
Secure Multi-Party Functional Dependency Discovery

Chang Ge
University of Waterloo

c4ge@uwaterloo.ca

Ihab F. Ilyas
University of Waterloo
ilyas@uwaterloo.ca

Florian Kerschbaum
University of Waterloo

fkerschb@uwaterloo.ca

ABSTRACT

Data profiling is an important task to understand data se-
mantics and is an essential pre-processing step in many tools.
Due to privacy constraints, data is often partitioned into silos,
with di↵erent access control. Discovering functional depen-
dencies (FDs) usually requires access to all data partitions
to find constraints that hold on the whole dataset. Simply
applying general secure multi-party computation protocols
incurs high computation and communication cost.
This paper formulates the FD discovery problem in the

secure multi-party scenario. We propose secure constructions
for validating candidate FDs, and present e�cient crypto-
graphic protocols to discover FDs over distributed partitions.
Experimental results show that solution is practically e�cient
over non-secure distributed FD discovery, and can signifi-
cantly outperform general purpose multi-party computation
frameworks. To the best of our knowledge, our work is the
first one to tackle this problem.

PVLDB Reference Format:
Chang Ge, Ihab F. Ilyas, and Florian Kerschbaum. Secure Multi-

Party Functional Dependency Discovery. PVLDB, 13(2): 184-196,

2019.

DOI: https://doi.org/10.14778/3364324.3364332

1. INTRODUCTION

Data profiling refers to the general activities of mining
metadata about an input dataset, including finding keys,
dependencies, statistics and correlations. Profiling is a key
prerequisite for many big data tasks, such as master data
management [1], data exploration [26], and data integra-
tion [25]. Among these metadata, functional dependency
(FD) describes specific correlations between attributes. Infor-
mally, an FD A! B states that for any two tuples that agree
on Attribute set A, they also agree on the Attribute B. FDs
have been widely used for schema normalization [32], error
detection [34] and repair [7], and query optimization [13].
While current FD discovery algorithms assume a single

dataset, data is often owned and stored by multiple parties in

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For

any use beyond those covered by this license, obtain permission by emailing

info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 2

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3364324.3364332

silos, usually with di↵erent access controls. This distributed
separation is often required by business or data governance
rules (e.g., GDPR [2]) to meet data security and privacy
standards. For example, Figure 1 shows the two partitions of
an employee dataset for an organization: Partition D1, which
records EU employees is owned and stored by its European
subsidiary, and D2, which records US employees is owned
and stored in US.

edu edu_num marital occupation ethnicity income
!" Bachelors 13 Single Exec-mag Caucasian >50K
!$ Bachelors 13 Married Exec-mag Caucasian >50K
!% HS-grad 9 Divorced Exec-mag Caucasian >50K
!& 11th 7 Married Handlers African ≤50K
!(Bachelors 13 Married Sales African ≤50K

edu edu_num marital occupation ethnicity income
!" HS-grad 9 Divorced Sales Caucasian ≤50K
!$ HS-grad 9 Single Craft-repair Caucasian ≤50K
!% As-acdm 12 Single Server Caucasian ≤50K
!& Bachelors 13 Divorced Exec-mag Caucasian ≤50K
!(11th 7 Married Exec-mag African >50K

)*

)+

Figure 1: Two partitions of employee dataset.

Given these partitioning requirements on the data, the
question is how to e�ciently discover FDs that hold on
the whole dataset, while minimizing the data leakage in
the lack of a single trusted party. The question presents a
3-way tradeo↵ between soundness, privacy and e�ciency :
soundness requires exchanging information among partitions
to corretly compute the global set of FDs; privacy dictates not
revealing more than necessary data to other partitions and
without revealing certain information under some acceptable
definition of privacy; and e�ciency necessitates the overall
process to run in reasonable (e.g., polynomial) time. Näıvly
applying current techniques can be either insecure, incorrect
or too expensive. For example, simply computing FDs from
each partition separately and intersecting the FD sets might
respect the privacy of each partition, but can lead to invalid
FDs on the whole dataset; the following example illustrates
the problem with this simple approach.

Example: Consider the following FDs:
f1 : edu! edu num f2 : ethnicity ! income

f1 states that for any two persons with the same edu, they
must have the same edu num. f2 states ethnicity determines

184

income. By examining the tuples from individual partitions,
it is clear that f1 and f2 are valid FDs on both D1 and D2.

However, by examining the tuples from D = D1[D2, f2 is
not valid on D, due to violations such as D1.t1[ethnicity] =
D2.t1[ethnicity], but D1.t1[income] 6= D2.t1[income].
On the other hand, exchanging information between par-

titions to validate global FDs in an encrypted way might
meet both privacy and soundness, but su↵ers from severe
ine�ciency. For instance, validating one candidate FD on a
dataset requires comparing all needed evidence from all the
partitions. Securely comparing all tuples from all partitions
is expensive due to the lack of scalable cryptographic con-
structions. General purpose secure multi-party computation
protocols such as garbled circuit [38], homomorphic encryp-
tion [29] and oblivious polynomial evaluation [27] incur high
cost already when securely computing one function among
multiple parties [22], rendering an FD discovery algorithm
prohibitively ine�cient.

Therefore, to solve the problem of discovering global FDs
among multiple parties securely and e�ciently, this work
presents e�cient cryptographic protocols to support discov-
ering FDs in semi-honest multi-party scenarios. We highlight
the main contributions of this paper as follows:

• We define the FD discovery problem in the secure multi-
party scenario and propose a top-down based framework
to validate FDs (Section 2).

• We formulate the distributed FD validation problem over
multiple partitions, and provide an e�cient solution for
discovering FDs in the multi-party scenario (Section 4).

• As the building blocks of our solution, we design e�cient
mix networks to enable secure equality testing against a
semi-honest adversary (Section 5).

• We also propose a relaxed version of FD (referred to as
congenial FD) and show that our framework is able to
e�ciently and securely discover these FDs (Section 6).

• With extensive evaluations using real world datasets, we
show that our solution is practically e�cient over non-
secure distributed FD discovery, and can significantly out-
perform general purpose multi-party computation frame-
works (Section 7).

2. PROBLEM STATEMENT AND SOLU-

TION OVERVIEW

2.1 Problem Statement

Assume a dataset D in schema R, which is horizontally
partitioned into D1 to Dm: D = [m

i=1Di. Let S denote
the set of all FDs that are valid on the dataset D: S =
{f | D |= f}, and let Si be the set of all FDs that are valid
on a partition Di: Si = {f | Di |= f}. Let Ŝ represent the
intersection of all Si: Ŝ = \m

i=1Si. It is clear that S ✓ Ŝ, as
we showed in the example from Section 1.

We call an FD A! B trivial when B 2 A. We also call
an FD minimal if @K ✓ A such that A \ K ! B. Let

P

be the set of all non-trivial and minimal FDs on D,
P

|= S,
i.e., any f 2 S can be either in

P
or implied by

P
.

The problem is to securely find
P

against semi-honest ad-

versaries, where each honest-but-curious party Pi(i 2 [1,m])
owns a private Di and follows the protocol honestly, but tries

to infer information from other parties.

2.2 Solution Overview

Worker 1

Worker w

……

……

Party mParty 1

Check&'())

Probabilistic
encrypted inputs

Deterministic re-encryption
decryption mix network

Prune the lattice

+,-. |)012.

Figure 2: Architecture of secure multi-party FD discovery.

Figure 2 depicts the architecture of our solution. Our
framework adopts a top-down approach [23] to prune the
FD search space. Assume there are m parties numbered
from 1 to m, each holding exactly one database partition
Di(i 2 [1,m]), and a mix network chain consisting of w
workers sequentially from worker 1 to w.

We first construct a set containment lattice. Each node
in the lattice represents a set of attributes, and every edge
in the lattice represents a candidate FD [17]. In order to
prune the space of possible FDs, for each candidate FD f ,
all the m parties jointly validate the candidate FD, which
is represented by the functionality of CheckFD(f). The
validation process involves two types of actions: 1) all the
parties prepare necessary inputs and encrypt using proba-
bilistic encryption; and 2) the encrypted messages are sent
to a deterministic re-encryption decryption mix network. A
mix network which consists of a chain of w workers, securely
computes on the inputs and and eventually returns the va-
lidity of f , which will be used to prune the lattice in the
next round. The process runs until all the edges have been
properly traversed.
Note that traversing the lattice can be guided by any

schema driven search algorithms [3, 17, 28, 39], and is not
the contribution of this work. The scope of this work focuses
on the fundamental functionality CheckFD(f) that is used
to prune the candidate space.
The details of the solution will be discussed as follows:

Section 4 explains the CheckFD(f) flow and the end-to-
end solution. Two deterministic re-encryption decryption
mix networks, which are used together to securely validate
candidate FDs will be introduced in Section 5.

3. BACKGROUND

Table 1 lists the notations used in this paper.

3.1 Functional Dependency

Definition 1. (Functional Dependency) Given a data in-

stance D in schema R, let A be a set of attributes A ✓ R and

B be an attribute B 2 R, a functional dependency f : A! B
holds on D if for all tuples t1, t2 2 D, t1[A] = t2[A])
t1[B] = t2[B].

For K ✓ R \A, f 0 : A,K ! B is called a specialization of
f , i.e., f 0

2 Spec(f).

185

Table 1: Summary of Notation

symbol meaning

A an attribute set
B an attribute

D, Di a relational table instance, instance on Pi

S, Si a set of all valid FDs on D,Di

Ŝ the intersection of all SiP
a set of all non-trivial and minimal FDs on DP

c a set of complete congenial FDs on 8iDi

t a tuple in D
Spec(f) a specialization of FD f

⇡D
A a partition over A on data D

V D
A the values of equivalent classes over A on D

e(AD) attribute partition error of A on D
Pi the i’th party
Wi the i’th worker
p a large prime
g a generator
Gp a cyclic group of order p using generator g
Zp a set of p-adic integers
m number of parties / partitions
w number of workers in a mixnet

H(·) a hash function to Zp domain
x, y, z private key for W1, W2, W3

k, K public key, set of public keys
r random value sampled by a party

x0, y0, z0 secret re-encryption key of W1, W2, W3

M the product of secret re-encryption keys
fv(·) a boolean function to compare inputs equality
⇧v a multiplicative deterministic mixnet
fs(·) a boolean function to compare sum of inputs
⇧s an additive deterministic mixnet

Definition 2. (Attribute Partition) Given an attribute

set A and a relational instance D, the attribute partition of

D under A is a disjoint set as ⇡D
A = {[t]A|t 2 D}, where

[t]A = {t0 2 D|t[A0] = t0[A0], 8A0
2 A}

|⇡D
A | represents the cardinality of the set ⇡D

A . Since ⇡D
A is

a set of tuple sets, we use k⇡D
A k to denote the cardinality of

tuples, which in other words, is equivalent to the cardinality
of D. We use V D

A to represent the set of values of the
attribute partition of A on D.

Definition 3. (Attribute Partition Error) The attribute

partition error e(A) of an attribute set A with respect to

an instance D is defined as the minimal number of rows

that need to be removed in order to make A a super key.

Mathematically, e(AD) = k⇡D
A k � |⇡D

A |.

3.2 ElGamal Encryption

ElGamal encryption [15] is a probabilistic asymmetric
encryption scheme. ElGamal can be defined over a cyclic
group Gp of order p with a generator g. p is usually a
large prime number and g is a primitive element of the
group. ElGamal encryption consists of three algorithms: key
generation, encryption and decryption, which are formally
described in Algorithm 1.

The KGen algorithm takes two input values: a large prime
number p, and the generator g. The private key x is a random
integer uniformly drawn from Zp, and the public key k is

an element in Gp computed from x and g. By the discrete
logarithm assumption [12], it is di�cult to infer x from k.

Algorithm 1 ElGamal Scheme

Input: p, g . a large prime, generator
procedure KGen(p, g)

x $Zp . x is the private key
k gx . k is the public key
return (x, k)

end procedure

Input: v, k . plain value, public key
procedure Enc(v, k)

r $Zp . sample a random value
c1 gr

c2 v · kr

return (c1, c2)
end procedure

Input: (c1, c2), x . cipher text, private key
procedure Dec((c1, c2), x)

c01 cx1 . updating random parameter
c2 c2 · (c

0
1)

�1 . decrypt
return c2

end procedure

The Enc algorithm takes inputs of a value v and the public
key k, and outputs a cipher text pair (c1, c2). The Dec
algorithm decrypts the cipher text pair using private key x.

3.3 Mix Network

A mix network (mixnet, in short) [9] is a cryptographic
construct where a chain of workers establishes hard-to-trace
communications between the senders and receivers. The
senders encrypt each message to each worker using public
key cryptography and send encrypted messages to the mixnet,
where each worker strips o↵ an encryption layer, does some
operations and shu✏es them before enrouting to the next
worker sequentially. At the output, receivers receive crypto-
graphically transformed and randomly permuted messages,
making the end-to-end communications untraceble.

4. SECURE FD DISCOVERY

Recall in Section 2.2 that our solution is based on vali-
dating candidate FD to prune the search space. We first
formulate the distribuetd FD validation in Section 4.1, and
then introduce the FD discovery protocol in Section 4.2.

4.1 Distributed FD Validation

The main observation is that in order to validate a candi-
date FD f , one needs to compare all the attributes relevant
to f across the partitions. Based on traditional FD valida-
tion on a single dataset [17], we can derive the FD validation
rule on distributed partitions as follows:

Lemma 1. (FD Validation [17]) A dataset D in schema R

is partitioned into D1 to Dm: D = [m
i=1Di. An FD A! B

holds on D if and only if e(AD) = e((A [B)D).

Example: Consider D = D1 [D2 in Fig-
ure 1. For the candidate FD f1: ⇡edu =
{{D1.t1, D1.t2, D1.t5, D2.t4}, {D1.t3, D2.t1, D2.t2}, {D1.t4,

186

D2.t5}, {D2.t3}}, and hence e(eduD) = 10�4 = 6. Similarly,
e((edu, edu num)D) = 6. Therefore, D |= f1.
However, for the candidate FD f2: e(ethnicityD) 6=

e((ethnicity, income)D); therefore, D 6|= f2.
Based on Lemma 1, we can further formalize the attribute

partition error over multiple parties. For any attribute set
A ✓ R, the cardinality of m-set union1 satisfies:

k⇡D
A k =

mX

i=1

k⇡Di
A k (1)

Meanwhile, the size of attribute partitions satisfies:

|⇡D
A | =

mX

i=1

|⇡Di
A |�

X

1i<jm

|V Di
A \ V

Dj
A |

+
X

1i<j<km

|V Di
A \ V

Dj
A \ V Dk

A |+ · · ·

+ (�1)m�1
|

m\

i=1

V Di
A |

(2)

Where V Di
A is the set of values of attribute partition

of attribute set A on partition Di. Let PSI-CA(AD)
=

Pm
i=1 |⇡

Di
A |� |⇡D

A |. Equation (1) � (2) leads to:

e(AD) =
mX

i=1

e(ADi) + PSI-CA(AD) (3)

From Equation 3, the final attribute partition error consists
of two parts: 1) the sum of attribute partition errors on each
partition

Pm
i=1 e(A

Di); and 2) the power set intersection
cardinality (PSI-CA). Every party Pi is able to compute
e(ADi) and V Di

A locally since Di belongs to Pi. To validate
an FD A! B, one simply needs to evaluate the expression
e(AD)� e((A [B)D) == 0 based on Equation 3.

Example: Continue the example from Figure 1. Con-

sider f1 : edu ! edu num. e(eduD1) = 3, e(eduD2) = 4,
e((edu, edu num)D1) = 3, and e((edu, edu num)D2) = 4.
V D1
edu ={Bachelors,HS-grad,11th}

V D2
edu ={HS-grad,As-acdm,Bachelors,11th}

V D1
edu,edu num = {(Bachelors,13),(HS-grad,9),(11th,7)}

V D2
edu,edu num = {(HS-grad,9),(As-acdm,12),(11th,7),

(Bachelors,13)}

PSI-CA(eduD)=|V D1
edu \ V D2

edu|=3, and PSI-CA((edu, edu
num)D)=|V D1

edu,edu num \ V D2
edu,edu num|=3. Hence,

e(eduD)-e((edu, edu num)D)=
e(eduD1)-e((edu, edu num)D1)+
e(eduD2)-e((edu, edu num)D2)+
PSI-CA(eduD)-PSI-CA((edu, edu num)D)=0.

Therefore, D |= f1.

4.2 A Secure FD Discovery Protocol

We arbitrarily choose one party to act as the moderator,
who triggers the execution of FD validation and receives the
output from mixnet. The moderator is a role for a party,
and learns only the output of the mixnet as other parties do.
Figure 3 illustrates the protocol to securely fulfil the

CheckFD(f) function: given a candidate FD f : A! B as
input, the protocol consists of three steps: 1) on attribute

1We assume each tuple has its own tuple id and partition id;
therefore no identical tuples exist.

sets A and AB, it computes the power set intersection car-
dinality (PSI-CA) if not done yet. Each party encrypts
and sends its set of values for the attribute partition via a
multiplicative deterministic re-encryption decryption mixnet
(Section 5.1). The output of the mixnet is the encrypted
set of values for the attribute partition, based on which, the
moderator intersects all sets directly over encrypted values
for both attribute sets A and AB, and returns the cardinali-
ties; 2) each party computes local attribute partition errors
on A and AB and encrypts them to send the di↵erence to
an additive deterministic re-encryption decryption mixnet
(Section 5.2). Meanwhile, the moderator also encrypts and
sends the di↵erence of PSI-CA of attribute sets A and AB
as input. The output of the mixnet is the encrypted error
di↵erence; finally 3), the moderator concludes the validity of
candidate FD based on the output of second mixnet: A! B
is true if and only if the encrypted value equals to 1.
The two mixnets in above protocol will be explained in

details later in Section 5. In the rest of this section, we
present an e�cient approach to compute PSI-CA.

Algorithm 2 Power set intersection cardinality

Input: S . set of m sets to be intersected
1: procedure PSI-CA(S)
2: card 0, imap < int, int >
3: for t 2 [1,m], 8k 2 S[t] do
4: imap[k] + + . increase the counter
5: end for
6: cmap < int, int > . (occurrance, contribution)
7: for all occ 2 imap.values do
8: if occ � 2 then . element occurs than once
9: if ¬cmap.contains(occ) then
10: cntrbtn 0
11: for i occ; i � 2;��i do
12: c Ci

occ. i-combination: occ-choose-i
13: if i mod 2 == 0 then . flipping signs
14: cntrbtn cont+ c
15: else
16: cntrbtn cont� c
17: end if
18: end for
19: cmap(occ) cntrbtn
20: end if
21: card card+ cmap.get(occ)
22: end if
23: end for
24: return card
25: end procedure

A näıve way to compute PSI-CA is that for each set in-
tersection, we intersect the encrypted values directly from
the sets. Given there are m partitions, the number of inter-
sections is 2m �m � 1, which is expensive. To reduce the
exponential cost of PSI-CA, Algorithm 2 presents a linear
approach to e�ciently compute PSI-CA for a set of m sets.
The intuition is that rather than computing intersections,
we count the contribution of each value to PSI-CA, which is
determined by the number of its occurrence in all partitions.
For example, if an value occurs three times in any of the
three partitions, then that value will contribute to PSI-CA
by being intersected in one 3-set intersection and three 2-set
intersections. This method simply requires traversing all

187

CheckFD(f) : FD Validation Protocol for f : A! B

Moderator P1, . . . ,Pm Mixnet

If A is new run on A

Comp. set V
Di
A

8viA 2 V
Di
A , Encrypt(v

i
A,K)

Multiplicative mixnet

SA =

nn
(v

D1
A)

M
o
, . . . ,

n
(v

Dm
A)

M
oo

 ��

PSI-CA : cardA

Run AB : cardAB

Comp. e(A
Di),e(AB

Di)

Encrypt(g
e(ADi)�e(ABDi)

,K)

Comp. card di↵
Encrypt(g

cardA�cardAB ,K)
��!

Additive mixnet

r = 1 =) true
r = g

[e(AD)�e((AB)D)]M

 ��

Figure 3: The FD validation protocol for securely validating a candidate FD using mixnets.

the elements only once. We use two simple map structures
to keep counting: 1) imap stores the mapping of encrypted
elements as the keys, and values are the counter of key oc-
currences; 2) cmap stores the occurrence of an encrypted
element as the key, and its contribution to the set intersection
cardinalities in Equation 3 (Section 4.1).

! = { $, &, ' , $, &, (, &, (}

element occurrence

$ 2
& 3
' 1
(2

*+$,
occurrence contribution
2 -.. = 1
3 −-11 + -1. = 2

'+$,

'$4(= 1 + 2 + 1 = 4

Figure 4: An example of computing PSI-CA.

Figure 4 gives an example to compute PSI-CA using Algo-
rithm 2 with an input set S consisting of three sets, each of
which is a set of encrypted values from a partition. In Sec-
tion 5, we will explain in details how each value is probabilis-
tically encrypted but still can be deterministically compared
for equality. Given the example input of S in Figure 4, we
can easily reason out that the PSI-CA equals to card = 4
by Equation 3 (Section 4.1). With Algorithm 2, the pro-
cess starts with a single scan on each elements in order to
build the imap structure (Line 3�5). After the traverse,

imap stores the occurrences for all values from partitions.
For example, element a appears twice in S. Then, imap is
sequentially visited to build the cmap (Line 6�23), which
stores the contribution of each occurrence to the final PSI-
CA. For instance, the occurrence of element b is 3 in S, then
it contributes to the overall cardinalities by showing up in
one 3-set intersection (�C3

3), and three 2-set intersections
(C2

3). The cmap is adaptively built and can be reused. For
instance, (2, 1) was inserted when it visited (a, 2) in imap,
and can be reused when visiting (d, 2). In the meantime of
building cmap, the final cardinality is iteratively calculated
(Line 21): card = 1 + 2 + 1.

The imap stores the occurrence and its size can be at
most the dataset cardinality. Since each element can appear
in m parties, the size of cmap is at most m. Once m is
fixed, the cmap can be built o✏ine. Both imap and cmap
are built on the last worker and incur no communication
cost. Although the elements of each run are di↵erent, the
cardinality only depends on the occurrences regardless of the
elements. Hence, computing PSI-CA only requires one-pass
scan of all encrypted elements to construct the imap, while
the cmap serves as a constant lookup table. Therefore, the
complexity of PSI-CA is linear to the number of elements.

5. EQUALITY-AWARE MIXNET

In this section, we propose two versions of mixnets that
enable secure equality testing on the input values. The
first mixnet (Section 5.1) enables value-level equality check,
which allows comparing the equality of input messages with-
out revealing the messages themselves. The second mixnet
(Section 5.2) supports comparing the sum of integer set to a
given value. We will also prove the security of both mixnets.

188

5.1 Value-Level Equality Testing

The first mixnet is designed to achieve the following goal:
given a set of input values {v1, . . . , vm}, where vi is the con-
fidential message from party Pi, and a boolean functionality
fv(·) taking two input values and outputting true if inputs
are equal, the mixnet can securely fulfil fv(·) on all pairs
from the input set.
We now introduce the multiplicative deterministic re-

encryption decryption mixnet using examples. Figure 5 shows
one such mixnet with 3 workers labelled from W1 to W3 se-
quentially. There are 2 parties numbered as P1 and P2, with
input values a0 and b0 respectively, which are to communicate
via the mixnet. The input values are usually hashed into
Gp using a hash function H(·). Initially (step 0.1), each
worker generates a pair of keys (described in Section 3.2)
and distributes the public keys to all parties and workers.
Then (step 0.2), each party fully encrypts its values using all
the public keys before sending the encrypted values to the
first worker of the mixnet (step 0.3).

Algorithm 3 Fully encrypting a single value

Input: v . an integer to be encrypted
Input: K . the set of all public keys
1: procedure Encrypt(v,K)
2: (c1, c2) Enc(c2,

Q
k2K k)

3: return (c1, c2)
4: end procedure

Algorithm 3 describes the encryption process that occurs
on each party. All operations are performed in Gp, and for
simplicity we omit this in Algorithm 3 and in the rest of the
description. The encrypted value is represented as a pair in
the form of (c1, c2), which is encrypted under the product
of the public keys. Intuitively, the encryption process is to
encrypt multiply layers where each layer is secured by a key
from one of the mixnet worker.

Each worker in the mixnet does the following operations:
0) Initialization (step .0). For each run, every worker gen-
erates a fresh secret re-encryption key that will be used for
re-encryption in step .2.
1) Decryption (step .1). Since the value was encrypted
with the worker’s public key, the worker decrypts it using
its private key. Consider the encrypted value from P1 in
Figure 5, W1 uses its private key x and the random variable
gr1 and constructs a new random variable gr1x, which is
then used to divide the encrypted value agr1xgr1ygr1z as a
denominator. Hence, the encrypted value is decrypted to
agr1ygr1z.
2) Re-encryption (step .2). The decrypted value is determinis-
tically re-encrypted by the secret re-encryption key. Continue
above example, W1 re-encrypts agr1ygr1z by exponentiat-
ing with its secret re-encryption key x0, to ax0

gr1x
0ygr1x

0z.
Similarly, the random value is also updated.
3) Re-randomize the encrypted value (step .3). This is simply
realized by freshly encrypting a value of 1 and homomorphi-
cally multiplying it to the cipher text.
4) Permute the values, and send to the next worker (step .4).
This step adds an additional protection to hide the ordering.
Each worker does the same set of operations until the values
flow out from the last worker.

Algorithm 4 describes the mixnet operations that occur on
the workers. As the output of the mixnet, the input values

Algorithm 4 Mixneting a single value

Input: (c1, c2) . cipher text to be re-encrypted
Input: x . private key of the running party
Input: x0 . secret re-encryption key of the running party
1: procedure Re-Encrypt((c1, c2))
2: c2 = Dec((c1, c2), x) . decrypt

3: (c1, c2) = (cx
0

1 , cx
0

2) . encrypt with re-encryption key
4: (c01, c

0
2) = Enc(1,⇧) . ⇧: product of next pubkeys

5: (c1, c2) = (c1 ⇥ c01, c2 ⇥ c02) . re-randomize
6: return (c1, c2)
7: end procedure

are permuted and deterministically encrypted by the secret
re-encryption keys of all workers. Thus, equality checking is
realized by directly comparing the encrypted values.

Let ⇧v denote a multiplicative deterministic re-encryption
decryption mixnet, we have the following theorem:

Theorem 1. ⇧v securely implements the functionality

fv(·) in the presence of semi-honest adversary given at least

one party and one worker are not controlled by the adversary.

Proof. The functionality fv(·) is fulfilled by comparing
the equality of encrypted values, and outputs true or false as
the final output of the protocol. Correctness is immediate,
so we proceed to the privacy proof. We consider that both
the parties and the workers can be controlled by the semi-
honest adversary. Let Sim be a simulator, A be a semi-honest
adversary, and the input information regarding to the group
be I = {Gp, H(·)}. In the ideal world, parties and workers
only learn the output of fv(·). The task of Sim is to output
messages that are indistinguishable from actual view of A.
Suppose adversary A controls party P1, workers W1 and

W2 using Figure 5 as the running example. The actual view
of A consists of four messages m1�4. In Figure 5, m1 and
m2 correspond to the encrypted value (gr2 , bgr2xgr2ygr2z)
from honest P2, and m3 and m4 represent a value from
the permuted, re-encrypted set {ax0y0z0 , bx

0y0z0
} from honest

worker W3 (step 3.2), respectively.
For (m1,m2), A can further decrypt m2 using the private

keys of W1 and W2, leaving the value only encrypted with
gr2z. Both gr2 and gz are known to A; however, according
to the DDH assumption [8], for the triplet (gr2 , gz, gr2z), A
is not able to distinguish gr2z from a random element, which
is generated by Sim. In addition, for {m3,m4}, given the
output of fv(·), Sim can construct a simulated set S by draw-
ing two random elements (or, drawing one random element
if fv(·) = false). The adversary A is not able to distinguish S
from the real set {m3,m4}, except with negligible probability.
During the execution, A only learns input (from colluding
P1) and output of fv(·), but nothing else. Therefore, the
simulator Sim is able to output messages that are indistin-
guishable given only its input. To formally present the view of

adversary A, we have {Sim(I, gz, a0, x, y, x0, y0, fv(a
0, b0))}

c
⌘

{V iew⇧v
A (I, a0, b0, x, y, z, x0, y0, z0)}.

The other two cases where worker W1 and worker W2

respectively remains honest follow a similar simulation algo-
rithm, and hence we omit them here in the proof.

Let n represent the average number of values per party
from a total of m parties, and let w workers form the multi-
plicative deterministic re-encryption decryption mixnet. The

189

Party P1 Party P2

0.1, Sync K{gx, gy , gz } value : a = H(a
0
) value : b = H(b

0
)

0.2, Encrypt(value,K) (g
r1 , ag

r1xg
r1yg

r1z) (g
r2 , bg

r2xg
r2yg

r2z)

0.3, Send values to mixnet +

. .Worker W1. Keys: (x, g
x
) .

1.0, Initialize secret re-encryption key: x
0 $Zp

1.1, Decrypt (g
r1 , ag

r1yg
r1z) (g

r2 , bg
r2yg

r2z)

1.2, Re-encrypt (g
r1x

0
, a

x0
g
r1x

0(y+z)
) (g

r2x
0
, b

x0
g
r2x

0(y+z)
)

1.3, Re-randomize s
1
1 $Zp, (g

r1x
0+s11 , a

x0
g
(r1x

0+s11)(y+z)
) s

2
1 $Zp, (g

r2x
0+s21 , b

x0
g
(r2x

0+s21)(y+z)
)

1.4, Permute and send to next +

. .Worker W2. Keys: (y, g
y
) .

2.0, Initialize secret re-encryption key: y
0 $Zp

2.1, Decrypt let m
1
1 = r1x

0
+ s

1
1, (g

m1
1 , a

x0
g
m1

1z) let m
2
1 = r2x

0
+ s

2
1, (g

m2
1 , b

x0
g
m2

1z)

2.2, Re-encrypt (g
m1

1y
0
, a

x0y0
g
m1

1y
0z
) (g

m2
1y

0
, b

x0y0gm
2
1y0z

)

2.3, Re-randomize s
1
2 $Zp, (g

m1
1y

0+s12 , a
x0y0

g
(m1

1y
0+s12)z) s

2
2 $Zp, (g

m2
1y

0+s22 , b
x0y0

g
(m2

1y
0+s22)z)

2.4, Permute and send to next +

. .Worker W3. Keys: (z, g
z
) .

3.0, Initialize secret re-encryption key: z
0 $Zp

3.1, Decrypt let m
1
2 = m

1
1y

0
+ s

1
2, (g

m1
2 , a

x0y0
) let m

2
2 = m

2
1y

0
+ s

2
2, (g

m2
2 , b

x0y0
)

3.2, Re-encrypt a
x0y0z0

b
x0y0z0

Figure 5: A multiplicative, deterministic re-encryption decryption mixnet with 3 workers and 2 parties.

communication cost in the mixnet is O(nmw), and the com-
putation cost is O(nmw) in terms of modular exponentiation.
The proposed multiplicative deterministic re-encryption

decryption mixnet provides a powerful protocol for many
useful computations over encrypted data. These include: 1)
equality comparison directly on encrypted data, which is
one fundamental primitive in numerous applications. If two
values are equal, then their encrypted values are also equal.
We showed this when computing PSI-CA in Section 4.2; 2)
set union and intersection cardinalities. For instance, when
P1 and P2 encrypt a set of values, this re-encryption mixnet
can securely compute set union cardinality and intersection
cardinality; 3) homomorphic multiplication and division op-

erations. For example, ax0y0z0
⇥ bx

0y0z0 = (a⇥ b)x
0y0z0 .

The multiplicative deterministic re-encryption decryption
mixnet can be easily extended as well. For example, after the
process shown in Figure 5, the workers can initiate a second
round of decryption-only process, to decrypt the value (a⇥

b)x
0y0z0 for multiplicative operations, or the union/intersected

elements for set union/intersection problems. We leave these
straightforward extensions to readers for exercise.

5.2 Set-Level Equality Testing

The second mixnet is designed to achieve the following
goal: given a set of input integers {v1, . . . , vm}, where vi
is the confidential integer from party Pi, and a boolean
functionality fs(·) taking input set and outputting true if the
sum of inputs is 0, fs(·) can be securely fulfilled.
We now present the second mixnet, called additive deter-

ministic re-encryption decryption mixnet to achieve above
set-level equality testing. An additive mixnet shares many

properties with multiplicative mixnet, and is more e�cient
for additive operations.

Figure 6 shows an example of such additive deterministic
re-encryption decryption mixnet using three workers and two
parties. We highlight the di↵erences from the multiplicative
deterministic re-encryption decryption mixnet (Section 5.1):
1) instead of encrypting an integer directly, each party en-
crypts its value v to gv; 2) workerW1 multiplies the encrypted
values from parties. This step constructs the sum of input
values (on the exponent); 3) each worker goes through an
re-encryption process for the additive value, and eventually
the last worker gets 1 if the sum equals to 0.
Let ⇧s denote an additive deterministic re-encryption

decryption mixnet, we can derive the following theorem:

Theorem 2. ⇧s securely implements the functionality

fs(·) in the presence of semi-honest adversary given at least

one party and one worker are not controlled by the adversary.

Proof. The last worker fulfils the functionality fs(·). If
the sum of set is zero, then the encrypted value equals to
one. In the ideal world, parties and workers only learn the
output of fs(·). Consider a simulator Sim, input information
I = {Gp, H(·)} a worst case scenario where the adversary A

controls P1, workers W1 and W2 using Figure 6 as the exam-
ple. The actual view of A consists of three messages m1�3.
In Figure 6, m1 and m2 correspond to the encrypted value
(gr2 , gbgr2xgr2ygr2z) from honest P2, and m3 corresponds to

the re-encrypted value g(a+b)x0y0z0 from honest worker W3

(step 3.2). Similar to the proof for Theorem 1, A is not able
to distinguish (m1,m2) because of DDH assumption. As for
m3, given the output of fs(·), Sim can output a random value

190

Party P1 Party P2

0.1, Sync K{gx, gy , gz } value : a = H(a
0
) value : b = H(b

0
)

0.2, Encrypt(g
value

,K) (g
r1 , g

a
g
r1xg

r1yg
r1z) (g

r2 , g
b
g
r2xg

r2yg
r2z)

0.3, Send values to mixnet +

. Worker W1. Keys: (x, g
x
) .

1.0, Initialize secret re-encryption key: x
0 $Zp

1.1, Multiply let r = r1 + r2, (g
r
, g

a+b
g
rx

g
ry

g
rz
)

1.2, Decrypt (g
r
, g

a+b
g
ry

g
rz
)

1.3, Re-encrypt (g
rx0

, g
(a+b)x0

g
rx0(y+z)

)

1.4, Re-randomize s1 $Zp, g
rx0+s1 , g

(a+b)x0
g
(rx0+s1)(y+z)

)

1.5, Send to next +

. Worker W2. Keys: (y, g
y
) .

2.0, Initialize secret re-encryption key: y
0 $Zp

2.1, Decrypt let m1 = rx
0
+ s1, (g

m1 , g
(a+b)x0

g
m1z)

2.2, Re-encrypt (g
m1y

0
, g

(a+b)x0y0
g
m1y

0z
)

2.3, Re-randomize s2 $Zp, (g
m1y

0+s2 , g
(a+b)x0y0

g
(m1y

0+s2)z)

2.4, Send to next +

. Worker W3. Keys: (z, g
z
) .

3.0, Initialize secret re-encryption key: z
0 $Zp

3.1, Decrypt let m2 = m1y
0
+ s2, (g

m2 , g
(a+b)x0y0

)

3.2, Re-encrypt g
(a+b)x0y0z0

Figure 6: An additive, deterministic re-encryption decryption mixnet with 3 workers and 2 parties.

(or, 1 if fs(·) = true). The adversary cannot distinguish this
from m3, since x0, y0, and z0 are freshly chosen for each run.
Therefore, the simulator Sim is able to gen-

erate messages that are indistinguishable given
only its input. To form the view of adversary

A, we have {Sim(I, gz, a0, x, y, x0, y0, fs(a
0, b0))}

c
⌘

{V iew⇧s
A (I, a0, b0, x, y, z, x0, y0, z0)}.

The additive deterministic re-encryption decryption
mixnet has a linear computation and communication cost.
Both the computation and communication cost are O(m+w)
in terms of modular exponentiation.

The proposed additive deterministic re-encryption decryp-
tion mixnet can e�ciently empower a category of additive
comparisons. These include: 1) value-to-value equality check.
To compare whether a = b, we can construct a set of {a,�b}
as the input to the mixnet. If the encrypted output is 1,
then it implies a = b; 2) value-to-set evaluation. The mixnet
provides a way to evaluate the sum of the set to a value t.
Consider a set of size n, the input n+1 values (n values from
the set in addition to �t) can be evaluated using the mixnet;
3) set-to-set sum comparison. Comparing the equality of the
sum of two sets can be securely implemented by adding all
values from one set and all inverted value from the other.

5.3 Parallelizing MixNet

While the mixnets incur linear costs, they can be further
scaled out to multiple chains for performance improvement.

Consider two chains C1 and C2, each of them consists of w1

and w2 workers respectively. w1 and w2 are not necessarily to
be equal, but for simplicity, we assume two chains are of same

length. For the multiplicative deterministic re-encryption
decryption mixnet, continuing the example in Figure 5, C1

consists of 3 workers with secret re-encryption keys x0
1, y

0
1

and z01 respectively. Let C2 have 3 workers with secret re-
encryption keys x0

2, y
0
2 and z02. Let P1 go with C1, and P2

go with C2. The output of the two chains would be ax0
1y

0
1z

0
1

and bx
0
2y

0
2z

0
2 . If the exponents are equivalent (i.e., x0

1y
0
1z

0
1 =

x0
2y

0
2z

0
2), then the equality check of input values does work

across di↵erent chains. In the following, we describe the
pre-processing model to generate secret re-encryption keys.

Consider a trusted oracle O and a cyclic group Zp. At the
beginning, O randomly fix a value M 2 Zp. Given w, which
is the length of a chain C, O randomly samples w� 1 values
s1, ..., sw�1 2 Zp, and sets sw = M ⇥ (s1 ⇥ ...⇥ sw�1)

�1. si
corresponds to the secret re-encryption key on worker Wi.
O sends si to worker Wi via a secure channel. O reuses M
when it needs to generate a new set of keys. Obviously an
value v is always encrypted to vM regardless of chains.

The above process also works for the additive deterministic
re-encryption decryption mixnet. In practice, O can be easily
implemented using secure computations [6].

6. SECURE CONGENIAL FD DISCOVERY

So far, we adopted the traditional definition of FD (Def-
inition 1) in the secure multi-party settings, and required
the discovered FDs to hold on the whole dataset. In this
section, we relax that requirement; we define fc as an FD
that holds on any of the partition. Note that fc might not be
an valid FD on the whole dataset. For example, in Figure 1,
f2 is valid on both D1 and D2, but is not an valid FD on

191

CheckFD(fc) : cFD Validation Protocol for fc : A! B

Moderator P1, . . . ,Pm Mixnet

to vote fc : A! B

Infer(fc, Si) : votei

Encrypt(g
votei ,K)

Encrypt(g
�m

,K)
��!

Additive Mixnet

r = 1 =) true
r = g

[
Pm

i=1 votei�m]M

 ��

Figure 7: The cFD validation protocol for securely validating a candidate cFD using mixnet.

D. Formally, let
P

c represent the set of all non-trivial and
minimal FDs that are valid on every partition Di(i 2 [1,m]):P

c |= Ŝ. For the purpose of distinction, we call an FD
f 2

P
the union FD (uFD, in short), and an FD fc 2

P
c

the congenial FD (cFD, in short).
To contrast the utility of cFD with uFD, consider the

following: after learning the set of uFDs, each party learns
two pieces of profiling information: 1) the set of uFDs, which
holds globally on the entire dataset; and 2) all the local FDs
that are invalid on other partitions, because they were not
part of uFDs. On the other hand, by learning the set of
cFDs, each party will know: 1) a superset of uFDs; and 2) a
subset of local FDs that is invalid on other partitions. Both
pieces are useful profiling information (especially the pruned
local FDs). Another way to leverage cFD is in pruning the
search space of the FD discovery algorithm (Section 2.2):
f 2

P
is true either f 2

P
c or 9fc 2

P
c that f 2 Spec(fc).

All the parties do not need to validate a candidate FD f if
it has no chance of being an uFD given the set of cFDs (e.g.,
if the left hand side attributes of f does not intersect with
that of any fc 2

P
c).

6.1 Distributed cFD Validation

In the case of cFD, rather than validating all data across
partitions, discovering cFD only requires to validate the
agreement by all parties. Intuitively, for a given candidate
cFD, if every party agrees its validity on its data partition,
then the candidate is a valid cFD.
In general, for each candidate cFD fc : A ! B, a näıve

way to validate it is that each party Pi can compute attribute
partition errors e(ADi) and e((AB)Di) locally on their data,
and determine the validity using Lemma 1 (Section 4.1). But
this general approach would require to compute the attribute
partitions every time for each validation. In order to avoid
such cost, we propose that each party first computes its FD
set Si using its data partition, and then infers the validity of
a given candidate cFD fc using Si. This approach is inspired
by the following property of the cFD:

Property 1. Given a set of m FD sets S = {S1, ..., Sm},

where Si is the set of all minimal, non-trivial FDs on partition

Di. A congenial FD fc on S satisfies that 8S 2 S, 9f 2
S, fc 2 Spec(f). A congenial FD fc is minimal if @f 0

c that

fc 2 Spec(f 0
c) and f 0

c is a congenial FD.

Example: Consider the following FDs in Figure 1:
f3 : occupation! income f4 : martial! income
f5 : occupation,marital! income
By examining D1, f3 2 S1, and f5 2 Spec(f3). Similarly

on D2, f4 2 S2, and f5 2 Spec(f4). Hence, f5 in a congenial
FD. Furthermore, f5 is also minimal because neither f3 nor
f4 is an valid congenial FD.

Algorithm 5 cFD inference

Input: f : A! B . candidate cFD to be evaluated
Input: S . set of all minimal non-trivial FDs of the party
1: procedure Infer(f, S)
2: for all A0

! B 2 S do
3: A⇤ = A [A0

4: if A⇤
⌘ A then . check specialization

5: return 1
6: end if
7: end for
8: return 0
9: end procedure

Algorithm 5 utilizes Property 1 to do inference using a
party’s FDs only. The idea is to check whether the candidate
cFD can be specialized by any of its FDs which share the
same right-hand side attribute B. If the candidate cFD can
be specialized by all the parties, then the candidate is a
true cFD. This leads to the solution for securely verifying
candidate cFDs: every party securely votes either 1 if the
candidate is a valid FD on its data partition, or 0 if not; and
then we can construct an additive deterministic re-encryption
decryption mixnet to securely check whether the sum of all
votes is equal to the total number of parties.

6.2 A Secure cFD Discovery Protocol

The prerequisite in cFD protocol is to discover the set of
all minimal and non-trivial FDs Si by each party from its
data Di. This can be done locally by every party running an
existing FD discovery algorithm, e.g., [17]. Similarly to the
uFD discovery protocol in Section 4.2, we arbitrarily choose
a moderator to initialize the search space and drive pruning.
To prune the search space (Section 2.2), Figure 7 shows such
a protocol to implement CheckFD(fc) for a given candidate

192

Table 2: End to end comparison between SMFD and the plaintext-based distributed FD validation

Comput. (Sec) Comm. (MB) Comput. (Sec) Comm. (MB)

Dataset
of
Col

of
Row

of
uFD

SM
FD

Plain
Text

Over
head

SM
FD

Plain
Text

Over
head

of
cFD2

SM
FD

Plain
Text

Over
head

SM
FD

Plain
Text

Over
head

iris 5 150 4 7.6 0.5 15 9.8 0.1 98 4 3.0 0.3 10 0.4 0.01 40
balance-scale 5 625 1 9.0 0.5 18 13.8 0.1 138 1 3.5 0.4 9 0.5 0.01 50
chess 7 28056 1 420.5 2.9 143 1304.9 11.5 113 1 20.4 2.0 10 2.7 0.06 45
abalone 9 4177 137 1819.5 11.6 157 5644.7 104.7 54 159 64.1 6.2 10 8.4 0.19 44
nursery 9 12960 1 532.5 31.5 17 1333.6 65.8 20 9 94.6 9.1 10 12.4 0.29 43
breast-cancer 11 699 46 1508.1 98.8 15 3190.6 35.4 90 77 421.0 69.5 6 55.0 1.36 40
bridges 13 108 142 1726.8 197.8 9 2130.0 47.2 45 127 753.0 130.0 6 98.6 2.53 39
echocardiogram 13 132 538 1342.3 137.0 10 1958.0 30.5 64 420 506.2 92.3 5 66.2 1.70 39

cFD fc. First, the moderator instructs all parties to vote
either 1 if the candidate is valid on their data, or 0 otherwise.
Each party runs Algorithm 5 on the candidate fc and their
own FD set Si, and sends its encrypted vote to an additive
deterministic re-encryption decryption mixnet (Section 5.2).
In addition, the encrypted inverse of the number of parties
(i.e., �m) is also sent as an input. The output r of the
mixnet is an encrypted value, indicating whether all parties
voted 1 or not. If r = 1, then fc is a true cFD.

7. EVALUATION

7.1 Experiment Setup

Datasets. We choose 8 datasets from the UCI ML reposi-
tory [11]. These datasets have di↵erent number of columns,
rows and FDs. The details are listed in Table 2.
To simulate the data partitions that are held on parties,

we horizontally chunk the datasets into m disjoint and even
parts where m is the number of parties. For reproducibility
purposes, a scale factor SF is used to represent the number
of chunks that each partition has. Every partition is com-
posed of SF number of consecutive chunks in a round-robin
sequence. By default, SF is 1 for all datasets. Although
data size is evenly distributed, the values of attribute parti-
tions (used in uFD discovery) and local FDs (used in cFD
discovery) can have skewness.

Implementation details. We conducted all experiments
on AWS platform. Each party or worker was deployed on
an EC2 instance locating in spread networks across us-west
regions. Each instance has 72 vCPU and 144 GB memory.
The solutions are implemented in C++ with gcc-5.4.0, and
run on the Ubuntu-14.04.
Security parameters are fixed as follows: both the length

of generator g in ElGamal and the length of keys are set to
be 256 bits. p has a length of 3072 bits.
In additional, we also compared our solution (tagged by

SMFD) with distributed FD validation using two general pur-
pose MPC protocols: 1) MultipartyPSI [20], for multi-party
private set intersection. We integrate their code3 by replacing
the mixnet with set intersections among parties. Specifically,
for uFD, we compute the set intersections in Equation 3.
Due to the limitation that MultipartyPSI requires all parties
have same-sized sets, we assign each party to own the full
dataset to avoid the overhead of padding. cFD protocol
is implemented by intersecting votes of all parties. 2) SM-

CQL [5], for secure SQL querying over the union of its source

2based on the partition strategy in Section 7.1.
3
https://github.com/osu-crypto/MultipartyPSI

databases, and serves as a general approach to discover uFDs.
Due to the limitation of the current implementation4, we
compute the attribute partition errors e(A) and e(AB) by
issuing two SQL queries to select count(distinct A) and
count(distinct AB), respectively. SMCQL was tested with
two databases on the same host.

Metrics. We measure two end-to-end costs: 1) computation
cost, measured by the overall FD discovery time; 2) com-
munication cost, counted by the bytes which are transferred
through all the nodes. Every setting reports the mean and
standard error of 3 runs.

●

●
● ●

101

101.5

102

102.5

8 16 32 64 128
#Threads per node

Ti
m

e
ov

er
he

ad
 to

 p
la

in
te

xt

●abalone
balance−scale

breast−cancer
bridges

chess
echocardiogram

iris
nursery

Figure 8: uFD computation overhead to the plaintext de-
creases with more threads per instance.

7.2 Overhead of SMFD

Table 2 shows the end to end cost comparison between
the proposed SMFD and the non-secure plaintext-based
distributed FD validation, in a setting of 3 parties, 3 workers,
where each party or worker node uses 128 threads for public
key operations. The security overhead using all datasets is
often within one order of magnitude for both uFD and cFD
discoveries, for both computation and communication costs.
The computation overhead stems from public key opera-

tions, and the communication overhead is due to ciphertext
expansion. As Table 2 shows, FD discovery costs are highly
data dependent. The overall cost is dominated by two factors:
1) the cost of validating one FD, and 2) the number of FDs
that require validation. The first factor is determined by the
size of attribute partition values for uFD, which usually but
not necessarily increases with the number of rows; while for
cFD, the cost is independent because we process only votes
from parties. Meanwhile, the second factor is determined by
4
https://github.com/smcql/smcql

193

● ●
●

●

●

●

0

1000

2000

3000

3 4 5 6 7 8
#Party

Ti
m

e
(s

ec
)

● MultipartyPSI SMFD

(a) Computation Cost uFD

● ●
●

●

●

●

0

1000

2000

3000

3 4 5 6 7 8
#Party

M
B

●MultipartyPSI SMFD

(b) Communication Cost uFD

●

●

●

●

●

●

10

20

3 4 5 6 7 8
#Party

Ti
m

e
(s

ec
)

● MultipartyPSI SMFD

(c) Computation Cost cFD

●

●

●

●

●

●

0

5

10

15

3 4 5 6 7 8
#Party

M
B

●MultipartyPSI SMFD

(d) Communication Cost cFD

Figure 9: Cost comparison between SMFD and distributed FD discovery using MultipartyPSI, with increasing number of
parties on the balance-scale dataset: a) and b) show the computation and communication cost for uFD, respectively. SMFD
has a linearly cost, while MultipartyPSI incurs an exponential cost. c) and d) show the costs for cFD. MultipartyPSI requires
larger costs and is more sensitive to the number of parties.

the number of columns and FDs. Larger number of columns
lead to more complex lattice with more FD candidates; while
a true FD can prune out all its specialization from the lattice.
The overhead of discovering uFD is usually heavier than

cFD, because in uFD discovery, the values of attribute par-
titions pass through the mixnet, and number of values can
be large. Therefore, the computation cost of uFD can be
reduced by using multiple threads, where multiple threads
can work on values in parallel.
To show the benefit of parallel processing, Figure 8 illus-

trates the uFD computation overhead using di↵erent threads
per party and worker node. Using more threads reduces the
overhead, implying that our solution can benefit more from
modern hardware. Even using 8 threads, the overhead is
still often within one order of magnitude. The overhead can
be further reduced by scaling out to multiple mixnet chains
(Section 5.3) and here we omit because of similar behaviour.
In the rest of experiments, we show results using one thread
per node and one mixnet chain.

7.3 Efficiency of SMFD

Comparison to MultipartyPSI.We compare SMFD with
distributed FD vaidation using MultipartyPSI [20]. Note
that MultipartyPSI has a weaker security model since parties
learn the intersected values.

Figure 9a and Figure 9b illustrate the costs for discovering
uFD. Recall Section 4.1 that for each uFD validation, there
are 2m �m � 1 intersections for m parties. Although one
set intersection using MultipartyPSI is cheaper because of
the use of symmetric key cryptography instead of public key
cryptography, the exponential number of sets overwhelms
the overall performance. For example, in Figure 9a, when the
number of parties is small, MultipartyPSI runs faster. With
more parties, the benefit of faster processing per intersection
is soon diminished by the exponential number of intersections.
When there are 8 or more parties, SMFD starts to outperform
MultipartyPSI. In contrast, SMFD costs increase since more
parties are sending data to the mixnet; however, computing
PSI-CA only incurs linear complexity (Section 4.2).

Figure 9c and Figure 9d show the costs of discovering uFD.
MultipartyPSI requires larger costs than SMFD and is more
sensitive to the number of parties.

Comparison to SMCQL. Figure 10a compares the exe-
cution time of discovering uFDs. On balance-scale dataset,
SMCQL takes more than 22 hours to finish validating all
uFDs, while SMFD completes in 146 seconds. On iris dataset,

100

101

102

103

104

105

balance−scale iris
Data

Ti
m

e
(s

ec
)

SMFD SMCQL

(a) Computation Cost

100
101
102
103
104
105

balance−scale iris
Data

M
B

SMFD SMCQL

(b) Communication Cost

Figure 10: Cost comparison between SMFD and SMCQL.

SMCQL takes 3.2 hours, and SMFD finishes in 121 seconds.
On both datasets, SMFD is two orders of magnitude faster.
Figure 10b shows the comparison of communication cost.

SMCQL intensively inserts dummy tuples to pad intermedi-
ate results during its execution, so it is expected that commu-
nication cost is expensive. On balance-scale dataset, SMFD
costs 8MB, while SMCQL transfers more than 200GB. On
iris dataset, SMFD consumes 7MB, outperforming SMCQL’s
7178MB by three orders of magnitude.

Note that SMCQL was tested on the same host, and
the di↵erence of computation cost in distributed scenario is
expected to be amplified by its communication cost.

7.4 Scalability of SMFD

Scalability of varying the number of workers. Fig-
ure 11 shows the costs of varying the number of workers.
The costs of computation and communication increase lin-
early with the number of workers, for both types of FDs.
Adding more workers does not a↵ect FD candidates, but

only a↵ects the performance of mixnet. Recall that in a
mixnet chain (Section 5), all workers collaborate in a sequen-
tial way, and they share the same type of job. Hence, the
cost increases linearly with the number of workers.

Scalability of varying data volume. Figure 12 measures
the cost of changing data volume per party. Figure 12a and
Figure 12b show that costs increase with SF for discovering
uFDs. Generally, the larger data volume on each party, the
larger the attribute partition set is expected. Therefore, both
the execution time and transferred bytes increase.
However, uFD highly correlates with the FDs that are

discovered by each party, and the size of candidate uFD is
not static. When SF is small, increasing the data volume
per party invalidates more uFDs, and consequently triggers
more inference (Algorithm 5). When SF > 4, increasing
data volume per party does not provide more insights, and

194

●

●

●

●

●

●

200

300

400

500

3 4 5 6 7 8
#Worker

Ti
m

e
(s

ec
)

(a) Computation Cost uFD

●

●

●

●

●

●

10

15

20

25

3 4 5 6 7 8
#Worker

M
B

(b) Communication Cost uFD

●

●

●

●

●

●

4

6

8

10

12

3 4 5 6 7 8
#Worker

Ti
m

e
(s

ec
)

(c) Computation Cost cFD

●

●

●

●

●

●

0.4

0.5

0.6

0.7

3 4 5 6 7 8
#Worker

M
B

(d) Communication Cost cFD

Figure 11: Cost of varying the number of workers using 3 parties on the iris dataset.

●

●

●

●

●

●

●

●

500

1000

1 2 3 4 5 6 7 8
Scale Factor

Ti
m

e
(s

ec
)

(a) Computation Cost uFD

●

●

●

●

●

●

●

●

20

40

60

1 2 3 4 5 6 7 8
Scale Factor

M
B

(b) Communication Cost uFD

●

●

●

● ● ● ● ●

4.8

5.0

5.2

5.4

1 2 3 4 5 6 7 8
Scale Factor

Ti
m

e
(s

ec
)

(c) Computation Cost cFD

●

●

●

● ● ● ● ●

0.75

0.78

0.81

0.84

1 2 3 4 5 6 7 8
Scale Factor

M
B

(d) Communication Cost cFD

Figure 12: Cost of varying the data volume using 8 parties and 3 workers on the iris dataset.

hence it is expected the cost remains the same. Figure 12c
and Figure 12d illustrate such trend.

8. RELATED WORK

There has been extensive literature on discovering func-
tional dependencies [23]. These approaches can be cate-
gorized into three classes: 1) top-down schema driven ap-
proaches which generate candidate FDs first and then re-
move invalid FDs [3, 17, 28, 39]; 2) bottom-up data driven
algorithms which compare the data to find agree or di↵er-
ence sets and induct FDs from observation [14, 24, 37]; 3)
a mix of both [31]. This work belongs to the first class
of approach. Traditional practice [30] generally assumes a
single dataset without considering distributed scenarios. Dis-
tributed FastFD [36] is to the best of our knowledge the only
e↵ort considering FD discovery over partitions, which adopts
a bottom-up data driven approach and is orthogonal to our
work. Distributed FastFD focuses on minimizing communi-
cation cost by computing a full self-join of the dataset and
computing evidence from all tuple pairs, and is expensive to
implement in the secure multi-party scenario.
Our FD validation protocols relies on mix networks to

securely re-encrypt and decrypt inputs. A mixnet provides
anonymity for a batch of inputs, by changing their appear-
ance and shu✏ing the order. Based on the cryptographic
transformations that workers do, a recent survey [35] classifies
mixnets into di↵erent types such as decryption mixnet [18],
and re-encryption mixnet [33] to fit di↵erent applications.
Our proposed mixnets extend the literature by hybriding
the decryption and re-encryption operations per mix on each
worker using the ElGamal encryption [15].

Our FD validation and discovery protocols also depend on
set operations, especially set intersection cardinality and sum
of a set of integers. There exists a class of research on solving
private set intersection e.g., [19, 20] and cardinalities e.g., [10].
To validate one FD requires set intersections for all subset
of parties, and using any private set intersection techniques
would require O(2m) intersections given m parties. However,

our approach computes the set intersection cardinality for all
subsets in O(m), which is optimal, since a sub-linear solution
cannot exist. In addition, using private set intersection
would leak more information, since each party will learn the
values in intersection. Our approach only outputs the set
intersection cardinality for all subsets.
This work is closely related to the large body of litera-

ture on secure multi-party computation [4, 22]. We follow
the same model to define security and simulate the proofs.
There exists extensive research on studying general purpose
protocols [38, 29, 27], and from that, building complex pro-
tocols for privacy-preserving data mining [21]. It is not clear
how to use these protocols to e�ciently compute PSI-CA in
O(m). Note that our mixnets use shu✏ing—a technique that
requires at least a circuit of size n log n—in O(n) public key
operations and compare n elements from a large domain to
each other, but as plaintext operations on deterministically
encrypted ciphertexts. Using generic secure computation
protocols, these operations would have to be performed on
secret shared data.

Recent work on generic query answering provides a practi-
cal way to answer SQL queries securely. SMCQL [5] evaluates
queries obliviously using ORAM [16], and exhaustively pads
dummy values for each query operator in the query plan.
Due to operator cascading, padding values leads to significant
output size and hence, loss in query performance. SMCQL
is a generic system, while our work is more specialized for
the operations in FD discoveries.

9. CONCLUSION

This paper focuses on discovering FDs in the secure multi-
party scenario against semi-honest adversaries. We formu-
late discovering FDs, design secure constructions for FD
validation, and present e�cient protocols to enable secure
multi-party FD discovery. Experimental results show that
solution is practically e�cient over non-secure distributed FD
discovery, and can significantly outperform general purpose
multi-party computation frameworks.

195

10. REFERENCES

[1] IBM infosphere master data management.
https://www.ibm.com/ca-en/marketplace/

ibm-infosphere-master-data-management.
[2] Regulation (eu) 2016/679 of the european parliament

and of the council of 27 april 2016 on the protection of
natural persons with regard to the processing of
personal data and on the free movement of such data,
and repealing directive 95/46/ec (general data
protection regulation). OJ, 2016-04-27.

[3] Z. Abedjan, P. Schulze, and F. Naumann. DFD:
e�cient functional dependency discovery. In CIKM,
pages 949–958, 2014.

[4] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm,
K. Nielsen, J. I. Pagter, N. P. Smart, and R. N. Wright.
From keys to databases - real-world applications of
secure multi-party computation. Comput. J.,
61(12):1749–1771, 2018.

[5] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and
J. Rogers. SMCQL: secure query processing for private
data networks. PVLDB, 10(6):673–684, 2017.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended
abstract). In STOC, pages 1–10, 1988.

[7] G. Beskales, I. F. Ilyas, and L. Golab. Sampling the
repairs of functional dependency violations under hard
constraints. PVLDB, 3(1-2):197–207, Sept. 2010.

[8] D. Boneh. The decision di�e-hellman problem. In
Algorithmic Number Theory, Third International

Symposium, ANTS-III, Portland, Oregon, USA, June

21-25, 1998, Proceedings, pages 48–63, 1998.
[9] D. Chaum. Untraceable electronic mail, return

addresses, and digital pseudonyms. Commun. ACM,
24(2):84–88, 1981.

[10] E. D. Cristofaro, P. Gasti, and G. Tsudik. Fast and
private computation of cardinality of set intersection
and union. In CANS, pages 218–231, 2012.

[11] D. Dheeru and E. Karra Taniskidou. UCI machine
learning repository, 2017.

[12] W. Di�e and M. E. Hellman. New directions in
cryptography. IEEE Trans. Information Theory,
22(6):644–654, 1976.

[13] M. Eich, P. Fender, and G. Moerkotte. Faster plan
generation through consideration of functional
dependencies and keys. PVLDB, 9(10):756–767, 2016.

[14] P. A. Flach and I. Savnik. Database dependency
discovery: A machine learning approach. AI Commun.,
12(3):139–160, Aug. 1999.

[15] T. E. Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Trans. Information Theory, 31(4):469–472, 1985.

[16] O. Goldreich. Towards a theory of software protection
and simulation by oblivious rams. In STOC, pages
182–194, 1987.

[17] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
TANE: an e�cient algorithm for discovering functional
and approximate dependencies. Comput. J.,
42(2):100–111, 1999.

[18] A. Jerichow, J. Müller, A. Pfitzmann, B. Pfitzmann,
and M. Waidner. Real-time mixes: a bandwidth -
e�cient anonymity protocol. IEEE Journal on Selected

Areas in Communications, 16(4):495–509, 1998.
[19] L. Kissner and D. X. Song. Privacy-preserving set

operations. In CRYPTO, pages 241–257, 2005.
[20] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and

N. Trieu. Practical multi-party private set intersection
from symmetric-key techniques. In CCS, pages
1257–1272, 2017.

[21] Y. Lindell and B. Pinkas. Privacy preserving data
mining. J. Cryptology, 15(3):177–206, 2002.

[22] Y. Lindell and B. Pinkas. Secure multiparty
computation for privacy-preserving data mining. IACR
Cryptology ePrint Archive, 2008:197, 2008.

[23] J. Liu, J. Li, C. Liu, and Y. Chen. Discover
dependencies from data - A review. IEEE Trans.

Knowl. Data Eng., 24(2):251–264, 2012.
[24] S. Lopes, J.-M. Petit, and L. Lakhal. E�cient discovery

of functional dependencies and armstrong relations. In
EDBT, 2000.

[25] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
schema matching with cupid. In VLDB, 2001.

[26] K. Morton, M. Balazinska, D. Grossman, and J. D.
Mackinlay. Support the data enthusiast: Challenges for
next-generation data-analysis systems. PVLDB,
7(6):453–456, 2014.

[27] M. Naor and B. Pinkas. Oblivious polynomial
evaluation. SIAM J. Comput., 35(5):1254–1281, 2006.

[28] N. Novelli and R. Cicchetti. FUN: an e�cient
algorithm for mining functional and embedded
dependencies. In ICDT, pages 189–203, 2001.

[29] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[30] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener,
and F. Naumann. Data profiling with metanome.
PVLDB, 2015.

[31] T. Papenbrock and F. Naumann. A hybrid approach to
functional dependency discovery. In SIGMOD, 2016.

[32] T. Papenbrock and F. Naumann. Data-driven schema
normalization. In EDBT, pages 342–353, 2017.

[33] C. Park, K. Itoh, and K. Kurosawa. E�cient
anonymous channel and all/nothing election scheme. In
EUROCRYPT, pages 248–259, 1993.

[34] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré.
Holoclean: Holistic data repairs with probabilistic
inference. PVLDB, 10(11):1190–1201, 2017.

[35] K. Sampigethaya and R. Poovendran. A survey on mix
networks and their secure applications. Proceedings of

the IEEE, 94(12):2142–2181, 2006.
[36] H. Saxena, L. Golab, and I. F. Ilyas. Distributed

discovery of functional dependencies. In ICDE, pages
1590–1593, 2019.

[37] C. Wyss, C. Giannella, and E. L. Robertson. Fastfds:
A heuristic-driven, depth-first algorithm for mining
functional dependencies from relation instances -
extended abstract. In DaWaK, 2001.

[38] A. C. Yao. How to generate and exchange secrets. In
27th Annual Symposium on Foundations of Computer

Science (sfcs 1986), pages 162–167, 1986.
[39] H. Yao, H. J. Hamilton, and C. J. Butz. Fdmine:

discovering functional dependencies in a database using
equivalences. In ICDM, pages 729–732, 2002.

196

