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ABSTRACT

Data only generates value for a few organizations with ex-
pertise and resources to make data shareable, discoverable,
and easy to integrate. Sharing data that is easy to discover
and integrate is hard because data owners lack information
(who needs what data) and they do not have incentives to
prepare the data in a way that is easy to consume by others.

In this paper, we propose data market platforms to ad-
dress the lack of information and incentives and tackle the
problems of data sharing, discovery, and integration. In a
data market platform, data owners want to share data be-
cause they will be rewarded if they do so. Consumers are
encouraged to share their data needs because the market
will solve the discovery and integration problem for them in
exchange for some form of currency.

We consider internal markets that operate within organi-
zations to bring down data silos, as well as external markets
that operate across organizations to increase the value of
data for everybody. We outline a research agenda that re-
volves around two problems. The problem of market design,
or how to design rules that lead to desired outcomes, and
the systems problem, how to implement the market and en-
force the rules. Treating data as a first-class asset is sorely
needed to extend the value of data to more organizations,
and we propose data market platforms as one mechanism to
achieve this goal.
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1. INTRODUCTION

Data is the new oil [73]. Like oil, it generates enormous
value for the individuals and organizations that know how
to tap into and refine it. Like oil, there are only a select
few who know how to exploit it. In this paper, we present
our vision for data market platforms: collections of protocols
and systems that together enable participants to exploit the
value of data.
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Data only generates value for a few organizations with ex-
pertise and resources to solve the problems of data sharing,
discovery, and integration. These problems remain difficult
despite the many contributions of the database community
(and others) to theory, algorithms, and systems. Solving
these problems precedes advanced analytics and machine
learning, explaining why the large majority of organizations
only partially benefit from the data they own.

The central argument of this paper is that sharing, dis-
covering, and integrating data is hard because data owners
lack information and incentives to make their data available
in a way that increases consumers’ utility. Data owners do
not know what data consumers want and in what format,
and they are disincentivized to share data that may leak
confidential information. Even within organizations, shar-
ing data is time-consuming and it is not clear what is the
return on investment. When data is finally shared via open
data portals [28,93], or via data lakes [33,80], consumers still
need to discover data that satisfies their needs and integrate
it into the format they want, which is typically different than
the format in which they found the data.

Data market platforms establish rules to share data in a
way that is easy to discover and integrate into the format
consumers need because markets understand the data con-
sumers need and communicate this need to the owners. In a
data market platform, data owners are encouraged to share
their data because they may receive profit if a consumer is
willing to pay for it. Consumers are encouraged to share
their data needs because the market will solve the discov-
ery and integration problems for them in exchange for some
reward e.g., money. By spreading information among inter-
ested parties and incentivizing them, data market platforms
bring data value to all participants.

In recent years we have seen the appearance of many data
markets such as Dawex [31], Xignite [99], WorldQuant [99]
and others to directly buy and sell data. Data brokers [81,85]
are active participants in the Internet economy by trading
user data for ads. Many of us participate in the data econ-
omy when we exchange our personal data for Internet ser-
vices [2,87]. And hospitals and other health institutions have
started exchanging data to improve patient care and treat-
ments. The interest in trading data is not new. Economists
have been considering these problems for decades [95,96] and
the database community has made progress in issues such
as pricing queries under different scenarios [20,22,61]. We
believe the time is ripe to design and implement data
market platforms that tackle the sharing, discovery,
and integration problems, and we think the database
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Figure 1: Given a market definition (1), a market
design toolbox (2) generates the market rules, which
are simulated in (3), possibly refined, and finally
deployed on a DMMS (4).

community is in an advantageous position to apply decades
of data management knowledge to the challenges these new
data platforms introduce. In this paper, we outline chal-
lenges and a research agenda around the construction of
data market platforms.

Using Data Markets to Solve Data Problems

Consider a market with sellers, buyers, and an arbiter that
facilitates transactions between buyers and sellers. Sellers
and buyers can be individuals, teams, divisions, or whole
organizations. Consider the following example:

e Buyer b; wants to build a machine learning classifier and
needs features {(a, b, d, €), and at least an accuracy of 80%
for the responsible engineer to trust the classifier.

Seller 1 owns a dataset s1 = (a,b,c) that they want to
share with the arbiter.

Seller 2 owns a dataset s2 = (a, b’, f(d)) that they will not
share with the arbiter unless the dataset is guaranteed to
not leak any business information.

Details of the example. In the example f(d) is a function
of d, such as a transformation from Celsius to Fahrenheit.
The function can also be non-invertible, such as a mapping
of employees to IDs. Note that neither s; nor s» owns at-
tribute e, which b; wants: we discuss this attribute in Sec-
tion 7.1. Last, b’ is an attribute similar to b.

Challenge-1. Using s; alone is not enough to satisfy
b1’s needs. The arbiter must incentivize Seller 2 to share
s2. The first challenge is to compensate sellers so they are
incentivized to share their data. This requires pricing and
revenue allocation mechanisms.

Challenge-2. Without knowing how useful s; or so will
be to train the ML model, b; risks overpaying for the da-
tasets. The second challenge is to guarantee b; a certain
quality before paying for the datasets.

Challenge-3. Neither s; nor sz alone fulfill b1’s need. by
may not want to pay for two incomplete datasets that still
need to go through a slow and expensive integration process.
The third challenge requires combining the datasets supplied
by sellers to satisfy buyers’ needs. This combination can be
arbitrarily complex, such as determining how to go from
f(d) to d, which is the attribute the buyer wants.

Challenge-4. The degree of trust between sellers, buyers,
and arbiter may vary. While it is conceivable that partici-
pants within an organization trust each other, this may not
be the case in external markets. The fourth challenge is to
help all participants trust each other.
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Requirements of Data Market Platforms

The previous challenges motivate a list of requirements for
data market platforms:

Value of Data. The market must price datasets so it cre-
ates a demand of buyers requesting data and a supply of
datasets shared by sellers.

Market Design. Without the right rules to govern the
participation of sellers, buyers, and arbiter, the market will
be gamed and collapse. The key intellectual questions in
this area are on how to design the market rules when the
asset is data, which is freely replicable and can be combined
in many different ways [18]. A requirement of a data market
platform is to be resilient to strategic participants.

Plug n’ Play Market Mechanisms. Markets can be of
many types: i) internal to an organization to bring down
silos of data, in which case employee compensation may be
bonus points; ii) external across companies where money is
an appropriate incentive; iii) across organizations but using
the shared data as the incentive, such as hospitals exchang-
ing medical data [51]. The goals of the market may also be
varied, from optimizing the number of transactions to so-
cial welfare, data utility, and others. A requirement of data
market platforms is to flexibly support markets of different
types and with different goals.

Arbiter Platform. Because the supplied data will have a
different format than the demanded data, a key requirement
to enable transactions between sellers and buyers is an ar-
biter platform that can combine datasets into what we call
data mashups to match supply and demand.

In the example above the arbiter can combine s1 and s2’s
datasets, obtaining a dataset that is much closer to b1’s need.
For that, it needs to understand how to join both datasets
and needs to find an inverse mapping function f’ that would
transform f(d) into d if such a function exists, or otherwise
find a mapping table that links values of f(d) to values of
d. In addition to these relational and non-relational opera-
tions the arbiter must also support data fusion operators to
contrast different sources of data of the same topic. Briefly,
the data fusion operators we envision produce relations that
break the first normal form, that is, each cell value may
be multi-valued, with each value coming from a differing
source. Data fusion operators are appropriate when buyers
want to contrast different sources of information that con-
tribute the same data, i.e., weather forecast signals coming
from a city dataset, a sensor, and a phone. As an illustra-
tion, note Seller 2 owns attribute b” which is almost identical
to b, but has some non-overlapping, conflicting information.
A buyer may be interested in looking at both signals, or at
their difference, or at their similarities, etc. A data mashup
is a combination of datasets using relational, non-relational,
and fusion operations.

Data Market Management System (DMMS). In ad-
dition to the arbiter platform, a data market platform calls
for platforms to support sellers and buyers. Sellers need ac-
cess to statistical privacy techniques so they feel confident
when sharing data. For example, without the capability of
dealing with PII information, Seller 2 will not share data
despite the potential monetary benefit of doing so because
leaking such information may be ilegal. Buyers need to have
the ability to describe with fine granularity their data needs
and the money they are willing to pay for a certain degree of



satisfaction achieved on a given task. In the example above,
the buyer should have the ability to define that they are only
willing to pay money for a classifier that achieves at least
80% accuracy. A requirement of a data market management
system is to offer support for sellers, buyers, and the arbiter.

Building Trust. The degree of trust among sellers, buy-
ers, and arbiter will differ depending on the scenario, i.e.,
whether in an internal market or across the economy. A re-
quirement of a DMMS is to implement mechanisms to help
participants trust each other, such as using decentralized ar-
chitectures [11], implementing computation over encrypted
data [43], and supporting contextual integrity [71].

Market Simulator. The mathematics used to make sound
market designs do not account for evil, ignorant, and adver-
sarial behavior, which exists in practice. For that reason,
it is necessary to simulate market designs under adversarial
scenarios before their deployment. Hence, a data market
platform calls for a market simulator.

Our Vision

In the remainder of this paper, we delve into the details of
our vision for data markets. The challenges are wide ranging
and many fall directly within the territory of the database
community. We outline our own strategy to tackle them in
Section 6.2.

Our vision is to produce market designs for different sce-
narios (points (1) and (2) in Fig. 1) using a market design
toolbox (Section 3). The market design toolbox uses tech-
niques from game theory and mechanism design [70] to deal
with the modeling and engineering of rules in strategic set-
tings, such as data markets. Every market design is tested
using a data market simulator (point (3)) (Section 6), be-
fore being finally deployed in a DMMS (point (4)), presented
in Sections 4 and 5. While the output of the market design
toolbox is a collection of equations, the output of the DMMS
is software. There is an explicit interplay between market
design and DMMS that constrains and informs the capabil-
ities of the other. Exploring such an interplay is a critical
aspect of our proposal. Before delving into the details of en-
gineering market designs we discuss briefly the value of data
(Section 2). The paper concludes with a discussion of the
impact of data markets 7, related work 8, and conclusions 9.

2. THE VALUE OF DATA

What’s the value of data? This question has kept aca-
demics and practitioners in economics, law, business, com-
puter science and other disciplines busy [18,95,96]. This
question has been explored from a macroeconomic angle to
study the impact of data in an economy [39,57]. It has been
studied from a microeconomic perspective to study the im-
pact on individual companies and firms [9,58]. Answering
the question in its full generality is outside the scope of this
paper. Instead, we focus on the narrower yet challenging
goal of choosing a price that satisfies sellers and buyers.

The crux of the problem is that the value of a dataset may
be different for a seller and a prospective buyer. Sellers may
choose to price their datasets based on the effort they spent
in acquiring and preparing the data, for example. Buyers
may be willing to pay for a dataset based on the expectation
of profit the dataset may bring them: e.g., how much they
will improve a process and how valuable that is. None of
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these strategies is guaranteed to converge to a price—and
hence a transaction agreement—between participants.

And yet, this is how prices are set in current markets of da-
tasets such as Dawex [31], Snowflake’s Data Exchange [86],
and many others. Sellers choose a price for datasets with-
out knowing buyers’ valuations and buyers who are willing
to pay that price obtain the datasets, without knowing how
useful the dataset is to solve their problem. This leaves both
sellers and buyers unsatisfied. Buyers may pay a high price
for datasets that do not yield the expected results. Similarly,
sellers may undervalue datasets that could yield more profits
because they lack information about what buyers want.

Finally, beyond buyers’ and sellers’ opinions on the dataset
price, we must also take into consideration the externali-
ties that datasets create. First, if a dataset is exchanged
with exclusive rights (assuming that this is possible), the
transaction creates an externality on those entities that are
denied access to the dataset. Second, datasets that con-
tain information about people generate an externality: the
potential harm and privacy loss. Last, a transaction involv-
ing a dataset and a price communicates to others the value
those firms put on that data. According to economic the-
ory, all these transaction costs have an impact on real-world
markets [24], and consequently they must be taken into con-
sideration.

In this vision paper, we constrain our agenda to finding a
price that permits establishing a transaction between seller
and buyer, without identifying the specific components of
that price, i.e., externality. This is a first step towards study-
ing the value of data. Having set this goal, we move on to
discuss how to price a dataset.

Intrinsic vs Extrinsic Properties of Data

A tempting option to the database community is to price da-
tasets based on intrinsic properties, such as quality, fresh-
ness, whether the data include provenance information or
not, etc. Unfortunately, pricing datasets based on the in-
trinsic properties of data alone does not work. Consider the
following scenarios.

Intrinsic properties alone are insufficient. For exam-
ple, given datasets with different number of missing values
that are otherwise equivalent, we tend to think the one with
fewer missing values is more valuable. However, the value
of this dataset ultimately depends on the specific task for
which it is used: if both datasets solve the task equally, the
different ratio of missing values does not matter. Similarly,
fresher datasets are intuitively considered more valuable, but
this is not true if our analysis is concerned with some past
date, in which case an older dataset that corresponds to that
date is more valuable. Finally, the lessons from feature en-
gineering to train statistical and machine learning models
tells us that more data is not always better; diversity with
respect to the task matters as well. Having established that
intrinsic properties alone cannot be used to set a dataset’s
price we discuss how to find such price.

In the markets we envision, the price of a dataset is set
by the arbiter based on the economic principles of supply
and demand [82]. A dataset that lots of buyers want will be
priced higher than a dataset that is hardly ever requested,
regardless of the intrinsic properties of such datasets. In
other words, the value of a dataset is primarily extrinsic.



The role of intrinsic properties. Intrinsic properties
are important insofar the buyers indicate a preference as
part of their data demands. For example, as a consequence
of a buyer requesting a dataset with few missing values,
sellers who provide those datasets will profit more. However,
intrinsic properties do not have an associated value without
explicit demand for them.

3. DESIGNING THE MARKET RULES

In this section we give a definition for market design in
Section 3.1, we explain the challenges of engineering market
designs for data (Section 3.2), and then discuss how different
requirements call for different market designs in Section 3.3.
Finally, we close the section with a FAQ that briefly answers
some questions we cannot cover here.

We start by giving a simple market model that we use
throughout this section to define and illustrate the ideas:

Market Model. The market consists of buyers (b; € B),
sellers (s; € S), and an arbiter, a. Sellers own datasets (d;)
that they are willing to share with the arbiter in exchange
for money. Buyers want to obtain datasets that solve their
problems. In general, the datasets buyers need do not di-
rectly match the datasets sellers offer. The arbiter’s goal is
to combine datasets offered by sellers into a mashup m that
fulfills buyers’ needs. In exchange for finding the mashup,
buyers transfer an incentive (we use money as an incentive
throughout this section) to the arbiter. The arbiter uses
the money from the buyers to compensate the sellers who
contributed datasets that were part of the sold mashup.

A brief discussion of buyers’ utility in an external
market. In its simplest form, we assume a buyer’s utility,
u;, is determined by a function: u; = v; — p;, where v; is
the private valuation the buyer assigns to the data and p;
is the price they pay for it. For the buyers to participate in
the market in a way that does not decrease their utility, they
must know v;. In the discussion that follows, we assume they
know wv;; we differentiate cases where they know wv; before
using the data (Section 3.2.2.1) and after in Section 3.2.2.2.

Data Model. To define market design we assume a market
of structured data and consider other data models later in
the paper. In a market of structured data, d; are relations
and m is a combination of d;. The arbiter’s goal is to identify
a function, F(d;) = m, that transforms a combination of
datasets into a mashup. Note the function F'() does not
need to use relational operations only.

3.1 Market Design

A market design, M, is a collection of 5 components that
govern the interactions between sellers, buyers, and arbiter.

Elicitation Protocol. An elicitation protocol is estab-
lished between buyers and arbiter in order to agree on a
data transaction. Unlike in traditional market of goods, the
mashup that a buyer desires may not exist before the ar-
biter builds it, so this need must be communicated. We
introduce a willing-to-pay function (WTP-function) as a
building block of elicitation protocols. The buyer uses the
WTP-function to indicate the data it needs and how much
it is willing to pay for it.

Allocation function. At any given time, multiple buy-
ers may want to buy a particular mashup of interest. The
allocation function solves which buyers get what mashup.
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Payment function. This function indicates how much
money buyers need to pay to obtain the mashup.

Revenue allocation. This function determines how much
of the revenue raised by selling m is allocated to the data
that led to m. In the case of markets of relational data,
a mashup is a relation, and the revenue allocation function
determines how much of the money raised is allocated to
each row in the mashup.

Revenue sharing. Following with the previous example, if
m is a relation, a row in m results from applying F() to the
input datasets, d. The revenue sharing function determines
how the value allocated to a row in m propagates to d.

The space of market designs is vast. We are interested
in market designs that lead to good outcomes when partic-
ipants are strategic, i.e., they seek to maximize their own
interests. In particular, we are interested in market designs
that: i) guarantee incentive-compatibility; ii) that maximize
a market goal, and; iii) that are practical. We briefly discuss
each of the requirements for good market designs.

Incentive-compatible means that the best strategy the mar-
ket players (i.e., buyers and sellers) have is to participate
truthfully, e.g., it is in buyers’ best interest to declare their
true mashup valuation instead of gaming the market. This
property is important for two reasons. First, it is easy for the
players to understand how they participate in the market, as
opposed to having to strategize based on other participants’
actions. Second, it is possible for the market designer (i.e.,
us) to understand the market outcomes and therefore make
sure it works as we wish.

Market goals. A market design can be engineered to max-
imize revenue, to optimize social surplus, and others. These
goals can be formally guaranteed. We discuss later how dif-
ferent market environments require different goals.

Finally, the market design must be practical. This means
it can be implemented in software and serve many partic-
ipants; i.e., the 5 components of a market design must be
computationally efficient.

3.2 Challenges and Research Agenda

We discuss next 3 challenges of market designs related to
the 5 components we have described above.

3.2.1 The Unique Characteristics of Data as an Asset

The allocation and payment functions of the market de-
sign must ensure incentive-compatibility from the buyers’
side. Data uniqueness as an asset makes it challenging to
design these mechanisms.

The allocation and payment functions decide who gets the
asset and how much they pay for it. Auctions offer an ex-
ample of allocation and payment functions. For example,
in a generalized second-price auction [67], buyers bid for as-
sets and the market decides who obtains the asset in such
a way that the top-K bids are allocated the K finite assets
and each kth-buyer pays the bid made by the (k-1)-buyer.
Auctions of this kind have been used, among others, to im-
plement real time ad-bidding that powers today’s Internet
economy [48]. The technical details that explain why this
mechanism works and elicits truthful behavior from partici-
pants are beyond of the scope of this paper. When designing
mechanisms [70] to trade data we must pay attention to its
unique characteristics as an asset: data is freely replicable
and it can be combined arbitrarily.



Because data is freely replicable, it could be trivially allo-
cated to anyone who wants it because its supply is infinite.
That is at odds with eliciting truthful behavior from buyers
because if buyers know that supply is infinite they will un-
derbid knowing they will eventually get allocated the asset.
Because data can be combined arbitrarily it is difficult to
price a dataset before knowing how it will be used.

Mechanisms to trade digital goods with infinite supply
have been proposed before [14,45,46]. We are building on
these ideas when engineering market designs.

In particular, we are designing new allocation and pay-
ment mechanisms that work when data is the asset and that
are resistant to strategic players who know how to maximize
their utility (the value they get for the data they obtain) over
time. The mechanisms we are designing take into consider-
ation the externalities generated when trading data. These
externalities are related, among others, to privacy loss by
the individual, which is multiplied with the potential for
arbitrary combination of datasets.

3.2.2 Elicitation Protocol

This challenge is concerned with the design of protocols
that allow buyers and arbiter to communicate what data is
needed, and how much money buyers are willing to pay for
it. We introduce a WTP-function to achieve this, and con-
sider two different protocols. The first is appropriate when
buyers know how to value (v;) the dataset a priori, and
the second when they only learn v; after seeing and using
the data. For example, buyers may sometimes know the at-
tributes they need to train a classifier or producing a report.
Other times, buyers may need to engage in exploratory tasks
before being able to declare he task they want to solve.

3.2.2.1 Buyers know what they want.

In its simplest case, a WTP-function contains a superset of
the information required to combine datasets. In this case,
buyers need to indicate: i) the task they want to solve; ii) a
metric to measure the degree of satisfaction that a dataset
achieves for given a task; iii) a price function that indicates
how much they are willing to pay depending on the degree
of satisfaction achieved. For example, a buyer who wants to
train a machine learning classifier can specify the features
desired as attributes of a relation—in a query-by-example
type of interface [40]. The buyer can indicate that the metric
of interest is accuracy and they may declare they are willing
to pay $100 for any dataset that permits the model achieve
80% accuracy, and $150 if the accuracy goes beyond 90%.

Conveying all this information is hard, however, and de-
pends on the specific task, metric, and pricing strategy. To
model these needs, the WTP-function consists of 4 com-
ponents:

oA package that includes the data task that buyers want
to solve. For example, the code to train an ML classifier.
The package is sent to the arbiter, so the arbiter can evaluate
different datasets on the data task and measure the degree
of satisfaction.

oA function that assigns a WTP price to each degree of
satisfaction. For example, this function may indicate that
the buyer will not pay any money for classifiers that do not
achieve at least 80% classification accuracy, and that after
reaching 80% accuracy, the buyer will pay $100.

ePackaged data that buyers may already own and do not
want to pay money for. For example, when buyers own
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multiple features relevant to train the ML model but want
other datasets to augment their data with more features and
training samples, they can send their code and data to the
arbiter.

eList of intrinsic dataset properties such as expiry date to
indicate for how long data is valuable to them; freshness to
indicate that more recent datasets are more valuable; au-
thorship to indicate preferences in who created the dataset;
provenance to indicate buyer needs to know how data was
generated; and many others such as semantic metadata, doc-
umentation, frequency of change, quality, etc. For example,
the buyer may indicate the need for data not older than 2
months, fearing concept drift [92] will affect classification
accuracy otherwise.

There are many interesting challenges around implement-
ing WTP-functions that fall directly into the realms of data-
base research.

Interface We are working on new interfaces to enable users
to easily define WTP-functions. These new interfaces must
permit declaration of data tasks without looking at the data
first, for example, through a schema description [40], that
is similar to query-by-example interfaces. These new in-
terfaces require new data models to express not only re-
lational operations but also fusion operations that would
permit merging/contrasting different signals/opinions and
transformation needs, such as pivoting, aggregates, confi-
dence intervals, etc. The WTP-Functions produced need to
be interpreted by the mashup builder, a component we intro-
duce in the next section as part of our DMMS architecture
that is in charge of matching supply and demand.

Task Multiplicity Different tasks require different metrics
to measure the degree of satisfaction. For example, a clas-
sification task may use accuracy as the metric of choice.
A relational query may benefit from notions of complete-
ness borrowed from the approximate query processing liter-
ature [75]. Dealing with this multiplicity of tasks introduces
interesting research challenges.

3.2.2.2  Buyers do not know how much to pay.

Sometimes buyers want to engage in exploratory tasks
with data without having a precisely defined question a pri-
ori. In these cases, it is not possible for the buyer to describe
the task they are trying to solve. It follows they cannot ex-
press how much they are willing to pay for a dataset.

We are investigating ex post mechanisms that work in the
following way. Buyers get the data they want before they
pay any money for it. After using the data and discovering—
a posteriori—how much they value the dataset, they pay the
corresponding quantity to the arbiter. In this situation, one
may think that buyers will be motivated to misreport their
true value to maximize their utility. The crucial aspect of
the mechanisms we are designing is that they make reporting
the real value the buyer’s preferred strategy.

3.2.3 Revenue Allocation and Sharing

The last challenge is concerned with the last two compo-
nents of the market design: revenue allocation and revenue
sharing. Consider the arbiter uses a function, f(), to cre-
ate a mashup m from datasets di,d2 and ds. The function
can be in its simplest case a relational query but it can also
contain non-relational operations. We evaluate the WTP-
function provided by a buyer on m and determine that m’s
price is p after measuring the degree of satisfaction.



Revenue allocation. The revenue allocation problem con-
sists of determining what portion of p is allocated to each
row in m. Intuitively, this is asking how valuable is each row
in the mashup. Some related work has modeled this problem
as if each row in m was an agent cooperating together with
all other rows to form m. Within this framework, the Shap-
ley value [84] has been used to allocate revenue to each row
individually after assuming that the involved datasets par-
ticipate in a coalition. We are investigating alternative ap-
proaches that are more computationally efficient and main-
tain the good properties conferred by the Shapley value.

Revenue sharing. The revenue sharing problem deter-
mines how the price from each row in m is shared among the
contributing datasets, in the example above di,ds and ds.
The contribution of the datasets to m is determined by the
function f() used by the arbiter in the first place to build m.
The revenue sharing problem consists of reverse engineering
such function. Note that if f() is a relational function, then
we can leverage the vast research in provenance [30,50] to
approach the revenue sharing problem. When f() is a more
general function, revenue sharing becomes challenging. We
are investigating information-theory and flow control tech-
niques to understand how to approach this problem.

3.3 Market Design Space

The space for market designs is vast and depends on the
specific constraints and goals that we want the market to
honor. We consider below different markets and discuss how
they motivate different market designs.

External markets. In external markets, independent or-
ganizations trade data assets. In this case, money is a good
incentive to get companies who own valuable information to
share it with others that may benefit from its use. One pos-
sible market design for this scenario is to maximize revenue.
The arbiter extracts as much money from buyers as possible
so it can use that money to incentivize sellers to share their
data. Variations of this market may allow sellers to set a
reserve price; sellers will not sell any data unless they ob-
tain a given quantity. Achieving these goals requires careful
design of the 5 components of a market design.

Internal markets. In internal markets, members of an
organization share data internally to maximize data’s value.
Internal data market platforms have the promise of bringing
down data silos by incentivizing data owners (e.g., specific
teams, or individuals) to publish their data in a way that is
easy to consume by others, in exchange for some reward. In
this scenario, it is reasonable that a market design optimizes
social welfare, that is, the allocation of data to buyers. The
mechanisms to incentivize sellers can take the form of bonus
points, or time.

Barter and Gift Markets. These are markets where the
participant’s incentive to share their data is to receive data
or services from somebody else. Existing barter markets
are coalitions of hospitals [25, 51], but also the exchange
of personal data for Internet services, such as social media
platforms, etc. Market designs for this kind of market will
differ from external and internal markets.

The variety of market designs one may want to deploy calls
for plug’n’play interfaces. We aim to design data-market
management systems (DMMS) that permit the declaration
of a wide variety of market designs to cater for different sce-
narios and their deployment on the same software platform
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(see Fig. 1). We explain the architecture of the DMMS
in the next section. Before that, we include a FAQ and a
summary of this section.

3.4 FAQ: Frequently Asked Questions

Why would people use the market to share data?
A well-designed market incentivizes sellers to share data to
obtain some profit, which may be monetary or some other
form. It also incentivizes buyers to share their data needs
in exchange for having their discovery and integration prob-
lems solved by the arbiter.

What if I am not sure if my dataset is leaking per-
sonal information? Sharing data is predicated on the as-
sumption that it is legal. Certain PII information, for exam-
ple, cannot be shared across entities without users’ permis-
sion. The DMMS that we present in the next section offers
tools that help to reduce the risk of leaking data.

In addition, once a dataset has been assigned a price, it
is possible to envision a data insurance market, where a dif-
ferent entity than the seller (i.e., the arbiter) takes liability
for any legal problems caused by that data. In this case, the
arbiter is incentivized to avoid those problems, stimulating
more research in secure and responsible sharing of data.
Wouldn’t markets concentrate data around a few
organizations even more? Today, data is mostly concen-
trated around a handful of companies with the expertise and
resources to generate, process and use it. Ideally, we want
to design markets that bring the value of data to a broader
audience. It is certainly possible that a market would only
worsen this concentration by allocating data to the richest
and more powerful players. Fortunately, it is possible to
design markets that disincentivize this outcome: achieving
that is a goal of our research.

Is there going to be enough demand for a given, sin-
gle dataset? We expect certain datasets will naturally have
less demand than others, as with any asset today. However,
with a powerful enough arbiter, individual datasets are com-
bined and add value to lots of different mashups that may
be, in turn, designed to satisfy a varied set of buyers’ needs.

Furthermore, studying the market dynamics will be im-
portant to determine, for example, if domain-specific mar-
kets (markets for finance, for health, for agriculture) would
be more efficient than more general ones in concentrating
and uncovering highly valuable datasets.

Why would a seller or buyer trust the arbiter? We do
not assume they would, and we discuss in the next section
how this is a key design goal of a DMMS.

The arbiter could prevent data duplication by as-
sessing what datasets to accept, hence addressing
one of the challenges of selling data. Regardless of the
merits of that mechanism to enforce the right outcomes in
the market, this design would not allow participants to trade
freely. Furthermore, since datasets can be arbitrarily similar
to each other, it is unclear what threshold the arbiter should
use to make a decision, or how to compute that threshold
in the first place.

Why would a buyer give out their code (as part of
the WTP-function) when it may be an industrial
secret? If a buyer knows how to specify a WTP-function
for their task and they are willing to give the code away, then
the mechanism explained above works. If the buyers do not
know how to specify a WTP-function or they are not willing
to give their code away, they can use the mechanism we



~
/RDBMS,\
[ owh,

> Lake, |

Mashup Builder

a/

5y Mo~ wie 0\, Imgwi,

; é Evaluator, mg: wip]
3

Define WTP

Package WTP
\
e

Obtain Data

WTP-functions

Pricing
Engine

(Revenue Allocation

\_ Engine J

Anonymize

Accountability

Transaction
Support

revenue datasets

Figure 2: Architecture of a Data Market Manage-
ment System.

discuss in Section 3.2.2.2 to obtain the data from the arbiter
and run the code locally. The challenge in this situation
is related to designing truthful mechanisms that incentivize
buyers to tell the real value instead of reporting a low value
to maximize their utility.

4. DATA MARKET MANAGMT. SYSTEM

Data market management systems must be designed to
support different market designs and they must offer soft-
ware support to sellers, buyers, and the arbiter. The DMMS
system we propose achieves that using a seller, buyer, and
arbiter management platforms, which are shown in Fig. 2.

4.1 Overview of Arbiter Managmt. Platform

The arbiter management platform (AMP) is the most
complex of all DMMS’s components: it builds mashups to
match supply and demand, and it implements the five mar-
ket design components. We use the architecture in Fig. 2 to
drive the description of how the AMS works.

The AMS receives a collection of WTP-functions from
buyers specifying the data needs they have. Sellers share
their datasets with the arbiter, expecting to profit from
transactions that include their datasets. The AMS uses the
Mashup Builder (top of the figure) to identify combina-
tions of datasets (i.e., mashups) that satisfy buyers’ needs.
These are depicted as [m1,ma2, ..., my] in the figure.

The next step is to evaluate the degree of satisfaction that
each mashup achieves for each buyer’s WTP-function. This
task is conducted by the WTP-Evaluator. The WTP-
Evaluator first runs the WTP-function code on each mashup
and measures the degree of satisfaction achieved. With
the degree of satisfaction, it then computes the amount of
money (or other incentives) the buyer is willing to pay, wip;.
The output of the WTP-Evaluator is a collection of pairs
m;, wtp; indicating the amount of money that a buyer is
willing to pay for each mashup that fits the needs indicated
by their WTP-function.

The next step is to use the Pricing Engine to set a
price for each m; and choose a winner!. The Transaction
Support component delivers m; to the winning buyer and
obtains the money, wtp;. Finally, the Revenue Allocation
Engine allocates witp; among the sellers that contributed
datasets used to build m; and the arbiter. At this point the
transaction is completed.

Arbiter Services. Because the arbiter knows the supply
and demand for datasets, it can use this information to offer

lthe market design may specify more than one winner, but
we use one here to simplify the presentation
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additional services for buyers and sellers, perhaps for a fee.
For example, the arbiter could recommend datasets to buy-
ers based on what similar buyers have purchased before [83].
This kind of service, however, leaks information that was
previously private to other buyers. This information leak
affects the elicitation, allocation, and payment functions of
the market design (see Section 3.1). To see why, consider
how a buyer may change their bidding strategy if they knew
the price at which a dataset was sold recently.

Negotiation Rounds. If the AMS cannot find mashups
that fulfill the buyer’s needs, it can describe the information
it lacks and ask the sellers to complete it. Sellers are incen-
tivized to add that information to receive a profit. For exam-
ple, the AMS may ask the seller to explain how to transform
an attribute so it joins with another one, or it may request
information about how a dataset was obtained/measured,
semantic annotations, mapping tables, etc. Sellers will be
incentivized to help if that raises their prospect of profit-
ing from the transaction. Similarly, buyers can request the
arbiter for data context (provenance, how data was mea-
sured /sampled, how fresh it is, etc.) when they need it to
use the data effectively.

4.2 Seller Management Platform

The SMP communicates with the AMS to share datasets
and receive profit, to coordinate private data release proce-
dures (as we see next), as well as to agree on changes to
the dataset that may improve the seller’s chances of partici-
pating in a profitable transaction. Next, we explain the key
services we envision SMP offering sellers:

Statistical Database Privacy. Even if incentivized to
sell data for money, sellers face a deterrent when their data
may leak information—e.g., personally identifiable informa-
tion (PII)—that should not be public. To assist sellers, the
SMP must incorporate some support for the safe release of
such sensitive datasets. And because datasets may leak in-
formation when combined with other datasets [69]—which
is precisely what the arbiter will do as part of the mashup
building process—the protection process must be coordi-
nated between SMP and AMS. This component introduces
opportunities to leverage the rich literature on differential
privacy [38] and variants [59]. Applying statistical database
privacy will reduce data’s value for buyers who want to ac-
cess precisely those records. It is an open area of research
to understand how to price the externality that the loss in
privacy introduces, a question other work has started ex-
ploring [62]. The challenge is on identifying a good balance
between protection and profit.

Accountability. The SMP must allow sellers to track how
their datasets are being sold in the market, e.g., as part of
what mashups. When sellers update datasets in the plat-
form, the SMP incrementally updates the information re-
corded about those datasets subject to an optional access
quota established by the origin system. This permits the
SMP to maintain fine-grained lineage information that is
made available on demand.

Data Packaging. The SMP transforms datasets provided
by sellers into a format interpretable by the arbiter. In ad-
dition, this feature allow sellers to share datasets in bulk
by pointing to a data lake, cloud storage full of files, a
databases, or data warehouse. This functionality is useful
in internal data markets to unlock data silos.



4.3 Buyer Management Platform

Data buyers must provide the arbiter with a willing-to-pay
function (WTP-function) that indicates the price a buyer is
willing to pay given the satisfaction achieved by a given
dataset. Buyer management platforms (BMP) have the fol-
lowing requirements:

e Because manually describing a WTP function may be dif-
ficult, a BMP must help buyers define it through interfaces
that permit descriptions of a multiplicity of tasks (see Sec-
tion 3.2.2.1).

e Secure sharing of the WTP function with the arbiter, so
the arbiter computes the level of satisfaction of different
mashups and obtains the WTP price buyer bids for such
a mashup.

e Finally, a communication channel enables buyer-arbiter
exchange mashups, WTP-functions, as well as allow the
arbiter to recommend alternative datasets to the buyer,
e.g., when the arbiter knows of other similar buyers who
have acquired such datasets.

4.4 Trust, Licensing, Transparency

Now we zoom out to the general architecture comprising
AMS, BMS, and SMS and consider how differing degrees of
trust, the existence of data licenses, as well as the need for
transparency, introduce additional challenges for the design
and implementation of a DMMS.

Trust. We have assumed so far that sellers and buyers trust
the arbiter. Sellers trust that the arbiter will not share the
data without sellers’ consent, that it will implement the rules
established by the market design faithfully, and that it will
allocate revenue following those rules too. Buyers trust the
arbiter with their code (that ships as part of the WTP-
function), and similar to sellers, they trust the arbiter will
enforce the agreed market rules. We think this trust is gen-
erally granted in the context of internal markets. In the con-
text of external markets, although we think it is reasonable
to assume trust in a third party—similar to how individuals
and organizations trust the stock market—it is conceivable
to imagine scenarios where trust is not granted. In this case,
we need to consider techniques on privacy-preserving data
management [38], processing over encrypted data [43], as
well as decentralized, peer-to-peer markets and blockchain
platforms [11,68]. Using the above techniques it is conceiv-
able to engineer the arbiter so it is not a logically centralized
entity anymore, hence aiding buyers and sellers to gain trust
and participate in the market. Introducing these techniques
protects data owners at the cost of reducing data’s value.
Others have explored this tradeoff [20,22,62] making an ex-
plicit connection between privacy and data value. Finally,
for situations when the chain of trust is broken, dispute man-
agement systems must be either embedded in or informed
by the transactions that take place in the DMMS so the
appropriate entities can intervene and resolve the situation.

Data licensing. Sellers can assign different licenses to the
datasets they share that would confer different rights to the
beneficiary. Similarly, buyers may be interested in obtain-
ing datasets subject to licensing constraints. For example,
a hedge fund may want to acquire a dataset with exclu-
sive access, preventing perhaps other competitors to access
the same data. The artificial scarcity generated by this li-
cense should cost more to buyers, who could be forced to
pay a ’tax’ so long they maintain the exclusivity access.

Other types of licenses are those that transfer ownership
completely, so buyers sell the datasets as soon as they have
bought them (creating a market for arbitrageurs as we dis-
cuss in the next section), or licenses that prevent the benefi-
ciaries from selling a previously acquired dataset. Support-
ing these licensing options affects both market design and
DMMS system. Furthermore, it raises questions of legality
and ethics that go beyond computer science and economics.
Concretely, we are exploring software implementations of
contextual integrity [71], which we believe may be an inter-
esting vehicle to enable data licensing.

Transparency. Transparency may be required at many
points of the market process. Sellers may need to know in
what mashups their data is being sold and what aspects
of their data (rows, columns, specific values) is more valu-
able. Similarly, buyers may request transparent access to
the mashup building process to understand the original da-
tasets that contribute to the mashup and decide whether to
trust them or not. We do not discuss the implications of
these requirements, we only highlight they have an impact
on the engineering of a DMMS.

4.5 Markets of Many Data Types

We have presented the AMP, SMP, and BMP without
focusing on a specific type of data to be exchanged. We
envision markets to trade data of many types:

Multimedia Data. A variety of multimedia data such as
text, web (i.e., a search engine market that does not depend
on ads?), as well as images and video are likely targets for
a data market platform. How to build DMMS platforms
to reason about how to combine and prepare this data for
buyers is a challenge.

Markets for Personal Data. Ultimately, we would like
to be able to price a person’s own information. If I knew
how much the information I am giving an online service
is worth, I could make a better decision on whether the
exchange is really worth it or not. Because many times
an individual’s own data is not worth much in itself—but
quickly raises its value when aggregated with other users—
it is conceivable that coalitions of users would form who
collectively would choose to relinquish/sell certain personal
information to benefit together from their services. Some
are advocating for these so-called data trusts [3,32].

Embeddings and ML Models. Embeddings and vec-
tor data are growing fast because they are the input and
output format of many ML pipelines. As data-driven com-
panies keep building on their ML capabilities, we expect this
data will only grow. Obtaining some of these embeddings
incurs a high cost in compute resources, carbon footprint,
and time. For example, the BERT pre-trained models pro-
duced by Google [35] take many compute hours to build. For
this reason, we expect companies will rely on the exchange of
pre-trained embeddings more and more, and hence our inter-
est in supporting this format in our data market platforms.
More generally, this motivates markets for data products—
i.e., software, data, and services derived from data.

We focus initially on tabular data such as relations and
spreadsheets because this data is sufficient to cover most
business reporting, analytical, as well as many machine learn-
ing tasks. In the next section, we introduce a Mashup
Builder specific to this type of data.
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data engine, index builder and DoD engine.
5. MATCHING SUPPLY AND DEMAND

The goal of the mashup builder is to generate a collection
of mashups that satisfy a WTP-function. Key research goals
of our vision are to understand the extent to which this
process can be fully automated, and devise the best ways of
involving humans when it is not possible (see Section 5.4).
The architecture of the system we are building is depicted
in Fig. 3 and is designed to address the following problems:

Data Discovery. The arbiter receives datasets from sellers,
some of whom may be organizations with thousands of data-
sets. The goal of data discovery is to identify a few datasets
that are relevant to a WTP-function among thousands of
diverse heterogeneous datasets.

Data Integration and Blending. The goal of data inte-
gration and blending is to identify strategies to combine the
datasets identified by the discovery component into mashups
that satisfy the WTP-function. Those strategies consist of
identifying mapping and transformation functions to join
attributes as well as other preparation tasks such as value
interpolation to join on different time granularities.

Because multiple similar datasets may contribute to the
same or a small group of similar mashups, data fusion
operations permit combining and contrasting the different
combinations, keeping track of the origin of each data item,
so consumers understand how data was assembled.

We bootstrap the implementation of the mashup builder
with Aurum [19], a data discovery system that allows users
to find relevant datasets and to combine them using join
operations. To do that it extracts metadata from the input
datasets, it organizes that metadata in an index and uses the
index to identify datasets based on the criteria indicated in
the WTP-function. The architecture of the Mashup Builder
is shown in Fig. 3. We describe the components next:

5.1 Metadata Engine

The metadata engine’s goal is to read and maintain the
lifecycle of each input dataset. Datasets can be automati-
cally read from a source in bulk (e.g., a relational database,
a data lake, a repository of CSV files in the cloud) or they
can be registered manually by a user who wants to share
specific datasets. When datasets change in the sources, e.g.,
when users manually update them, the metadata engine reg-
isters and keeps track of these changes, maintaining version
history. All these tasks are performed by the ingestion
module through its batch and sharing interfaces as shown
in the figure. Each dataset is divided conceptually into data
items, which are the granularity of analysis of the engine.
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For example, a column data item can be used to extract the
value distribution of that attribute. A row data item can
be used to compute co-occurrences among values. A partial
row data item can be used to compute correlations, among
others. For each dataset, the metadata engine maintains a
time-ordered list of context snapshots. A context snapshot
captures the properties of each dataset’s data item at each
point in time. For example, signatures of its contents, a
collection of human or machine owners (i.e., what code is
using what data), as well as the security credentials. This
is performed by the Processor component of the system.

Because data item information is not given directly at
ingestion time, the engine must harness that information.
Data market platforms aim to incentivize users to provide
that information directly, but in certain scenarios this is
not possible: e.g., a data steward pointing to a collection
of databases in an internal organization. The output of the
metadata engine is conceptually represented in a relational
schema managed by the Sink component.

The metadata engine is a fully-incremental, always-on sys-
tem that maintains the output schema as updated as pos-
sible while controlling the overhead incurred in the source
systems and the precision of the output information.

5.2 Index Builder

The index builder processes the output schema produced
by the metadata engine and shapes data so it can be con-
sumed by the dataset-on-demand engine (DoD), which is the
component in charge of integration and blending of mashups.
Among other tasks, the index builder materializes join paths
between files, and it identifies candidate functions to map
attributes to each other; i.e., it facilitates the DoD’s job.
The index builder keeps indexes up-to-date as the output
schema changes. This calls for efficient methods to leverage
the signatures computed during the first stage.

5.3 DoD Engine

The DoD engine takes WTP-functions as input and pro-
duces mashups that fulfill the WTP-function requests as
output. It uses the indexes built by the index builder, the
output schema generated by the metadata engine, as well as
the raw data.

The DoD relies on query reverse engineering and query-
by-example techniques [91], as well as program-synthesis [6],
among others, to produce the desired mashups.

Data Fusion. When there are many datasets available,
DoD may find multiple alternatives to produce mashups. In
certain cases, a buyer wants to see a contrast of mashups
(this will be specified in the WTP-function). For example,
consider a buyer who wants to access weather data and there
are multiple sources that provide this information. A data
fusion operator can align the differing values into a mashup
that the buyer can explore manually. A specific fusion op-
erator may select one value based on majority voting, for
example, while other fusion operators will implement other
strategies. Buyers may want to have access to all available
signals to make up their own minds. As a consequence, buy-
ers may want to use DoD’s fusion operators to help combine
the different sources into mashups.

5.4 Machines and People

Automatically assembling a mashup from individual data-
sets when only given a description of how the mashup should



look is an ambitious goal. Our experience working on this
problem for the last few years has taught us that in certain
cases this may not be possible at all, such as when ambi-
guity makes it impossible to understand the right strategy
to combine two datasets. We devise two strategies to tackle
this problem.

Request additional input when automatic integra-
tion does not work. The first strategy is to have the AMS
system interact with sellers to request additional informa-
tion about the datasets they have shared that may help with
the integration and blending process, e.g., a semantic anno-
tation, a function to obtain an alternative representation,
etc. Sellers willing to include the additional information
can be incentivized to do so by obtaining a higher profit.

Involve humans in the loop. Another strategy is to di-
rectly incorporate humans-in-the-loop as part of the mashup
builder’s normal operation. This has been done to answer
relational queries [41,42], and there are opportunities to ex-
tend those techniques to help with integration and blending
operations as well. Because all this takes place in the con-
text of a market, it becomes possible to compensate humans
according to the value they are creating.

6. EVALUATION PLAN

In this section, we explain how we plan to evaluate market
designs, as well as the DMMS implementation.

6.1 Simulation of Market Designs

A market design that is sound on paper may suffer un-
expected setbacks in practice. This may happen because
rationality assumptions made at design time may break in
the wild. In the context of mechanism design/game theory,
rationality is interpreted as players will play the best strat-
egy available to them. Unfortunately, that does not account
for risk-lover or ignorant players. Furthermore, some players
may be adversarial in practice, forming coalitions with other
players to game the market. Or less dramatic, a faulty piece
of software may cause erratic behavior. Below, we explain
how we plan to evaluate the effectiveness and efficiency of
market design in practice.

Effectiveness. The mismatch between theory and practice
calls for a framework to evaluate how resilient a market de-
sign is under adversarial, evil, and faulty processes. We plan
to design a simulation platform where it is possible to imple-
ment different rules and change the behavior of players, and
where it is possible to model adversarial, coalition-building,
as well as risky and ignorant players (this is shown in (3) of
Fig. 1). The simulation platform will test a market design’s
robustness before deployment.

Large-scale simulations introduce database challenges such
as: 1) supporting quick communication among many players
(transaction processing); ii) modeling workloads to simulate
different strategy distributions of players. Such a simulation
framework will be of independent interest.

Efficiency. Market mechanisms are implemented with an
algorithm. The fields of mechanism design and algorithmic
game theory have contributed efficient approximation algo-
rithms [70]. In databases, algorithms with high complexity
are often used in practice for small problems, and conversely,
sometimes algorithms with low complexity cannot be used
practically because of the data size. We want to contribute
empirical evaluations of these designs.
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6.2 Building and Evaluating a DMMS

The vision is expansive and touches upon different dis-
ciplines. We think the database community is in a great
position to refine, correct, expand, and contribute ideas to-
wards our vision, hence the motivation for this vision paper.
We layout next our research plan:

Market design. Because of the unique characteristics of
data and the nature of the platform we propose, we need
new theoretical designs that work in practice. We are in the
process of engineering market designs for data.

Market platform. We consider the mashup builder a key
component of our vision. We have experience building data
discovery and integration systems and are using this expe-
rience to build this next generation of systems.

Market simulation. As explained above, we must have
mechanisms to understand the properties of the markets we
design before implementing them in a platform.

Among the multiple ways of creating a DMMS our choice
is to start with internal markets. This will help us hone
the interface with humans, understand the deployment con-
text and its constraints better (e.g., issues of privacy, trust,
licensing), as well as to conduct qualitative evaluations.

7. DATA MARKETS AND SOCIETY

The side effects of data markets span beyond computer
science and economics. We plan to engage with the broader
community of scholars at The University of Chicago and
elsewhere to discuss and outline the challenges of data mar-
kets in a broader societal context. We outline some inter-
esting aspects below.

7.1 Economic Opportunities

A well-functioning market generates economic opportuni-
ties for other players besides sellers and buyers:

Arbitrageurs. They play seller and buyer at the same
time. Arbitrageurs buy certain datasets, transform them,
perhaps combining them with certain information they pos-
sess, and sell them again to the market. The transaction
generates a profit for them whenever the sold dataset is
priced higher than the dataset they buy. Since we want
to design mechanisms that price datasets based on supply
and demand, it is conceivable that the participation of ar-
bitrageurs in the market will rise data’s value, because they
will be incentivized to transform datasets into a shape that
is desired by buyers.

Opportunistic data seller. Opportunistic data sellers
may not own data, but they have time that they are willing
to invest in collecting high-demand datasets. They obtain
information about highly demanded datasets from the ar-
biter. For example, consider one more time the example of
the introduction with the two sellers and the buyer. Con-
sider a third seller, Seller 3, who does not own any dataset,
but has time, and is willing to use that time to acquire/find
data for profit. Because the arbiter knows that b; would
benefit from attribute (e), which neither s; nor s contain,
the arbiter can ask Seller 3 to obtain a dataset sz = (e)
for money. Because the arbiter knows supply and demand,
not only does it help sellers and buyers, but it creates an
ecosystem of economic opportunities for other entities.

Offloading tasks. As discussed above, when the arbiter
does not know how to automatically assemble a mashup, it



can schedule humans to help with the task and compensates
them appropriately for their labor.

Data Insurance. Once data has a value and a price, it
is possible to build an insurance market around it. Such
an insurance market would be useful to reason about data
breaches, for example. How liable is a company that suf-
fers a data breach that results in leaking private customer
information? Or, if a seller shares a dataset that is later de-
anonymized by a third party, despite the best efforts from
the arbiter to protect it, who is liable? Can/Should insur-
ance cover these cases?

7.2 Legal and Ethical Dimension

Who owns a dataset? Throughout this paper, we have
assumed that sellers owned the data they were sharing with
the arbiter. Consider a seller who has collected a dataset
through their manual effort and skill. In this case, does
the seller own such a dataset? What if the records in the
dataset correspond to users interacting with a service the
seller has created? Do those users own part of the data too?
A recent article from the New York Times [72] has illustrated
in glaring detail how it is possible to determine with high
precision the location of individuals and their daily activities
from smartphone data traces. The data that permits that is
routinely collected and sold by companies that profit from
it. This leads to questions around what data is legal to
possess, what does it mean to own data, and when it should
be possible to trade data.

Market Failures. Markets sometimes fail and cause social
havoc. Other times, markets work only for a few, causing or
accentuating existing inequality. All markets are susceptible
to these kinds of problems, including the ones we envision in
this paper. The difference is that we haven’t implemented
our market yet, so we have a chance to study beforehand
what the consequences of malfunctioning markets on soci-
ety are and decide whether the tradeoffs are worth it. Fore-
casting the implications of different market designs is a key
aspect of our vision; hence the simulation framework intro-
duced in the previous section.

8. RELATED WORK

We propose the first comprehensive vision of end-to-end
data market platforms that makes an explicit separation be-
tween design and implementation (DMMS). We start this
section with a discussion of data markets (Section 8.1) and
then focus on work related to the DMMS and the Mashup
Builder in Section 8.3.

8.1 Markets of Data in the Wild

Existing Marketplaces of data. We use Dawex [31] as an
illustrative example of platforms that refer to themselves as
data markets. Others include OnAudience.com [74], BIG.
Exchange [13], BuySellAds [17] for ad data, as well Qlik
Datamarket [79], Xignite [99], WorldQuant [98]|, DataBro-
ker DAO [27], Snowflake’s Data Exchange [86], among oth-
ers. In Dawex, sellers offer datasets that buyers can obtain
for a fixed price after seeing a sample of the data. Dawex
acts as a sharing platform but does not solve the discovery,
integration, or pricing problems. Buyers need to commit to
pay a price before truly knowing the value of the dataset.
These characteristics are typical of today’s data markets.
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Data is traded today, everywhere. Data trade is per-
vasive. Consider the barter exchange in which users of plat-
forms such as Facebook, Twitter, Google, or many others
take part. Users give away their data in exchange of the
service provided by the companies. Health institutions such
as hospitals routinely share data to improve patient care
and treatment [25,51]. Consider the complex economy of
data brokers [81,85] who, albeit not directly connected to
everyday consumers, trade data with the large corporations
to profit. In many of these cases, the users who contribute
their data are not aware of how it is being used behind the
scenes [2,87]. Recently, the concept of a data trust [32] has
been proposed to treat data as labor and let users gain con-
trol of their data by pooling it together with other users.
The data markets we propose make data trading explicit,
and measuring data’s externality is a component of our vi-
sion. We think these two characteristics bring transparency
to an otherwise opaque economy.

8.2 Theoretical Data Markets

We discuss theoretical designs related to the components
of a market design we discussed in Section 3.

Allocation and Payment functions. The marketplace
for data proposal [4] models a market that solves the the
allocation and payment problem in a static scenario with
1 buyer and multiple sellers. In [66], the authors propose
an end-to-end market design that considers buyers and sell-
ers arriving in a streaming fashion. This has been an ac-
tive area of research modeled by work in dynamic mecha-
nism design [76], revenue management [23], and algorithmic
mechanism design. In the latter, the work on online auc-
tions [10,15,47] for digital goods started an interesting line of
research that has contributed results to ad auctions, among
others. We are building on top of this rich literature with
an emphasis for the trade of data when players are strategic
over time and with the ability to construct mashups, a key
component to avoid thin markets, where insufficient number
of participants make trade inefficient.

Revenue allocation. A recent line of work has modeled
certain machine learning settings as coalitions of players con-
tributing (training) data to a model [4,44,56]. To assign
credit to the input datasets, they use the Shapley value [84].
Other work suggests using a different metric, the core [102]
which is also apt for coalitional games. Due to the com-
plexity of computing the Shapley value, the contributions of
these papers are usually approximations with good perfor-
mance guarantees.

Query Pricing. There is a long and principled line of work
coming from the database community around the problem
of how to price queries [20,22,61,62]. In this setting, a
dataset has a set price. The problem is how to price re-
lational queries on that dataset in such a way that arbi-
trage opportunities (obtaining the same data through a dif-
ferent and cheaper combination of queries) are not possible.
Recent work in this line [20] also considers how to maxi-
mize revenue for the broker under the same pricing model
as above. If all datasets of a market are thought of as views
over a single relation, then the setting of this work resem-
bles ours. However, many data integration tasks require
arbitrary data transformations, and many buyers want to



buy fused datasets that contain diverging opinions, for ex-
ample. This line of work is complementary to our vision and
we plan to include these ideas as part of our design.

Value of Data. An increasing amount of work from the
economics literature focuses on understanding the value of
data for a particular firm [9,16,58,94], an entire economy [39,
57]. This work is complementary to ours and relevant to un-
derstand, among others, how an individual or firm identifies
their private valuation.

Privacy-Value Connection. This line of work makes a
connection between data value and privacy [20,22,62]. The
buyer can specify a level of privacy associated with a query,
in such a way that the higher the privacy level, the less the
dataset is perturbed, meaning the dataset will be of higher
quality. Therefore, the higher the privacy level, the higher
the price of the dataset.

In our vision we want to directly link market design with
software platforms (DMMS) to provide an end-to-end mar-
ket environment with rules governing every aspect and par-
ticipant. We are interested in the engineering of plug’'n’play
platforms that can accept different market designs tailored
to different scenarios, e.g., internal vs external markets. Al-
though we expect to benefit from many of the past ideas,
the database community faces unique challenges to build
practical data markets.

8.3 DMMS Related Work

We discuss theory, algorithms, and systems for discovery
and integration that are related to the Mashup Builder.

Data Sharing Platforms. The datahub system [12] in-
troduced a data version control system implemented on a
software platform that allows members of a team to collab-
orate. OrpheusDB [100] similarly offers teams the ability to
collaborate over a relational system and capture how data
evolves. Outside the database community, there are many
sharing systems such as TIND [90], KOHA [60], as well as
online repositories such as the Harvard Dataverse [29] or the
ICPSR [54] at the University of Michigan, geared towards
sharing data across the social sciences. Within organiza-
tions, data warehouses and lakes [33,80] play the role of
central hubs that facilitate data sharing.

AnyLog. The AnyLog system [1] proposes a platform to
pool Internet-of-Things data into a logically decentralized
repository. The paper emphasizes two key design decisions
that are aligned with our data markets vision. First, partic-
ipants are incentivized to share their data in exchange for
rewards. Second, market forces guide data owners to cu-
rate their data in a way that is desired by data consumers.
Dealing with the integration problem at the source is sim-
pler than downstream. This idea is related to the Negoti-
ation Rounds between arbiter and sellers we described in
Section 4.1. We believe many of the ideas we proposed in
this vision paper will complement efforts such as AnyLog
and the DMMS we are building.

Data Discovery. Data discovery systems such as Info-
gather [101], Google Goods [52] and Dataset search [49],
define a specific task and focus on how to build indexes to
solve that task. There is also a line of work on data cat-
alogs, with Amundsen [7], WhereHows [97], Databook [26]
as open-source examples and Alation [5], Azure’s data cata-
log [8], and Informatica’s data catalog [55] as some commer-
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cial examples. A more general approach to data discovery
is Aurum [19], which provides most of the functionality re-
quired to implement the systems above.

Data Integration. Relevant work in data integration is
query reverse engineering [89,91], and query-by-example in-
terfaces to data integration such as S4 [78]. Modern data
integration systems such as Civilizer [34] and BigGorilla [21]
assume the existence and participation of a human expert
that needs to build DAGs of integration operators during
the integration activity. Before these platforms, the Datas-
paces [53] vision outlined many of the challenges and oppor-
tunities that we still demand of an integration system. We
borrowed the term data mashup from the Yahoo Pipes sys-
tem [77]. Related to creating mashups given many different
datasets, some work [37] has studied the diminishing returns
of integrating datasets.

Data Fusion and Truth Discovery. Data fusion refers
to the ability to combine multiple sources of information to
improve the quality of the end result. In our vision, we con-
sider data fusion operators that permit combining multiple
(possibly diverging) datasets and offer the result to users.
This can be useful, among others, for truth discovery [64]:
the process of identifying the real value for a specific vari-
able. The database community has contributed results to
these areas [36, 63, 65,88]. We are building on top of this
work to design fusion operators that can be incorporated
into the DMMS architecture.

The DMMS systems we envision aim to incentivize buy-
ers and sellers to solve the lack of information and incentives
problem that keeps data siloed within and across organiza-
tions. At the same time, all the work above is relevant to
build the mashup builder, which is one piece of the larger
class of DMMS systems we envision.

9. DISCUSSION

In this paper, we presented a vision for data market plat-
forms that focus on the problems of data sharing, discovery,
and integration. These problems are a main hurdle to orga-
nizations’ ability to exploit data.

Understanding data. While data and artificial intelli-
gence are driving many changes to our economic, social, po-
litical, financial, and legal systems, we know surprisingly
little about their foundations and governing dynamics. Fur-
thermore, to an extent unseen in previous economic up-
heavals, the rapid pace of technological and social innova-
tion is straining the ability of policy and economic practice
to keep up. Moreover, while the recombination and integra-
tion of diverse data creates vast new value, we currently have
neither theory for how data can be combined nor industrial
policy for how to protect against the personal exposures and
abuses that grow in proportion. We remain stuck with old
models for understanding these new phenomena and anti-
quated heuristics for making decisions in the face of change.
The data markets we propose are a vehicle to initiate the
study of theory and systems to address this challenge.

We expect that the insights, algorithms, and systems we
will produce will inform the design of future data market
platforms. We expect that the different systems, simula-
tors, and approaches proposed will pose interesting research
questions for the database community.
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