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ABSTRACT
Consider the case where a programmer has written some part of
a program, but has left part of the program (such as a method
or a function body) incomplete. The goal is to use the context
surrounding the missing code to automatically “figure out” which of
the codes in the database would be useful to the programmer in order
to help complete the missing code. The search is “contextualized”
in the sense that the search engine should use clues in the partially-
completed code to figure out which database code is most useful.
The user should not be required to formulate an explicit query.

We cast contextualized code search as a learning problem, where
the goal is to learn a distribution function computing the likelihood
that each database code completes the program, and propose a neural
model for predicting which database code is likely to be most useful.
Because it will be prohibitively expensive to apply a neural model
to each code in a database of millions or billions of codes at search
time, one of our key technical concerns is ensuring a speedy search.
We address this by learning a “reverse encoder” that can be used to
reduce the problem of evaluating each database code to computing
a convolution of two normal distributions.
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1 Introduction
An end-user has produced a partially completed computer program,
where a piece of code (typically a body of a method or function)
is wholly or partially missing. The goal is to search a large corpus
of program fragments D = {Prog1,Prog2, ...}, and automatically
choose the fragment from the database that is most likely to complete
the program, without requiring an end-user to explicitly formulate a
query. For example, consider the following code:
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class IO {
public void readFully(InputStream fd,

byte[] dst, int off, int len)
throws IOException {

while (len > 0) {
int r = fd.read(dst, off, len);
off += r;
len -= r; }}

public void findMe (OutputStream out){
__CODE_SEARCH__ }}

The goal is to find a code in a large database of codes that could
replace the missing code indicator. The search is contextualized
because the user need not describe the search using an explicit
query; the context around the missing code—class member variables,
comments, surrounding method signatures, and so on—is used to
power the search. The goal is to provide search functionality “for
free”; the user of an integrated development environment (IDE)
need only click on a particular line where the missing code is to
be inserted, and the system looks at the partially-completed code
and figures out from the context what the answer should be. The
user need not take the time to posit a query, composing keywords or
writing an English description of the code that s/he wants. In this
case, one of the top codes returned is:
/** Writes the contents of this byte array output

stream to the specified output stream argument.*/
public void writeTo(OutputStream out)

throws IOException {
ByteString[] cachedFlushBuffers;
byte[] cachedBuffer; int cachedBufferPos;
synchronized (this) {
cachedFlushBuffers=flushedBuffers.toArray(

new ByteString[flushedBuffers.size()]);
cachedBuffer=buffer;
cachedBufferPos=bufferPos; }

for(ByteString byteString:cachedFlushBuffers){
byteString.writeTo(out);
}
out.write(copyArray(

cachedBuffer,cachedBufferPos));
}

The system was able to infer from the surrounding class—which
included a method that reads from an input stream—that the user
was looking for a write method.

Code search via neural embedding. Methods for learning neu-
ral embeddings have become widespread. The idea is to learn a
neural function that is able to map objects to a position in a high-
dimensional space, such that objects that are similar or related are
positioned closely to one another. Methods for computing word
embeddings such as Word2Vec [30] and BERT [14] are the best ex-
amples of this. Not surprisingly, such methods have been applied to
code search, especially for powering natural language-based search
[35, 19, 46]. The idea is to learn one neural function that embeds a
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query in a high-dimensional space, and another that embeds a code
in the same space. Code search then reduces to nearest-neighbor
search.

Unfortunately, there may be little reason to believe that such
methods will work for contextualized code search (CCS). In CCS,
both queries and codes are exceedingly complex objects, so that
learning a generalizable embedding from millions of query-code co-
occurrences in a training set seems hard. Queries in contextualized
code search are inherently multi-modal, with a large number of
disparate evidences as to what the query result should be: sets of
types, method calls and keywords surrounding the missing code,
natural language comments, sequences of formal parameters, and so
on. Because of this, each query in a training corpus is likely unique,
and will only be seen once in the training data. Compare this to the
problem of learning a word embedding, where each word is seen
many times in many different contexts. As a result, over-fitting may
be a significant problem, leading to poor search performance.

Code search as program synthesis. We propose a unique approach
to CCS, where we view CCS as a special case of statistical program
synthesis. Statistical program synthesis [29, 10, 32] is the prob-
lem of learning how to automatically write programs. In particu-
lar, we view CCS as a variety of conditional program generation
[32], where a learner learns to use the context X collected from
the surrounding code to realize a posterior distribution function
P (Prog|X) =

∫
Z
P (Prog|Z)P (Z|X)dZ, for a latent variable Z1.

Z can be viewed as an unknown specification for the code to be gen-
erated. When treating CCS as an instance of conditional program
generation, search is the task of finding the database program such
that Prog = argmaxProg′∈DP (Prog′|X).

In contrast to more traditional, embedding-based approaches that
attempt to map both context and program to similar representations
in a high-dimensional latent space, conditional program generation
attempts to learn to generate the program from the context. This
may be more resistant to over-fitting because the statistical program
synthesizer must learn to accurately generate Prog, despite of the
uncertainty in Z embodied by the distribution P (Z|X).

The key difficulty with re-casting contextualized code search as
synthesis is computational. When the goal is to synthesize a pro-
gram by generating Prog so as to maximize P (Prog|X), seconds
or even minutes of compute time can be devoted to solving the
resulting optimization problem. During search, however, for a given
query evidence X, P (Progi|X) must be evaluated for millions or
billions of values of i very quickly, while the user waits. In a typical
implementation, Progi will take the form of a parse tree, and evalu-
ating P (Progi|X) requires repeatedly pushing productions in that
parse three through a neural network. Doing this quickly for mil-
lions of different programs will not be feasible. To address this, we
force the posterior P (Z|X) distribution over the unknown specifica-
tion Z to be multivariate Gaussian. When learning P (Prog|X), we
concurrently learn an approximation Q(Z|Prog) ≈ P (Z|Prog) (a
so-called “reverse encoder”) where Q(Z|Prog) is also constrained
to be normal. Computing P (Prog|X) then reduces to computing a
convolution of P (Z|X) and Q(Z|Prog), which is computationally
trivial when both distributions are multivariate Gaussian, leading to
a very fast search.

1In the paper, we will use the convention that a mathematical object
written in a sans-serif font such as X represents an observed value,
while an italicized object such as X represents a random variable.
Hence, P (X) refers to the distribution of random variable X , while
P (X) refers to the likelihood of observing value X for random
variable X .

Our contributions. Key contributions of our work are:

• We introduce the problem of contextualized code search. While
code search has been studied for a long time (see Section 3 of the
paper), prior efforts have typically been powered by user-supplied
queries. In contrast, in CCS, the query is implicit, and inferred
by the surrounding context. We are the first to study code search
using this type of implicit query.

• We present a unified probabilistic framework in which a disparate,
multi-modal set of contextual evidences X can be synthesized into
a posterior distribution P (Z|X) over the unknown specification
for the code being searched for. This distribution encodes the
uncertainty inherent in search.

• We consider how to design the learning problem to ensure that
search can happen quickly.

• Finally, we experimentally evaluate our tool for CCS (called
CODEC) over a corpus consisting of nearly one billion lines of
code. We show experimentally that a 16-GPU machine can be
used to search our database size of 27.9 million Java methods in
little over a second.

2 Example Application
In this section, we give a more detailed example of CCS, via a short
case study that demonstrates our tool, called CODEC (Contextu-
alized cODe sEarCh). We call our system CODEC to emphasize
the synthesis-based approach to code search: the system learns to
encode the context and decode that encoding into a program, rather
than simply learning to encode contexts and programs into a latent
space.

Consider the following unfinished user interface code:

import javax.swing.*;
class MyGuiAppl{

/**
create a new frame
*/
public JFrame ?(? a){

__CODE_SEARCH__; }}

CODEC extracts the class name MyGuiAppl, the Javadoc text for
the method with the missing body (“create a new frame”),
as well as the desired return type (JFrame) and the name of the for-
mal parameter (a). Since no method name and no formal parameter
type are given, these are ignored. CODEC searches a database of
code fragments and returns the following code in its top few results:

/**
* Creates a new UserInterface object.
* @param title the title
* @return the j frame
*/

public JFrame createFrame(final String
title){
JFrame frame=new JFrame(title);
return frame; }

At this point, the programmer accepts this suggestion, and uses the
search result to replace the incomplete code fragment. Next, the
programmer adds the following to the method:

/**
create button

*/
public ? ?(? a){

__CODE_SEARCH__; }
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CODEC now analyzes the entire class (including the new method just
added), as well as the evidence present in the incomplete method
(in this case, only the parameter name a is present) and returns the
code among the top few results:

private JButton makeButton(String arg){
JButton button=new JButton(arg);
return button;

}

Again, the programmer accepts this result and uses it to replace the
fragment. Now, the programmer adds the following method:

public void actionClose(JButton a,
JFrame f){
__CODE_SEARCH__; }

CODEC uses all of the code so far to power the search, including the
header for the incomplete method. The top result is:
private void setCloseSurrogateButtonAction
(JButton closeSurrogateButton,JFrame guiFrame){
closeSurrogateButton.addActionListener

(new ActionListener() {
public void actionPerformed(ActionEvent event){

closeString = CLOSE_UI_EXIT_SURROGATE;
guiFrame.dispatchEvent(new WindowEvent
(guiFrame,WindowEvent.WINDOW_CLOSING));

if (closingWindow) {surrogate.userExit=true;}
else {closeString=
CLOSE_UI_SURROGATE_KEEPS_RUNNING;}

}});
}

Throughout the process, the programmer expended little effort to
use the tool. No explicit queries were formulated beyond the devel-
opment of the skeleton of the class. CODEC exclusively uses the
context to anticipate what sort of example codes might be useful for
the developer to consider.

3 Related Work
Code search has been long-studied. Early works were information
retrieval (IR) based. Classic methods include CodeBroker [49],
which assessed similarity using comments. Stratcona [21] used
inheritance, method calls, and data types to compute similarity.
XSnippet [36] used parent classes and type information, and Ba-
jracharya et al. [9] implement keyword-based API pattern search.
More modern IR-based code search engines such as Koders [4],
Krugle [5], Codase [1], and Sourcerer [8] use text and graph-based
search ranking.

Another line of work powers code search using semantic or syn-
tactic constraints. Prospector [28] searches based on return types
and types used in the code. JSearch [39], Little et al. [26], and
PARSEWeb [44] search using ASTs and API call sequences. Reiss
et al. [34] and CodeGenie [25] use test cases, contract specifications,
and keywords from unfinished code to facilitate search. CodeHow
[27] uses keywords from natural language description and rein-
forces the search with an additional API understanding phase by
mapping the keywords to the descriptions available in an online API
library. Facoy [23] proposes a code-to-code search methodology for
detecting semantically similar code fragments by code alteration.

Modern code search tools use learned embeddings. Sachdev
[35] suggests natural language based search using code embeddings
and term frequency-inverse document frequency. Bajracharya [9]
learns custom program and query embeddings mined from open-
source data. [48, 19] map natural language code descriptions and
programs to a shared latent space. Lili [31] propose a tree-based
convolutional neural network to embed codes. Chen [13] propose
a variational-autoencoder-based architecture for code retrieval and
summarization. Cambronero [11] does a comparison between the
different neural code engines that use natural language for program

search. A recent work by Wan [47] proposes using abstract syntax
trees (ASTs) for a more accurate representation of programs, to
facilitate natural language search.

Recently there has also been interest in using deep learning-based
techniques in other applications of software engineering. Neural-
machine translation-based approaches have found application in
detecting code clones in software repositories [12, 45, 50]. Our
work has connections with recent attempts at using learning-based
methods for program synthesis [20]. The idea of using deep neu-
ral models for code completion in IDEs has also been popular re-
cently. Pythia [42] is an API recommendation engine that predicts
likely API calls. Pythia is integrated as part of Visual Studio for
Python. Other works [10, 33, 15] use ML to guide program synthesis.
BAYOU [32] synthesizes programs into a high-level representation;
the SKETCH language (see Figure 2) was proposed in that paper and
much of our statistical model was borrowed from Bayou. Program
context has also been used to guide synthesis [22]. One of our
contributions is bridging the gap between synthesis and search.

The idea of using different program components (return types,
API call sequences, parent class information, and so on) as context
for judging programmer intent have been widespread [36, 28, 44, 25,
21]. Much recent work has applied deep learning for code search
[19, 35, 48]. However, this latter category of methods has generally
been restricted to search based upon natural language specifications
(for example, using the information contained in a JavaDoc to learn
how to relate text to code). To the best of our knowledge, our efforts
are the first to use neural methods to power search using context.

4 The CODEC System
In this section, we describe the design and implementation of
CODEC at a high level. A pictorial representation of the CODEC
system is shown in Figure 1. The system has five components. Note
that while the current implementation of CODEC is specific to Java,
extension to other programming languages is straightforward.

(1) Context extractor. This component accepts a Java program,
and uses the Eclipse compiler [2] to parse it into an AST. From
the program AST, each program fragment and surrounding context
are extracted. Processing a Java program with the context extractor
results in a set of (X,Prog) pairs—that is, a set of (context, code
fragment) pairs.

(2) Decompiler. Modern Java is an exceedingly complex language,
and many of the lower-level details associated with a Java code
fragment are likely unimportant for deciding whether the code frag-
ment answers a particular query. Thus, CODEC decompiles each
code fragment Prog into a simpler programming language called
SKETCH that captures the essence of the Java fragment: API calls,
types, general code “shape” (that is control flow and nesting) but
ignores lower-level details such as variables and computation of
expressions. The decompiler is realized by a function α, such that
the SKETCH program Y = α(Prog).

(3) Learner. Given a code corpus to be indexed for search, all of
the programs are fed into the context extractor, and the resulting
code fragments are decompiled into SKETCH codes. A subset of
the decompiled codes is used to create the training set Dtrn =
{Xi,Yi}i=1...n. These pairs are then used to power a maximum
likelihood estimation, where the goal is to choose the parameter set
θ∗ as

θ∗ = argmaxθ
∑
i

logP (Yi|Xi, θ)
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Figure 1: Schematic of the CODEC system.

(4) Indexer. Once the parameter set θ has been learned, each
SKETCH code Y to be indexed is then transformed into an in-
termediate representation Y′ = h(Y, θ) that makes it very fast
to compute P (Y|X, θ) for a context query X. The set Dsrch =
{Y′i,Progi}i=1...n where Y′i = h(α(Progi)) is then distributed
across the set of servers used to power the search.

(5) Distributed search engine. Finally, at query time, query context
Xq is automatically extracted from a partially-completed program,
and Dsrch is processed to compute the top K (Y′i,Progi) pairs
from Dsrch that maximize P (Progi|Xq, θ), which are presented to
the user.

In the next few sections of the paper, we describe a few of these
components in more detail, followed by an in-depth description of
the statistical model P (Prog|X, θ) used to power the search, as well
as how this model is learned from Dtrn.

5 Context Extraction and Decompilation
In this section, we describe program context extraction and decom-
pilation in a bit more detail.

5.1 Context Extraction
Given a Java program, the first step is to parse the program, and
extract the various evidences that serve as the context for all of the
code fragments that will be extracted from the code. In CODEC,
some evidences are extracted on a per-class basis, so that all of the
fragments from the same class will share the same evidence. The
class-wide evidences extracted are:

(1) Class Name; name of the class split using camel-case; each is
encoded with a one layer GRU-RNN network.
(2) Class types; types of the instance variables in the same class as
the query method; each is encoded with a one-hidden-layer fully-
connected network.
(3) Surrounding Methods; methods within the same class; each con-
sisting of:
(a) Return type; encoded with a one-hidden-layer network.
(b) Input parameter list; sequence of (formal parameter, variable
name) pairs encoded using a two-layer GRU-RNN, where the vari-
able names are split using camel-case, encoded using a GRU-RNN,
and concatenated with each formal parameter.
(c) Method name; name of the method split using camel-case; each
is encoded with a one layer GRU-RNN network.

(d) API call sequences; API call sequences are extracted from meth-
ods within the same class; encoded with a one layer GRU-RNN
network.

We also use four types of evidence from the header of the missing
method (if available):

(1) JavaDoc; English text of JavaDoc associated with the method,
lemmatized and stop words removed. Encoded using a bidirectional
GRU-RNN.
(2) Method name for method containing the missing code; split
using camel-case and encoded with a single-layer GRU-RNN.
(3) Return type of method with the missing code encoded with a one
hidden-layer network.
(4) Input parameter list, of method with missing code; including
formal parameter type and name, split using camel-case, encoded
similarly to the input parameters from surrounding methods.

Finally, we use four types of evidence from within the (partial) code
that is being searched for. These may be available if a fragment of
the code has already been written. They are:

(1) API calls; these are the calls in the code; each is encoded with a
one-layer network.
(2) API call sequences; these are extracted via symbolic execution
of the code; each is encoded using a GRU-RNN.
(3) Types; these are the API types in the code; each is encoded with
a one-layer network.
(4) Keywords; English-like words extracted from fully qualified
name of the classes inside the method body, combined with English
words appearing in types and API calls; each is encoded with a
one-layer network.

5.2 Decompilation
As described previously, we believe that it is problematic to search
for a code fragment in a complicated language such as Java directly.
Every high-level language likely contains details (such as arithmetic
operations) that are of little use during search, and likely make it dif-
ficult to learn how to relate queries with search results, obscuring the
important facets of the code. A complicated and mature language
such as Java is especially problematic. Consider the BAYOU pro-
gram synthesis system [32]. Using a neural network to synthesize
into a sketching language (and then using classical, AI-style search
to complete the program) Bayou showed around 50% accuracy (in
terms of being able to reproduce the “correct” result in the top-10
programs synthesized), whereas a version of Bayou that synthesized
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Y ::= Yapi;Yret;Yfp
Yret ::= τr
Yfp ::= (τfp0 , . . . , τfpn)
Yapi ::= skip | call Cexp | Y1;Y2 |

if Cseq then Y1 else Y2 |
while Cseq do Y1 | try Y2 Catch

Cexp ::= τa0 .α(τa1 , . . . , τak )

Cseq ::= List of Cexp
Catch ::= catch(τa1) Y1 . . . catch(τak ) Yk

Figure 2: Grammar for the SKETCH language. τ indicates a Java
type, α is a method call name. SKETCH extends the BAYOU sketch-
ing language [32]

directly into a subset of Java was able to achieve less than 10% in
terms of top-10 accuracy.

Hence, given a class, once we extract a code fragment Prog
from the class, we decompile Prog into a simplified representa-
tion Y = α(Prog). This representation is designed to retain the
facets of the code that are likely to be important to a user during
search: API calls and basic control flow, but ignores the rest. The
grammar for the abstraction language SKETCH is given above in
Figure 2. Translating from a parsed Java AST to a SKETCH AST is
straightforward.

For an example of this, consider the following method:

void read(File file) {
FileReader fr1;
BufferedReader br1;
fr1 = new FileReader(file);
br1 = new BufferedReader(fr1);
while ((br1.readLine()) = null) return;

This is decompiled into the following:

FileReader.FileReader (File)
BufferedReader.BufferedReader (FileReader)
while

BufferedReader.readLine ()
do

skip

Note the skip, which reflects the fact that the while loop has no
body.

6 Statistical Model
At the heart of the CODEC system is the statistical model powering
the search, embodied by the distribution function P (Prog|X, θ).
During search, a set of evidences is extracted to represent the pro-
gram context X, and then the few database fragments that maximize
the value of this function are selected.

There are many possible choices for the model P (Prog|X, θ).
We begin with the simple statistical model pictured in Figure 3,
borrowed from conditional program generation [32] . Crucially,
we assume a latent specification Z for the missing code fragment
as well as the surrounding context. This specification captures
the programmer intent, and conditioned upon Z, both the program
context X as well as the sketch Y and the program fragment itself
is generated.

As intimated in the introduction, there is a key benefit to using
such a model to power code search. During search, the latent vari-
able Z provides similar functionality to the latent-space embedding
used in traditional, embedding-based methods [37]. However, there
is a key difference. As Z is a true random variable, it has no single
value. A learner, given a large number of (X,Prog) pairs from

X

Z

Y Prog

Figure 3: Bayes net for X , Y , Z and Prog.

which to learn P (Prog|X, θ), must learn to accurately generate
Prog, despite of the uncertainty in Z embodied by the distribution
P (Z). This may alleviate some of the problems with over-fitting
one might except when using a more traditional neural encoding.

As depicted in Figure 3, Z is generated first, and based upon
the programmer intent captured by Z, the evidences X in the sur-
rounding context are generated, as well as the sketch Y . Once the
sketch is generated, the program Prog is generated based on the
sketch. Thus, the joint distribution P (X,Y, Z, Prog|θ) factorizes
as P (X,Y,Z,Prog|θ) =

P (Z)P (X|Z)P (Y|Z)P (Prog|Y).

(Note that we drop the parameter θ from each distribution function
for simplicity).

7 Search Under the Model
7.1 Applying the Model for Search
During search, we are given a context X, and we wish to choose a
database code fragment Progi to maximize P (Progi|X, θ) =∫

Y

P (Progi|Y, θ)
∫
Z

P (Y|Z, θ)P (Z|X, θ)dZdY

This looks difficult. However, we can simplify this expression
by assuming that no code Progi is associated with more than one
sketch; this is a fairly weak assumption, and is implied by the fact
that we can decompile each code into its unique sketch using the
decompilation function α. Given this assumption, the distribution
function P (Progi|Y, θ) gives non-zero likelihood for only one Y
value for a given program Progi. Hence, if we let Yi = α(Progi),
P (Progi|X, θ) can be re-written as:

P (Progi|X, θ) = P (Progi|Yi, θ)
∫
Z

P (Yi|Z, θ)P (Z|X, θ)dZ

In our implementation of CODEC we simplify this further by assum-
ing that the process of creating a code from a sketch is deterministic,
and that P (Prog|Y, θ) 6= 0 if and only if Y = α(Progi), so that:

P (Progi|X, θ) = P (Yi|X, θ) =
∫
Z

P (Yi|Z, θ)P (Z|X, θ)dZ

Though this assumption is not necessary, it seems to give good
results, and it means there is no need to define P (Prog|Y, θ).

7.2 Making Search Fast
P (Yi|X, θ) will need to be evaluated for millions or billions of
Yi values stored in a database, in response to a query X. For this
reason, evaluating P (Yi|X, θ) needs to be very, very fast. Without a
careful choice of the various distribution functions to allow for a fast,
closed-form evaluation of P (Yi|X, θ), search will not be practical.
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To ensure that we are able to have a closed-form evaluation of
this function, we begin by expanding the function using Bayes’ rule:∫

Z

P (Y|Z, θ)P (Z|X, θ)dZ ≈

P (Y|θ)×
∫
Z

P (Z|X, θ)P (Z|Y, θ)
P (Z|θ) dZ

It can be shown that as long as all of the distribution functions
within the integral (P (Z|X, θ), P (Z|Y, θ), and P (Z|θ)) are multi-
variate Gaussian, this can be integrated analytically, with very little
computational cost.2 For example, assume Z is scalar-valued,3 and
assume the mean and variance of P (Z|X, θ) evaluate to µX and σ2

X,
respectively. Also assume that the mean and variance of P (Z|Y, θ)
evaluate to µY and σ2

Y, respectively. These can be computed offline,
during database preparation, and stored in the database along with
the programs to be searched.

Let aX = −(2σ2
X)
−1 and define aY similarly. Likewise, let

bX = µXσ
−2
X and define bY similarly. Finally, we let P (Z|θ) be unit

multivariate Normal. Then we have:

logP (Y|X, θ) = logP (Y|θ) + 1

2
log

(
−2aXaY

aX + aY + 1/2

)
+

b2X
4aX

+
b2Y
4aY
− (bX + bY)

2

4(aX + aY + 1/2)

Except for the quantity logP (Y|θ), this is all trivial to evaluate
quickly, at search time, and so it is computationally efficient to
check logP (Yi|X, θ) for each Yi in the database as long as we have
pre-computed and stored three values:

1. The term logP (Yi|θ), which measures the bias towards return-
ing a particular program, can be computed offline via Monte
Carlo integration over the latent variable Z, using P (Z|Yi, θ) as
a proposal distribution for importance sampling [7].

2. The mean and variance of P (Z|Yi, θ). In the univariate case,
these will be scalar values, and in the multivariate case these
will be vector-valued (assuming a diagonal covariance matrix for
P (Z|Yi, θ), as we will assume subsequently).

Together, these values constitute Y′i. In parallel across multiple com-
pute nodes, CODEC stores the set of programs to search Dsrch =
{Y′i,Progi}i=1...n. In response to a query context X, the few Progi
values for which Yi = α(Progi) maximizes the logP (Y|X, θ)
value are returned to the user.

8 Distribution Families Used
So far, we have not committed to any particular distribution func-
tions, other than stating that our basic statistical model as shown
in Figure 3, and stating that for practical reasons—we want the
per-program computation time to be tiny during search—we will
desire each of P (Z|θ), P (Z|X, θ) and P (Z|Y, θ) to be multivariate
2Intuitively, this is not surprising, as the Gaussian distribution is
simply an exponentiated quadratic function, and every exponentiated
quadratic function is a Gaussian distribution, up to a constant factor.
Hence, multiplying and dividing Gaussian distribution functions
results in an exponentiated quadratic function, which is then also a
Gaussian distribution function, up to a constant factor. Integrating
over any distribution function results in a value of one, leaving only
the constant factor. If we can compute that constant analytically,
there is no need to integrate.
3An extension to multiple dimensions is straightforward and a full
derivation with multivariate extension is available in the Appendix.

Gaussian. In this section, we discuss each of these distributions in
more detail.

The prior on Z: P (Z|θ). Ensuring that P (Z|θ) is multivariate
Gaussian is easy; since Z is a latent variable, we simply define Z ∼
Normal (~0, I).

Z conditioned on the sketch: P (Z|Y, θ). Unfortunately, marrying
the natural set of conditional dependencies depicted in Figure 3
with the desire for computational efficiency is not easy for the
other distribution functions. In particular, ensuring Normality for
P (Z|Y, θ) is, practically speaking, not possible. Since a given Y
is a complex, tree-valued object (a set of recursive rule firings in a
grammar) we wish to use a state-of-the-art neural tree decoder to
realize P (Y |Z, θ). Several are available [43, 40, 18]; we use a top-
down tree LSTM [51] to realize P (Y |Z, θ). However, using such
a decoder almost assuredly means that P (Z|Y, θ) is not Gaussian.
As we describe in the next section of the paper, we address this by
using variational methods [16] to simultaneously learn a Gaussian
approximation Q(Z|Y, θ) for P (Z|Y, θ), and to force P (Z|Y, θ)
to be approximately Gaussian. Then Q(Z|Y, θ) can then be used
in place of P (Z|Y, θ) to ensure fast search. We call Q(Z|Y, θ) a
“reverse encoder” for a decompiled program Y, as it reverses the
generative process to encode the program. In our implementation,
Q(Z|Y, θ) is realized as a neural tree encoder [51], that is used to
encode Y into a mean vector and covariance matrix of a Gaussian
distribution.

Z conditioned on the context: P (Z|X, θ). This situation is a bit
different. We could also use variational methods to allow for a
Gaussian approximation to P (Z|X, θ), but instead we borrow the
formulation from [32] to ensure that P (Z|X, θ) is Gaussian, at least
under certain restricted circumstances.

Specifically, we assume that the context X is partitioned into a
set of different sets of evidences, according to the type of evidence.
Let Xj,k refer to the kth instance of the jth type of evidence in X.
Various possible types of evidence are discussed in Section 5.1, and
include: class variable types, other method signatures, documenta-
tion, etc. Assume a neural function fj,θ for the jth evidence type
that maps some representation of the evidence to some location in
Rm. Then let:

P (X|Z, θ) =
∏
j,k

Normal
(
fj,θ(Xj,k)|Z, Iσ2

j

)
Effectively, we assume that the encoded location of each piece of
evidence has been sampled from a normal distribution with mean
Z. Each evidence is sampled using a different variance. Higher
variance corresponds to an evidence that is less closely related with
the functionality of the code fragment being searched for.

If each mapping function is one-to-one and onto, then from
Normal-Normal conjugacy, it follows that [32]:

P (Z|X, θ) = N

Z|

∑
j,k

σ−2
j fj,θ(Xj,k)

1 +
∑
j

|Xj |σ−2
j

,
1

1 +
∑
j

|Xj |σ−2
j

I


Here, |Xj | refers to the size of the jth subset of evidence.

Note that Normal-Normal conjugacy will not hold if some map-
ping function is not one-to-one and onto. In practice, this will not
hold. As an example, we may employ a bidirectional RNN [38] to
encode English text in a JavaDoc comment into Rm; such a function
will not be one-to-one and onto. Still, in practice things seem to
work well, and intuitively the fact that the function is not one-to-one
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and onto may only be a problem if different evidences tend to be
mapped to the same point in Rm, which seems not to happen in
practice. As intimated above, an alternative is to instead resort to
a variational approximation for P (Z|X, θ) as well as P (Z|Y, θ), at
the cost of making the learning problem somewhat more complex.

9 Training the Model
We have two goals. First, we wish to make sure that the reverse
encoder Q(Z|Y) is a reasonable proxy for P (Z|Y). Second, we
wish to ensure that the log-likelihood of our data set is maximized
and that

∑
i logP (Yi|Xi, θ) has a large value. In the remainder

of this section, we again drop the set of model parameters θ when
convenient to simplify the presentation.

To begin, we note that we want the so-called “reverse encoder”
Q(Z|Y) to closely match the true posterior P (Z|Y) for Y ∼ P (Y ).
We can ensure this by minimizing the KL divergence between them.
We begin our derivation of the learning problem by expanding this
KL divergence. For a given Y:

DKL
(
Q(Z|Y)‖P (Z|Y)

)
=

∫
Z

Q(Z|Y)
[
logQ(Z|Y)− logP (Z|Y)

]
dZ

Note that P (Z|Y) cannot be evaluated directly, as it is not one of
the three distributions defined in the previous section. Hence, we
expand it using Bayes’ Rule:

DKL
(
Q(Z|Y)‖P (Z|Y)

)
=

∫
Z

Q(Z|Y)×
[
logQ(Z|Y)− logP (Y |Z)

− logP (Z) + logP (Y)
]
dZ

= logP (Y) +

∫
Z

Q(Z|Y)×
[
logQ(Z|Y)

− logP (Y|Z)− logP (Z)
]
dZ

Expanding this further we have:

DKL
(
Q(Z|Y)‖P (Z|Y)

)
= logP (Y) +

∫
Z

Q(Z|Y)×
[
logQ(Z|Y)− logP (Z|X)

]
+

∫
Z

Q(Z|Y)×
[
logP (Z|X)− logP (Y|Z)− logP (Z)

]
dZ

= logP (Y) +DKL(Q(Z|Y)‖P (Z|X))

+

∫
Z

Q(Z|Y)
[
logP (Z|X)− logP (Y |Z)− logP (Z)

]
dZ

= logP (Y) +DKL(Q(Z|Y)‖P (Z|X)) +
∫
Z

P (Z|X)×

Q(Z|Y)
P (Z|X)×

[
logP (Z|X)− logP (Y|Z)− logP (Z)

]
dZ

Assume for a moment that Q(Z|Y) ≈ P (Z|X) for (X,Y) ∼
P (X,Y ) so their ratio is 1. While this is by no means guaran-
teed, we will reconsider this assumption later. Then we have:

DKL
(
Q(Z|Y)‖P (Z|Y)

)
≈

logP (Y) +DKL
(
Q(Z|Y)‖P (Z|X)

)
+

∫
Z

P (Z|X)×
[
logP (Z|X)− logP (Z)

]
dZ

−
∫
Z

P (Z|X)× logP (Y|Z)dZ

This can be rewritten as,

DKL
(
Q(Z|Y)‖P (Z|Y)

)
≈

logP (Y) +DKL
(
Q(Z|Y)‖P (Z|X)

)
+DKL

(
P (Z|X)‖P (Z)

)
−
∫
Z

P (Z|X) logP (Y|Z)dZ

And so,

logP (Y)−DKL
(
Q(Z|Y)‖P (Z|Y)

)
≈

−DKL
(
Q(Z|Y)‖P (Z|X)

)
−DKL

(
P (Z|X)‖P (Z)

)
+

∫
Z

P (Z|X) logP (Y|Z)dZ

This implies that if we maximize the expected value of the RHS of
the above approximation with respect to (X,Y) ∼ Dtrn we will
simultaneously perform a maximum likelihood estimation (maxi-
mizing the data log-likelihood logP (Y )) and maximize the quality
of the reverse encoder Q(Z|Y) by making it a good approximation
for P (Z|Y). Then, in the end, to learn the model, we choose θ so
as to maximize the following:

E(X,Y)∼Dtrn

[
−DKL

(
Q(Z|Y)‖P (Z|X)

)
−DKL

(
P (Z|X)‖P (Z)

)
+

∫
Z

P (Z|X) logP (Y|Z)dZ
]

This is easily possible via gradient descent. We sample (X,Y)
pairs from Dtrn, and for each pair, take a gradient step to mini-
mize the value of the expression. Fortunately, since each Q(Z|Y),
P (Z|X), and P (Z) is multivariate Gaussian, there is a closed form
for the pairwise KL divergence between them for which the gradient
is easily computed using a platform such as TensorFlow.

One more complicated issue is to compute the gradient of the in-
tegral

∫
Z
P (Z|X) logP (Y|Z)dZ. Note that this can be re-written as

E(Z)∼P (Z|X) logP (Y|Z). Maximization of this quantity is amenable
to the standard “reparameterization trick” [16] used when training
variational autoencoders. That is, we may sample Z from a standard
Normal distribution, and then push the transformations represented
by P (Z|X, θ) and Q(Z|Y, θ) into the quantity we are taking the
expectation of, in order to back-propagate through the transforma-
tions.

Finally, we re-visit our assumption that Q(Z|Y)
P (Z|X) ≈ 1. While

not guaranteed, the argument for the validity of this simplifying
assumption rests on the fact that the resulting maximization prob-
lem explicitly attempts to minimize the KL divergence term in our
derivation, DKL

(
Q(Z|Y)‖P (Z|X)

)
for (X,Y) ∼ Dtrn. As this

divergence is minimized during learning, the approximation will
become increasingly valid.

Relationship to variational autoencoders. There is a resemblance
between the material in this Section and the methods used to train
variational autoencoders (VAEs) [16]. However, there are key differ-
ences. Given a data Y, a VAE is meant to learn a model of the form
P (Y = Y) =

∫
P (Z)P (Y|Z)dZ, whereas our goal is to learn a con-

ditional model of the form P (Y = Y|X) =
∫
P (Z|X)P (Y|Z)dZ.

In the case of a VAE, a variational distribution Q(Z|Y) is used to
approximate P (Z|Y) to make training possible. In our case, be-
cause of the availability of the evidence set X (as in conditional
program generation [32]) we do not need this approximation; it
would be possible to learn P (Y = Y|X) directly without any varia-
tional approximation, using a bound based on Jensen’s inequality.
However, we also have to simultaneously learn an approximation
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Q(Z|Y) for P (Z|Y) to use during code search. This results in a
learning problem formulation that differs in important ways from
VAEs, conditional VAEs [41], and conditional program generation.

10 Evaluation
There are three parts to our experimental study of CODEC.

In the first, we perform a quantitative study where “holes” are
created in a large number of real-life programs, downloaded from
GitHub, by removing a method body from each program. The
method bodies are then mixed into a large database of method
bodies, and we measure CODEC’s ability to retrieve the correct
method body from the database

In the second, we perform a qualitative user study where we ask
13 programmers to rate the quality of the results returned by CODEC
and a number of competitive methods.

In the third, we examine the runtime efficiency of our so-called
“reverse encoder,” that enables a fast, analytic approximation to the
likelihood that each program was generated by the search context.

10.1 Quantitative Study
10.1.1 Experimental Setup

Data used. We collect all the public, licensed projects available in
Github [3]. This is a total of 8.71M java files. We use the Eclipse
Java DOM Driver [2] to extract abstract syntax trees for a total of
27.9M methods with at-least one API call to the Java JDK. Out of
these, we trained our statistical model (as well as the competitive
models described below) on 2.32M randomly-sampled Java files,
amounting to 6.7M methods. 21M Java methods were extracted
from the remaining 6.39M files, and the methods extracted were
indexed using the learned model.

Model training details. The latent space occupied by Z in our
implementation is 256 dimensions. We have used 256 units in each
of our neural architectures and a single hidden layer for our tree
encoder and decoder. We used a batch-size of 128 methods during
training and a learning rate 0.0001 for the Adam gradient descent
algorithm [24]. Our deep model was trained on top of Tensorflow
[6] using an Amazon EC2 p2.xlarge machine powered with an
NVIDIA K80 GPU. Training required 200 hours.

Competitive methods. We compare CODEC with three baseline
methods. The first two are CodeHow [27] and Deep-Code search
[19]. Both of these methods were developed to support code search
using natural language. CodeHow finds programs based on key-
word matching, using API understanding to reformulate the query
for higher accuracy. We modify CodeHow to use keywords from
method headers (types, formal parameter names, method names)
along with JavaDoc comments. Deep-Code search encodes the
JavaDoc and the program (represented as a triplet of method name,
sequence of API calls and keywords) into a shared latent space
and attempts to minimize the cosine distance between them. We
also implement a non-probabilistic version of CODEC that uses the
same encoders for various evidences as CODEC, encoding the entire
context as a weighted average of the various evidences. This non-
probabilistic version uses the same neural architecture as CODEC’s
reverse encoder to encode the sketch into the latent space, and
attempts to maximize the cosine similarity between the encoded
context and the encoded sketch.

Retrieval task. We test each method using a set of 100 retrieval
tasks. To construct a task, we randomly select a Java file having
at least two method bodies from among the 6.4M Java files not
used for training. The files selected represent a wide variety of Java

applications, from computer networking applications to MySQL
database application development to simple file I/O. We remove a
random method body containing JavaDoc documentation from the
file, and use the context in the remainder of the file to power search
using the four different search techniques. The search is considered
to be accurate if one or more method bodies that is “equivalent”
to the removed-and-searched-for method body are among the top
results returned.

Measuring “equivalence.” Defining the notion of two codes being
equivalent to one another is not straightforward. Determining if
two codes produce the same output on all inputs is, in general,
undecidable, and a real-life, GitHub-derived Java corpus presents
many challenges. For example, a popular code may be replicated
any times during its lifetime on GitHub. If the retrieval task returns
an older version of the correct method, it is unclear whether this is
“equivalent.”

In the end, we came up with four different definitions of method
equivalence, each of which we examine experimentally: (1) API
match; two codes are equivalent if two use the same set of JDK
API calls. (2) Sequence match; two codes are equivalent if the sets
of all possible sequences of API calls, extracted using symbolic
execution, are the same. (3) Sketch match; two codes are equivalent
if decompilation into a SKETCH program (see Section 5.2), results
in the same code. (4) Exact match; two programs are considered
to be equivalent if the Java parse tree for the entire method body
matches exactly.

Measuring search accuracy. We also consider multiple ways in
which these various definitions of equivalence can be used to mea-
sure search accuracy; some of our ideas follow related work [19, 27].
Let us assume that we have a total of Q independent queries and res
be a vector of size Q containing the identities of the method bodies
we are searching in the database. Let us assume Ans be a matrix
of size Q ×K, which denotes the identity of the results returned
by our system for each of those queries within a pre-defined rank
K. We consider three metrics, out of which two metrics are based
of the notion of FRank. For a particular search query q, FRankq is
the smallest rank k at which the user finds a code equivalent to the
desired result among the top programs.

FRank(resq,Ansq) = argmink[I(Progresq ≡ ProgAnsq,k )]

Here, I accepts a boolean value and returns one if it is true, zero if
false. Given this, our metrics are:

(1) SuccessRate@K, which estimates the probability of finding the
intended result within a pre-defined rank K:

SuccessRate@K =
1

Q

∑
q

[I(FRank(resq,Ansq) ≤ K)].

(2) Precision@K, which estimates the fraction of the top K results
that are correct. Then:

Precision@K =
1

KQ

∑
q

∑
k

[I(Progresq ≡ ProgAnsq,k )]

(3) MRR or Mean Reciprocal Ratio, which is simply the average
inverse FRank:

MRR =
1

Q

∑
q

[
1

FRank(resq,Ansq)
]

For each metric, a larger value means higher search accuracy.
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Table 1: Prediction accuracy comparison from program context.

SuccessRate@1 SuccessRate@10
API Match Seq Match Sk. Match Exact Match API Match Seq Match Sk. Match Exact Match

CodeHow 0.03 0.02 0.02 0.00 0.12 0.09 0.09 0.06
Deep-Code 0.04 0.02 0.00 0.00 0.11 0.06 0.03 0.02
Non-Prob 0.01 0.01 0.01 0.00 0.02 0.01 0.01 0.00
CODEC 0.27 0.24 0.23 0.11 0.35 0.32 0.32 0.15

Precision@10 MRR
API Match Seq Match Sk. Match Exact Match API Match Seq Match Sk. Match Exact Match

CodeHow 0.04 0.03 0.03 0.01 0.13 0.12 0.12 0.10
Deep-Code 0.04 0.02 0.00 0.00 0.15 0.12 0.10 0.10
Non-Prob 0.01 0.00 0.00 0.001 0.11 0.11 0.11 0.09
CODEC 0.26 0.24 0.22 0.10 0.35 0.33 0.32 0.20

Table 2: Search problems considered in user study.

Id Program Class Programming Task
1 Socket Send data using Client
2 Crypto Encrypt data using MD5 hash
3 FileUtils Copy a file to a different location
4 Generic list Remove item from list
5 GUI-Swing Add closing button to a frame
6 Conversion Convert a list of string to HashMap
7 IO Write data using OutputStream
8 String Operations Check if String is palindrome
9 Parser Parse JSON String; put into hash
10 Peeking Iterator Advance iterator if next exists
11 SQL Execute a select statement
12 Stopwatch Return time recorded in milli-seconds
13 ThreadQueue Get the collection of queued threads
14 WordCount Split a textttString by delimiter
15 XML Utils Serialize a XML node into a string

10.1.2 Results and Discussion
Results for each of the four equivalence metrics - SuccessRate@1,
SucccessRate@10, Precision@10, and MRR, for each of the four
search methods tested, are shown in Table 1. The results suggest
that, if the correct method body is available, using CODEC we can
expect to obtain an exact match 11% of the time. We feel that this
is a quite impressive result, given that CODEC is able to select the
correct method body from among 27.9M candidate methods, using
only contextual information as well as the JavaDoc comment. The
chance of obtaining a “correct” program increases to 23% if success
is measured in terms of returning a code that can produce the same
set of API call sequences, and to 27% if success is measured in
terms of obtaining a program with the same set of API calls.

It is interesting that the competitive methods fared so poorly
compared to CODEC. No other search methodology had a non-zero
exact-match success rate for the top result returned. But even beyond
exact-match, CODEC dominates all other methods, over all of the
various metrics.

How useful is external context? In a sense, it may not be surprising
that CODEC outperforms both CodeHow and Deep-Code search,
as both of these are natural-language based, and hence they focus
mostly on the JavaDoc comments (though as described, we did try to
augment these methods to take into account contextual information
as well, at least in a cursory manner). However, it turns out that
the explanation for why CODEC has much higher accuracy is not as
simple as “it uses more information to power search.” To examine
this, we repeated the experiment using only contextual information
external to the method we are searching for (that is, no JavaDoc,

Table 3: p-value at which the hypothesis HA,B
0 was rejected during

the user study.

CodeHow Deep-Code Non-Prob CODEC

CodeHow N/A 0.7160 0.0749 0.9584
Deep-Code 0.2477 N/A 0.0224 0.9378
Non-Prob 0.9058 0.9699 N/A 0.9871
CODEC 0.0306 0.0457 0.0084 N/A

and no header for the method being searched for). We then added
in JavaDoc comments, the method header, and continued to add
information about the internals of the method, such as the API
calls present (those internals are not used in the results of Table
1). Results are shown in Figure 4. What we find is that although
context and the method header do seem to add significantly to the
search quality, unless one uses method internals, JavaDoc comments
provide for the bulk of the accuracy. Note that JavaDoc comments
are available to all competitive methods.

Influence of method internals. We see a major jump in accuracy
while including evidences such keywords, API calls, and types
from within the body of the method, which may be available in a
partially-completed or completed method whose body is used to
power search. Figure 4 shows that if such evidences are available,
we see a significant increase in accuracy, from about 20% (in terms
of sketch match) for only external evidences, up to nearly 70% if a
complete set of within-method evidences are supplied.

Comparison with non-probabilistic CODEC. The results so far
suggest that the presence of more data is not the only reason for
CODEC’s success. To dive deeper into this, we consider in detail
how CODEC compares with its non-probabilistic version. Going
into our experiments, we suspected that the regularization provided
by the prior on Z would be useful; because Z is not known during
training, any Z value in a neighborhood must have a reasonable
likelihood of decoding into the correct sketch Y. Intuitively, this
will force programs that are embedded close to one another to have
a reasonable similarity in terms of SKETCH syntax, as they must
share likely Z values. This should help boost generalization ability,
and hence accuracy. In comparison, the non-probabilistic version of
CODEC simply attempts to co-locate embedded sketches and context,
which may result in very weak generalization ability. However, we
did not anticipate the extent to which this distinction was crucial.

To examine this in a bit more detail, we randomly selected 10,000
methods and encoded the sketch for each of the methods into the
latent space using the learned reverse encoder for CODEC, as well as
the equivalent encoder for the non-probabilistic version of CODEC.
We then clustered those 10,000 embeddings for both CODEC and
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(a) API Match (b) Sketch Match (c) Exact Match

Figure 4: Contributions of various types of evidence to CODEC’s retreival accuracy.

its non-probabilistic equivalent using k-means, with k = 10. For
each cluster, we measured the average Jaccard similarity of the API
calls made by the methods within the cluster to the calls made by
the methods within the other clusters.

As shown in Figure 5, what we find is that the methods within
the clusters formed by CODEC show much greater similarity com-
pared to the clusters formed by its non-probabilistic version. The
self-similarity within each cluster tops out at around 16% for the
non-probabilistic version, whereas it tops out at around 24% for
CODEC. This provides strong evidence that the embeddings learned
by CODEC are high-quality precisely because of CODEC’s synthesis-
based code search.

10.2 Qualitative User Study
Clearly, CODEC demonstrates utility when a method body is re-
moved, and a search methodology is able to find the method body
(or an equivalent method body) in a database of millions of alter-
natives. However, in reality, a correct method body is not typically
available in a database, and questions of how useful a returned code
is are likely best answered by human programmers. Thus, we con-
ducted a user study where programmers were asked to grade the
utility of the programs returned by the various methods

10.2.1 Experimental Setup

Search problems tested. We constructed a set of 15, carefully
created search problems, as shown in Table 2. Each search problem
consists of a well-documented, hand-written class with two or more
methods where one of the method bodies is missing.

Volunteers and rating instructions. We recruited 13 volunteers to
rate search results. Each volunteer was a Rice Computer Science
graduate student, and could be described as an expert programmer.

For each search task, and for each of the four competitive methods
tested, each volunteer was shown the top three search results. For
each search task, users were asked to rate the set of three results as a
group on a scale of one-to-five in terms of retrieved code’s perceived
utility for helping a programmer to fill in the missing method body
(five being “perfect match” and one being “poor match”). Beyond
that, each volunteer was asked to develop his/her own interpretation
of search result quality by examining the incomplete Java class. This
amounted to 60 search result rating tasks in all, per volunteer. The
complete set of rating tasks was designed to be completed in one
hour, but volunteers were not given a time limit.

Statistical analysis. An average search result rating was computed
for each of the four methods, across each of the 15 search problems
× 13 volunteer = 195 search results.

We were also interested in the statistical significance of compar-
isons of the average ratings across search methodologies: If one
method has a higher rating on average, is the difference statistically
significant? We designed a bootstrap-based pairwise hypothesis
test [17] comparing the ratings given by a user for predictions on
the same problem from different algorithms. We consider a null
hypothesis of the following form. For two search methods A and B,
define:

HA,B
0 = “The average score for search strategy A is worse than the

score for search strategy B.”

Our goal is to see if we can reject this null hypothesis for various
combinations of A and B. Unfortunately, our experimental setup
is rather complex, as there are two sources of variability in our
experimental setup: (1) the set of participants chosen, as well as (2)
the set of search tasks selected. With a different set of participants
and a different set of search tasks, we may have obtained different
results.

Hence, a classical statistical test such as a t-test is not directly
applicable, as it assumes the ratings are sampled (identically and
independently distributed) from a single population. In our case, this
assumption does not hold as the scores obtained by a single volunteer
are conditioned upon the volunteer selected. Thus our use of a
bootstrap-based method to attempt to reject the null hypothesis. For
a particular pair of search methods, we re-sample with replacement
from among the volunteers, and we re-sample with replacement
from among the rating tasks, and compute the mean score. If A has
a better average than B, then for that re-sampled data set instance,
the null hypothesis has been rejected. This process is repeated many
times, and the fraction of the time that the null hypothesis is not
rejected is the p-value of the test.

10.2.2 Results and Discussion

Across all rating tasks and volunteers, we see that CODEC receives
an average rating of 3.89, Deep-Code search and CodeHow receive
an average rating of 2.81 and 2.53 respectively, while the non-
probabilistic version of CODEC receives a rating of 1.71.

Qualitatively, it seems that these results show a very large spread,
with CODEC more than a full rating point higher than Deep-Code
search and CodeHow, and the non-probabilistic version of CODEC a
full rating point behind Deep-Code search. We would venture to say
that for a real code-search application, these gaps would translate to
significant differences in user satisfaction with the various methods,
and perhaps even to gaps in programmer productivity as a user
needs to spend extra time and effort with a search where she/he is
not happy with the results.
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(a) CODEC inter/intra-cluster similarity. (b) Non-prob inter/intra-cluster similarity. (c) Comparison of inter-cluster similarity.

Figure 5: Comparing inter-cluster similarity (measured via API call similarity) for CODEC and its non-probabilistic variant.

(a) Runtime variation with increasing data size
for a 16-GPU machine. CODEC uses an in-
dexed database of 27.9M programs collected
from Github.

(b) Runtime variation with increasing number of
GPUs for a dataset of 6.4M indexed programs.

(c) Slowdown using Monte-Carlo sampling,
compared to CODEC’s reverse encoder.

Figure 6: Performance characteristics of CODEC.

Statistically, there are significant differences among the methods,
as shown in Table 3. CODEC’s average score is, statistically speak-
ing, significantly higher than the average score of the other three
competitive methods—the only possible exception is CODEC com-
pared to Deep-Code search, where the null hypothesis is rejected at
a p-value of 0.04. There is not a statistically-significant difference
between Deep-Code search and CodeHow, but all methods are better
than the non-probabilistic version of CODEC.

10.3 Runtime Performance
One of the key technical innovations of our approach is the introduc-
tion of the reverse encoder Q(Z|Y, θ) which makes it possible to
evaluate P (Yi|X, θ) for a particular sketch Yi analytically, using a
closed-form formula. This is crucial as it allows a large database to
be searched quickly. In this subsection, we benchmark our CODEC
implementation, running it on an Amazon AWS p2.16xlarge
machine with 16 NVIDIA K80 GPUs.

CODEC uses this approximation to perform parallel/distributed
search using multiple GPUs, possibly spread over multiple machines.
The implementation is fairly simple. bX is pre-computed for each
database program and stored in GPU RAM. In the case of a multi-
dimensional latent space, each bX is a vector, whose dimensionality
is equivalent to the dimensionality of the latent space (256 dimen-
sions). Then, in response to a query, the computations of Section
7 are performed on each GPU, resulting in an approximation of
P (Yi|X) for each Yi in the database. Assuming the goal is to return
the top K programs, the top K P (Yi|X) values are sent from each
GPU to a central server, where the top K P (Yi|X) values overall
are computed, and the associated codes are returned.

Runtime with varying database size. We start our analysis with a
small database of 1.6M Java methods, where each GPU is assigned
a data size of 0.1M methods, and increase the database size to
a total of 102.4M synthetic programs, and measure the time to
compute the top K programs for K = 100. Note that CODEC uses
a set of 27.9 million Java methods collected from Github, which
takes approximately 1.14 seconds to search. Results are shown in
Figure 6(a). Runtime increases linearly with data size, and for a
dataset of 102.4M programs, we take around 3.5 seconds per query
using 16 GPUs. Considering that an Amazon p2.16xlarge costs
$14.40 per hour, this equates to a cost of around 1.4 cents per 100M
programs searched.

Runtime with varying hardware. Since CODEC search is embar-
rassingly parallel, it should be possible to push down the runtime by
simply increasing the number of GPUs available. For this experi-
ment, we fix the dataset size to be 6.4M programs, small enough so
that the associated vectors can all stored on a single GPU. We then
increase the number of GPUs by repeatedly doubling from 1 until
16 GPUs, and notice that the runtime decreases approximately by
half with each doubling, as shown in Figure 6(b). This implies that
it should be possible to push the search time for a large database
down nearly arbitrarily, by simply using more GPUs.

Efficiency and accuracy of the reverse encoder. An alternative
to using reverse encoder (evaluated in all of the experiments this far)
is to use Monte-Carlo (MC) simulation. The obvious, MC method
for evaluating P (Yi|X, θ) and estimating this value, is to draw N
samples from P (Z|X, θ), and then use the estimator P (Yi|X, θ) ≈
1
N

∑
Zj∼P (Z|X,θ) P (Yi|Zj , θ). Note that each sample requires a
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probability calculation, P (Yi|Zj , θ), which will be quite expensive
(even on a GPU) as this probability calculation makes use of a
tree-based, recurrent neural network.

We compare CODEC’s reverse encoder-based implementation
with this MC alternative, running on a single GPU, using 0.1M
programs on a p2.xlarge Amazon machine.

Results are plotted in Figure 6(c), where the ratio of the MC time
to CODEC’s reverse encoder-based time is shown as a function of the
number of MC iterations performed. We find that after around 30
MC iterations, the Jaccard similarity between the top 100 programs
returned by both computations for an arbitrary query converges to
around 0.91, and that further MC iterations do not increase this
similarity further (at this stage, the mean co-efficient of variation
for the MC estimate is around 1%). This indicates that running 30
MC iterations is a good rule-of-thumb for the MC approach, at least
for our database. At this point, the MC method is around ∼ 31, 000
times slower than CODEC’s reverse encoder.

11 Conclusions
We have proposed the problem of contextualized code search, where
a database of code fragments is searched for a match to a query
composed of various evidences extracted from the surrounding pro-
gram. The benefit of contextualized code search compared to other
code search methods is that search happens “for free” using the
surrounding context; the user need not specify the parameters for
search. We have proposed a general, probabilistic framework that
allows the inclusion of various types of evidence (sets of types that
appear in the surrounding code, lists of formal parameters, English
comments, etc.). Virtually any evidence can be used, as long as a
suitable encoder for the evidence can be developed. A key technical
innovation is the learning of a “reverse encoder” that allows for fast
search, by allowing the framework to compute a simple, closed-form
version of the posterior probability of generating a code from the
evidence at query time. We have shown that the resulting search
engine gives high-quality results.

We end the paper by asking, could CODEC be extended past
Java? In terms of engineering effort, adding an additional language
would require (a) designing a new intermediate language (similar to
SKETCH) for the target language, (b) re-implementing the context
extractor and decompiler, and (c) updating the learner and search
engine to incorporate any changes in evidence types and in the
intermediate language. For most modern imperative languages
(Python and C++ come to mind), the engineering effort would be
minimal, as the evidences would stay the same, and SKETCH could
be used with small changes. However, even a functional language
such as Scala should require relatively little effort.

Perhaps a more interesting question is: would CODEC give good
results with other languages? We anticipate it would, with one
caveat: our CODEC prototype relies heavily on the fact that Java
has a widely-used set of standard types and methods. These are
important evidence types for CODEC. In a language such as C for
which there is arguably less uniformity in terms of the types and
libraries used, the CODEC approach might be more successful for
searching a more limited code base (say, the code produced by a
corporation or open-source project), as opposed to searching a more
general database such as GitHub.
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13 Appendix: Reverse Encoder in Multi Dims
The goal is to be able to compute P (Y|X) in the case that Z, the
embedding, is multi-dimensional. We begin with:

P (Y|X) =
∫
Z

P (Z|X)P (Y|Z)dZ

=

∫
Z

P (Z|X)P (Z|Y)P (Y )

P (Z)
dZ

=

∫
Z

exp
(
aX · Z2 + bX · Z+ cX

)
× exp

(
aY · Z2 + bY · Z+ cY

)
× exp

(
− aI · Z2 − bI · Z− cI

)
× P (Y )dZ

where (aX, bX, cX), (aY, bY, cY), (aI, bI, cI) are the parametariza-
tions of multidimensional normal distributions P (Z|X), P (Z|Y)
and P (Z), respectively.

Note that each of these can be represented as follows, for each
dimension i:

aiX = − 1

2σ2
X

, biX =
µiX
σ2
X

, ciX = − (µiX)
2

2σ2
X

− 1

2
ln(σ2

X)−
1

2
ln 2π

aiY = − 1

2σ2
Y

, biY =
µiY
σ2
Y

, ciY = − (µiY)
2

2σ2
Y

− 1

2
ln(σ2

Y)−
1

2
ln 2π

aiI = −
1

2
, biI = 0, ciI = −

1

2
ln 2π

Continuing, we have:

P (Y|X) = P (Y)×
∫
Z

exp
[
(aX + aY − aI) · Z2+

+ (bX + bY) · Z+ (cX + cY − cI)
]
dZ

= P (Y)×
∫
Z

exp
(
a∗ · Z2 + b∗ · Z+ c′

)
dZ

Where: a∗ = aX + aY − aI, b∗ = bX + bY and c′ = cX + cY − cI.
Simplifying, we have:

P (Y|X) = P (Y)× exp(c′ − c∗)

×
∫
Z

exp(a∗ · Z2 + b∗ · Z+ c∗)dZ

= P (Y)× exp(c′ − c∗)
where,

c∗ = b∗2

4a∗
+

1

2
ln(−a∗

π
)

c′ = cX + cY − cI

=
b2
X

4aX
+

1

2
ln(−aX

π
) +

b2
Y

4aY
+

1

2
ln(−aY

π
)− 1

2
ln 2π

=
b2
X

4aX
+

b2
Y

4aY
+

1

2
ln(−aX

π
) +

1

2
ln(−aY

π
)− 1

2
ln 2π

Finally this reduces our final computation to,

logP (Y|X) = logP (Y) +
∑
i

(c′i − c∗i )
where,

c′ − c∗ = b2
X

4aX
+

b2
Y

4aY
− b∗

2

4a∗
+

1

2
ln(−aX

π
)+

1

2
ln(−aY

π
) +−1

2
ln(−a∗

π
)− 1

2
ln 2π

Note that this computation is easily implemented to a matrix-
vector style operation that can be parallelized to run on a GPU.
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