
Towards Scalable Dataframe Systems

Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi Mo
Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, Aditya Parameswaran

UC Berkeley
{devin.petersohn, smacke, dorx, williamma, dorislee, xmo, jegonzal, hellerstein, adj, adityagp}@berkeley.edu

ABSTRACT
Dataframes are a popular abstraction to represent, prepare, and ana-
lyze data. Despite the remarkable success of dataframe libraries in R
and Python, dataframes face performance issues even on moderately
large datasets. Moreover, there is significant ambiguity regarding
dataframe semantics. In this paper we lay out a vision and roadmap
for scalable dataframe systems. To demonstrate the potential in this
area, we report on our experience building MODIN, a scaled-up im-
plementation of the most widely-used and complex dataframe API
today, Python’s pandas. With pandas as a reference, we propose a
simple data model and algebra for dataframes to ground discussion
in the field. Given this foundation, we lay out an agenda of open
research opportunities where the distinct features of dataframes
will require extending the state of the art in many dimensions of
data management. We discuss the implications of signature data-
frame features including flexible schemas, ordering, row/column
equivalence, and data/metadata fluidity, as well as the piecemeal,
trial-and-error-based approach to interacting with dataframes.

PVLDB Reference Format:
Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xi-
angxi Mo, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph,
Aditya G. Parameswaran. Towards Scalable Dataframe Systems. PVLDB,
13(11): 2033-2046, 2020.
DOI: https://doi.org/10.14778/3407790.3407807

1. INTRODUCTION
For all of their commercial successes, relational databases have

notable limitations when it comes to “quick-and-dirty” exploratory
data analysis (EDA) [62]. Data needs to be defined schema-first
before it can be examined, data that is not well-structured is diffi-
cult to query, and any query beyond SELECT * requires an intimate
familiarity with the schema, which is particularly problematic for
wide tables. For more complex analyses, the declarative nature of
SQL makes it awkward to develop and debug queries in a piece-
wise, modular fashion, conflicting with best practices for software
development. Due in part to these limitations, SQL is often not the
tool of choice for data exploration. As an alternative, programming
languages such as Python and R support the so-called dataframe
abstraction. Dataframes provide a functional interface that is more

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407807

tolerant of unknown data structure and well-suited to developer and
data scientist workflows, including REPL-style imperative interfaces
and data science notebooks [51].

Dataframes have several characteristics that make them an appeal-
ing choice for data exploration:
• an intuitive data model that embraces an implicit ordering on

both columns and rows and treats them symmetrically;
• a query language that bridges a variety of data analysis modal-

ities including relational (e.g., filter, join), linear algebra (e.g.,
transpose), and spreadsheet-like (e.g., pivot) operators;
• an incrementally composable query syntax that encourages easy

and rapid validation of simple expressions, and their iterative
refinement and composition into complex queries; and
• native embedding in a host language such as Python with familiar

imperative semantics.
Characteristics such as these have helped dataframes become in-
credibly popular for EDA. The dataframe abstraction provided by
pandas within Python (pandas.pydata.org), has as of 2020 been
downloaded over 300 million times, served as a dependency for over
222,000 repositories in GitHub, and accumulated more than 25,000
stars on GitHub. Python’s own popularity has been attributed to the
success of pandas for data exploration and data science [7, 8].

Pandas has been developed from the ground up via open-source
contributions from dozens of contributors, each providing operators
and their implementations to the DataFrame API to satisfy imme-
diate or ad-hoc needs, spanning capabilities that mimic relational
algebra, linear algebra, and spreadsheet computation. To date, the
pandas DataFrame API has ballooned to over 200 operators [12].
R, which is both more mature and more carefully curated, has only
70 operators—but this still far more than, say, relational and linear
algebra combined [13].

While this rich API is sometimes cited as a reason for pandas’ at-
tractiveness, the set of operators has significant redundancies, often
with different performance implications. These redundancies place
a considerable burden on users, who must perform query planning
(via selection of the appropriate pandas API calls) manually. For
example, one blog post cites five different ways to express the same
goal, with performance varying from 0.3ms to 600ms (a 1700×
increase) [6]; meanwhile, the pandas documentation itself offers
multiple recommendations for how to enhance performance [9]. As
a result, many users eschew the bulk of the API, relying only on a
small subset of operators [11]. The complexity of the API and eval-
uation semantics also makes it difficult to apply traditional query
optimization techniques. Indeed, each operator within a pandas
“query plan” is executed completely before subsequent operators
are executed with limited optimization and without reordering or
pipelining (unless explicitly done so by the user using .pipe). More-

2033

pandas.pydata.org

import pandas as pd
products = pd.read_html(...)
products

R1. Read HTML

products.iloc[2, 0] = "12MP"
products

C1. Ordered point updates
products = products\
["Wireless Charging"].map(
lambda x: 1 if x is "Yes" else 0)

products

C3. Column transformation

A3. Matrix Covariance

iphone_df.cov()
iphone_df

products = products.T
products

C2. Matrix-like transpose

prices = pd.read_excel(...)
prices

C4. Read Excel A2. JoinsA1. One-to-many column mapping

one_hot_df = pd.get_dummies(products)
iphone_df = prices.merge(

one_hot_df,
left_index=True, right_index=True

)
iphone_df

Figure 1: Example of an end-to-end data science workflow, from data ingestion, preparation, wrangling, to analysis.

over, the performance of the pandas.DataFrame API breaks down
when processing even moderate volumes of data that do not fit in
memory (demonstrated in Section 3)—this is especially problematic
due to pandas’ eager evaluation semantics, wherein intermediate
data size often surpasses memory limits and must be paged to disk.

To address pandas’ scalability challenges, we developed MO-
DIN (github.com/modin-project/modin), our early implemen-
tation of a scalable dataframe system, which employs parallel query
execution to enable unmodified pandas code to run more efficiently
on large dataframes. MODIN is used by over 60 downstream projects,
and has over 250 forks and 4,800 stars on GitHub in its first 20
months, indicating the impact and need for scalable dataframe im-
plementations. MODIN rewrites pandas API calls into a sequence
of operators in a new, compact dataframe algebra. MODIN then
leverages simple parallelization and a new physical representation
to speed up the execution of these operators by up to 30× in certain
cases, and is able to complete queries on datasets 25× larger than
pandas in others.

Our initial optimizations in MODIN are promising, but only
scratch the surface of what’s possible. Given the success of our first
experience with MODIN, we believe there is room for a broad, com-
munity research agenda on making dataframe systems scalable
and efficient, with many novel research challenges. Our original
intent when developing MODIN was to adapt standard relational
database techniques to help make dataframes scalable. However,
while the principles (such as parallelism) do apply, their instanti-
ation in the form of specific techniques often differ, thanks to the
differences between the data models and algebra of dataframes and
relations. Therefore, a more principled foundation for dataframes is
needed, comprising a formal data model and an expressive and com-
pact algebra. We describe our first attempt at such a formalization in
Section 4. Then, armed with our data model and algebra, we outline
a number of research challenges organized around unique dataframe
characteristics and the unique ways in which they are processed.

In Section 5, we describe how the dataframe data model and
algebra result in new scalability challenges. Unlike relations, data-
frames have a flexible schema and are lazily typed, requiring careful
maintenance of metadata, and avoidance of the overhead of type
inference as far as possible. Dataframes treat rows and columns as
equivalent, and metadata (column/row labels) and data as equiva-
lent, placing new metadata awareness requirements on dataframe
query planners. In addition, dataframes are ordered—and dataframe
systems often enforce a strict coupling between logical and physical
layout; we identify several opportunities to deal with order in a more
light-weight, decoupled, and lazy fashion. Finally, the new space of
operators—encompassing relational, linear algebra, and spreadsheet
operators—introduce new challenges in query optimization.

In Section 6, we describe new challenges and opportunities that
emerge from how dataframes are used for data exploration. Un-
like SQL, which offers an all-or-nothing query modality, dataframe
queries are constructed one operator at a time, with ample think-time
between query fragments. This makes it more challenging to per-
form query optimization by reordering operators for higher overall
efficiency. At the same time, the additional thinking time between
steps can be exploited to do background processing. Dataframe
users often inspect intermediate results of query fragments, usually
for debugging, which requires a costly materialization after each
step of query processing. However, users are only shown an ordered
prefix or suffix of this intermediate dataframe as output, allowing us
to prioritize the execution to return this portion quickly and defer the
execution of the rest. Finally, users often revisit old processing steps
in an ad-hoc process of trial-and-error data exploration. We consider
opportunities to minimize redundant computation for operations
completed previously.
Outline and Contributions. In this paper, we begin with an ex-
ample dataframe workflow capturing typical dataframe capabilities
and user behavior. We then describe our experiences with MO-
DIN (Section 3). We use MODIN to ground our discussion of the
research challenges. We (i) provide a candidate formalism for
dataframes and enumerate their capabilities with a new algebra
(Section 4). We then outline research challenges and opportuni-
ties to build on our formalism and make dataframe systems more
scalable, by optimizing and accounting for (ii) the unique charac-
teristics of the new data model and algebra (Section 5), as well
as (iii) the unique ways in which dataframes are used in practice
for data exploration (Section 6). We draw on tools and techniques
from the database research literature throughout and discuss how
they might be adapted to meet novel dataframe needs.

In describing the aforementioned challenges, we focus on the
pandas dataframe system [12] for concreteness. Pandas is much
more popular than other dataframe implementations, and is therefore
well worth our effort to study and optimize. We discuss other
dataframe implementations and related work in Section 7. Many
details about MODIN and our dataframe data model and algebra are
omitted and can be found in our technical report [52].

2. DATAFRAME EXAMPLE
In Figure 1, we show the steps taken in a typical workflow of

an analyst exploring the relationship between various features of
different iPhone models in a Jupyter notebook [51].
Data ingest and cleaning. Initially, the analyst reads in the iPhone
comparison chart using read_html from an e-commerce webpage,
as shown in R1 in Figure 1. The data is verified by printing out the
first few lines of the dataframe products. (products.head() is

2034

github.com/modin-project/modin

also often used.) Based on this preview of the dataframe, the analyst
identifies a sequence of actions for cleaning their dataset:
• C1 [Ordered point updates]: The analyst fixes the anomalous

value of 120MP for Front Camera for the iPhone 11 Pro to 12MP,
by performing a point update via iloc, and views the result.
• C2 [Matrix-like transpose]: To convert the data to a relational

format, rather than one meant for human consumption, the an-
alyst transposes the dataframe (via T) so that the rows are now
products and columns features, and then inspects the output.
• C3 [Column transformation]: The analyst further modifies the

dataframe to better accommodate downstream data processing
by changing the column “Wireless Charging” from “Yes/No” to
binary. This is done by updating the column using a user-defined
map function, followed by displaying the output.
• C4 [Read Excel]: The analyst loads price/rating information by

reading it from a spreadsheet into prices and then examines it.

Analysis. Then, the analyst performs the following operations to
analyze the data:
• A1 [One-to-many column mapping]: The analyst encodes

non-numeric features in a one-hot encoding scheme via the
get_dummies function.
• A2 [Joins]: The iPhone features are joined with their corre-

sponding price and rating using the merge function. The analyst
then verifies the output.
• A3 [Matrix Covariance]: With all the relevant numerical data in

the same dataframe, the analyst computes the covariance between
the features via the cov function, and examines the output.

This example demonstrated only a sample of the capabilities of data-
frames. Nevertheless, it serves to illustrate the common use cases
for dataframes: immediate visual inspection after most operations,
each incrementally building on the results of previous ones, point
and batch updates via user-defined functions, and a diverse set of
operators for wrangling, preparing, and analyzing data.

3. THE MODIN DATAFRAME SYSTEM
While the pandas API is convenient and powerful, the underlying

implementation has many scalability and performance problems.
We therefore started an effort to develop a “drop-in” replacement
for the pandas API, MODIN1, to address these issues. In the style
of embedded database systems [37, 53], MODIN is a library that
runs in the same process as the application that imports it. We
briefly describe the challenges we encountered and the lessons we
learned during our implementation in Section 3.1, followed by a
preliminary case study of MODIN’s performance in Section 3.2. We
defer detailed treatment of MODIN’s architecture to our technical
report [52].

3.1 Modin Engineering Challenges
When we started our effort to make pandas more scalable, we

identified that while many operations in pandas are fast, they are lim-
ited by their single-threaded implementation. Therefore, our starting
point for MODIN was to add multi-core capabilities and other simple
performance improvements to enable pandas users to run their same
unmodified workflows both faster and on larger datasets. However,
we encountered a number of engineering challenges.
Massive API. The pandas API has over 240 distinct operators, mak-
ing it challenging to individually optimize each one. After manually

1MODIN’s name is derived from the Korean word for “every”, as it targets every data-
frame operator.

trying to parallelize each operator within MODIN, we tried a differ-
ent approach. We realized that there is a lot of redundancy across
these 240 operators. Most of these operators can be rewritten into
an expression composed using a much smaller set of operators. We
describe our compact set of dataframe operators—our working data-
frame algebra—in Section 4.3. Currently, MODIN supports over
85% of the pandas.DataFrame API, by rewriting API calls into
our working algebra, allowing us to avoid duplicating optimization
logic as much as possible. The operators we prioritized were based
on an analysis of over 1M Jupyter notebooks, the results of which
are discussed in our technical report [52]. Specifically, we targeted
all the functionality in pandas.DataFrame, pandas.Series, and
pandas utilities (e.g., pd.concat). To use MODIN instead of pan-
das, users can simply invoke “import modin.pandas”, instead of
“import pandas”, and proceed as they would previously.
Parallel execution. Since most pandas operators are single-threaded,
we looked towards parallelism as a means to speed up execution.
Parallelization is commonly used to improve performance in a rela-
tional context due to the embarrassingly parallel nature of relational
operators. Dataframes have a different set of operators than re-
lational tables, supporting relational algebra, linear algebra, and
spreadsheet operators, as we saw in Section 2, and we will dis-
cuss in Section 4. We implemented different internal mechanisms
for exploiting parallelism depending on the data dimensions and
operations being performed. Some operations are embarrassingly
parallel and can be performed on each row independently (e.g., C3
in Figure 1), while others (e.g., C2, A1, A3) cannot. To address
the challenge of differing levels of parallelism across operations,
we designed MODIN to be able to flexibly move between common
partitioning schemes: row-based (i.e., each partition has a collec-
tion of rows), column-based (i.e., each partition has a collection
of columns), or block-based partitioning (i.e., each partition has a
subset of rows and columns), depending on the operation. Each
partition is then processed independently by the execution engine,
with the results communicated across partitions as needed.
Supporting billions of columns. While parallelism does address
some of the scalability challenges, it fails to address a major one: the
ability to support tables with billions of columns—something even
traditional database systems do not support. Using the pandas API,
however, it is possible to transpose a dataframe (as in Step C2) with
billions of rows into one with billions of columns. In many settings,
e.g., when dealing with graph adjacency matrices in neuroscience
or genomics, the number of rows and number of columns can both
be very large. For these reasons, MODIN treats rows and columns
essentially equivalently, a property of dataframes will discuss in
detail in Section 4. In particular, to transpose a large dataframe, MO-
DIN employs block-based partitioning, where each block consists of
a subset of rows and columns. Each of the blocks are individually
transposed, followed by a simple change of the overall metadata
tracking the new locations of each of the blocks. The result is a
transposed dataframe that does not require any communication.

3.2 Preliminary Case Study
To understand how the simple optimizations discussed above

impact the scalability of dataframe operators, we perform a small
case study evaluating MODIN’s performance against that of pandas
using microbenchmarks on an EC2 x1.32xlarge (128 cores and
1,952 GB RAM) node using a New York City taxicab dataset [48]
that was replicated 1 to 11 times to yield a dataset size between 20 to
250 GB, with up to 1.6 billion rows. We consider four queries:
• map: check if each value in the dataframe is null, and replace it

with a TRUE if so, and FALSE if not.

2035

50 100 150 200 250
Size (GB)

0

100

200

300

Ti
m

e
(s

)

Map

50 100 150 200 250
Size (GB)

Groupby (n)

50 100 150 200 250
Size (GB)

Groupby (1)

50 100 150 200 250
Size (GB)

Transpose
Run Times for Modin and Pandas

System
Pandas
Modin

Figure 2: Each function shows runtime and 95% confidence region for both MODIN and pandas. We omit pandas transpose as it is unable to scale beyond 6 GB.

• group-by (n): group by the non-null “passenger_count” column
and count the number of rows in each group.
• group-by (1): count the number of non-null rows in the data-

frame.
• transpose: swap the columns and rows of the dataframe and

apply a simple (map) function across the new rows.
We highlight the difference between group by with one group and n
groups, because with n groups data shuffling and communication
are a factor in performance. With group-by(1), the communication
overheads across groups are non-existent. We include transpose to
demonstrate that MODIN can handle data with billions of columns.

Figure 2 shows that for the group-by (n) and group-by (1) op-
erations, MODIN yields a speedup of up to 19× and 30× relative
to pandas, respectively. For example, a group-by (n) on a 250GB
dataframe, pandas takes about 359 seconds and MODIN takes 18.5
seconds, a speedup of more than 19×. For map operations, MODIN
is about 12× faster than pandas. These performance gains come
from simple parallelization of operations within MODIN, while pan-
das only uses a single core. During the evaluation of transpose,
pandas was unable to transpose even the smallest dataframe of 20
GB (∼150 million rows) after 2 hours. Through separate testing,
we observed that pandas can only transpose dataframes of up to 6
GB (∼6 million rows) on the hardware we used for testing.
Takeaways. Our preliminary case study and our experience with
MODIN demonstrates the promise of integrating simple optimiza-
tions to make dataframe systems scalable. Next, we define a data-
frame data model and algebra to allow us to ground our subsequent
discussion of our research agenda, targeting the unique characteris-
tics of dataframes and the unique ways in which they are used. We
defer further performance analyses of MODIN to future work.

4. DATAFRAME FUNDAMENTALS
There are many competing open-source and commercial imple-

mentations of dataframes, but there is no formal definition or enumer-
ation of dataframe properties in the literature to date. We therefore
propose a formal definition of dataframes to allow us to describe
our subsequent research challenges on a firm footing, and also to
provide background to readers who are unfamiliar with dataframes.
In this section, we start with a brief history (Section 4.1), and pro-
vide a reference data model (Section 4.2) and algebra (Section 4.3)
to ground discussion. We then demonstrate the expressiveness of
the algebra via a case study (Section 4.4). Our technical report has
additional details about the formalism, the mapping to the pandas
API, other extensions to the data model, as well as quantitative
statistics on dataframe usage [52].

4.1 A Brief History of Dataframes
The S programming language was developed at Bell Laborato-

ries in 1976 to support statistical computation. Dataframes were
first introduced to S in 1990, and presented by Chambers, Hastie,
and Pregibon at the Computational Statistics conference [24]. The
authors state: “We have introduced into S a class of objects called

data.frames, which can be used if convenient to organize all of
the variables relevant to a particular analysis ...” Chambers and
Hastie then extended this paper into a 1992 book [25], which states
“Data frames are more general than matrices in the sense that matri-
ces in S assume all elements to be of the same mode—all numeric,
all logical, all character string, etc.” and “... data frames support
matrix-like computation, with variables as columns and observa-
tions as rows, and, in addition, they allow computations in which
the variables act as separate objects, referred to by name.”

The R programming language, an open-source implementation
of S, was first released in 1995, with a stable version released in
2000, and gained instant adoption among the statistics community.
Finally, in 2008, Wes McKinney developed pandas in an effort to
bring dataframe capabilities with R-like semantics to Python, which
as we described in the introduction, is now incredibly popular. We
discuss other dataframe implementations in Section 7.

4.2 Dataframe Data Model
As Chambers and Hastie themselves state, dataframes are not fa-

miliar mathematical objects. Dataframes are not quite relations, nor
are they matrices or tensors. In our definitions we borrow textbook
relational terminology from Abiteboul, et al. [15, Chapter 3] and
adapt it to our use.

The elements in the dataframe come from a known set of domains
Dom = {dom1, dom2, ...}. For simplicity, we assume in our dis-
cussion that domains are taken from the set Dom = {Σ∗, int, float,
bool, category}, though a few other useful domains like datetimes
are common in practice. The domain Σ∗ is the set of finite strings
over an alphabet Σ, and serves as a default, uninterpreted domain; in
some dataframe libraries it is called Object. Each domain contains
a distinguished null value, sometimes written as NA. Each domain
domi also includes a parsing function pi : Σ∗ → domi, allowing
us to interpret the values in dataframe cells as domain values.

A key aspect of a dataframe is that the domains of its columns
may be induced from data post hoc, rather than being declared a
priori as in the relational model. We define a schema induction
function S : (Σ∗)m → Dom that assigns an array of m strings to
a domain in Dom. This schema induction function is applied to
a given column and returns a domain that describes this array of
strings; we will return to this function later.

Armed with these definitions, we can now define a dataframe:
Definition 4.1. A dataframe is a tuple (Amn, Rm, Cn, Dn), where
Amn is an array of entries from the domain Σ∗, Rm is a vector of
row labels from Σ∗, Cn is a vector of column labels from Σ∗, and
Dn is a vector of n domains from Dom, one per column, each of
which can also be left unspecified. We call Dn the schema of the
dataframe. If any of the n entries within Dn is left unspecified, then
that domain can be induced by applying S(·) to the corresponding
column of Amn.
We depict our conceptualization of dataframes in Figure 3. In our
example of Figure 1, dataframe products after step R1 has Rm

corresponding to an array of labels [Display, Camera, . . .]; Cn

corresponding to an array of labels [iPhone 11 Pro, iPhone Pro

2036

Max, . . .]; Amn corresponding to the matrix of values beginning
with 5.8-inch, with m = 6, n = 4. Here, Dn is left unspecified,
and may be inferred using S(·) per column to possibly correspond
to [Σ∗,Σ∗,Σ∗,Σ∗], since each of the columns contains strings.

Rows and columns are symmetric in many ways in dataframes.
Both can be referenced explicitly, using either numeric indexing
(positional notation) or label-based indexing (named notation). In
our example in Figure 1, the products dataframe is referenced
using positional notation in step C1 with products.iloc[2, 0]
to modify the value in the third row and first column, and by named
notation in step C3 using products ["Wireless Charging"]
to modify the column corresponding to "Wireless Charging".
The relational model traditionally provides this kind of referencing
only for columns. Note that row position is exogenous to the data—
it need not be correlated in any way to the data values, unlike
sort orderings found in relational extensions like SQL’s ORDER BY
clause. The positional notation allows for (row, col) references to
index individual values, as is familiar from matrices.

A subtler distinction is that row and column labels are from the
same set of domains as the underlying data (Dom), whereas in
the traditional relational model, column names are from a separate
domain (called att [15]). This is important to point out because
there are dataframe operators that copy data values into labels, or
copy labels into data values, discussed further in Section 4.3.

One distinction between rows and columns in our model is that
columns have a schema, but rows do not. Said differently, we parse
the value of any cell based on the domain of its column. We can also
imagine an orthogonal view, in which we define explicit schemas
(or use a schema induction function) on rows, and a corresponding
row-wise parsing function for the cells. In our formalism, this is
achieved by an algebraic operator to transpose the table and treat
the result column-wise (Section 4.3). By restricting the data model
to a single axis of schematization, we provide a simple unique in-
terpretation of each cell, yet preserve a flexibility of interpretation
in the algebra. In Sections 5.1.2 and 5.2.2 we return to the perfor-
mance and programming implications of programs that make use of
schemas on a dataframe and its transpose (i.e. “both axes”).

When the schema Dn has the same domain dom for all n columns,
we call this a homogeneous dataframe. As a special case, consider a
homogeneous dataframe with a domain like float or int and opera-
tors +,× that satisfy the algebraic definition of a field. We call this
a matrix dataframe, since it has the algebraic properties required of
a matrix, and can participate in linear algebra operations simply by
parsing its values and ignoring its labels. The dataframe iphone_df
after step A2 in Figure 1 is one such example; thus it was possible
to perform the covariance operation in step C3. Matrix dataframes
are commonly used in machine learning pipelines.

Overall, while dataframes have roots in both relational and linear
algebra, they are neither tables nor matrices. Specifically, when
viewed from a relational viewpoint, the dataframe data model differs
in the following ways:

Dataframe Characteristic Relational Characteristic
Ordered table Unordered table
Named rows labels No naming of rows
A lazily-induced schema Rigid schema
Column names from d ∈ Dom Column names from att [15]
Column/row symmetry Columns and rows are distinct
Support for linear alg. operators No native support

And when viewed from a matrix viewpoint, the dataframe data
model differs in the following ways:
We will exploit these two viewpoints in our dataframe algebra to
allow us to define both relational and linear algebra operations. Due

Dataframe Characteristic Matrix Characteristic
Heterogeneously typed Homogeneously typed
Both numeric and non-numeric types Only numeric types
Explicit row and column labels No row or column labels
Support for rel. algebra operators No native support

Cn Column Labels
Dn Column Domains

Array of Data

Amn

Rm
Row Labels

Figure 3: The Dataframe Data Model

to these differences, a new body of work will be needed to support
the scale required for modern data science workflows.

4.3 Dataframe Algebra
While developing MODIN, we discovered that there exists a “ker-

nel” of operators that encompasses the massive APIs of pandas and
R. We developed this “kernel” into a new dataframe algebra, which
we describe here, while explicitly contrasting it with relational alge-
bra. We do not argue that this set of operators is minimal, but we
do feel it is both expressive and elegant; we demonstrate via a case
study in Section 4.4 that it can be used to express pivot. Based on
the contrast with relational algebra, we are in a position to articulate
research challenges in optimizing dataframe algebra expressions in
subsequent sections.

We list the algebra operators we have defined in Table 1: the rows
correspond to the operators, and the columns correspond to their
properties. The operators encompass ordered analogs of extended re-
lational algebra operators (from SELECTION to RENAME), one opera-
tor that is not part of extended relational algebra but is found in many
database systems (WINDOW), one operator with that admits indepen-
dent use unlike in database systems (GROUPBY), as well as four new
operators (TRANSPOSE, MAP, TOLABELS, and FROMLABELS). The or-
dered analogs of relational algebra operators preserve the ordering
of the input dataframe(s). If there are multiple arguments, the result
is ordered by the first argument first, followed by the second. For
example, UNION simply concatenates the two input dataframes in
order, while CROSS-PRODUCT preserves a nested order, where each
tuple on the left is associated, in order, with each tuple on the right,
with the order preserved.

We succinctly describe the new operators as well as highlight
any deviating semantics of GROUPBY and WINDOW and leave detailed
semantics to our technical report [52]. The output schema for most
other relational operators can be carried over from the inputs (indi-
cated as static in Table 1).
Transpose. TRANSPOSE interchanges rows and columns, so that the
columns of the dataframe become the rows, and vice-versa. For-
mally, given a dataframe DF = (Amn, Rm, Cn, Dn), we define
TRANSPOSE(DF) to be a dataframe (AT

nm, Cn, Rm, null), where
AT

nm is the array transpose of Amn. Note that the schema of the
result may be induced by S, and may not be similar to the schema
of the input. TRANSPOSE is useful both for matrix operations on
homogenous dataframes, and for data cleaning or for presentation
of “crosstabs” data. In step C2 in our example in Figure 1, the table
was not oriented properly from ingest, and a transpose was required
to give us the desired table orientation.
Map. The map operator takes some function f and applies it to each
row individually, returning a single output row of fixed arity. The
purpose of the map operator is to alter each dataframe row uniformly.
MAP is useful for data cleaning and feature engineering (e.g., step
C3 in Figure 1). Given a dataframe DF = (Amn, Rm, Cn, Dn),

2037

Table 1: Dataframe Algebra. †: Ordered by left argument first, then right to break ties. ♦: Order of columns is inherited from order of rows and vice-versa.

Operator (Meta)data Schema Origin Order Description
SELECTION × static REL Parent Eliminate rows
PROJECTION × static REL Parent Eliminate columns
UNION × static REL Parent† Set union of two dataframes
DIFFERENCE × static REL Parent† Set difference of two dataframes
CROSS PRODUCT / JOIN × static REL Parent† Combine two dataframes by element
DROP DUPLICATES × static REL Parent Remove duplicate rows
GROUPBY × static REL New Group identical values for a given (set of) attribute(s)
SORT × static REL New Lexicographically order rows
RENAME (×) static REL Parent Change the name of a column
WINDOW × static SQL Parent Apply a function via a sliding-window (either direction)
TRANSPOSE (×) × dynamic DF Parent♦ Swap data and metadata between rows and columns
MAP (×) × dynamic DF Parent Apply a function uniformly to every row
TOLABELS (×) × dynamic DF Parent Set a data column as the row labels column
FROMLABELS (×) × dynamic DF Parent Convert the row labels column into a data column

the result of MAP(DF, f) is a dataframe (A′mn′ , Rm, C′n′ , D′n′)
with f : Dn → D′n′ , where A′mn′ is the result of the function f as
applied to each row, C′n′ is the resulting column labels, and D′n′ is
the resulting vector of domains. Notice that in this definition, the
number of columns (n′) and the column labels (C′n′) can change
based on this definition, but they must be changed uniformly for
every row. The vector of domains D′n′ may, in many cases, be
inferred from the type of the function f .
ToLabels. The TOLABELS operator projects one column out of the
matrix of data, Amn, to be set as new row labels for the resulting
dataframe, replacing the old labels. Given DF = (Amn, Rm, Cn,
Dn) and some column label L, TOLABELS(DF, L) returns a data-
frame (A′m(n−1), L, C

′
n, D

′
n), where C′n (respectively D′n) is the

result of removing the label L from Cn (respectively Dn). With this
capability, data from Amn can be promoted into the metadata of the
dataframe and referenced by name during future interactions.
FromLabels. FROMLABELS creates a new dataframe with the row
labels inserted into the array Amn as a new column of data at
position 0 with a provided column label. The data type of the
new column starts as null until it can be induced by the schema
induction function S. The row labels of the resulting dataframe
are set to the default label: the order rank of each row (positional
notation). Formally, given a dataframe DF = (Amn, Rm, Cn, Dn)
and a new column label L we define FROMLABELS(DF, L) to
be a dataframe (Rm + Amn, Pm, [L] + Cn, [null] + Dn), where
Rm +Amn is the concatenation of the row labels Rm with the array
of data Amn, Pm is the positional notation values for all of the rows:
Pm = (0, ...,m− 1), and [L] + Cn is the result of prepending the
new column label L to the column labels Cn.
GroupBy. As in relational algebra, our GROUPBY operator groups by
one or more columns, and aggregates one or more columns together
or separately. Unlike relational algebra, where aggregation must
result in atomic values, dataframes can support composite values
within a cell, allowing a broader class of aggregation functions to be
applied. One special function, collect, groups rows with the same
grouping attribute values into separate dataframes and returns these
as the (composite) aggregate values. Pandas’s groupby function has
similar behavior and applies collect to the non-grouped attributes.
We will use collect in our examples subsequently.
Window. WINDOW-type operations are largely analogous to those
used in recent SQL extensions to RDBMSs like PostgreSQL and
SQL Server. The key difference is that, in SQL, many windowing
functions such as LAG and LEAD require an additional ORDER BY to

Wide Table of MONTHs
Month 2001 2002 2003

Jan 100 150 300
Feb 110 200 310
Mar 120 250 NULL

Year Jan Feb Mar
2001 100 110 120
2002 150 200 250
2003 300 310 NULL

Wide Table of YEARs

Narrow Table (SALES)
Year Month Sales
2001 Jan 100
2001 Feb 110
2001 Mar 120
2002 Jan 150
2002 Feb 200
2002 Mar 250
2003 Jan 300
2003 Feb 310

Pivot−→
←− Unpivot

Figure 4: Pivot table example, reproduced from [27], demonstrating pivoting
over two separate columns, “Month” and “Year”.

DF

"Year" collect

GROUPBY MAP

flatten

TOLABELS

"Year"

TRANSPOSE

Figure 5: Logical plan for pivoting a dataframe around the “Year” column
using the dataframe algebra from this section.

be well-defined; in dataframe algebra, the inherent ordering already
present in dataframes makes such a clause purely optional.

4.4 Pivot Case Study
To demonstrate the expressiveness of the algebra above, we show

how it can express pivot, which is particularly challenging in
relational databases due to the need for relations to be declared
schema-first [27, 67]. The pivot operator (Figure 4) elevates a
column of data into the column labels and creates a new dataframe
reshaped around these new labels.

Since there is no need to know the names of the new columns or
the resulting schema a priori, a pivot can be expressed concisely
in dataframe algebra as a combination of four operators in the plan
shown in Figure 5. Recall that it is possible to elevate data to
the column labels by using TOLABELS followed by TRANSPOSE. In
this case, the TOLABELS operator would be applied on the label
of the column being pivoted over, "Year" in this example. After
this step, we perform a GROUPBY on the pivoted attribute, "Year"
with a collect aggregation applied to the remaining attributes to
produce a per-Year dataframe as a composite aggregated value. This
aggregated value is manipulated by a MAP operator with a function
that flattens the grouped data into the correct orientation. This results
in a table pivoted around the attribute selected for the TOLABELS
operator. Notice in Figure 4 that transposing the dataframe labeled
“Wide Table in Months” results in the correct data layout for the
“Wide Table in Years”. This is one example of how TRANSPOSE can

2038

be exploited: cost models in dataframe query optimizers can choose
the more efficient pivot column and TRANSPOSE at the end.

5. DATA MODEL CHALLENGES
Supporting the dataframe data model and algebra from Section 4

efficiently motivates a new set of research challenges. We organize
these challenges based on unique properties of dataframes, and dis-
cuss their impact on query optimization, data layout, and metadata
management. We first discuss the impact of flexible schemas.

5.1 Flexible Schemas, Dynamic Typing
Major challenges arise from the flexible nature of dataframe

schemas. Dataframes require more than data; as noted in Section 4.2
they also require a schema to interpret the data. In the absence of
explicit types for certain columns, we must run the type induction
function S, and the resulting parsing functions—both of which
can be expensive. Note that the type of a column must be known
before we can parse the value of any cell in that column. Mitigating
the costs inherent in flexible schemas and dynamic types therefore
presents a major challenge for dataframes.

In database terms, dataframes are more like views than tables.
Programming languages like Python and R do not store data; they
access data from external storage like files or databases. Hence every
time a program is executed, it constructs dataframe objects anew.
Unfortunately, external storage in data science is often untyped.
Dataframe-friendly file formats like Apache Feather include explicit
schemas and pre-parsed data, but most data files used in data science
today (notably those in the ever-popular csv format) do not.

Another source of dynamism arises from schema mutations, e.g.,
adding or removing columns. These are first-class citizens of the
dataframe algebra, unlike in relational databases, which relegate
such operations to a separate DDL. As such, they are not only
allowed, but are in fact frequent during data exploration with data-
frames, especially during data preparation and feature engineering.
We consider the challenge of efficient schema induction from three
angles: rewriting, materialization, and query processing.

5.1.1 Rewrite Rules for Schema Induction
Due to their flexible schemas, dataframes support the addition and

removal of columns as first-class operations, and at any point in time
could have several columns with unknown type. Certain dataframe
operators need type information, however—e.g. avoid attempting to
JOIN two dataframes on columns with mismatched types or using
a numeric predicate on a column with some strings. The schema
induction function, S, could be used to induce the requisite typing
information, but it is expensive and must be explicitly considered
when modeling cost for query plans. Specifically, if certain columns
are not operated on, inferring their type via S can be deferred to
when they are first manipulated and omitted entirely if, for example,
they are dropped before ever being accessed.

In some cases, schema inference rules might be able to avoid
the application of S altogether. For example, if ordered relational
operations are chained together, schema induction can be omitted
between operations, suggesting the possibility of employing rewrite
rules to skip applying S. Another example involves UDFs with
known output types (e.g., a MAP with a UDF that returns an integer).

In the case of operations which merely shuffle rows around (e.g.
moving even-indexed rows to the beginning of a dataframe, reorder-
ing), schema induction can be omitted entirely. When filtering or
taking a sample of a dataframe, schema induction can be omitted
if the type is already fairly constrained and will not be additionally
constrained based on the sample. For example, if we drop all rows

with strings in a specific column, we may end up with that column
having a restricted type such as float or int, requiring special care.

While omitting or deferring schema inference is promising, addi-
tional complications arise from the fact that, in a dataframe system,
metadata is data (see also Section 5.2) that may itself be queried
by a user. In particular, it is common for users to perform runtime
type inspections as a sanity check. As a result, the extra effort for
eschewing or deferring schema induction may prove futile if the
user chooses to inspect types anyway.

5.1.2 Reusing Type Information
It is common to reuse a dataframe across multiple statements in a

program. In cases where the dataframe lacks explicit types, it can be
very helpful to materialize the results of both schema induction and
parsing—both within the invocation of a program (internal state),
and across invocations in storage.

Materialization of flexibly-typed schemas introduces a new set of
challenges. Both schema induction and parsing can be a significant
fraction of the cost of processing. This raises optimization choices
for materialization: we can cache the results of S (for one or more
columns), and additionally we can cache the results of parsing
functions (in principle, at a granularity down to the cell level). For
complex multistep dataframe expressions, we can choose to make
these decisions at each operator in the pipeline that introduces a
dynamically-typed column. Hence the optimization search space
is large. Moreover, the workload of “queries” is different from
traditional materialized view settings—languages like Python are
more difficult to analyze statically than SQL, and we can expect
usage patterns to differ from databases as well (Section 6).

In some cases, it is reasonable to expect that a data scientist
will want to declare the types of the dataframe explicitly—e.g.,
an expression like df_t = TRANSPOSE(df, [myschema]) where
myschema is an array of type names for the columns. In this case,
there is no need to run schema induction. In a loosely-typed lan-
guage like Python, myschema can be an arbitrary expression re-
turning an array of strings. For example, it might read a list of
type names from a very large file with the same number of rows as
TRANSPOSE(df). Alternatively, the dataframe df itself might have
“row types” stored as strings in the i’th column of the data, leading
to an expression like df_t = TRANSPOSE(df, df[i]).

View maintenance has a role in the dataframe context, with new
challenges for type induction. The most direct use is in delta-
computation of expressions that have the effect of “adding” rows
to their inputs. For example, consider a MAP operator with a data
validation function: for each column it returns the input if it passes
a validation test, else it returns an error message in that column. The
new rows may all respect the constraints of the types of the input
dataframe, or some new rows could break those constraints—e.g. a
string-typed error message appearing in a column of numbers. In
both cases, we’d like the type induction to take advantage of the
work done to induce a schema for the input, and differentially decide
on a schema for the output. Note that these issues get more subtle as
the type system gets richer—e.g., consider an input with a column
of type percent that is passed into an arithmetic MAP function—the
output may be statically guaranteed to be numeric, and for a given
dataframe may or may not still be of type percent.

5.1.3 Pipelining Schema Induction in Query Plans
When applying S and the parsing function to columns is unavoid-

able, we may be able to reduce its cost by trying to fuse it with
other operations that are type-agnostic and lightweight (e.g., data
movement or serialization/deserialization) while adding minimal
overhead, which we foresee to be a fruitful research direction.

2039

For other operations, the position of S within the query plan can
have major performance implications. Consider a MAP operation
that is being applied to a column of strings. If the MAP operation
is relatively inexpensive (e.g., if it measures string length), it may
make sense to to skip type checking via schema induction before
the MAP operation. Although a type error (due to, e.g., the presence
of an unexpected integer value) leads to wasted effort, it may be
acceptable if the overhead paid by actual application of the MAP
is not too high. On the other hand, a MAP which performs heavy-
duty regular expression parsing over long strings may delay error
detection unacceptably if schema induction is fused into the MAP.

Overall, the positioning of the schema induction operator within
the query plan, by possibly fusing it with existing operators, com-
bined with schema induction avoidance and reuse, is crucial for the
development of a full-fledged dataframe query optimizer.

5.2 Order and Equivalence
Unlike relations, dataframes are ordered along both rows and

columns—and users rely on this ordering for debugging and valida-
tion as they compose dataframe queries incrementally. This order
is maintained as rows are transformed into columns and columns
into rows via TRANSPOSE, ensuring near-equivalence of rows and
columns. Additionally, as we saw in Section 4.4, row and column
label metadata is tightly coupled with the dataframe content, and in-
herits the order and typing properties. In this section, we discuss the
challenges imposed by enforcing order and the frequently changing
schema across row and column labels and row/column orientation.

5.2.1 Order is Central
The order of a dataframe is determined by the order of ingested

data. For example, a CSV file ingested as a dataframe would have the
same row and column order as the file. This ordering is crucial for
the trial-and-error-based interaction between a user and a dataframe
system. Users expect to see the rows in their dataframe stay in the
same order as they process it—allowing them to validate and debug
each step by comparing its result to the previous step. For example,
to ensure that a CSV file is ingested and parsed correctly, users
will expect the first few rows of the dataframe to be the same as
those they would see when examining the CSV file. To examine
a dataframe, users will either use the operator head/tail to see
the prefix/suffix or simply type the name of the dataframe for both
the prefix and suffix in the expected order. Additionally, operators
such as WINDOW and MAP from Section 4.3 expect a specific order for
the rows (WINDOW) and columns (MAP). Perhaps most challenging is
the frequency at which the order can be changed, as each operator
has a deterministic output order (shown in Table 1). since the UDF
argument to these operators may rely on that order. Dataframes also
support SELECTION and PROJECTION based on the position of the
rows and columns respectively.

Current dataframe systems such as pandas physically store the
dataframe in the order defined by the user and do not implement
physical data independence. Physical independence may open up
new optimization opportunities, recognizing that as long as the dis-
played results preserve the desired order semantics to the users, it is
not necessary that all intermediate products or artifacts (unobserved
by user) adhere to the order constraint. For example, a sort opera-
tion can be “conceptual” in that a new order can be defined without
actually performing the expensive sorting operation. Likewise, a
transpose doesn’t require the data to be reoriented in physical stor-
age unless beneficial for subsequent operations; the transpose can be
captured logically to reflect the new orientation of the dataframe.

To ensure correct semantics while respecting physical data inde-
pendence, we must devise a means to capture ordering information,

either tracked as a separate “order column” if it is not implied via
existing columns, or recording as metadata that the dataframe must
be ordered based on one or more of the preexisting columns. Then,
the ORDER BY on this “order column” or one of the existing columns
will be treated as an operator in the query plan, and will only need
to be done “on-demand” when the user requests to view a result.
Additionally, since users are only ever looking at the first and/or last
few lines of the dataframe, those are the only lines that are required
to be ordered; we discuss this further in Section 6.1.

Extending physical data independence even further, we can adapt
other data representation techniques from the database community,
optimized for dataframes. This includes columnar or row-column
hybrid storage [14], as well as those from scientific computing [26],
array databases [57], or spreadsheets [22]. Since dataframes are
neither relations, matrices, arrays, or spreadsheets, none of these
representations are a perfect fit.

The order of the dataframe also creates some interesting new
challenges in query planning. Operators that are commutative in the
relational data model are not necessarily commutative in dataframes,
e.g., SELECTION based on a positional predicate. Due to this, a
dataframe query optimizer must now be aware of and manipulate
an internal representation of the order. The added complexity of
maintaining order in the query plan due to the presence of non-
commutative operators in dataframes will be a significant challenge
for dataframe systems wishing to preserve these semantics.

5.2.2 Row/Column Equivalence
The presence of a TRANSPOSE operator in the dataframe algebra

presents novel challenges in data layout and query optimization.
TRANSPOSE allows users to flexibly alter their data into a desired
shape or schema that can be parsed according to an appropriate
schema, and queried using ordered relational operators.

To keep our data model and algebra compact, we have schemas
only for columns and our operators are defined on ordered sets of
rows. By contrast, in pandas and other dataframe implementations,
it is possible to perform many operations along either the rows or
columns via the axis argument. Hence, programs written in (or
translated to) our algebra are likely to have more uses of TRANSPOSE
than dataframe programs in the wild, to represent columnwise op-
erations and/or to reason about per-row schemas. These operations
are expressible logically in our simpler algebra by first perform-
ing a TRANSPOSE, applying the operation, and then a TRANSPOSE
again to return to the original orientation. Doing frequent physical
reorganizations for these operations would be a mistake, however.

The prevalence of TRANSPOSE in dataframe programs overturns
many axis-specific assumptions made in traditional database storage.
Axis-specific data layouts like columnar compression are problem-
atic in this context. Metadata management also requires rethinking,
since dataframes are as likely to be extremely “wide” (column-
wise) as they are “tall” (rowwise). Both traditional and embedded
RDBMSs typically limit the number of columns in a relation (e.g.,
SQL Server has an upper limit of 1024 columns, or 30k columns
using the wide-table feature) [37,53]. By applying TRANSPOSE on a
tall and narrow dataframe, the number of columns can easily exceed
the millions in the resulting short and wide dataframe.

Dataframe systems will need careful consideration to ensure that a
TRANSPOSE call does not break assumptions made by the data layout
layer used to perform optimizations. To ensure these optimizations
are harmonious with respect to TRANSPOSE, we can do a logical
TRANSPOSE “pull-up”. The proposed rewrite delays transpose in the
physical plan as much as possible, since it will often destroy many
data layout optimizations that would otherwise apply.

2040

DF GROUPBY

collect"Month"

MAP

flatten

TOLABELS

"Month"

T

(a) Original plan

DF GROUPBY

collect"Year"

MAP

flatten

T TOLABELS

"Month"

T

(b) Optimized rewrite that leverages sorted Year column
Figure 6: Alternative query plans for pivoting a dataframe around the “Month” column using the algebra from Section 4.3. TRANSPOSE is abbreviated as T.

In certain cases, we may indeed want to consider optimizing the
physical layout of the data given a TRANSPOSE operator as a part of a
query plan. This is in contrast with existing data systems that create
and optimize for a static data layout. A physical transpose may help
the optimizer match the layout to the access pattern (e.g., matrix
multiplication). A fixed data layout is likely to have a significant
performance penalty when the access pattern changes. Additionally,
consider a case where TRANSPOSE allows us more flexibility in
query planning. In the pivot case in Section 4.4, we observed that
transposing the result of a pivot is effectively a pivot across the
other column. Specifically, if we must pivot into the wide table with
Months as columns, we can either use the original plan (Figure 6a)
or one where we proceed as if the pivot is over Year, but then
transpose the final result so that the Month attribute values are used
as column headers (Figure 6b). The latter plan will be faster if
the optimizer leverages knowledge about the sorted order of the
Year column to avoid hashing the groups. This is an interesting
example of a new class of potential optimizations within dataframe
query plans that exploit an efficient TRANSPOSE. Because the axis
transpositions are happening in query expressions, the data layout
becomes a physical plan property akin to “interesting orders” [58]
or “hash teams” [33], expanding the rules for query optimization.

5.2.3 Metadata is Data (and Data is Metadata)
A standard feature of dataframes is the ability to fluidly move

values from data to metadata and back. This is made explicit in
the TOLABELS and FROMLABELS operators of our algebra, espe-
cially in combination with TRANSPOSE. These semantics cannot
be represented in languages like SQL or relational algebra that
are grounded in first-order logic; this is a signature of second-order
logic, as explored in languages like OQL [18], SchemaSQL [44] and
XQuery [23]. There is significant prior work on optimizing second-
order operations like the unnesting of nested data (e.g. [30, 60, 65]).
A distinguishing aspect of our setting is that a dataframe opera-
tion like TOLABELS commonly generates a volume of schema-level
metadata that is dependent on the size of the data; this raises new
challenges. The closest prior work to our needs studies spreadsheet-
style pivot/unpivot in databases (e.g. [27,67]); this work needs to be
generalized to the richer semantics of a dataframe algebra.

To address representational aspects, we could treat row labels
the way we treat primary keys in a relational database—by noting
the sequence of label columns in a metadata catalog. Some addi-
tional details arise in the support of positional notation: invoking
TOLABELS(c1, ..., cn) removes the relevant columns from their
positions, requiring a recalculation of the positions of all labels to
the right of c1. This can be handled by representing column order
in dynamic ranked data structures like ranked B-trees [43] or range
min-max trees [47]. In terms of data access, we may want to effi-
ciently process data columns without paying to access (dynamically
reassigned) metadata columns, and vice versa. In this case, colum-
nar layouts become attractive for projection. Alternatively, labels
can be moved into separate property tables [27], a form of “vertical
partitioning” that does not rely on columnar storage layouts.

Challenges arise in more complex expressions that include both
TOLABELS and other operators–notably MAP and TRANSPOSE. In
these cases, the number and types of columns in the dataframe is

data-dependent. This exacerbates the metadata storage issues dis-
cussed in the previous section, and brings up additional challenges.

In terms of query optimization, we now have a two-dimensional
estimation problem: both cardinality estimation (# of rows) and
arity estimation (# of columns). For most operations in our algebra
this would appear straightforward: even for TRANSPOSE, we know
the cardinality and arity of output based on input. The challenge
that arises is easy to see in a standard data science “macro”, namely
1-hot encoding (get_dummies in pandas). This operation takes a
single column as input, and produces a result table whose schema
concatenates the input schema with an (typically large) array of
boolean-typed columns, one column per distinct data value of the
input. Pivot presents a similar challenge: the width of the output
schema is based on the number of distinct data values in the input
columns. In our algebra, these macros can be implemented using
GROUPBY followed by MAP and TRANSPOSE. The resulting arity es-
timation problem reduces to distinct value estimation for the input
to GROUPBY. While techniques like hyperloglog sketches [31] could
assist here, note that we need to compute these estimates not only
on base tables that may be pre-sketched, but on intermediate results
of expressions! In short, we need to do distinct value estimation for
the outputs of query operators—including arithmetic calculations
(e.g. sums, products) and string manipulations (e.g. expanding a
document into constituent words).

In some scenarios, arity estimation is insufficient—we need exact
numbers and labels of columns. Consider the example of performing
a UNION of feature vectors generated from two different text corpora,
say Wikipedia articles unioned with DBLP articles. Each text cor-
pus begins as a dataframe with schema (documentID, content).
After a standard series of text featurization steps (word extraction
with stemming and stop-word filtering followed by 1-hot encoding),
each corpus becomes a dataframe with a documentID column, and
one boolean column for each word in the corpus. The problem is
that the UNION needs to dynamically check for compatibility of the
input schemas—it needs to first generate the full (large!) schema for
each input, and compare the two. Even if we relax our semantics to
an “outer” union, we want to identify and align the common words
across the corpora. These metadata requirements seem to require
two passes of the inner expression’s data: one to compute and align
metadata, and another to produce a result. There are opportunities
for optimization here to return to single-pass pipelining techniques,
but they merit investigation. This pipeline-breaking problem gener-
alizes to any operator that reasons about its input schema(s), so it
needs to be handled comprehensively.

In short, we expect that the fluid movement of large volumes of
data into metadata and vice versa introduces new challenges for
query processing and optimization in dataframes.

6. USER MODEL CHALLENGES
Unlike in SQL where queries are submitted all-or-nothing, data-

frame users construct queries in an incremental, iterative, and in-
teractive fashion. Queries are submitted as a series of statements
(as we saw in Figure 1) a few operators at a time in trial-and-error-
based sessions. Users rely on immediate feedback to debug and
rapidly iterate on these statements and frequently revisit results of
intermediate statements for experimentation and composition dur-
ing exploration. This interactive session-based programming model

2041

for dataframes creates novel challenges for overall system perfor-
mance and imposes additional constraints on query optimization.
For example, operator reordering is often not beneficial when the
results are materialized for viewing after every statement. At the
same time, dataframe query development sessions are bursty, with
ample think time between issuance of statements, and tolerant of
incomplete results as feedback—as long as the original goals of
experimentation and debugging are met, offering new opportunities
for query optimization. In this section, we discuss new challenges
and opportunities in query optimization arising from the interactive
and incremental trial-and-error query construction of a typical user.

6.1 Interactive Feedback and Control
Dataframes are typically used in exploratory workloads, where

interactive response times are crucial to providing a fluid user ex-
perience. Past studies have shown that latency in response times
of greater than 500ms can lead to fewer hypotheses explored and
insights generated during data exploration [45]. As another example,
for data preparation—often performed on dataframes—users often
rely on system feedback to guide and decide what operations to
determine their next steps [35]. This feedback usually comes in the
form of a display output by the dataframe system that contains a
prefix or suffix of rows and columns, as in Figure 1. The need for
frequent materialization of intermediate results to provide feedback
to the user makes it particularly difficult to satisfy the 500ms query
latency requirement for interactivity. Fortunately, we can leverage
two user behavior characteristics to improve interactivity: that users
spend time thinking between steps, and that the inspected intermedi-
ate results are typically restricted to a prefix/suffix of rows/columns
which is sufficient for debugging and validation.

6.1.1 Intermediate Result Inspection & Think Time
Present-day dataframe systems such as pandas are targeted toward

ensuring users can inspect intermediate results for debugging and
validation, so they operate in an eager mode where every statement
is evaluated as soon as it is issued. Program control is not returned to
the user until the statement has been completely evaluated, forcing
the user to be idle during that time. However, there are many cases
where users do not inspect the intermediate results, or where results
are discarded; in such cases, the user is still forced to wait for each
statement to be evaluated. Moreover, users are either rewarded or
punished based on the efficiency of a query as it is written.

On the other hand, with the lazy mode of evaluation, which is
adopted by some dataframe-like systems [19, 28] (See Section 7),
control is returned to the user immediately, and the system defers the
computation until the user requests the result. By scheduling compu-
tation later, the system can wait for larger query sub-expressions to
be assembled, leading to greater opportunities for optimization. The
downside of lazy evaluation is that computation only begins when
the user requests the result of a query. This introduces new burdens
for users, particularly for debugging, since bugs are not revealed
until computation is triggered.

For example, consider two commutative operations op1, and op2.
Say the user submits the statement x = df.op1() followed by y
= x.op2(). In eager evaluation, x will be fully materialized before
execution begins on y, even if x is never used again. Computing y
could be done using df.op2().op1(), but it is often more benefi-
cial to use the materialized version of x instead. In lazy evaluation,
execution will be deferred until explicitly requested, so the expres-
sion that creates y could be optimized to run df.op2().op1(). The
drawback of this approach is that the user must explicitly request y
in order to realize that there is a potential bug in x.

Furthermore, neither the lazy nor the eager mode take advan-
tage of the fact that the users spend time thinking between steps,
during which the system is idle. We can can leverage this time
for computation, allowing us to effectively achieve the benefits of
both paradigms. While interactive latency is important to support
immediate feedback, recent empirical studies have also shown that
optimizations can be relaxed to account for users’ long think time be-
tween operations in exploratory analysis [20]. We describe a novel
opportunistic query evaluation paradigm suitable for optimizing
dataframes in an interactive setting.

Like lazy evaluation, opportunistic evaluation does not require
the user to wait after each statement. Instead, the system oppor-
tunistically starts execution, while passing control back to users
with a pointer to the eventually computed dataframe (a ”future”),
which is asynchronously computed in the background. We can then
use system resources to compute results in the background as users
are composing the next step. Like eager evaluation, opportunistic
evaluation does not wait for users to complete the entire query to
begin evaluation. However, when a user requests to view a certain
output, opportunistic evaluation can prioritize producing that output
over all else. Opportunistic evaluation allows queries to be rewritten
as new statements are submitted (e.g., df.op2().op1()) to get to
the requested answer as fast as possible, taking into account what
is partially computed. There are also new opportunities within op-
portunistic evaluation to do speculation, where during idle time the
system can start executing statements that commonly follow previ-
ous ones. Opportunistic evaluation also leads to new challenges in
sharing and reuse across many query fragments whose computation
has been scheduled in the background (see also Section 6.2).

6.1.2 Prefix and Suffix Inspection
The most common form of feedback provided by dataframe sys-

tems is the tabular view of the dataframe, as shown in Figure 1. The
tabular view serves as a form of visualization that not only allows
users to inspect individual data values, but also convey the structural
information associated with the dataframe. Structural information,
especially as it relates to order, is important for validating the results
of queries that manipulate and reshape the dataframe. This tabular
visualization typically contains a partial view of the dataframe dis-
playing the first and last few rows of the dataframe, accessed using
head, tail, or other print commands.

One way to give the users immediate feedback is to return the
output to the user as soon as these k rows are assembled, computing
the rest of the output in the background using opportunistic eval-
uation. This is reminiscent of techniques that optimize for early
results [63, 64] for LIMIT queries [42], or for representative tuple
identification [61], but a key difference in dataframes is that order
must be preserved (so "any-k" result tuples will not suffice [42]),
and there are many more blocking operators. One starting point
would be to design or select physical operator implementations that
not just prioritize high output rate [63], but also preserve order,
thereby ensuring that the first k rows will be produced as quickly as
possible. As an example, if only the first k rows of an ordered join
were to be computed, a nested loop join where the result displayed
after k rows are computed might work well. We can progressively
process more portions of the input dataframes until k output rows
are produced in order: this may mean processing more than k rows
of the inputs if there are very selective predicates. Figuring out the
right way to exploit parallelism to prioritize processing the prefixes
of the ordered input dataframes to produce the ordered prefix of the
output is likely to be a substantial challenge.

Additionally, certain blocking operators will cause problems.
While returning the first k rows following a TRANSPOSE, especially

2042

when using columnar storage, can be fairly efficient, it may be hard
to produce the first k tuples of a GROUP BY or SORT without ex-
amining the entire data first. SORT is an obvious example where
the top k rows cannot be narrowed down a priori; a full scan is
inevitable also for GROUPBY on non-clustered columns. That said,
since the top and bottom k rows are often the only results inspected
for dataframe queries, we may benefit from materializing additional
intermediates or supporting indexes to retrieve them efficiently. We
could, for example, materialize the prefix and suffix of a dataframe
in original and transposed orientations, or the prefix or suffix of
the dataframe sorted by various columns to allow for efficient pro-
cessing subsequently. These materializations could happen during
think-time as discussed in Section 6.1.1. We may also be able to
exploit approximate query processing to produce the prefix/suffix
early for blocking operators [16, 29, 36, 50, 69]. Since the tabular
view is only a special form of visualization, a rich body of related
work from visualization on how to allow users to quickly but ap-
proximately make decisions or perform debugging or validation
may be applicable [17, 41, 46, 49]; however, the rich space of op-
erators that goes beyond simple GROUPBY aggregation will lead to
new challenges. Another interesting usability-oriented challenge
is whether this tabular view of prefixes or suffixes is indeed best
for debugging—perhaps highlighting possible erroneous values or
outliers in dataframe rows or columns that are not in the prefix or
suffix may also be valuable [54].

6.2 Incremental Query Construction
In addition to challenges around enabling immediate feedback,

query optimization is further complicated by the need to frequently
evaluate and display results for intermediate sub-expressions (i.e.,
the results of statements) over the course of a session (see also
Section 6.1.1). While incrementally constructing dataframe queries
over the course of an interactive session, users iterate on query
sub-expressions through trial-and-error, frequently inspecting and
revisiting intermediate results to try alternate exploration paths.
Such fragmented workloads limit the optimizations that can be
applied to each sub-expression. However, since user statements
often build on others, we can jointly optimize across these statements
and resulting sub-expressions, sharing work as much as is feasible.
Further, since users commonly return to old statements to try out
new exploration paths, we can leverage materialization to avoid
redundant reexecution. We discuss these two ideas next.

6.2.1 Composable Subexpression Support
As a result of opportunistic evaluation, there are often many state-

ments that are not completely executed when issued by the user, and
are instead executed in the background asynchronously during user
think time. Moreover, by prioritizing the return of a prefix or suffix
of the results (Section 6.1.2), many statements are often not com-
puted entirely, with the computation either deferred (in lazy or eager
evaluation) or being scheduled in the background (in opportunistic
evaluation). Thus, there are many statements that may be scheduled
for execution at the same time. These statements may operate over
similar or identical subsets of data. These overlapping queries that
can be batch processed make dataframes particularly amenable to
multi-query optimization (MQO), e.g., [32, 34, 55, 59]. However,
new challenges emerge because of the new space of operators, as
well as the prioritization of the return of prefixes/suffixes over the
entire result when requested by the user.

One approach is to allow operations that share inputs to share
scans. We can go even further if we recognize that many statements
are essentially portions of a query composed incrementally (e.g.,
a TRANSPOSE followed by a PROJECT to simulate SELECT). There-

fore, we simply need to construct a query plan wherein sub-plans
that correspond to intermediate dataframe results are materialized
as by-products. These intermediates are also likely to be reused
by the user in the future. This presents an interesting conundrum
because ensuring that the sub-plan results are materialized “along
the way” may result in suboptimal overall plan selection (e.g. if
the user cares more about the final dataframe than intermediates).
For example, the optimal way to compute a SELECT may not be
to first compute a TRANSPOSE and then do a PROJECT, even though
this may have the benefit of producing the appropriate intermediate
results. Unlike MQO in relational databases, wherein it is important
to share join subexpressions, here, an even more expensive operation
is TRANSPOSE—necessitating sharing if at all possible. By using
partial results to help users avoid debugging mistakes, we may be
able to reduce the importance of constructing many of the inter-
mediate results in entirety, unless explicitly requested. Moreover,
by observing the user’s likelihood of inspecting the intermediates
over the course of many sessions, we can do a weighted joint opti-
mization of all query subexpressions, where the weights for each
intermediate dataframe correspond to its importance.

6.2.2 Debugging & Building Queries Incrementally
The incremental and exploratory nature of dataframe query con-

struction over the course of a session leads to nonlinear code paths
wherein the users revisit the same intermediate results repeatedly as
a step towards constructing just the right queries they want. In such
cases, intelligently materializing key intermediate results can save
significant redundant computation and speed up query processing.
The optimizer needs to handle the trade off between materialization
overhead and the reduced execution time facilitated by availability of
such intermediates to utilize storage in a way that maximizes saved
compute—small intermediate dataframes that are time-consuming
to compute and reused frequently should be prioritized over large
intermediate dataframes that are fast to compute. Note, however,
that materialization doesn’t necessarily need to happen on-the-fly,
and can be also performed in the background asynchronously during
during user think time. Determining what to materialize requires us
to predict which intermediates are likely to be used frequently. The
prediction algorithm should take into consideration several factors,
including user intent, past workflows, and operator lineage.

Depending on the underlying intent, users can interact with data-
frames in very different ways. A user who is performing data clean-
ing is likely to issue point queries and focus on regions with missing
or anomalous values; users exploring the data for building machine
learning models tend to focus on manipulating columns with high
mutual information with the target column, or more broadly on
feature engineering. Taking advantage of user intent can lead to
highly effective materialization and reuse strategies befitting specific
access patterns, such as in machine learning workflows [68]. The
interactive sessions in dataframe development make it possible for
the system to infer and adapt to user intent.

User intent inference involves extensive offline analysis of work-
loads with known intents as well as online processing of relevant
telemetry: recent Jupyter notebook corpora can provide a promising
starting point [56]. One challenge is that unlike SQL workloads,
dataframe queries tend to be interleaved with non-dataframe oper-
ators in the same session, which requires special considerations to
identify the dataframe portion of the workload and to handle the
interaction between the dataframe system and other frameworks.

In terms of costing operators for materialization and reuse, the
dataframe setting introduces two novel challenges. Partial views to
support fast inspection in conjunction with opportunistic evaluation
can break up operators into multiple partial operators evaluated at

2043

Table 2: Table of comparison between dataframe and dataframe-like imple-
mentations. Blue indicates dataframe systems, red indicates dataframe-like
implementations. †: Spark can be treated as ordered for some operations. +:
R dataframe operators can be invoked lazily or eagerly. *: Dask sorts by the
row labels after TOLABELS.

Feature Modin Pandas R Spark Dask
Ordered model X X X X†

Eager execution X X X+

Row/Col Equivalency X X X
Lazy Schema X X X X
Relational Operators X X X X X
MAP X X X X X
WINDOW X X X X X
TRANSPOSE X X X
TOLABELS X X X X*
FROMLABELS X X X

different times, motivating the need for short and long term costs
on partial views for each operator. The materialization and reuse
decisions derived from these costs can feed back into the decisions
on filtering for partial views or delaying evaluation. For example,
if several queries based on a new sort order require immediate
feedback in the near future, it might be prudent to incur a delay
on the first query to materialize the new sort order in its entirety
in order to significantly speed up subsequent queries on the new
order through reuse. Of course, being able to make such decisions
hinges on the ability to predict future reuse as discussed above.
Secondly, the constantly growing dataflow graph requires eviction of
old materialized results from memory. The interesting challenge in
the dataframe context is that future reuse is determined by both what
the user will do in the future and what the opportunistic evaluator
will choose to compute, with the former being purely speculative and
the latter being known within the system. We can reconcile the “two
futures” by passing the model we build of the future workflow to the
opportunistic scheduler for unified materialization/reuse planning.

7. ADDITIONAL RELATED WORK
While our focus on pandas is driven by its popularity, in this

section, we discuss other existing dataframe and dataframe-like
implementations. Table 2 outlines the features of these dataframe
and dataframe-like implementations. We will discuss how existing
dataframe implementations fit into our framework, thus showing
how our proposed research is applicable to these systems.
Data model and algebra. To the best of our knowledge, an algebra
for dataframes has never been defined previously. Recent work by
Hutchinson et al. [38, 39] proposes an algebra called Lara that com-
bines linear and relational algebra, exposing only three operators:
JOIN, UNION, and Ext (also known as “flatmap”); however, data-
frame metadata manipulation operators are not supported. Other
differences stem from the flexible data model and lazily induced
schema. We will draw on Lara as we continue to refine our algebra.
Dataframe Implementations: R. As we discussed in Section 4.1,
the R language (and the S language before it), both support data-
frames in a manner similar to pandas and can be credited for initially
popularizing the use of dataframes for data analysis [40]. R is still
quite popular, especially among the statistics community. An R
dataframe is a list of variables, each represented as a column, with
the same number of rows. While both the rows and columns in an
R dataframe have names, row names have to be unique; thus the
pandas dataframe is more permissive than the R one. As shown
in Table 2, R supports all of the operations in our algebra. The R
dataframe fully captures our definition of a dataframe, and thus,
implementational support of R dataframes requires only conforming

the R API to our proposed algebra. External R packages such as
readr, dplyr, and ggplot2 operate on R dataframes and provide func-
tionalities such as data loading, transformation, and visualization,
similar to ones from the pandas API [5, 66].
Dataframe-like Implementations. Some libraries provide a func-
tional or object-oriented programming layer on top of relational
algebra. These libraries include SparkSQL dataframes [2], SQL
generator libraries like QueryDSL [3] and JOOQ [1], and object
relational-mapping systems (ORMs) such as Ruby on Rails [4] and
SQLAlchemy [21]. All of these systems share some of the benefits
with respect to incremental query construction mentioned in Sec-
tion 6. However, they generally do not support the richness and
expressiveness of dataframes, including ordering of rows, symmetry
between rows and columns, and operations such as transpose.

SparkSQL and Dask are scalable dataframe-like systems that
take advantage of distributed computing to handle large datasets.
However, as shown in Table 2, Spark and Dask do so at the cost
of limiting the supported dataframe functionalities. For example,
a dataframe in SparkSQL does not treat columns and rows equiva-
lently and requires a predefined schema. As a consequence, Spark-
SQL does not support TRANSPOSE and is not well optimized for
dataframes where columns substantially outnumber rows. Thus,
SparkSQL is closer to a relation than a dataframe. Koalas [10], a
wrapper on top of the SparkSQL API, attempts to be more dataframe-
like in the API but suffers from the same limitations.

8. CONCLUSION
In recent years, the convenience of dataframes have made them

the tool of choice for data scientists to perform a variety of tasks,
from data loading, cleaning, and wrangling to statistical modeling
and visualization. Yet existing dataframe systems like pandas have
considerable difficulty in providing interactive responses on even
moderately-large datasets of less than a gigabyte. This paper out-
lines our research agenda for making dataframes scalable, without
changing the functionality or usability that has made them so popu-
lar. Many fundamental assumptions made by relational algebra are
entirely discarded in favor of new ones for dataframes, including
rigid schemas, an unordered data model, rows and columns being
distinct, and a compact set of operators. Informed by our experi-
ence in developing MODIN, a drop-in replacement for pandas, we
described a number of research challenges that stem from revisiting
familiar data management problems, such as metadata management,
layout and indexing, and query planning and optimization, under
these new assumptions. As part of this work, we also proposed a
candidate formalism for dataframes, including a data model as well
as a compact set of operators, that allowed us to ground our research
directions on a firm foundation. We hope our work serves as a
roadmap and a call-to-action for others in the database community
to contribute to this emergent, exciting, and challenging research
area of scalable dataframe systems development.
Acknowledgments. We thank the anonymous reviewers for their
valuable feedback. We further thank early contributors to the MO-
DIN codebase: Omkar Salpekar, Eran Avidan, Kunal Gosar, GitHub
user ipacheco-uy, Alex Wu, and Rehan Sohail Durrani. We also
thank Ion Stoica for initial discussions and encouragement. We ac-
knowledge support from NSF grants IIS-156435, IIS-1940757, and
IIS-1940759, DOE grant DE-SC0016934, and funds from Adobe,
Alibaba Group, Amazon, Ant Financial, Ericsson, Facebook, Fu-
tureWei, Google, Intel, Microsoft, NVIDIA, Scotiabank, Splunk,
Toyota, and VMware. The content of this document is solely the
responsibility of the authors and does not necessarily represent the
official views of any funding agencies or other organizations.

2044

9. REFERENCES
[1] Manual: JOOQ v3.12. https:
//www.jooq.org/doc/3.12/manual-single-page/.
Date accessed: 2019-12-27.

[2] PySpark 2.4.4 Documentation: pyspark.sql module. http:
//spark.apache.org/docs/latest/api/python/
pyspark.sql.html#module-pyspark.sql.functions.
Date accessed: 2019-12-27.

[3] Reference Guide: QueryDSL v4.1.3.
http://www.querydsl.com/static/querydsl/4.1.3/
reference/html_single/. Date accessed: 2019-12-27.

[4] Ruby on Rails. https://rubyonrails.org/. Date
accessed: 2019-12-27.

[5] Tidyverse: R packages for data science.
https://www.tidyverse.org/. Date accessed:
2019-12-27.

[6] A Beginner’s Guide to Optimizing Pandas Code for Speed,
Medium Blog. https://bit.ly/2v4ZvLQ, 2017. Date
accessed: 2019-12-27.

[7] Python’s Explosion Blamed on Pandas, The Register UK.
https://www.theregister.co.uk/2017/09/14/
python_explosion_blamed_on_pandas/, 2017. Date
accessed: 2019-12-27.

[8] Why is Python Growing So Quickly? Stack Overflow Blog.
https://stackoverflow.blog/2017/09/14/
python-growing-quickly/, 2017. Date accessed:
2019-12-27.

[9] Enhancing performance, Pandas Documentation.
https://pandas.pydata.org/pandas-docs/stable/
user_guide/enhancingperf.html, 2019. Date accessed:
2019-12-27.

[10] Koalas: pandas api on apache spark.
https://koalas.readthedocs.io/en/latest/, 2019.
Date accessed: 2019-12-27.

[11] Minimally Sufficient Pandas.
https://medium.com/dunder-data/
minimally-sufficient-pandas-a8e67f2a2428, 2019.
Date accessed: 2019-12-27.

[12] Pandas API reference. https://pandas.pydata.org/
pandas-docs/stable/reference/index.html, 2019.
Date accessed: 2019-12-27.

[13] R: Data Frames. https://stat.ethz.ch/R-manual/
R-devel/library/base/html/data.frame.html, 2019.
Date accessed: 2019-12-27.

[14] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden,
et al. The design and implementation of modern
column-oriented database systems. Foundations and Trends®
in Databases, 5(3):197–280, 2013.

[15] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases,
volume 8. Addison-Wesley Reading, 1995.

[16] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. Blinkdb: queries with bounded errors and
bounded response times on very large data. In Proceedings of
the 8th ACM European Conference on Computer Systems,
pages 29–42. ACM, 2013.

[17] D. Alabi and E. Wu. Pfunk-h: Approximate query processing
using perceptual models. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, page 10. ACM, 2016.

[18] A. M. Alashqur, S. Y. Su, and H. Lam. Oql: a query language
for manipulating object-oriented databases. In Proceedings of

the 15th international conference on Very large data bases,
pages 433–442. Morgan Kaufmann Publishers Inc., 1989.

[19] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark sql: Relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages
1383–1394, New York, NY, USA, 2015. ACM.

[20] L. Battle and J. Heer. Characterizing Exploratory Visual
Analysis: A Literature Review and Evaluation of Analytic
Provenance in Tableau. Eurographics Conference on
Visualization (EuroVis) 2019, 38(3), 2019.

[21] M. Bayer. Sqlalchemy. In A. Brown and G. Wilson, editors,
The Architecture of Open Source Applications Volume II:
Structure, Scale, and a Few More Fearless Hacks.
aosabook.org, 2012.

[22] M. Bendre, B. Sun, D. Zhang, X. Zhou, K. C.-C. Chang, and
A. Parameswaran. Dataspread: Unifying databases and
spreadsheets. PVLDB, 8(12):2000–2003, 2015.

[23] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. Xquery 1.0: An xml query language. W3C
working draft, 7, 2001.

[24] J. Chambers, T. Hastie, and D. Pregibon. Statistical models in
s. In K. Momirović and V. Mildner, editors, Compstat, pages
317–321, Heidelberg, 1990. Physica-Verlag HD.

[25] J. M. Chambers, T. J. Hastie, et al. Statistical models in S,
volume 251. Wadsworth & Brooks/Cole Advanced Books &
Software Pacific Grove, CA, 1992.

[26] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack:
A scalable linear algebra library for distributed memory
concurrent computers. In [Proceedings 1992] The Fourth
Symposium on the Frontiers of Massively Parallel
Computation, pages 120–127. IEEE, 1992.

[27] C. Cunningham, C. A. Galindo-Legaria, and G. Graefe. Pivot
and unpivot: Optimization and execution strategies in an
rdbms. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages
998–1009. VLDB Endowment, 2004.

[28] Dask Development Team. Dask: Library for dynamic task
scheduling, 2016.

[29] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and
C. Wang. Sample+ seek: Approximating aggregates with
distribution precision guarantee. In Proceedings of the 2016
International Conference on Management of Data, pages
679–694. ACM, 2016.

[30] L. Fegaras. Query unnesting in object-oriented databases. In
Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, pages 49–60, 1998.

[31] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier.
Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. 2007.

[32] G. Giannikis, G. Alonso, and D. Kossmann. Shareddb: killing
one thousand queries with one stone. PVLDB, 5(6):526–537,
2012.

[33] G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash
teams in microsoft sql server. In VLDB, volume 98, pages
86–97. Citeseer, 1998.

[34] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: a
simultaneously pipelined relational query engine. In
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 383–394. ACM,
2005.

2045

https://www.jooq.org/doc/3.12/manual-single-page/
https://www.jooq.org/doc/3.12/manual-single-page/
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#module-pyspark.sql.functions
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#module-pyspark.sql.functions
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#module-pyspark.sql.functions
http://www.querydsl.com/static/querydsl/4.1.3/reference/html_single/
http://www.querydsl.com/static/querydsl/4.1.3/reference/html_single/
https://rubyonrails.org/
https://www.tidyverse.org/
https://bit.ly/2v4ZvLQ
https://www.theregister.co.uk/2017/09/14/python_explosion_blamed_on_pandas/
https://www.theregister.co.uk/2017/09/14/python_explosion_blamed_on_pandas/
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html
https://koalas.readthedocs.io/en/latest/
https://medium.com/dunder-data/minimally-sufficient-pandas-a8e67f2a2428
https://medium.com/dunder-data/minimally-sufficient-pandas-a8e67f2a2428
https://pandas.pydata.org/pandas-docs/stable/reference/index.html
https://pandas.pydata.org/pandas-docs/stable/reference/index.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/data.frame.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/data.frame.html

[35] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive
interaction for data transformation. CIDR 2015 - 7th Biennial
Conference on Innovative Data Systems Research, 2015.

[36] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Acm Sigmod Record, volume 26, pages
171–182. ACM, 1997.

[37] R. D. Hipp. Sqlite, 2020.
[38] D. Hutchison, B. Howe, and D. Suciu. Lara: A key-value

algebra underlying arrays and relations. arXiv preprint
arXiv:1604.03607, 2016.

[39] D. Hutchison, B. Howe, and D. Suciu. Laradb: A minimalist
kernel for linear and relational algebra computation. In
Proceedings of the 4th ACM SIGMOD Workshop on
Algorithms and Systems for MapReduce and Beyond, page 2.
ACM, 2017.

[40] R. Ihaka and R. Gentleman. R: a language for data analysis
and graphics. Journal of computational and graphical
statistics, 5(3):299–314, 1996.

[41] A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and
R. Rubinfeld. Rapid sampling for visualizations with ordering
guarantees. PVLDB, 8(5):521–532, 2015.

[42] A. Kim, L. Xu, T. Siddiqui, S. Huang, S. Madden, and
A. Parameswaran. Optimally leveraging density and locality
for exploratory browsing and sampling. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics, page 7.
ACM, 2018.

[43] D. E. Knuth. The art of computer programming, volume 3.
Pearson Education, 1997.

[44] L. V. Lakshmanan, F. Sadri, and I. N. Subramanian.
Schemasql-a language for interoperability in relational
multi-database systems. In VLDB, volume 96, pages 239–250.
Citeseer, 1996.

[45] Z. Liu and J. Heer. The effects of interactive latency on
exploratory visual analysis. IEEE transactions on
visualization and computer graphics, 20(12):2122–2131,
2014.

[46] S. Macke, Y. Zhang, S. Huang, and A. Parameswaran.
Adaptive sampling for rapidly matching histograms. PVLDB,
11(10):1262–1275, 2018.

[47] G. Navarro and K. Sadakane. Fully functional static and
dynamic succinct trees. ACM Transactions on Algorithms
(TALG), 10(3):1–39, 2014.

[48] New York (N.Y.). Taxi And Limousine Commission. New
york city taxi trip data, 2009-2018, 2019.

[49] Y. Park, M. Cafarella, and B. Mozafari. Visualization-aware
sampling for very large databases. In 2016 IEEE 32nd
International Conference on Data Engineering (ICDE), pages
755–766. IEEE, 2016.

[50] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb:
universalizing approximate query processing. In Proceedings
of the 2018 International Conference on Management of Data,
pages 1461–1476. ACM, 2018.

[51] F. Perez and B. E. Granger. Project jupyter: Computational
narratives as the engine of collaborative data science.
Retrieved September, 11(207):108, 2015.

[52] D. Petersohn, W. Ma, D. Lee, S. Macke, D. Xin, X. Mo, J. E.
Gonzalez, J. M. Hellerstein, A. D. Joseph, and
A. Parameswaran. Towards scalable dataframe systems. arXiv
preprint arXiv:2001.00888, 2020.

[53] M. Raasveldt and H. Mühleisen. Duckdb: an embeddable
analytical database. In Proceedings of the 2019 International
Conference on Management of Data, pages 1981–1984, 2019.

[54] V. Raman and J. M. Hellerstein. Potter ’ s Wheel : An
Interactive Data Cleaning System. Proceedings of the 27th
VLDB Conference, 2001.

[55] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and
extensible algorithms for multi query optimization. In ACM
SIGMOD Record, volume 29, pages 249–260. ACM, 2000.

[56] A. Rule, A. Tabard, and J. D. Hollan. Exploration and
explanation in computational notebooks. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing
Systems, CHI ’18, pages 32:1–32:12, New York, NY, USA,
2018. ACM.

[57] F. Rusu and Y. Cheng. A survey on array storage, query
languages, and systems. arXiv preprint arXiv:1302.0103,
2013.

[58] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. In Proceedings of the 1979 ACM
SIGMOD international conference on Management of data,
pages 23–34. ACM, 1979.

[59] T. K. Sellis. Multiple-query optimization. ACM Transactions
on Database Systems (TODS), 13(1):23–52, 1988.

[60] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying xml views of relational data. In
VLDB, volume 1, pages 261–270, 2001.

[61] M. Singh, A. Nandi, and H. Jagadish. Skimmer: rapid
scrolling of relational query results. In Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data, pages 181–192. ACM, 2012.

[62] J. W. Tukey. Exploratory data analysis, volume 2. Reading,
Mass., 1977.

[63] S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 37–48. ACM, 2002.

[64] S. D. Viglas, J. F. Naughton, and J. Burger. Maximizing the
output rate of multi-way join queries over streaming
information sources. In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages
285–296. VLDB Endowment, 2003.

[65] S. Wang, E. A. Rundensteiner, and M. Mani. Optimization of
nested xquery expressions with orderby clauses. Data &
Knowledge Engineering, 60(2):303–325, 2007.

[66] H. Wickham. Tidy data. The Journal of Statistical Software,
59, 2014.

[67] C. M. Wyss and E. L. Robertson. A formal characterization of
pivot/unpivot. In Proceedings of the 14th ACM international
conference on Information and knowledge management, pages
602–608, 2005.

[68] D. Xin, S. Macke, L. Ma, J. Liu, S. Song, and
A. Parameswaran. Helix: Holistic optimization for
accelerating iterative machine learning. PVLDB,
12(4):446–460, 2018.

[69] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical
bootstrap: a new method for fast error estimation in
approximate query processing. In Proceedings of the 2014
ACM SIGMOD international conference on Management of
data, pages 277–288. ACM, 2014.

2046

	Introduction
	Dataframe Example
	The Modin Dataframe System
	Modin Engineering Challenges
	Preliminary Case Study

	Dataframe Fundamentals
	A Brief History of Dataframes
	Dataframe Data Model
	Dataframe Algebra
	Pivot Case Study

	data model challenges
	Flexible Schemas, Dynamic Typing
	Rewrite Rules for Schema Induction
	Reusing Type Information
	Pipelining Schema Induction in Query Plans

	Order and Equivalence
	Order is Central
	Row/Column Equivalence
	Metadata is Data (and Data is Metadata)

	User Model Challenges
	Interactive Feedback and Control
	Intermediate Result Inspection & Think Time
	Prefix and Suffix Inspection

	Incremental Query Construction
	Composable Subexpression Support
	Debugging & Building Queries Incrementally

	Additional Related work
	Conclusion
	References

