, Qatar

†{shijm, xkxiao}@nus.edu.sg, ∗yang0461@e.ntu.edu.sg,
‡jty123@mail.ustc.edu.cn, §yyang@hbku.edu.qa

ABSTRACT

Given a graph G, a source node s ∈ G and a positive in-
teger k, a top-k Personalized PageRank (PPR) query re-
turns the k nodes with the highest PPR values with respect
to s, where the PPR of a node v measures its relevance
from the perspective of source s. Top-k PPR processing
is a fundamental task in many important applications such
as web search, social networks, and graph analytics. This
paper aims to answer such a query in realtime, i.e., within
less than 100ms, on an Internet-scale graph with billions of
edges. This is far beyond the current state of the art, due to
the immense computational cost of processing a PPR query.
We achieve this goal with a novel algorithm kPAR, which
utilizes the massive parallel processing power of GPUs.

The main challenge in designing a GPU-based PPR algo-
rithm lies in that a GPU is mainly a parallel computation de-
vice, whereas PPR processing involves graph traversals and
value propagation operations, which are inherently sequen-

tial and memory-bound. Existing scalable PPR algorithms
are mostly described as single-thread CPU solutions that
are resistant to parallelization. Further, they usually involve
complex data structures which do not have efficient adap-
tations on GPUs. kPAR overcomes these problems via both
novel algorithmic designs (namely, adaptive forward push

and inverted random walks) and system engineering (e.g.,
load balancing) to realize the potential of GPUs. Meanwhile,
kPAR provides rigorous guarantees on both result quality
and worst-case efficiency. Extensive experiments show that
kPAR is usually 10x faster than parallel adaptations of ex-
isting methods. Notably, on a billion-edge Twitter graph,
kPAR answers a top-1000 PPR query in 42.4 milliseconds.

PVLDB Reference Format:
Jieming Shi, Renchi Yang, Tianyuan Jin, Xiaokui Xiao, and Yin
Yang. Realtime Top-k Personalized PageRank over Large Graphs
on GPUs. PVLDB, 13(1): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/3357377.3357379

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 1
ISSN 21508097.
DOI: https://doi.org/10.14778/3357377.3357379

1. INTRODUCTION
Given a graph G, a source node s, and a target node

t, the Personalized PageRank (PPR) [28] π(s, t) of t with
respect to s is defined as the probability that a random
walk starting from s terminates at t. Intuitively, the PPR
of t reflects its relevance from the perspective of source
node s, which is meaningful in many important applica-
tions. For instance, search engines use PPR to rank web
pages based on individual users’ preferences [45]; social net-
working sites utilize PPR to recommend contents and new
connections to users [24, 32]; biologists apply PPR to an-
alyze the relationships in protein networks [26]. Recently,
PPR has also been applied to deep graph convolutional net-
works [30], which achieves state-of-the-art performance in
semi-supervised classification tasks.

In many application, often the user is mainly interested
in the most relevant nodes with respect to the source node
s [54], rather than ones with little relevance to s. This mo-
tivates top-k PPR queries, which return the k nodes with
the highest PPR scores with respect to s. Finding the exact
top-k PPR results is known to be computationally inten-
sive [52, 54], due to the large number of nodes that need to
be accessed. Hence, practical solutions that scale to large
graphs (e.g., [52,54]) usually focus on answering approximate

top-k PPR queries, which provides a controllable trade-off
between result quality and processing efficiency. Even so,
processing a top-k on an Internet-scale graph with billions
of edges is still rather expensive in terms of computations,
and existing work (e.g., [31]) has used a computing cluster
with hundreds of nodes for this purpose.

In this paper, we set the ambitious goal of answering a
top-k PPR query in realtime (in particular, within 100 mil-
liseconds, as suggested in [1, 44]), on a single commodity
server. Such a solution can be a key enabler for applications
where users wait online for top-k PPR results, and graph
analysis at scale using deep neural networks [30]. This ob-
jective, however, is far beyond the current state of the art,
which, though asymptotically optimal, often neglect sys-
tem aspects such as parallelism and memory access. We
achieve it through a novel solution, namely kPAR, which
utilizes the massively parallel processing power of a graph-
ical processing unit (GPU). Compared to a CPU, a GPU
has a significantly higher number of threads; however, un-
like a CPU thread that can individually carry out instruc-
tions with complex logic, GPU threads are lightweight ones

15

limited to simple tasks. Further, GPU threads are grouped
into warps (e.g., 32 threads per warp), such that all threads
in the same warp can only perform the same execution path
concurrently. If multiple paths exist in a warp (e.g., if-else
clauses), these paths are executed sequentially rather than
in parallel, which is called warp divergence. Due to such
architectural characteristics, common data structures, e.g.,
sets and heaps, are considerably less efficient on GPUs than
on CPUs; hence, adapting a CPU-based algorithm to GPUs
often requires non-trivial algorithmic re-designs. Design-
ing a GPU-based top-k PPR solution is particularly chal-
lenging, as PPR computation relies on graph traversal and
value propagations that involve complex logic and random
memory accesses, which would lead to severe warp diver-
gence and high GPU memory access overhead. In addition,
real-world graphs often exhibit high skewness, e.g., in terms
of node degrees and random walk costs, which may cause
load-imbalance among warps, further hampering GPU par-
allelism. In our experiments, we have adapted a recent ap-
proach FORA+ [52] to run on a GPU, and found that its
performance is no better than on a multiple-core CPU.

Addressing the above challenges for using GPUs to an-
swer top-k PPR queries, we propose kPAR (short for Top-k
PPR with Adaptive Forward Push and Inverted Random
Walks), a GPU-based top-k PPR algorithm that achieves
high efficiency through both algorithmic designs and system
engineering specific to GPUs. In terms of algorithmic de-
sign, kPAR includes two main techniques, adaptive forward

push (AFP) and inverted random walks (IRW). AFP differen-
tiates the push strategies of nodes according to their global
PageRank values [45], to remedy the deficiency of the orig-
inal Forward Push [9] that applies a unified push strategy
for all nodes, which would cause most GPU threads to stay
idle in the iterations with few nodes to push. IRW maintains
a start-list for each node v, which stores all the nodes with
at least one random walk stopping at v, as well as their
frequencies to v, differing from the conventional way that
stores, for each node v, a list of end nodes of the random
walks starting from v [51, 52]. To store the same number
of random walks, IRW requires less space, which is espe-
cially important on GPUs with a relatively small amount
of high-bandwidth video RAM (16GB in our experiments).
More importantly, utilizing the IRW technique, kPAR devel-
ops new PPR bounds (elaborated in Section 3.4) to help find
top-k results by only scanning promising candidates instead
of all nodes. Finally, we develop parallel optimizations for
PPR computation on GPUs, which take into account load
balancing, atomic operations, and memory access patterns.

We experimentally evaluate our algorithm against the state-
of-the-art methods, including their parallel versions on CPUs
and GPUs over large graphs. The results show that kPAR is
faster than existing methods by one to three orders of mag-
nitude. In particular, kPAR answers top-1000 PPR queries
using 42.4 milliseconds on a large Twitter graph with 42
million nodes and 1.5 billion edges.

2. PRELIMINARIES

2.1 Problem Definition
Let G = (V,E) be a directed graph, where V is the set

of nodes and E is the set of edges (n = |V | and m = |E|).
Given a source node s ∈ V and a jump factor α, a walker
starts from s to traverse the graph G, and at each step, the

Table 1: Frequently used notations.
Notation Description

G=(V,E) Input graph G with node set V and edge set E

n,m n = |V |,m = |E|

Nout(v) The sets of out-neighbors of node v

dout(v) The out-degree of node v

π(s, t) The exact PPR value of t w.r.t., s

π̂(s, t) The estimated PPR value of t w.r.t., s

α The probability for a walker to stop per step

δ, ǫ, pf Parameters of an approximate top-k PPR query
(Definition 1)

δinit The initial value of δ for a query

δmin The pre-computation setting of δ; during a query,
δ ≥ δmin

rmax The global residue threshold for forward push

rmax(v) The residue threshold of node v

β(v) The scale factor of v, rmax(v) = β(v) · rmax

r(s, v) The residue of v during forward push from s

π◦(s, v) The reserve of v during forward push from s

τ The candidate threshold

ρ The maximum possible increment of PPR value
caused by one random walk in Eq. (10)

ω(v, t) The total number of random walks starting from
node v and stopping at t

ω(v),
ωI(v)

The total number of random walks starting from
(resp. stopping at) node v

walker either (i) terminates at the current node with α prob-
ability, or (ii) jumps to a randomly selected out-neighbor of
the current node. For any node v ∈ V , the personalized
PageRank (PPR) π(s, v) is the probability that a random
walk from s terminates at v [45]. Note that if a graph is
undirected, we can convert it to a directed graph by regard-
ing each edge as two directed edges of opposite directions.

A top-k PPR query takes as input a graph G, a source
node s, and a parameter k, and returns the top-k nodes
with the highest PPR with respect to s, together with their
respective PPR values. This paper focuses on approximate

top-k PPR query processing, defined as follows [51, 52]:

Definition 1. (Approximate Top-k PPR Queries) Given a
source node s, a threshold δ, an error bound ǫ, a failure prob-
ability pf , and a positive integer k, an approximate top-k
PPR query returns a sequence of k nodes {v1, . . . , vi, . . . , vk},
associated with their estimated PPR π̂(s, vi), such that with
probability 1− pf , for any i ∈ [1, k], when π(s, v∗i) > δ,

|π̂(s, vi)− π(s, vi)| ≤ ǫ · π(s, vi) (1)

π(s, vi) ≥ (1− ǫ) · π(s, v∗i) (2)

hold, where v∗i is the node with i-th largest actual PPR.

The accuracy of the estimated PPR values is ensured by
Equation 1, and Equation 2 guarantees that the i-th re-
turned node has a PPR close to the actual i-th largest
PPR. Following previous work [36, 37, 51, 52], we assume
that δ = O(1/n), to provide approximation guarantees for
nodes with above-average PPR. Table 1 lists the notations
that are frequently used in our paper.

2.2 Graphics Processing Units
GPUs are widely used for general-purpose parallel com-

puting [22, 33, 42, 43, 49, 53]. Here we introduce the key ar-
chitectural characteristics of GPUs with the popular Nvidia
CUDA programming framework.

16

Kernels and Thread Hierarchy. A GPU consists of tens
of Streaming Multiprocessors (SMs), each of which has more
than one thousand threads. The threads are managed in a
grid-block-warp hierarchy. When a GPU program, called a
kernel, is launched with a user-specified number of threads,
the GPU creates a grid of threads for it. The grid partitions
the threads into a number of blocks with same size (e.g.,
1024). A block consists of dozens of warps, the basic unit of
execution in an SM. Note that the user-specified number of
threads and the block size cannot be changed at runtime.

Single Instruction Multiple Thread (SIMT). A warp
consists of 32 consecutive threads. SIMT means all threads
in a warp execute the same instruction at the same time,
and each thread carries out that operation on its own pri-
vate data. If two threads in a warp have different execution
paths, warp divergence occurs, and the GPU executes these
paths sequentially. GPU threads are extremely lightweight
and optimized for data-parallel tasks with simple control
logic, unlike a CPU thread that is capable of handling com-
plex control logic individually. Hence, complex control logic
on GPUs would downgrade the efficiency.

Memory Hierarchy and Coalescing. Threads on GPUs
cannot communicate with each other directly. Threads in a
warp can communicate via registers; threads in a block can
share data via shared memory ; threads across blocks can
only share data via global memory. Among these, global
memory is the largest but slowest storage, while registers
and shared memory are scarce resources in SMs. GPUs
support memory coalescing to reduce global memory access
overhead: if multiple threads in a warp access consecutive
addresses in global memory, the SM for the warp issues one
request to get the consecutive data for these threads, instead
of issuing separate requests; if the memory accesses are not
consecutive, multiple random accesses are issued.

Atomic Operations. The numerical operations on par-
allel hardware must be atomic since multiple threads may
update the same value simultaneously. GPUs support nec-
essary atomic operations. Atomic operations need to be
used carefully. If several atomic operations update the same
value simultaneously, the operations would be executed se-
quentially. Even worse, the operations will keep trying to
update until success, which means a lot of repeated control
logic, e.g., while loops, leading to warp divergence.

2.3 Existing CPUbased Methods
We first explain two basic techniques for estimating PPR,

Monte-Carlo and ForwardPush, which are closely related to
this work, and then review the state-of-the-art methods,
FORA and TopPPR, as well as their deficiencies for GPUs.

Monte-Carlo. Monte-Carlo (MC) [17] is a classic solution for
PPR estimation. MC generates ω(s) random walks from
source node s. For each node v, there are ω(s, v) random

walks stopping at v. The fraction ω(s,v)
ω(s)

is regarded as the

estimated PPR π̂(s, v). When ω(s) = Ω
(

log (1/pf)

ǫ2δ

)

, MC

satisfies Equation 1 with time complexity O
(

log (1/pf)

ǫ2δ

)

[17].

MC is inefficient as shown in [36,51,52].

Forward Push. Forward Push [9] (see Algorithm 1) can ap-
proximate the PPR scores of all the nodes w.r.t., source s,
but without any accuracy guarantee. Every node v has two

Algorithm 1: Forward Push

Input: G, s, α, rmax
Output: π◦(s, v), r(s, v) for all v ∈ V

1 r(s, s)← 1; r(s, v)← 0 for all v 6= s;
2 π◦(s, v)← 0 for all v;
3 Frontier Set S ← {s};
4 while S 6= ∅ do
5 Temporary Set S′ ← ∅;
6 for each v ∈ S do
7 for each u ∈ Nout(v) do

8 r(s, u)← r(s, u) + (1− α) · r(s,v)
dout(v)

;

9 if r(s, u)/dout(u) > rmax then
10 S′ ← S′ ∪ {u};

11 π◦(s, v)← π◦(s, v) + α · r(s, v);
12 r(s, v)← 0;

13 S ← S′;

values, a reserve π◦(s, v) and a residue r(s, v), with initial
values r(s, s) = 1, π◦(s, s) = 0, and r(s, v) = π◦(s, v) =
0 for any v 6= s. Forward Push sets a threshold rmax
for all the nodes, and then keeps pushing the residues of

the nodes v satisfying r(s,v)
dout(v)

> rmax (called frontiers) to

their reserves and their out-neighbors’ residues at Lines 6-
12, where Nout(v) denotes the set of out-neighbors of v
and dout(v) is the number of out-neighbors. Specifically,
it increases the residue of each out-neighbor u’s residue by

(1− α) · r(s,v)
dout(v)

. Then, it increases v’s reserve by α · r(s, v),
and resets v’s residue to r(s, v) = 0. This iterative process
terminates when there is no node to push, i.e., when the
frontier set S becomes empty. Finally, Forward Push re-
turns π◦(s, v) as an approximation of π(s, v). Forward Push
runs in O(1/rmax) time. The estimated π◦(s, v) does not
offer any worst-case error guarantee, meaning that Forward
Push by itself is insufficient for the problem in Definition 1.

FORA. FORA [52] leverages the power of both Forward Push
and Monte-Carlo, and applies an iterative framework to an-
swer top-k PPR queries. In each iteration, it first performs
forward push from s, and then generates random walks from
the nodes with non-zero residues. Specifically, Forward Push
has the following invariant [9]:

π(s, t) = π◦(s, t) +
∑

v∈V r(s, v) · π(v, t), (3)

After forward push, FORA uses Monte-Carlo to derive π′(v, t),
approximating the unknown π(v, t) for each node v, and
then replaces π(v, t) in Equation 3 with π′(v, t), obtaining
the following estimation:

π̂(s, t) = π◦(s, t) +
∑

v∈V r(s, v) · π′(v, t). (4)

Denote the sum of the residues of all the nodes after forward
push as rsum. Since Forward Push runs in O(1/rmax) and
the expected runtime complexity of the Monte-Carlo phase

is O(rsum · (2ǫ/3+2) log(2/pf)

ǫ2·δ), FORA minimizes the total time
complexity by setting rmax as follows:

rmax = ǫ√
m

·
√

δ
(2ǫ/3+2)·log(2/pf)

. (5)

On CPUs, FORA performs forward push as shown in Algo-
rithm 1. Forward Push on CPUs can efficiently maintain
a set of unique frontiers to push (Lines 3, 5 and 10), since
sets (or heaps, queues) on CPUs can be efficiently updated.

17

In contrast, the only data structure on GPUs that we can
rely on to design our algorithm is just arrays. When mi-
grated to GPUs, in each iteration, forward push on GPUs
atomically pushes residues of all the frontiers and generates
an array of new frontiers for next iteration. In Section 3.2,
we show that simply extending forward push on GPUs is
rather inefficient since there are many iterations with few
frontiers, indicating that most of the threads are idle during
these iterations, which slows down the performance. Fur-
thermore, most real-world graphs are scale-free (i.e., fol-
lowing power law distributions with some nodes having ex-
tremely large out-degrees but the remaining nodes having
small out-degrees), which generates imbalanced workloads on
GPUs among thread blocks. A similar situation occurs dur-
ing Monte Carlo, though random walks can be pre-computed
and parallelized. In our experiments, CPU-parallelized and
GPU-parallelized FORA are inferior to our algorithm.

TopPPR. TopPPR [54] is an algorithm for top-k PPR queries
that ensures at least p-precision (i.e., at least p fraction of
the actual top-k nodes are returned). Note that TopPPR

solves a different problem from ours, in the sense that it
does not provide guarantees about the PPR values, nor the
order of the nodes returned. TopPPR integrates three tech-
niques: Forward Push (FP), Monte Carlo (MC), and Back-
ward Search (BS) [8], while FORA only uses FP and MC.
In a nutshell, TopPPR iteratively maintains and updates a
candidate set by performing the three techniques one by
one, until the candidate set is certain to satisfy the preci-
sion requirements. It is non-trivial to extend TopPPR to
GPUs. First, TopPPR needs to store two copies of a graph
in memory, one for the out-neighbor lists of all nodes (used
by FP and MC), and the other for the in-neighbor lists of
all nodes (used by BS). This doubles the memory consump-
tion of the algorithm, which can be problematic for large
graphs. For instance, for the billion-edge Twitter graph used
in our experiments, TopPPR requires 24GB memory, which
exceeds the capacity (16GB) of the Tesla P100 GPU in our
experimental setting. Second, TopPPR suffers the same is-
sues that FORA has during FP and MC stages, as analyzed
above for FORA. Third, for every iteration, TopPPR needs
to create and maintain data structures that are difficult to
parallelize on a GPU due to the latter’s architectural charac-
teristics, which include the Alias structure [50] for weighted
sampling, inverted lists for group Backward Search, and pri-
ority queues for candidate update. In our experiments, we
found that the GPU version of TopPPR is no faster than the
multi-thread CPU version of TopPPR.

3. ALGORITHM
We provide an overview of our algorithmic techniques and

then present the details.

3.1 Overview
Our algorithm combines Forward Push and Monte-Carlo

, and utilizes the forward push invariant (Equations 3 and
4) to answer top-k PPR queries defined in Definition 1. Ob-
serving that there are many ineffective iterations (i.e., iter-
ations with few frontiers, causing GPUs mostly idle) during
forward push, we propose an adaptive forward push (AFP)
technique in Section 3.2 to tackle the issue. Instead of using
one rmax threshold for all the nodes in the original forward
push, we use global PageRank [45] to assign different residue

Algorithm 2: ParallelAFP

Input: Set of frontiers F, s, α, rmax(v) for all v ∈ V
Output: π◦(s, v), r(s, v) for all v ∈ V

1 while F 6= ∅ do
2 parallel for each v ∈ F do
3 π◦(s, v)← π◦(s, v) + α · r(s, v);
4 F (v)← r(s, v); r(s, v)← 0;

5 F ← ParallelResiduePush(F, rmax(·));

thresholds rmax(v) to different nodes v. For nodes that tend
to become frontiers in the ineffective iterations, AFP assigns
larger residue thresholds to them, aiming to decrease their
chance to become frontier, and thus reduce ineffective it-
erations. With respect to the Monte-Carlo phase, in Sec-
tion 3.3, we design a new indexing scheme, called inverted

random walks (IRW), to organize the pre-computed random
walks in their inverted form. In a nutshell, each node v
maintains a start-list containing all the nodes that have ran-
dom walks stopping at v, as well as the count of such random
walks. By aggregating random walks with the same starting
and ending nodes together, the index size is reduced, which
offers flexibility to design more optimizations that may re-
quire extra space, especially on GPUs with limited global
memory. Utilizing IRW, we derive new theoretical bounds
and present our parallel algorithm, kPAR, for top-k PPR
queries in Section 3.4.

3.2 Adaptive Forward Push
Algorithm 2 shows the pseudo code of AFP on GPUs,

ParallelAFP, with new techniques to be presented shortly. In
each iteration, the frontiers in F push their residues to their
reserves (Line 3) and to the residues of their out-neighbors
using procedure ParallelResiduePush at Line 5, which also re-
turns the new frontiers for next iteration. Algorithm 2 iter-
ates until F is empty. ParallelResiduePush will be explained
in Section 4.1 since it involves mainly parallel optimizations.

We observe that the number of frontiers increases abruptly
during the first few iterations, but then decreases slowly by
many iterations until reaching zero. Lots of the iterations in
the late stage have just dozens of frontiers, which means that
most of the threads are idle in these iterations. We call such
iterations as ineffective iterations. Ineffective iterations are
harmful to efficiency, since (i) GPU resources are mostly idle
during the ineffective iterations; (ii) the launch of kernels has
a minimum cost regardless of the number of frontiers.

AFP is designed to reduce such ineffective iterations. In-
stead of one residue threshold rmax for all nodes, AFP main-
tains an individual threshold rmax(u) for each node u ∈ V ,
and rmax(u) is larger if u is easier to become frontier in the
ineffective iterations. One question is how to identify such
nodes before any query starts.

We employ global PageRank [45], a measure that evalu-
ates the global importance of a node u ∈ V with respect to
the whole graph. Denote the PageRank of node u as pr(u).
Generally, a node u with large pr(u) has a large impact on
others (i.e., many incoming followers). Further, observe that
residues are pushed out along the out-going edges of a fron-
tier t, equivalent to being pushed along the incoming-edge of
the out-neighbors u of the frontier. Therefore, node u with
larger pr(u) tends to accumulate higher residue. Note that
u becomes frontier if r(s, u)/dout(u) > rmax holds. Hence,

18

among the nodes with large PageRank, those with small out-
degrees are the easiest ones to become frontiers. Therefore,
we pre-compute the PageRank of all the nodes u in graph
G and sort the nodes in decreasing order based on score
pr(u)/dout(u), to obtain a ranked list called PRO-rank list.
Then given the rmax in Equation 5, AFP assigns a larger
residue threshold rmax(u) for u by assigning a larger scale
factor β(u) if u ranks higher in the list:

rmax(u) = β(u) · rmax, where β(u) ≥ 1. (6)

AFP increases the difficulty for the highly ranked nodes to
become frontiers, without requiring any information about
specific queries and only using PageRank and out-degrees.
Method ParallelAFP in Algorithm 2 takes as input a vector
of residue thresholds rmax(v) for all v ∈ V , instead of one
rmax for all in the original Forward Push (Algorithm 1). For
simplicity, we use rmax(·) to represent rmax(v) thresholds of
all v ∈ V ; similar notations are used for other variables too.

Remark. The increase of residue threshold rmax(u) should
be compensated by more random walks from u in order to
guarantee the accuracy, meaning that the choice of rmax(u)
is closely related to the number of random walks precom-
puted by u. Therefore, we explain how to decide rmax(u) in
Section 3.3.2 after introducing the inverted random walks.

3.3 Inverted Random Walks
Given a random walk from node v to t, we call v as the

start and t as the end of the random walk. Existing meth-
ods [51,52] maintain an end-list for each node v, storing all
the end nodes of the random walks starting from v, in their
randomly generated order (e.g., left part of Figure 1). Ob-
serve that there are many random walks from the same start
to the same end. For instance, v0 stops at v2 three times and
consequently, v2 is stored three times in the end-list of v0,
obviously wasting space that is precious on GPUs. We pro-
pose to organize random walks in their inverted form, called
Inverted Random Walks (IRW). IRW maintains a start-list
for each node v, and the list stores all the nodes that have at
least one random walk stopping at v, as well as their frequen-
cies to v. When storing the same number of random walks,
IRW uses less space than the conventional index, which offers
us the space flexibility on GPUs to design more optimiza-
tions for large graphs. More importantly, IRW assists the
algorithm kPAR in Section 3.4 to develop new PPR bounds,
which helps to find top-k results on GPUs.

3.3.1 DoubledCSR IRW Structure

Specifically, every node tmaintains a start-list, which stores
the nodes that have at least one random walks stopping at t.
Denote ω(v) as the number of random walks starting from
node v, and ω(v, t) as the number of random walks starting
from v and stopping at t. For node t, its start-list consists
of (v, ω(v, t)) pairs. The right side of Figure 1 presents the
corresponding IRW scheme example. The start-list of v3
indicates that node v1 stops at v3 4 times (frequencies in
brackets), v4 stops at v3 3 times, and v0 stops at v3 once
(no number in brackets means frequency 1). IRW also stores
the total number of random walks that stop at v, ωI(v),
e.g., v3 has 8 random walks stopping at it. If a frequency is
larger than one, we call it significant. Within a start-list, we
place the starting nodes with significant frequencies ahead
of those insignificant ones, which helps organize IRW into
a compact doubled-CSR format (Compressed Sparse Row).

RW index IRW index (start-lists)

Figure 1: Example of Inverted Random Walks

�
�ଵ �ସ
�ଶ �ଷ

�ଷ(4) → �ଶ, �ଶ, �, �ଶ�ସ(4) → �ଷ, �ଶ, �ଷ, �ଷ
�(5) ← �ଶ 3 , �, �ଷ

�ଶ(4) → �ଵ, �, �, ��ଵ(10) → �ଵ, �ଶ, �ଷ, �ସ, �ଶ, �ସ, �ସ, �ଷ, �ଷ, �ଷ�(8) → �ଷ, �ଵ, �ଵ, �ଶ, �, �ଵ, �ଶ, �ଶ �ଵ(5) ← � 3 , �ଵ, �ଶ�ଶ(9) ← � 3 , �ଵ 2 , �ଷ 3 , �ସ�ଷ(8) ← �ଵ 4 , �ସ(3), ��ସ(3) ← �ଵ 3
RW index IRW index (start-lists)

Nodes � �ଵ �ଶ �ଷ �ସ�(�) 8 10 4 4 4�ூ(�) 5 5 9 8 3

src_begin 0 3 6 10 13
sigFreq_begin 0 1 2 5 7 148
�ଶ � �ଷ � �ଵ �ଶ � �ଵ �ଷ �ସ �ଵ �ସ � �ଵ0 3 6 10 13

3 3 3 2 3 4 3 30 1 2 5 7

�ூ(�)�(�)

���ଵ���ଶ
Figure 2: Doubled-CSR Inverted Random Walks

Figure 2 displays the doubled-CSR of the example in Fig-
ure 1: CSR1 stores all the start-lists and CSR2 stores the
corresponding significant frequencies.

Then we can use IRW to estimate π̂(s, t). After forward
push from query s, the reserves and residues of all the nodes

are known, and π′(v, t) is estimated by ω(v,t)
ω(v)

. Then we can

estimate π̂(s, t) based on Equation 4 by parallel-scanning the
start-list of t. Take Figure 1 as an example with source node
v0 and target node v3. According to Equation 4, π̂(v0, v3) =
π◦(v0, v3) +

∑

v∈V r(v0, v) · π′(v, v3). Suppose that after
forward push, the residues are r(v0, v0) = 0, r(v0, v1) =
0.128, r(v0, v2) = 0.235, r(v0, v3) = 0.107, r(v0, v4) = 0.107.
The start-list of v3 in Figure 1 shows that only v1, v4, v0 have
random walks stopping at v3. Therefore,

∑

v∈V r(v0, v) ·
π′(v, v3) = 0.128 · 4

10
+ 0.107 · 3

4
+ 0 · 1

8
= 0.131. Then

π̂(v0, v3) can be easily obtained since π◦(v0, v3) is already
produced by forward push. Note that although there are 4
random walks from v1 to v3, they are processed together,
due to the frequency aggregation.

3.3.2 Offline Indexing and Deciding rmax(v)

For each node v ∈ V , we pre-compute ω(v) random walks:

ω(v) =

⌈

dout(v) · rmax(v) ·
(2ǫ/3 + 2) · log 2n logn

pf

ǫ2 · δmin

⌉

, (7)

where δmin is the pre-computation setting for δ.
According to Lemma 1 and Corollary 1 introduced later

in Section 3.4.5, with the above number of random walks
pre-computed per node, given any nodes s and t in V , we
can guarantee that (1 − ǫ) · π(s, t) ≤ π̂(s, t) ≤ (1 + ǫ) ·
π(s, t) when π(s, t) > δmin. For simplicity, denote ψ =
(2ǫ/3+2)·log (2n logn/pf)

ǫ2
.

As mentioned in Section 3.2, to guarantee the same ac-
curacy, the increase of residue thresholds must be compen-
sated by more random walks. Given the fact that GPUs
have very limited memory, we decide β(v) and rmax(v) in
Equation 6 by a space budget. At the beginning, assume
that β(v) = 1 for all v ∈ V (i.e., ∀v ∈ V, rmax(v) = rmax),
then we can have the initial total number of random walks

19

w: ω =
∑

v∈V ω(v). Suppose that we can afford a budget of

20% more random walks. Choosing a factor a = 2i (i ≥ 1),
we scan the PRO-rank list built in Section 3.2 from top
down, and increase ω(v) to a ·ω(v) for the scanned nodes v,
until half of the budget is consumed. Then we decrease a by
half, and keep scanning and increasing ω(v) to a ·ω(v), until
a quarter of the budget is used up. This process continues
until a becomes 2. When a = 2, we keep scanning and de-
plete all remaining budget. If node v has a − 1 times more
random walks, β(v) is calculated as in Equation 8, derived
based on Equation 7. Then we get rmax(v) in Equation 6.

β(v) =
a · δmin · ⌈dout(v) · rmax · ψ/δmin⌉ − δmin

dout(v) · rmax · ψ
(8)

The space complexity of IRW index is presented below.

Theorem 1. The space complexity of the IRW index is

O

(

n+ 1
ǫ

√

m log(1/p′
f
)

δmin

)

.

When δmin = O(1/n), log p′f = O(log n), for scale-free graphs,

i.e., m/n = O(log n), the complexity becomes O(1
ǫ
n · log n).

Proof.

O
(

∑

v

⌈

rmax(v) · dout(v) · ψ
δmin

⌉)

= O
(

∑

v

⌈

rmax · dout(v) · ψ
δmin

⌉)

= O
(

n+
√

m·ψ
δmin

)

= O

(

n+ 1
ǫ

√

m log(1/p′
f
)

δmin

)

(9)

3.4 Parallel Topk PPR Processing
Algorithm 3 shows the pseudocode of the main algorithm

kPAR. Given a graph G, a source node s, a jump factor
α, a parameter k, kPAR finds the top-k nodes associated
with their approximated PPR scores. kPAR works in an it-
erative way, starting by setting δ with a relative large δinit,
and reducing δ by half per iteration, until δ reaches δmin or
the maximum iterations L is reached (Line 6), where L is a
constant with L ≤ log n. The failure probability of each iter-
ation is p′f =

pf
n logn

(Line 1). In each iteration, all n nodes
have the possibility to be in the top-k result. By apply-
ing union bound, when p′f =

pf
n logn

, the failure probability

of the whole algorithm is exactly pf (i.e., pf in Equation
5 needs to be replaced with p′f). In each iteration, paral-
lel AFP is performed at Line 7, followed by candidate set
generation (Line 8) and a technique called parallel bound
reduction (Line 10) that helps get a tighter bound. From
Lines 12-23, we probe the candidate set C and check if top-k
nodes satisfying Definition 1 are found. Specifically, we first
partition the candidates in C into shards Ci with size that
can exactly utilize all the threads of a GPU, then calculate
the PPR scores of the candidates in Ci in parallel (Line 13).
Then, the processed candidates with their scores are used to
calculate the bounds derived in Section 3.4.2 (Lines 14-23).
If the current iteration fails, δ is reduced by half and other
parameters are updated accordingly at Lines 24-25. Under
the new parameters, new frontiers are generated for next it-
eration (Line 26). Following convention [52], under extreme
cases that rarely happen, if no top-k nodes are reported af-
ter L iterations, parallel single source query is performed to
get the top-k result (Lines 27-32).

Algorithm 3: Parallel Top-k PPR: kPAR

Input: Graph G, source node s, jump factor α, parameter k
Output: Top-k nodes with approximate PPR scores

1 δ ← δinit, p
′
f ←

pf
n·logn , ℓ← 0;

2 r(s, s)← 1, r(s, v)← 0 for all v 6= s;
3 π◦(s, v)← 0, π̂(s, v)← 0 for all v;
4 Processed nodes Cp ← {}; Current top-k nodes Ck ← {};
5 Current k-th largest PPR score π̂k ← 0;
6 while δ ≥ δmin and ℓ < L do
7 ParallelAFP(F, s, a, rmax(·));
8 C ← ParallelGetCandSet(π◦(s, ·), τ);
9 π̂(s, ·)← π◦(s, ·);

10 ωubI ← ParallelBoundReduction(H);

11 Cp ← Cp ∪H;
12 for each shard Ci ⊆ C do
13 ParallelComputePPR(Ci);

14 Update Ck, Cp, and get π̂ub by Eq. (11);
15 LBℓ(π̂

′
k)← ∀v ∈ Ck, the smallest LBℓ(v) ≥ δmin;

16 success← false;

17 if LBℓ(π̂
′
k) ≥ (1− ǫ) · UBℓ(π̂

ub) then
18 success← true;
19 parallel for vi ∈ Ck that LBℓ(vi) ≥ δmin do
20 if LBℓ(vi) ≤ (1− ǫ) · UBℓ(vi+1) then
21 success← false;

22 if success then
23 return top-k nodes with their PPR π̂(s, ·) ;

24 δ ← δ/2, ℓ← ℓ+ 1;
25 Update rmax, rmax(v) , ρ by Eq. (5), (6), and (10);
26 F ← ParallelGenFrontiers(r(s, ·), rmax(·));

27 parallel for each node v with r(s, v) > 0 do

28 ω(v) =
⌈

r(s, v) · 4(ǫ/3 + 2) · log (2/p′f)/(ǫ
2 · δ)

⌉

;

29 parallel for i = 1, . . . , ω(v) do
30 t← RandomWalk(s);

31 atomicAdd(π̂(s, t),
r(s,v)
ω(v)

);

32 return top-k nodes with their PPR π̂(s, ·) ;

In the following, we explain the techniques mentioned
above one by one, except procedures ParallelComputePPR

(Line 13) and ParallelGenFrontiers (Line 26) that are mainly
parallel optimizations and are introduced in Section 4.

3.4.1 Parallel Candidate Set Generation

The first step is to obtain a candidate set in each itera-
tion. Since Algorithm 3 starts with δ = δinit and iteratively
reduces δ by half until top-k nodes are found, in order to
reduce unnecessary overhead, the number of promising can-
didates per iteration is related to δ. Naturally we can set a
candidate threshold τ that is proportional to δ, e.g., 0.5δ,
such that after forward push, all the nodes with π◦(s, v) ≥ τ
are selected as candidates into C. Since C is chosen accord-
ing to δ, the size of C would not be large. The candidates
are sorted in decreasing order of their reserves. Note that
given a candidate t, after estimating its PPR at Line 13 of
Algorithm 3, if its π̂(s, t) is smaller than δ, it is excluded
from the computation afterwards.

There are several possible ways to implement procedure
ParallelGetCandSet to collect the candidates. One way is to
maintain a candidate flag for each node v (initialized as 0).
And during forward push, whenever π◦(s, v) becomes larger
than τ , we set the flag to 1. After forward push, a stan-
dard parallel select is performed over the flags to get all the

20

10
3

10
4

10
5

10
6

10
7

0 1 2 3 4 5 6 7 8 9 10

ω
I
 (× 10

3
)

accumulated count

Figure 3: Accumulated Count of Nodes v with ωI(v)

flagged nodes into C. Another way maintains the candi-
date flags as well, but detects and inserts candidates into C
during forward push. Specifically, C is an array with next
available index idx = 0; whenever π◦(s, v) becomes larger
than τ and v’s candidate flag is 0, the thread handling v
atomically places v at the idx-th position of C and atomi-
cally increases idx by 1. When there are few candidates, the
second way is preferred, otherwise, the first way.

3.4.2 PPR Bounds

For any top-k PPR queries with δ (δ ≥ δmin), combining
Equations 5, 6, and 7, we derive that the maximum possible
increment of PPR value caused by one random walk from
any node v ∈ V , denoted as ρ, is:

ρ =

√
δ · δmin

ψ
(10)

After forward push from s, given the reserve π◦(s, v) of
any node v ∈ V , the following inequality holds:

π̂(s, v) ≤ π̂ub(s, v), where π̂ub(s, v) = π◦(s, v) + ωI(v) · ρ
Suppose that the current k-th largest score π̂k is obtained

after processing a subset of candidate set C, denoted as Cp.
The unprocessed candidates are in set C \ Cp. We derive
π̂ub as an upper bound of π̂(s, v) for any unprocessed node
v ∈ V \ Cp as follows:

π̂ub = max(τ, max
v∈C\Cp

π◦(s, v)) + ρ · ωubI , (11)

where ωubI = maxv∈V ωI(v).
For each top-k node v ∈ Ck in ℓ-th iteration, given its

π̂(s, v), we define its upper bound and lower bound as follows
(the bounds are derived in Section 3.4.5 when proving the
correctness of our algorithm):

UBℓ(v) = (1 + ǫ′) · π̂(s, v),
LBℓ(v) = (1− ǫ′) · π̂(s, v),

(12)

where ǫ′ satisfies 2ǫ′/3+2

ǫ′2·π̂(s,v) = 2ǫ/3+2

ǫ2·
√
δ·δmin

.

3.4.3 Bound Reduction in Parallel

Observe that ωubI in Equation 11 can be extremely large
when considering all the nodes in a graph, leading to a loose
π̂ub. In the following, we develop a practical technique to
reduce it by excluding a set H of nodes v with large ωI(v).
Then we calculate ωubI as maxv∈V \H ωI(v).

Figure 3 displays the accumulated count of nodes with
ωI(v) no smaller than a value at x-axis v (y-axis in log scale),
on Twitter dataset. For example, when ωI(v) = 3×103 at x-
axis, the corresponding y-axis value is about 3.5×104, which
means that there are 3.5×104 nodes with ωI(v) ≥ 3000. The
distribution in the figure is highly skewed. We call the set

Algorithm 4: ParallelBoundReduction

Input: H, r(s, v) and ω(v) for all v ∈ V
Output: π̂(s, u) for any u ∈ H

1 parallel for each array index h of H do
2 t← end[h]; u← start[h];
3 ω(u, t)← freq[h];

4 ∆(s, t)← r(s, u) · ω(u,t)
ω(u)

;

5 atomicAdd(π̂(s, t),∆(s, t));

of nodes with ωI(v) ≥ 3000 as the set of high-irw nodes,
denoted as H. Compared with the 41.6 million nodes on
Twitter, the high-irw nodes are few. During top-k query
processing, it would be fruitful to compute the estimated
PPR scores of all the nodes in H on the fly, such that it
can help reduce ωubI greatly. Note that this technique serves
as a practical choice to help derive a tighter bound. For
real graphs, it is easy to choose a size of H by studying the
distributions as displayed in Figure 3.

We then design a structure that efficiently computes the
PPR scores of all the nodes in H, matching the character-
istics of GPUs, e.g., memory coalescing and atomic oper-
ations. This structure trades space for time as explained
below. We organize the nodes in H into a structure consist-
ing of three arrays with the same length. The start-array
concatenates all the start-lists of the nodes in H one by one.
The freq-array concatenates the corresponding frequencies.
Then the third array, end -array stores the respective nodes
in H. The corresponding data of the high-irw nodes that are
stored in IRW index are then removed, to avoid duplicated
storage. The upper part of Figure 4 shows an example of
the structure for H = {v2, v3} in Figure 1. Without ambi-
guity, we denote the structure as H as well. H is accessed
by array index h: freq [h] is the number of random walks
starting from start[h] and stopping at end[h]. Algorithm 4
shows procedure ParallelBoundReduction that computes the
PPR of all the nodes in H, which is invoked by Algorithm 3.
Consecutive elements of the arrays in H are handled by con-
secutive threads and each thread handles one update. Lines
2 to 5 in Algorithm 4 are based on Equation 4.

Note that end -array stores same ending nodes at consecu-
tive positions (the upper part of Figure 4). This is problem-
atic in Algorithm 4. At Line 5, consecutive threads handling
same ending node t will atomically update the same PPR
π̂(s, t) almost at the same time, leading to sequential addi-
tion that is slow. We propose to group the three arrays in
H based on the nodes in start-array to tackle the issue (the
bottom half of Figure 4). The performance gain are two-fold:
first, the atomicAdd operations to the same π̂(s, t) become
scattered and consequently the parallelism is increased; sec-
ond, the memory accesses of both r(s, u) and ω(u) among
neighboring threads are coalesced (Line 4 in Algorithm 4).

3.4.4 Choosing Initial Settings

If δinit is set too large, Algorithm 3 will have many use-
less iterations before the top-k nodes are found; if δinit is
too small, it computes too much for top-k. We propose to
choose a proper δinit by estimating the k-th largest PPR.
The assumption that the PPR values of all the nodes in real
graphs follow power-law distribution is widely accepted in
the literature [13, 36, 54]: πi ∝ i−α, where πi is the i-th
largest PPR and α ∈ (1/2, 1). For easy calculation, we set

21

� �ଵ �ଷ �ସ �ଵ �ସ �3 2 3 1 4 3 1�ଶ �ଶ �ଶ �ଶ �ଷ �ଷ �ଷ
start-array
freq-array
end-array

Group by start nodes� � �ଵ �ଵ �ଷ �ସ �ସ3 1 2 4 3 1 3�ଶ �ଷ �ଶ �ଷ �ଶ �ଶ �ଷ
start-array
freq-array
end-array

Figure 4: Index structure H = {v2, v3} example

α = 1. Then given parameter k, we have πk = κ · k−1,
where κ is a normalization constant that κ

∑n
i=1 i

−1 = 1.
Consequently, we can get

πk =
1

k(1 + 1/2 + 1/3 + · · ·) ≃ 1

k log n
.

This means that the k-th largest PPR value is roughly at
the level of 1

k logn
. To generate enough candidates, we choose

to set δinit = πk/10, i.e., the 10k-th PPR value. Regarding
to L, the number of iterations allowed in Algorithm 3, since
δinit has already been set based on above, we set L = 10,
which is large enough to get top-k result in our experiments.

3.4.5 Correctness and Complexities

Here we prove the correctness of Algorithm 3 and provide
time complexity analysis (all the proofs are in Appendix).

Theorem 2 ([15]). Let X1, · · · , Xω be independent ran-

dom variables with Pr[Xj = 1] = pj and Pr[Xj = 0] =
1−pj . Let X =

∑ω
j=1 ajXj with aj > 0, and ν =

∑ω
j=1 a

2
jpj .

Then, Pr[|X − E[X]| ≥ λ] ≤ 2 · exp
(

− λ2

2ν+2aλ/3

)

, where

a = max{a1, · · · , aω}. �

Based on Theorem 2, we can derive Lemma 1, where δ′

is a variable in (0, 1) and it controls error bound ǫ′. How
to set it is explained after Corollary 1 is introduced shortly
and we will find that when δ′ is set as π̂(s, t), we can derive
the tightest upper and lower bounds.

Lemma 1. Let ǫ′ satisfies 2ǫ′/3+2

ǫ′2·δ′ = 2ǫ/3+2

ǫ2·
√
δ·δmin

. For any

node t with π(s, t) > δ′ and any iterations, Algorithm 3

gets an approximated PPR π̂(s, t) that satisfies Pr[|π(s, t)−
π̂(s, t)| ≥ ǫ′π(s, t)] with at least 1− p′f probability.

For any node t with π(s, v) ≤ δ′ and any iterations, Al-

gorithm 3 gets an approximated PPR π̂(s, v) that satisfies

Pr[|π(s, t)− π̂(s, t)| ≥ ǫ′δ′] with at least 1− p′f probability.

When δ′ and δ are both set to be δmin, we have ǫ′ = ǫ.
Thus we get the following corollary.

Corollary 1. For any node t with π(s, t) > δmin and

query δ = δmin, Algorithm 3 gets an approximated PPR

π̂(s, t) that satisfies Pr[|π(s, t) − π̂(s, t)| ≥ ǫπ(s, t)] with at

least 1− p′f probability.

Based on Lemma 1, we can derive the upper bound and
lower bound of π(s, t). In the ℓ-th iteration, we define

UBℓ(t) = max{(1 + ǫ′) · π̂j(s, t), π̂j(s, t) + ǫ′δ′}
LBℓ(t) = min{(1− ǫ′) · π̂j(s, t), π̂j(s, t)− ǫ′δ′}

(13)

To minimize UBℓ(t) and maximize LBℓ(t), for UBℓ(t), we
set (1 + ǫ′) · π̂j(s, t) = π̂j(s, t) + ǫ′δ′ and, for LBℓ(t), we set

(1 − ǫ′) · π̂j(s, t) = π̂j(s, t) − ǫ′δ′. We can derive that when
δ′ is π̂j(s, t), the two bounds can be optimized under our
setting. Therefore, we have

UBℓ(t) =(1 + ǫ′) · π̂j(s, t)
LBℓ(t) =(1− ǫ′) · π̂j(s, t)

(14)

where ǫ′ satisfies 2ǫ′/3+2

ǫ′2·π̂j(s,t)
= 2ǫ/3+2

ǫ2·
√
δ·δmin

.

Then Theorems 3 and 4 show the correctness and the time
complexity of our algorithm respectively.

Theorem 3. Let v′1, · · · , v′k be the top-k node returned by

Algorithm 3, then with probability at least 1−pf , the returned
k nodes satisfy both Equation 1 and Equation 2.

Theorem 4. Let TFP be the time cost of forward push

and TRW be the time cost of random walk. We have O(TFP) =

O

(

1
ǫ

√

m log(1/p′
f
)

δmin

)

, and O(TRW) = O

(

n+ 1
ǫ

√

m log(1/p′
f
)

δmin

)

.

The total time complexity is O(T) = O

(

n+ 1
ǫ

√

m log(1/p′
f
)

δmin

)

.

When δmin = O(1/n), log p′f = O(log n), andm/n = O(log n),

the complexity becomes O(T) = O
(

n·logn
ǫ

)

.

4. PARALLEL OPTIMIZATIONS
We develop several parallel optimizations for PPR pro-

cessing. We identify that load-imbalance is common in the
top-k query processing, due to the skewed distributions of
both out-degrees and random walks, and proposed tile-based

load balancing techniques to tackle the issue. Moreover, we
explain how to generate frontiers in an efficient way.

4.1 LoadBalanced Parallel Residue Push
For different queries as well as different iterations within a

query, the nodes who can become frontiers are always chang-
ing. Further, the out-degrees of frontiers vary a lot. Conse-
quently, load-imbalance occurs frequently and it is impossi-
ble to allocate the exact number of threads needed on the
fly, due to the dynamic nature of frontier generation. We
propose a technique called tile-based residue push, to per-
form residue push in a more balanced manner, especially for
the nodes with medium and small out-degrees (e.g., < 32),
which take a large portion of all the nodes. For the nodes
with extremely large out-degrees, we handle them by assign-
ing large block per frontier, following existing work [33,34].

Given the grid-block-warp thread hierarchy on GPUs (see
Section 2.2), we further partition the threads into finer sub-
groups, called tiles, using cooperative groups, a technique
that allows kernels to dynamically organize groups of threads
within a block. For a block, its block size BSIZE is a power of
2 and is larger than warp size WSIZE that is always 32. De-
note tile size as TSIZE that is also a power of 2 and WSIZE
≤ 32. During residue push, we partition the out-neighbors of
frontiers into TSIZE-sized groups, called out-neighbor tiles,
and then allocate thread tiles to handle the corresponding
out-neighbor tiles, using block-wide prefix sum.

Figure 5 exhibits an example of tile-based residue push
with BSIZE 16 and TSIZE 4. The middle of the figure
shows a block containing 4 tiles. There are three frontiers
v1, v2, and v3, with out-degrees 3, 15, 6 respectively. The
out-degree of v2 is relatively large. If each node is allocated
to a block of 16 threads, for v1 and v3, most of the threads

22

Tile 0 Tile 1 Tile 2 Tile 3
BSIZE=16; TSIZE=4

�௨௧ �ଶ [4,8)�௨௧ �ଶ [0,4)�௨௧ �ଵ [0,3) �௨௧ �ଶ [8,12)�௨௧ �ଷ [4,6)�௨௧ �ଷ [0,4)�௨௧ �ଶ [12,15)
T0: T1: T2: T3:

T4: T5: T6:

frontier �௨௧(�) �௧ Tile_begin Tile_end �ଵ 3 1 0 1�ଶ 15 4 1 5�ଷ 6 2 5 7

Figure 5: Workload balance of tile-based residue
push over three frontiers in a block with 16 threads.

would be idle; if using smaller blocks, e.g., BSIZE=8, the
time required by the block handling v2 is twice as long as
that of the blocks handling v1 and v3, which is inefficient.
Therefore, we first dynamically break the out-neighbors of
these nodes into out-neighbor tiles with size 4. The num-

ber of tiles that each frontier needs, nt(v) =
⌈

dout(v)
TSIZE

⌉

, is

1, 4, 2 respectively. Then, after a block-wide prefix sum
, we can get the tile positions of each frontier (the top of
the figure) and assign the out-neighbor tiles to thread tiles
accordingly (lower part of the figure). The block processes
out-neighbor tiles t0 to t3 first, and then t4 to t6. As we can
see, although v2 has larger out-degree than v1 and v3, the
allocation of out-neighbor tiles are roughly balanced. This
technique works well especially when there are many fron-
tiers, since the amortized load per tile will be more balanced.

Algorithm 5 displays the pseudo code of ParallelResiduePush.
Frontiers in F are assigned to blocks based on the number
of tiles per block (i.e., BSIZE

TSIZE
). In other words, each block

handles BSIZE
TSIZE

frontiers. Only the first thread of a tile calcu-
lates the number of tiles required by a frontier nt(v) (Lines
4-5). Then a block-wide prefix sum is applied to get the
tile positions of the out-neighbor tiles and the total tiles re-
quired (Lines 6-8). From Lines 10 to 13, each thread tile
updates the residue of all the out-neighbors in the tile, with
the help of shared memory. Lines 14 to 16 find the fron-
tiers for next iteration; there is a flag per node to ensure no
frontiers are added into Fnew more than once. atomicAdd is
used at Line 13 to ensure that the residues are correctly up-
dated in parallel. To avoid atomic operations, one can create
a list of Key-Value pairs consisting of all the out-neighbor
nodes and their corresponding residue increments, and then
run a parallel sort and reduce to sum up the increments of
the same node together, and then add the total increment
to the node without atomicAdd. However, this way is ineffi-
cient [22,53,56], since (i) creating the KV list is an expensive
streaming compaction with space overhead, and (ii) sorting
and aggregating millions of such pairs is slow.

4.2 Loadbalanced Parallel PPR Computing
Similar load-imbalance happens when computing the PPR

of candidates since the start-list lengths for the nodes in IRW

are also skewed. The tile-based technique introduced above
can be applied as well. Algorithm 6 presents the details of
ParallelComputePPR that takes as input a set of candidates
whose π̂(s, v) needs to be estimated (called at Line 13 of
Algorithm 3). Each block handles BSIZE

TSIZE
candidates. Then

Algorithm 5: ParallelResiduePush

Input: G, s, α, F , rmax(v) for all v ∈ V
Output: New frontiers Fnew, r(s, v) for all v ∈ V

1 nt(v)← 0;
2 Fnew ← {}; flag(u)← 0 for all u ∈ V ;
3 parallel for each frontier v assigned to block do
4 if thread.id %TSIZE == 0 then

5 nt(v) =
⌈

dout(v)
TSIZE

⌉

;

6 synchronize;
7 [tile begin(v), tile end(v)] = PrefixSum(nt(v));
8 synchronize;
9 parallel for each out-neighbor tile do

10 broadcast the out-neighbors u to the thread tile via
shared memory;

11 synchronize;
12 parallel for each u in a tile do

13 atomicAdd(r(s, u), (1− α) · r(s,v)
dout(v)

);

14 if
r(s,u)
dout(u)

> rmax(v) and flag(u) = 0 then

15 atomically update flag(u) to 1;
16 atomically add u into Fnew;

17 return Fnew;

Algorithm 6: ParallelComputePPR

Input: Candidate set Ci, r(s, v) for all v ∈ V
Output: π̂(s, t) for all t ∈ Ci

1 nt(t)← 0;
2 parallel for each candidate t assigned to the block do
3 if thread.id %TSIZE == 0 then

4 nt(t) =
⌈

start-list length of t
TSIZE

⌉

;

5 synchronize;
6 [tile begin(t), tile end(t)] = PrefixSum(nt(t));
7 synchronize;
8 parallel for each start-list tile do
9 broadcast the start-list tile to the corresponding

thread tile via shared memory;
10 synchronize;
11 parallel for each v in the start-list tile do

12 atomically add r(s, v) · ω(v,t)
ω(v)

to a shared

memory variable smem(t);

13 synchronize;
14 atomically add smem(t) to π̂(s, t);

we partition the start-list of node v in IRW into tiles on the
fly. Only the first thread of a tile calculates the number of
tiles required by a candidate v (Lines 3-4). A block-wide
prefix sum follows to get the tile positions of the start-list
tiles (Lines 5-7). From Lines 8 to 14, each thread tile updates
its start-list tile atomically, with the help of shared memory.

4.3 Frontier Generation
During the top-k PPR query processing, there are two

places requiring frontier generation: (i) when current δ fails
to find top-k and is reduced by half for next iteration (pro-
cedure ParallelGenFrontiers at Line 26 in Algorithm 3), and
(ii) when new frontiers are collected for next iteration within
procedure ParallelAFP (Algorithm 2). For the first case of
ParallelGenFrontiers, we initialize a flag 0 per node, and then
scan all the nodes in parallel to set the flag to 1 if the node is
a frontier under the new parameters. Then a parallel select

23

TopPPRPFORA+GPUPFORA+GPU PTopPPR+CPU kPARkPARFORA+ PFORA+CPU PTopPPR+GPUPTopPPR+GPU

10
0

10
1

10
2

10
3

10 200 400 600 800 1000

k

running time (ms)

10
0

10
1

10
2

10
3

10 200 400 600 800 1000

k

running time (ms)

10
0

10
1

10
2

10
3

10 200 400 600 800 1000

k

running time (ms)

10
1

10
2

10
3

10
4

10 200 400 600 800 1000

k

running time (ms)

(a) DBLP (b) LiveJournal (c) Orkut (d) Twitter

Figure 6: Query time for top-k PPR queries

Table 2: Datasets.
Name n m Type

DBLP 613,586 1,990,159 undirected

LiveJournal 4,846,609 68,475,391 directed

Orkut 3,072,441 117,185,083 undirected

Twitter 41,652,230 1,468,365,182 directed

is performed to get all the new frontiers. For the second case,
we provide two ways to get frontiers, based on the number
of frontiers. During the iterations of ParallelAFP, if there are
many frontiers to push or it is the first few iterations (when
the number of frontiers will increase abruptly), we apply the
same method as the first case. For other iterations with few
frontiers, the new frontiers are collected atomically in Al-
gorithm 5 (Lines 14-16), as explained. The reason is that,
when many frontiers exist, the cost of scanning all nodes in
parallel is affordable, compared with many atomic opera-
tions; otherwise, it is better to do atomic frontier collection.

5. EXPERIMENTS
We evaluate our method against states of the art, and

their parallel versions on CPUs and GPUs. All experiments
are conducted on a Linux machine with 80 threads powered
by two 20-core Intel Xeon(R) E5-2698 v4@2.20GHz CPUs,
500GB memory, and a Tesla P100-SXM2-16GB GPU. Ac-
cording to their retail prices when launched in 2016, the two
CPUs cost US$ 7398.00, while the GPU costs US$ 9428.00.

5.1 Experimental Settings
Methods. We compare kPAR against FORA+ and its par-
allel versions on CPUs and GPUs, dubbed as PFORA+CPU

and PFORA+GPU. TopPPR and its parallel versions on
CPUs and GPUs, PTopPPR+CPU and PTopPPR+GPU, are
also evaluated. We obtain the single-threaded CPU codes of
FORA+ from [2] and TopPPR from [3]. For CPU-parallelized
competitors (PFORA+CPU and PTopPPR+CPU), following
their single-threaded code design, we use parallel program-
ming libraries Cilk Plus [46] and OpenMP [16] to parallelize
all possible logic (e.g., while and for clauses) and compu-
tations of their whole process. Further, we use concurrent
structures to replace single-threaded ones whenever possi-
ble. PFORA+GPU and PTopPPR+GPU are implemented
using Nvidia CUDA. Specifically, we use arrays to replace
the structures that are inefficient on GPUs, including sets,
maps, and queues; we further translate all of their com-
putations to fit the GPU-based parallel environment. We
implement these GPU-based competitors with our best ef-
fort, which are all significantly faster than their respective
single-threaded CPU versions. Our method kPAR and the

GPU-based competitors are implemented and compiled us-
ing Nvidia CUDA 10.0 with -O3 flag. All the CPU-based
methods are implemented in C++ and compiled using GCC
7.3 with -O3 flag.

Parameter Settings. Following previous work [51,52], we
set α to 0.2, pf to 1/n, and ǫ to 0.5. Since top-k queries
are only interested in the top-k nodes with large PPR and
k is usually in hundreds (k ≪ n), we set δmin to 16/n for
FORA+ competitors and our method. For TopPPR-based
methods, we follow its default settings [54] and set precision
parameter p = 0.99. We set δinit = 1/(10k log n), L = 10,
τ = 0.5δ. The extra space budget for IRW index is 20%
since space budget larger than 20% does not improve speed
much. We set block size = 512 for all GPU methods.

Datasets and Query Sets. We use 4 benchmark datasets
that are used in previous work [37, 51, 52, 54] (see Table 2).
The datasets are from public sources [4, 5]. LiveJournal,
Orkut and Twitter are social networks, whereas DBLP is
a collaboration network. All graphs are stored in Com-
pressed Sparse Row (CSR) format on GPUs [22, 34]. For
each dataset, we randomly generate 100 query nodes. For
the query nodes, we apply Power Method [45] with 100 it-
erations to compute the ground-truth PPR values of all the
nodes with respect to each query node. The ground-truth
PPR values have at most 10−10 absolute error. For each
query node, we use the k nodes with the highest ground-
truth PPR values as the ground truth for the top-k PPR
query. Following [52], we set k = 10, 100, 200, · · · , 1000.

5.2 Query Efficiency
We first evaluate the query time of all methods, and then

present the performance gain brought by each of our pro-
posed techniques.

5.2.1 Query Time

Figure 6 reports the average query time of each method
on all datasets. The y-axis is in log-scale and in millisec-
onds (ms). kPAR outperforms the competitors by 1 to 3
orders of magnitude over all datasets. In Figure 6(d) of
Twitter, kPAR can answer a top-1000 query in 42.4ms on
average, while the fastest competitor PTopPPR+CPU needs
451ms. PTopPPR+GPU on Twitter is not reported since it
requires 24GB memory, which exceeds the amount of video
memory available on our GPU, i.e., 16GB. Note that the
CPU-parallelized PTopPPR+CPU and PFORA+CPU run on
a powerful machine with 80 threads and are at least 10
times faster than their single-threaded versions, indicating
that the comparison is fair. PFORA+GPU is no faster than
PFORA+CPU and similar situation holds for PTopPPR+GPU

24

TopPPRPFORA+GPUPFORA+GPU PTopPPR+CPU kPARkPARFORA+ PFORA+CPU PTopPPR+GPUPTopPPR+GPU

 0.99

 0.992

 0.994

 0.996

 0.998

 1

10 200 400 600 800 1000

k

precision

 0.99

 0.992

 0.994

 0.996

 0.998

 1

10 200 400 600 800 1000

k

precision

 0.99

 0.992

 0.994

 0.996

 0.998

 1

10 200 400 600 800 1000

k

precision

 0.99

 0.992

 0.994

 0.996

 0.998

 1

10 200 400 600 800 1000

k

precision

(a) DBLP (b) LiveJournal (c) Orkut (d) Twitter

Figure 7: Precision for top-k PPR queries

0.998

0.999

1

10 200 400 600 800 1000

k

NDCG

0.998

0.999

1

10 200 400 600 800 1000

k

NDCG

0.998

0.999

1

10 200 400 600 800 1000

k

NDCG

0.998

0.999

1

10 200 400 600 800 1000

k

NDCG

(a) DBLP (b) LiveJournal (c) Orkut (d) Twitter

Figure 8: NDCG for top-k PPR queries

kPARkPAR_I kPAR_IPkPAR_IP1

4

8

12

16

20

24

10 200 400 600 800 1000

k

running time (ms)

20

40

60

80

10 200 400 600 800 1000

k

running time (ms)

(a) LiveJournal (b) Twitter

Figure 9: Query time of the proposed techniques

and PTopPPR+CPU, indicating that FORA+ and TopPPR

are designed for CPUs, and translating them to GPUs is in-
efficient. For larger k, the competitors require significantly
more time, but the performance of kPAR is quite stable,
indicating that kPAR exposes good parallelism.

5.2.2 Query Time Breakdown

We evaluate the performance gain brought by each of our
proposed techniques, including AFP (Section 3.2), IRW (Sec-
tion 3.3) and parallel optimizations (Section 4). Since IRW is
the core of our algorithm kPAR in Section 3.4, we start with
kPAR I, the algorithm with only IRW and its related tech-
niques in Section 3.4 enabled. The techniques in Sections
3.4.1-3.4.3 are included in kPAR I and cannot be evaluated
separately. Then we have kPAR IP1 that is kPAR I aug-
mented with the first parallel optimization in Section 4.1,
and kPAR IP that further enables the second optimization
in Section 4.2. Finally, kPAR is kPAR IP augmented with
AFP (i.e., all techniques enabled).

As shown in Figure 9, each of our techniques reduces
query time, on LiveJournal and Twitter datasets (See tech-
nical report [6] for other datasets) . In Figure 9(b), kPAR I

can already use only 70.56ms to answer a top-1000 query
on Twitter, about 6 times faster than the fastest competi-
tor PTopPPR+CPU that needs 451ms (see Figure 6). Then
kPAR IP1 with the parallel optimization in Section 4.1 im-
proves the top-1000 query time to 63.3ms, and kPAR IP with

the parallel optimization in Section 4.2 further improves it
to 60.1ms. The gain of Section 4.2 is large on large datasets,
while modest on small datasets. Finally, with AFP enabled,
kPAR takes only 42.4ms to answer a top-1000 query on Twit-
ter. All techniques offer speedup, especially on large graphs.

5.3 Query Accuracy
We measure the accuracy of each method using two classic

metrics for evaluating ranking results: precision and Nor-

malized Discounted Cumulative Gain (NDCG) [27], which
are used in previous work [54]. Given source node s, let Vk =
{v1, . . . , vk} be the set of its ground-truth top-k nodes, and
V ′
k = {v′1, . . . , v′k} be the set of its top-k nodes reported by

the method to be evaluated. The precision of V ′
k is defined as

|Vk ∩V ′
k |/k, i.e., the fraction of ground-truth top-k nodes in

V ′
k . The NDCG of V ′

k evaluates if the returned top-k nodes
having the correct order, w.r.t., the ground truth. Specifi-

cally, NDCG(V ′
k) = (

∑k
i=1

2π(s,v′

i
)−1

log(i+1)
)/(
∑k
i=1

2π(s,vi)−1
log(i+1)

).

Figures 7 and 8 show the precision and NDCG values of all
methods on all datasets, except PTopPPR+GPU on Twitter,
which runs out of GPU memory as explained before. Gen-
erally, all the methods achieve high precision and NDCG.
In particular, kPAR has the best precision under almost all
the k settings over all the datasets, except DBLP. kPAR has
quite stable NDCGs that are nearly 1 under all settings, in-
dicating that kPAR can correctly order the top-k nodes. The
NDCGs of TopPPR and its paralleled versions are slightly
unstable when varying k because TopPPR does not provide
guarantee about the order of the returned nodes. When
transferring FORA+ and TopPPR from single-threaded to
parallel (and from CPUs to GPUs), the guarantees of these
methods are unchanged, but the actual accuracy scores vary
a little, due to the multi-threading environments and new
hardware characteristics [55].

5.4 Preprocessing Time and Space Overhead
All the precomputation are done using single thread, for

the ease of comparison. Table 3 shows the preprocessing
time and space consumption of the index-based methods,

25

Table 3: Preprocessing costs and space overheads.

Datasets
Preprocessing
time (sec)

Space overhead

FORA+ kPAR FORA+ kPAR

DBLP 1.23 2.16 30.0MB 38.5MB

LiveJournal 34.51 56.69 348.2MB 421.6MB

Orkut 65.23 111.28 469.7MB 532.2MB

Twitter 919.3 1753.78 4.75GB 6.92GB

FORA+ and kPAR. Compared to FORA+, kPAR uses mod-
erately more space and time for pre-processing, which is
a cost worth paying for considering the latter’s significant
sppedup during query time. Specifically, preprocessing in
kPAR includes IRW construction and global PageRank com-
putation, required by AFP; meanwhile, the techniques in
Section 3.4 also require some memory space. Overall, the
preprocessing cost of kPAR is still within affordable range.

6. RELATED WORK
There are many studies on various types of PPR queries

[11–13, 17–24, 28, 29, 35–37, 39, 40, 47, 48, 51, 52, 57–59]. The
studies on approximate top-k PPR queries [35–37, 51, 52]
are most relevant to ours. BiPPR [36] combines Backward
Search [8] and Monte-Carlo together to answer point-to-
point PPR queries and top-k queries. HubPPR [51] designs
advanced indexing scheme for BiPPR. Wang et al. [52] pro-
pose FORA+ for top-k PPR queries with accuracy guaran-
tees over PPR scores. FORA+ shows superior performance
among all these methods. We provide the same guarantees
as FORA+. TopPPR [54] guarantees the precision of top-k
PPR results, which is different from ours. All these top-k
PPR methods are designed for CPUs, and extending them
to GPUs is non-trivial, as discussed in Section 2.3.

There are also methods [14, 29, 40, 48, 52, 59] for single-
source PPR queries (SSPPR), which ask for the PPR value
of every node v ∈ V with respect to a query node s. As
shown in the experiments of [52], there is a huge query time
gap between answering the SSPPR query and the top-k PPR
query of a node s, since usually k ≪ |V |. Specifically, on
Twitter, a top-500 PPR query can be answered in 7.7 sec-
onds, but its corresponding SSPPR query costs 103.1 sec-
onds. We focus on top-k PPR queries due to its widespread
adoption in real applications [24, 32].

Distributed PPR algorithms [12,21,31] have also been ex-
tensively studied. These studies are orthogonal to our work,
because (i) we aim to answer a top-k PPR query on a single
commodity GPU machine, rather than in a computing clus-
ter; (ii) the architecture of a distributed cluster is clearly
different from that of a single GPU; (iii) these methods are
all based on CPUs, which are non-trivial to extend to GPUs.

There also exist PPR-related studies on GPUs. Guo et

al. [22] focus on dynamic PPR value updates, rather than
answering top-k PPR queries. Techniques for sparse matrix
vector multiplication on GPUs [10,56] can be used by power
iteration [45] for global PageRank computation [7,53], which
could potentially be adapted to SSPPR queries. However, it
is unclear how to extend these methods to top-k PPR queries
with k ≪ |V |; further, matrix-based solutions tend to incur
significant space and/or time costs on large graphs [54].

Many other graph algorithms have been developed on
GPUs. Harish et al. [25] propose GPU-based algorithms for

breadth-first search (BFS), single-source and all-pair short-
est path. Following this, many GPU-based BFS algorithms
are proposed [33, 34, 38, 41]. Enterprise [33] classifies BFS
frontiers based on out-degrees, for better load-balance; iBFS
[34] handles a batch of BFSs by sharing computation. These
work are orthogonal to the problem studied in this paper.

7. CONCLUSION
This paper presents kPAR, an efficient algorithm for ap-

proximate top-k PPR queries on GPUs. Our contributions
include both algorithmic designs on GPUs (AFP and IRW in
Section 3) and system engineering on GPUs (parallel opti-
mizations in Section 4). Extensive experiments demonstrate
that kPAR outperforms existing solutions by a large margin,
and answers top-k PPR queries on billion-edge graphs using
just tens of milliseconds. We plan to consider PPR queries
on multi-GPUs, as well as dynamic index updates.

8. ACKNOWLEDGMENTS
This work is supported by the National University of Sin-

gapore under SUG grant R-252-000-686-133. This publica-
tion was made possible by NPRP grant #NPRP10-0208-
170408 from the Qatar National Research Fund (a member
of Qatar Foundation). The findings herein reflect the work,
and are solely the responsibility, of the authors.

APPENDIX

Proof of Lemma 1. Let bi = r(s,vi)
w(vi)

for any vi ∈ V .

We exclude all the bi that are 0, i.e., r(s, vi) = 0. Let
aj = bi if the j-th random walk starts from vi. Among all
the ω random walks, we exclude all those starting from nodes
with zero residue, and get ω′ walks remaining. Let Xj be
a random variable that equals to 1 if the j-th random walk

terminates at t, and 0 otherwise. Define Y ′ =
∑ω′

j=1 ajXj ,

and ν =
∑ω′

j=1 a
2
jpj . Let a = max{a1, · · · , aω′}. Given ρ =

√
δ · δmin/ψ, a ≤ ρ. Then

∑w′

j=1(a
2
jpj) ≤ a

∑w′

j=1(aj · pj) ≤
ρ
∑

j(aj ·pj) ≤ ρ ·π(s, t). Applying Theorem 2 and π(s, t) ≥
δ′, we have Pr[|Y ′−E[Y ′]| ≥ λ] ≤ 2 exp

(

− λ2

2(ρπ(s,t))+2ρλ/3

)

.

Since E[Y ′] =
∑

vi
r(s, vi)π(vi, t), |Y ′ − E[Y ′]| = |π(s, t) −

π̂(s, t)|. Let λ = ǫ′π(s, t). We have,

Pr[|π(s, t)− π̂(s, t)| ≥ ǫ′π(s, t)]

≤ 2 · exp
(

− ǫ′2π(s, t)2

2(ρπ(s, t)) + 2ρǫ′π(s, t)/3

)

≤ 2 · exp
(

− ǫ′2 · δ′
ρ(2 + 2ǫ′/3)

)

≤ 2 · exp
(

− ǫ′2 · δ′
2 + 2ǫ′/3

· (2ǫ/3 + 2) · log(2/p′f)
ǫ2 ·

√
δ · δmin

)

≤ p′f .

For second part,
∑w′

j=1 a
2
jpj ≤ ρπ(s, t) ≤ δ′ρ. By Theorem 2,

we have Pr[|Y ′−E[Y ′]| ≥ λ] ≤ 2 exp
(

− λ2

2(ρδ′)+2ρλ/3

)

. Then,

Pr[|π(s, t)− π̂(s, t)| ≥ ǫ′δ′] ≤ 2 · exp
(

− ǫ′2δ′2

2(ρδ′) + 2ρǫ′δ′/3

)

≤ 2 · exp
(

− ǫ′2·δ′
2+2ǫ′/3

· (2ǫ/3+2)·log(2/p′f)

ǫ2·
√
δ·δmin

)

≤ p′f .

Proofs of Theorems 3 and 4. Due to space constraints,
the proofs are presented in our technical report [6].

26

9. REFERENCES
[1] https://www.nngroup.com/articles/

response-times-3-important-limits/.

[2] https://github.com/wangsibovictor/fora.

[3] https://github.com/wzskytop/TopPPR.

[4] http://snap.stanford.edu/data.

[5] http://law.di.unimi.it/datasets.php.

[6] https://sites.google.com/view/kpar-tr.

[7] https://developer.nvidia.com/nvgraph.

[8] R. Andersen, C. Borgs, J. T. Chayes, J. E. Hopcroft,
V. S. Mirrokni, and S. Teng. Local computation of
pagerank contributions. In WAW, pages 150–165,
2007.

[9] R. Andersen, F. R. K. Chung, and K. J. Lang. Local
graph partitioning using pagerank vectors. In FOCS,
pages 475–486, 2006.

[10] A. Ashari, N. Sedaghati, J. Eisenlohr,
S. Parthasarathy, and P. Sadayappan. Fast sparse
matrix-vector multiplication on gpus for graph
applications. In SC, pages 781–792, 2014.

[11] L. Backstrom and J. Leskovec. Supervised random
walks: predicting and recommending links in social
networks. In WSDM, pages 635–644, 2011.

[12] B. Bahmani, K. Chakrabarti, and D. Xin. Fast
personalized pagerank on mapreduce. In SIGMOD,
pages 973–984, 2011.

[13] B. Bahmani, A. Chowdhury, and A. Goel. Fast
incremental and personalized pagerank. PVLDB,
4(3):173–184, 2010.

[14] S. Chakrabarti. Dynamic personalized pagerank in
entity-relation graphs. In WWW, pages 571–580, 2007.

[15] F. R. K. Chung and L. Lu. Survey: Concentration
inequalities and martingale inequalities: A survey.
Internet Mathematics, 3(1):79–127, 2006.

[16] L. Dagum and R. Menon. Openmp: An
industry-standard api for shared-memory
programming. CiSE, pages 46–55, 1998.

[17] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós.
Towards scaling fully personalized pagerank:
Algorithms, lower bounds, and experiments. Internet
Mathematics, 2(3):333–358, 2005.

[18] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima,
and M. Onizuka. Efficient ad-hoc search for
personalized pagerank. In SIGMOD, pages 445–456,
2013.

[19] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima,
and M. Onizuka. Fast and exact top-k algorithm for
pagerank. In AAAI, 2013.

[20] Y. Fujiwara, M. Nakatsuji, T. Yamamuro,
H. Shiokawa, and M. Onizuka. Efficient personalized
pagerank with accuracy assurance. In KDD, pages
15–23, 2012.

[21] T. Guo, X. Cao, G. Cong, J. Lu, and X. Lin.
Distributed algorithms on exact personalized
pagerank. In SIGMOD, pages 479–494, 2017.

[22] W. Guo, Y. Li, M. Sha, and K.-L. Tan. Parallel
personalized pagerank on dynamic graphs. PVLDB,
11(1):93–106, 2017.

[23] M. S. Gupta, A. Pathak, and S. Chakrabarti. Fast
algorithms for topk personalized pagerank queries. In
WWW, pages 1225–1226, 2008.

[24] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and
R. Zadeh. Wtf: The who to follow service at twitter.
In WWW, pages 505–514, 2013.

[25] P. Harish and P. Narayanan. Accelerating large graph
algorithms on the gpu using cuda. In HiPC, pages
197–208, 2007.

[26] G. Iván and V. Grolmusz. When the web meets the
cell: using personalized pagerank for analyzing protein
interaction networks. Bioinformatics, pages 405–407,
2011.

[27] K. Järvelin and J. Kekäläinen. Ir evaluation methods
for retrieving highly relevant documents. In SIGIR,
pages 41–48, 2000.

[28] G. Jeh and J. Widom. Scaling personalized web
search. In WWW, pages 271–279, 2003.

[29] J. Jung, N. Park, L. Sael, and U. Kang. Bepi: Fast
and memory-efficient method for billion-scale random
walk with restart. In SIGMOD, pages 789–804, 2017.

[30] J. Klicpera, A. Bojchevski, and S. Gnnemann. Predict
then propagate: Graph neural networks meet
personalized pagerank. In ICLR, 2019.

[31] W. Lin. Distributed algorithms for fully personalized
pagerank on large graphs. In WWW, 2019.

[32] D. C. Liu, S. Rogers, R. Shiau, D. Kislyuk, K. C. Ma,
Z. Zhong, J. Liu, and Y. Jing. Related pins at
pinterest: The evolution of a real-world recommender
system. In WWW Companion, pages 583–592, 2017.

[33] H. Liu and H. H. Huang. Enterprise: Breadth-first
graph traversal on gpus. In SC, pages 1–12, 2015.

[34] H. Liu, H. H. Huang, and Y. Hu. ibfs: Concurrent
breadth-first search on gpus. In SIGMOD, pages
403–416, 2016.

[35] P. Lofgren, S. Banerjee, and A. Goel. Bidirectional
pagerank estimation: From average-case to worst-case.
In WAW 2015, pages 164–176, 2015.

[36] P. Lofgren, S. Banerjee, and A. Goel. Personalized
pagerank estimation and search: A bidirectional
approach. In WSDM, pages 163–172, 2016.

[37] P. A. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri.
Fast-ppr: Scaling personalized pagerank estimation for
large graphs. In KDD, pages 1436–1445, 2014.

[38] L. Luo, M. Wong, and W.-m. Hwu. An effective gpu
implementation of breadth-first search. In DAC, pages
52–55, 2010.

[39] S. Luo, X. Xiao, W. Lin, and B. Kao. Efficient batch
one-hop personalized pageranks. In ICDE, pages
245–256, 2019.

[40] T. Maehara, T. Akiba, Y. Iwata, and K.-i.
Kawarabayashi. Computing personalized pagerank
quickly by exploiting graph structures. PVLDB,
7(12):1023–1034, 2014.

[41] D. Merrill, M. Garland, and A. Grimshaw. Scalable
gpu graph traversal. In PPOPP, pages 117–128, 2012.

[42] D. Merrill, M. Garland, and A. S. Grimshaw.
High-performance and scalable GPU graph traversal.
TOPC, pages 14:1–14:30, 2015.

[43] D. Nguyen, A. Lenharth, and K. Pingali. A
lightweight infrastructure for graph analytics. In
SIGOPS, pages 456–471, 2013.

[44] J. Nielsen. Usability engineering. In The Computer

Science and Engineering Handbook, pages 1440–1460.
1997.

27

[45] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
1999.

[46] A. D. Robison. Composable parallel patterns with
intel cilk plus. CiSE, page 66, 2013.

[47] A. D. Sarma, A. R. Molla, G. Pandurangan, and
E. Upfal. Fast distributed pagerank computation. In
ICDCN, pages 11–26, 2013.

[48] K. Shin, J. Jung, L. Sael, and U. Kang. BEAR: block
elimination approach for random walk with restart on
large graphs. In SIGMOD, pages 1571–1585, 2015.

[49] J. Shun and G. E. Blelloch. Ligra: a lightweight graph
processing framework for shared memory. In PPoPP,
pages 135–146, 2013.

[50] A. Walker. New fast method for generating discrete
random numbers with arbitrary frequency
distributions. Electronics Letters, pages 127 – 128,
1974.

[51] S. Wang, Y. Tang, X. Xiao, Y. Yang, and Z. Li.
Hubppr: Effective indexing for approximate
personalized pagerank. PVLDB, 10(3):205–216, 2016.

[52] S. Wang, R. Yang, X. Xiao, Z. Wei, and Y. Yang.
Fora: Simple and effective approximate single-source
personalized pagerank. In KDD, pages 505–514, 2017.

[53] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel,
and J. D. Owens. Gunrock: a high-performance graph
processing library on the GPU. In PPoPP, pages
11:1–11:12, 2016.

[54] Z. Wei, X. He, X. Xiao, S. Wang, S. Shang, and J.-R.
Wen. Topppr: top-k personalized pagerank queries
with precision guarantees on large graphs. In
SIGMOD, pages 441–456, 2018.

[55] N. Whitehead and A. Fit-florea. Precision &
performance: Floating point and ieee 754 compliance
for nvidia gpus, 2011.

[56] X. Yang, S. Parthasarathy, and P. Sadayappan. Fast
sparse matrix-vector multiplication on gpus:
implications for graph mining. PVLDB, 4(4):231–242,
2011.

[57] W. Yu and X. Lin. IRWR: incremental random walk
with restart. In SIGIR, pages 1017–1020, 2013.

[58] H. Zhang, P. Lofgren, and A. Goel. Approximate
personalized pagerank on dynamic graphs. In KDD,
pages 1315–1324, 2016.

[59] F. Zhu, Y. Fang, K. C. Chang, and J. Ying.
Incremental and accuracy-aware personalized
pagerank through scheduled approximation. PVLDB,
6(6):481–492, 2013.

28

