
Continuously Monitoring Alternative Shortest Paths
on Road Networks

Lingxiao Li‡, Muhammad Aamir Cheema‡, Mohammed Eunus Ali§, Hua Lu†, David Taniar‡
‡Faculty of Information Technology, Monash University, Australia

§Bangladesh University of Engineering and Technology, Bangladesh
†Department of People and Technology, Roskilde University, Denmark

‡{lingxiao.li, aamir.cheema, david.taniar}@monash.edu, §eunus@cse.buet.ac.bd, †luhua@ruc.dk

ABSTRACT
Modern navigation systems do not only provide shortest
paths but also some alternative paths to provide more op-
tions to the users. This paper is the first to study the prob-
lem of continuously reporting alternative paths for a user
traveling along a given path. Specifically, given a path P on
which a user is traveling, we continuously report to the user
k paths from the user’s current location on P to the tar-
get t. We present several algorithms each improving on the
previous based on non-trivial observations and novel optimi-
sations. The proposed algorithms maintain and exploit the
previously computed useful information to efficiently update
the k alternative paths as the user moves. We provide space
and time complexity analysis for each proposed algorithm.
We conduct a comprehensive experimental study on large
real-world road networks. The results demonstrate that the
proposed algorithms are up to several orders of magnitude
faster than the straightforward algorithms.

PVLDB Reference Format:
L. Li, M. A. Cheema, M. E. Ali, H. Lu, D. Taniar. Continu-
ously Monitoring Alternative Shortest Paths on Road Networks.
PVLDB, 13(11): 2243-2255, 2020.
DOI: https://doi.org/10.14778/3407790.3407822

1. INTRODUCTION
Given a source s and a target t, a shortest path query [28,

31, 3, 36, 7] returns the path from s to t with the minimum
cost (e.g., distance, travel time). Shortest path queries are
of fundamental importance to a wide variety of map-based
systems. However, a shortest path may not always match
a user’s traveling choices and, therefore, modern map-based
systems often provide several alternative paths from which
the user can choose a path of their choice to travel along.

A snapshot alternative paths query returns top-k alter-
native paths (including the shortest path) from s to t. In
contrast, for a user moving on a path P towards the target
t, a continuous alternative paths query continuously reports
top-k alternative paths from the user’s current location si to
t. A large body of research has focused on snapshot alterna-
tive paths queries [19, 5, 13, 6, 15, 14, 24]. However, to the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407822

(a) (b)

Figure 1: Alternative paths to Monash University
from the user’s current location: (a) Brandon Park
Drive; (b) Monash Freeway.

best of our knowledge, we are the first to study continuous
alternative paths queries.
Motivation. A snapshot alternative paths query provides
fixed choices at the start of a user’s journey. In contrast,
a continuous query goes one step further and continuously
reports the alternative paths in real-time as the user trav-
els towards the target. Note that, as the user moves, new
interesting alternative paths may appear that were not re-
ported to the user previously and thus giving new options
in real-time. Consider the example in Fig. 1 where a user
is traveling to Monash University. Fig. 1(a) shows three
paths to Monash University when the user is at Brandon
Park Drive. Assume that the user is travelling on the short-
est path in terms of traveling time (the blue path that goes
through M1 – Monash Freeway). As the user enters the
Monash Freeway (see Fig. 1(b)), two new alternative paths
can be found that have travel time similar to the user’s cur-
rent path. Note that these alternatives did not appear when
the user was at Brandon Park Drive. Presenting these new
paths gives the user more options to make a decision. Mo-
tivated by this, some commercial navigation systems (e.g.,
Google Maps) continuously report alternative paths to the
users as they are moving towards their target.

In addition to enhancing navigation experience, continu-
ously maintaining alternative paths in real time may also
help autonomous vehicles, e.g., to reduce/avoid potential
congestion [9] and to ensure flexible and safe driving. Lim-
iting the alternative choices results in a constrained search
space, forcing an autonomous vehicle to operate less flexibly.
For example, if alternative paths are not updated continu-
ously and timely, it may reduce an autonomous vehicle’s
maneuver time and thus affects its driving safety.
What are “good” alternative paths? A shortest path
is well-defined as it corresponds to the path with the mini-
mum cost. In contrast, a “good” alternative path is not well-
defined. Intuitively, a set of k alternative paths is “good” if a
user finds these paths to be meaningful/natural (e.g., a path
does not entail unnecessary detours) and significantly differ-

2243

ent from each other. Since “goodness” of alternative paths
is mostly subjective, existing studies for snapshot alterna-
tive paths use different approaches to define and compute
top-k alternative paths using different intuitive ideas. How-
ever, due to the subjective nature of “goodness”, there is
no consensus on which of these techniques generates paths
perceived better by users. Therefore, before we can pro-
pose techniques to continuously monitor alternative paths,
we must choose one of the existing approaches to define the
top-k alternative paths.

As to be detailed in Section 2.2, existing techniques for
snapshot alternative paths fall into three broad categories:
1) plateaus-based techniques [19, 5, 20, 29, 17]; 2) penalty-
based techniques [13, 6, 8, 21]; and 3) dissimilarity-based
techniques [15, 14, 24]. Many commercial systems (e.g.,
Google Maps and TomTom) also generate alternative paths.
However, these techniques are proprietary/confidential. Con-
sequently, the research community and open-source commu-
nity are unable to use these techniques in their implemen-
tation/systems. A recent user study [22] conducted on the
Melbourne road network shows that the above mentioned
techniques (including Google Maps) all return results with
comparable path quality. Therefore, any of the existing tech-
niques can be used to define top-k alternative paths. In this
work, we choose to use the plateaus-based approach to gen-
erate alternative paths for the following reasons: 1) among
the published techniques, the plateaus-based approach is ar-
guably the most popular approach and has been used in
several commercial and open-source systems (e.g., Cotares
Limited1 and GraphHopper2,3); 2) the paths generated us-
ing plateaus-based approach are guaranteed to be local op-
timal [5]; and 3) the computational cost to generate al-
ternative paths using plateaus-based techniques is signifi-
cantly smaller than the other techniques (e.g., generating
dissimilarity-based alternative paths is NP-hard [14]).
Challenges and Contributions. As to be detailed in Sec-
tion 2.2, the plateaus-based approach needs to create a for-
ward shortest path tree Tf (rooted at the user’s current loca-
tion) and a backward shortest path tree Tb (rooted at target
t), and to join the two trees. A straightforward solution to
continuously report k alternative paths is to recompute Tf

whenever the user moves. However, this is computation-
ally expensive especially for large road networks. Also, it
is non-trivial to efficiently update Tf instead of recomput-
ing it. Even if the tree can be efficiently updated, joining Tf

and Tb is not cheap since it requires traversing the two trees.
Thus, there is a need to design techniques that can material-
ize the information computed earlier and can exploit this to
efficiently update the k alternative paths without the need
to update or join the two trees. We summarize our contri-
butions below.
• To the best of our knowledge, we are the first to study the

problem of continuously monitoring k alternative paths.
• We design novel techniques that exploit the fact that the

backward tree Tb does not change as the user moves on
the path. We categorise the vertices of Tb into familiar
and unfamiliar vertices and use these to define maxdepth
for each vertex which is an upper bound on the maximum
length of a plateau. Based on careful observations, we
present techniques to efficiently update maxdepth of the

1http://www.cotares.com/routing/
2GraphHopper is an open-source routing library and has
joined OpenStreetMap Foundation as a gold member.
3https://www.graphhopper.com/blog/2016/01/19/
alternative-roads-to-rome/

affected vertices. Finally, we present a novel idea to ac-
cessing the vertices in descending order of their maxdepth
values to efficiently compute the results.
• We provide an extensive experimental study on several

real-world road networks which demonstrates that our
techniques are up to several orders of magnitude faster
than the straightforward approaches. We also demon-
strate the effectiveness of our proposed optimisations.

2. PRELIMINARIES

2.1 Problem Definition
Similar to many existing works [2, 37, 1], we assume that

the edges in the road network are bidirectional. However,
our techniques can be trivially extended for directed net-
works. Let G = (V, E) be a graph representing the road net-
work where V is the set of vertices and E is the set of edges.
Each edge e = (u, v) in E is assigned a weight w(e) > 0, e.g.,
distance or travel time etc. Given two vertices s, t ∈ V, a
shortest path sp(s, t) is a sequence of edges (e1, e2, . . ., en)
that connects s to t such that

∑n
i=1 w(ei) is minimized. The

shortest distance between s and t, denoted as d(s, t), is the
total weight of sp(s, t). d(s, u, t) denotes d(s, u)+d(u, t) and
sp(s, u, t) denotes sp(s, u)⊕ sp(u, t) where ⊕ is the concate-
nation operation. Table 1 lists the frequently used symbols
throughout the paper.

Table 1: Frequently used notations
Notation Description

e(u, v) an edge between vertices u and v
w(u, v) weight of the edge e(u, v)
Tf forward shortest path tree rooted at s
Tb backward shortest path tree rooted at t
pl(u, v) plateau with source and target ends u, v
sp(u, v) the shortest path between s and t
dE(u, v) Euclidean distance between u and v
d(u, v) shortest distance between s and t
d(u, v, w) d(u, v) + d(v, w)
P a user’s traveling path 〈s1, s2, s3, ..., s|p|〉
dP (si, sj) length of the segment 〈si, · · · , sj〉 of P
Lk length of the k-th longest plateau
dvsiv deviation vertex of v when user is at si
v.depth[u] depth of v w.r.t. u
v.maxdepth maximum depth of a vertex v

2.1.1 Plateaus-based Alternate Paths
Given a source s and a target t, plateaus are generated by

joining the forward shortest path tree Tf and the backward
shortest path tree Tb where Tf is rooted at the source vertex
s and Tb is rooted at the target vertex t. For simplicity
of presentation, similar to many existing works [4, 10], we
assume that the shortest path between any two vertices is
unique implying that each shortest path tree is unique. The
common branches4 of these trees are called plateaus. We use
pl(u, v) to denote a plateau where v is closer to the target
t (called the target end) and u is closer to s (called the
source end). The length of a plateau pl(u, v) is d(u, v), the
shortest distance between u and v. In Fig. 2(a), assume that
source is s1 and target is s5. Fig. 2(c) and Fig. 2(d) show the
forward and backward shortest path trees, respectively. The
plateaus (common branches) are shown using same colors in

4Let u and v be two nodes such that v is an ancestor of u in
a tree. We use branch to refer to a chain of edges connecting
u and v.

2244

s1

s5

v2 v4 v6 v8 v9

v1 v3
v5 v7

4

1

s2
s3 s4

v10

v11

22

1
2

3

3

22

5

3

2

3

3

2

4 23
3

3
4

2 1
2

2

t

(a) user is at s1

s1

s5

v2 v4 v6 v8 v9

v1 v3
v5 v7

4

1

s2
s3 s4

v10

v11

22

1
2

3

3

22

5

3

2

3

3

2

4 23
3

3
4

2 1
2

2

t

(b) user is at s2

s1

v1 v3

v5
v4

v7

v10

s2
s3

s4

s5

v2

v11
v6

v8 v9

2

2

2
4

3 2

1

1 2

(c) Tf with root s1

s5

v10

v9

v7

v1

v6

v5

v3

s4

s3

s2

s1

v8

v4

v2

v11
1

2

2
4

23
1

2

/t

2

(d) Tb with root s5

Figure 2: A sample road network where user’s path P = 〈s1, s2, · · · , s5〉. Top-3 plateaus when user is at s1 are
pl(s1, s5), pl(v3, v10) and pl(v2, v4).

both trees except the black vertices (that represent common
branches/plateaus with length 0, i.e., no edge containing
such a vertex is common in the two trees). For example
〈v3, v5, v7, v10〉 is a plateau (represented as pl(v3, v10)) with
length 5 (shown in red). v3 is the source end and v10 is the
target end of this plateau. Other plateaus are pl(s1, s5) with
length 10 (shown green), pl(v2, v4) with length 3 (shown
blue) and pl(v6, v8) with length 1 (shown purple).

Given a plateau pl(u, v), the alternative path from s to t
based on pl(u, v) is sp(s, u)⊕pl(u, v)⊕sp(v, t). In Fig. 2(a),
the alternative path using pl(v3, v10) is 〈s1, v3, v5, v7, v10, t〉.
Note that pl(u, v) represents the shortest path from u to v,
i.e., sp(u, v). Next, we briefly describe some properties of
the plateaus. Proofs are straightforward and omitted.

Property 1. A plateau pl(u, v) is the overlap of sp(s, v)
and sp(u, t).

Property 2. Let u be a descendent of v in the backward
tree Tb. Vertices u and v are on the same plateau iff d(s, u)+
d(u, v) = d(s, v).

Property 3. For any plateau pl(u, v), we have d(s, u) +
d(u, t) = d(s, v) + d(v, t), i.e., d(s, u, t) = d(s, v, t).

Property 4. Two plateaus cannot intersect each other
(because each shortest path tree is unique).
In Fig. 2(a) where source is s1 and target is s5, pl(v3, v10) is
the overlap of sp(s1, v10) and sp(v3, s5) (Property 1). Also,
d(s1, v3) +d(v3, v10) = d(s1, v10) (Property 2) and d(s1, v3)+
d(v3, s5) = d(s1, v10) + d(v10, s5) (Property 3).

2.1.2 Continuous Alternative Paths
Let P = 〈s1, s2, · · · , s|P |〉 be a simple path on which a

user is travelling where s|P | is the target vertex, i.e., t =
s|P |. Hereafter, we use s|P | and t interchangeably. We use
P (si, sj) to denote the user’s path from si to sj for i <
j ≤ |P |, i.e., P (si, sj) = 〈si, · · · , sj〉. Furthermore, we use
d(si, sj) to denote the shortest distance between si and sj
and dP (si, sj) as the path distance from si to sj as the user

travels along the path P , i.e., dP (si, sj) =
∑j−1

k=i w(sk, sk+1).
In this paper, we continuously report k alternative paths for
each location of the user si ∈ P . In real world applications,
the users may not want an alternative path which is signifi-
cantly larger than the path length from si to the target s|P |.
This can be controlled using a user defined parameter ε ≥ 1
such that any path reported to the user must have length at
most equal to dP (si, s|P |) × ε. To formalize this, we define
valid plateaus.

Definition 1. Valid plateau. Let P = 〈s1, · · · , s|P |〉 be
the path a user is traveling on and si be the user’s current
location. Given a user-defined parameter ε ≥ 1, a plateau
pl(u, v) is valid if the alternative path generated by it has
length at most dP (si, t)× ε, i.e., d(si, v, t) ≤ dP (si, t)× ε.

Since each plateau is unique and generates a unique al-
ternative path, for simplicity, we use plateau to refer to an
alternative path whenever clear by context. Our techniques
report k longest plateaus (top-k plateaus) at each location
si and these plateaus can be used to easily generate k alter-
native paths.

Definition 2. Top-k Plateaus (TKP) query. Given
the current location si of a user on the path P , an integer
k and a distance upper bound parameter ε ≥ 1, the TKP
query Q = (si, P, k, ε) returns k longest valid plateaus w.r.t.
si and t.

Definition 3. Continuous Top-k Plateaus (CTKP)
query. Given a positive integer k, a distance upper bound
parameter ε ≥ 1 and the user’s path P = 〈s1, s2, s3, ..., s|p|〉,
the CTKP query Q = (k, ε, P) query continuously returns
the top-k valid plateaus Ri for each vertex si on P .

Whenever clear by context, hereafter, we use plateau to
refer to a valid plateau. Consider the example in Fig. 2(a).
Suppose that ε = 1.3 and the user is traveling on the shortest
path from s1 to s5/t (shown green). When the user is at s1,
the top-3 plateaus are pl(s1, s5), pl(v3, v10) and pl(v2, v4)
with lengths 10, 5 and 3, generating three paths shown in
green, red and blue lines in Fig. 2(a), respectively. When
the user is at s2, the top-3 plateaus can be obtained by
joining the forward shortest path tree Tf rooted at s2 (see
Fig. 3(a)) and Tb (Fig. 2(d)). The top-3 valid plateaus at s2
are pl(s2, s5), pl(v11, v10) and pl(v6, v8) with lengths 8, 3 and
1, respectively, generating three alternative paths shown in
green, red and purple lines in Fig. 2(b). Note that pl(v3, v5)
is also a plateau with length 2. However, since ε = 1.3, the
plateau pl(v3, v5) is invalid because the path generated by
it 〈s2, s3, v3, v5, v7, v10, s5〉 has length 12 > (dP (s2, t) × ε =
8 × 1.3 = 10.4). Thus, this plateau (and consequently the
path generated by it) is ignored.

Some existing studies aim to further improve the quality
of reported alternative paths by employing additional filter-
ing/ranking criteria (e.g., uniformly bounded stretch [5]).
To this end, our techniques can be immediately used to ef-
ficiently monitor top-m (m > k) plateaus and the paths
generated using these m plateaus can be refined to obtain
the top-k alternative paths satisfying the additional criteria.

2.2 Related Work
While various other types of continuous queries have re-

ceived significant attention [12, 11, 26, 30], to the best of
our knowledge, we are the first to study continuous top-
k alternative paths queries. For the snapshot alternative

2245

paths, other than the plateaus-based techniques, there are
two broad categories of the existing techniques. Penalty-
based techniques [6, 13] iteratively compute shortest
paths and, after each iteration, apply a penalty to each edge
on the shortest path found in the previous iteration by in-
creasing its edge weight. Further constraints can be applied
to prune the retrieved shortest paths if they do not meet
a user’s requirement (e.g., are longer than a given thresh-
old). The algorithm terminates when k paths satisfying the
constraints are found. While the k paths returned by the
penalty-based method may be quite similar to each other,
the plateaus-based paths are naturally dissimilar to each
other (as explained in [22]). Dissimilarity-based tech-
niques [15, 14, 24] specifically aim to select dissimilar paths
by defining a function to measure the dissimilarity between
a path p and a given set of paths P . The goal is to iter-
atively add paths p in ascending order of their lengths to
the current result set P if the dissimilarity between p and
P is greater than a threshold. The problem is shown to
be NP-hard [14] and the existing studies mainly focus on
approximate solutions. A recent user study [22] discusses
more details of the existing studies on computing snapshot
alternative paths and provides a user study comparing the
path quality of these approaches.

3. TECHNIQUES
We first briefly describe a straightforward algorithm based

on tree joins (TJ) (Section 3.1). Then, we propose an algo-
rithm based on a top down (TD) traversal of the backward
tree (Section 3.2). Finally, built on two novel optimisa-
tions, we present our main algorithms named: depth-aware
top down (DA-TD) algorithm (Section 3.3) and depth-aware
best first (DA-BF) algorithm (Section 3.4). Initially (when
user is at s1), all algorithms compute the top-k plateaus by
joining Tf and Tb. We focus on how each algorithm updates
the results for each subsequent location si of the user.

3.1 Tree-Join Algorithm
For each location of the user si on the path P , the top-

k plateaus can be obtained by joining the forward shortest
path tree Tf rooted at si and the backward shortest path
tree Tb rooted at the target s|P | = t. Tree-Join algorithm
exploits the fact that the Tb does not change because the
target vertex remains the same. Therefore, for each loca-
tion si, the algorithm creates Tf and joins it with Tb to
obtain the top-k plateaus. The tree Tf is created using Di-
jkstra’s algorithm [16]. The two trees Tf and Tb can be
joined in time linear to the size of the two trees using back-
ward pointers [19]. Next, we present a pruning rule to prune
the subtree rooted at v.

Pruning Rule 1. Let si be the user’s current location
and v be a node in the backward tree Tb such that d(si, v) +
d(v, t) > dP (si, t) × ε. The subtree rooted at v cannot have
any valid plateau for the user’s location si.

Proof. Let u be any descendant node of v in Tb. We
show that u cannot be on any valid plateau by showing
d(si, u)+d(u, t) > dP (si, t)× ε. Due to the triangle inequal-
ity, d(si, u) ≥ d(si, v)−d(u, v). Also, since u is a descendant
of v in Tb with root t, we have d(u, t) = d(u, v) + d(v, t).
Thus, d(si, u) + d(u, t) ≥ d(si, v)− d(u, v) + d(u, v) + d(v, t).
Hence, d(si, u)+d(u, t) ≥ d(si, v)+d(v, t) > dP (si, t)×ε.

Consider our running example in Fig. 2 where ε = 1.3.
Fig. 3 shows Tf and Tb when the user is at s2 and dP (s2, t) =
8. The subtree rooted at v7 in Fig. 3(b) can be pruned

because d(s2, v7) + d(v7, t) = 7 + 4 = 11 is greater than
dP (s2, t)× ε = 8× 1.3 = 10.4.

During the construction of Tf , Dijkstra’s algorithm prunes
a vertex v that satisfies this condition. Note that d(si, v) is
known to the Dijkstra’s algorithm and d(v, t) can be ob-
tained in O(1) using the backward tree Tb.
Complexity analysis: We use E to denote the number
of edges in the graph. As is typically the case, we assume
that the road network is a connected graph, i.e., the space
taken by input graph is O(E). Thus, the space complexity
is O(E) because the size of each tree is bounded by O(E).
The construction of the shortest path tree by Dijkstra’a al-
gorithm is bounded by O(E log V) where V is the number
of vertices in the tree. The two trees can be joined in time
linear to the number of vertices in the two trees [19]. Thus,
the total time complexity is O(E log V).

3.2 Top Down Tree Traversal Algorithm
One possible approach to improve the performance of the

tree-join algorithm is to design techniques to efficiently up-
date Tf as the user moves, instead of recomputing Tf . Firstly,
this is non-trivial and, to the best of our knowledge, there
does not exist any technique that can efficiently update a
shortest path tree when the source node is changed. Fur-
thermore, even if a technique is designed to efficiently up-
date Tf , this tree must still be joined with Tb to obtain the
plateaus, which is inefficient. Therefore, instead of trying
to efficiently update or partially update Tf , we look at the
problem from a fresh perspective and propose an algorithm
that traverses the backward tree Tb in a top down fashion
to compute the top-k plateaus. A key strength of this tree
traversal algorithm is that we can exploit the computed in-
formation for the user’s future locations.

The key idea is to traverse the backward tree Tb in a
top down fashion. For each accessed vertex v, the algorithm
finds the plateau pl(u, v) for which v is the target end. Recall
that a plateau pl(u, v) is the overlap of sp(si, v) and sp(u, t)
(Property 1). Therefore, to find the plateau with the target
end v, we get sp(si, v) by issuing a shortest path query from
si to v. Then, we check the overlap of sp(si, v) with the
subtree rooted at v in Tb to obtain the plateau. We illustrate
this using an example.

Consider the example in Fig. 3(b) that shows the back-
ward tree Tb for our running example where the user’s cur-
rent location is s2. Suppose that the top-down traversal
has accessed the vertex v8 and we want to find the plateau
with v8 as the target end, i.e., pl(u, v8). The algorithm
issues a shortest path query from s2 to v8 which returns
sp(s2, v8) = 〈s2, s3, s4, v6, v8〉. The overlap of this path with
the subtree of v8 is 〈v6, v8〉 which is a plateau with length 1
(the purple vertices in Fig. 3).

To efficiently obtain the plateau (i.e., overlap of sp(si, v)
and the subtree rooted at v), we simply need to find the first
vertex u on sp(si, v) such that v is the ancestor of u in Tb.
At the first timestamp (i.e., when user is at s1), we use the
interval-based labelling scheme [32, 33] to label all vertices in
Tb, which allows checking ancestor-descendent relationship
for any two vertices in O(1). Since Tb does not change, the
labelling remains valid for all future locations.

3.2.1 Pruning Rules
Recall that Pruning Rule 1 prunes the subtree rooted at v

for the current location si. The next pruning rule shows that
the subtree can, in fact, be pruned for all future locations of
the user on the path P .

2246

s2

v1
v3

v5

v4

v7v10

s3
s4

s5

s1

v2 v11

v6
v8

v9

2

2

4

1

3

(a) Tf at s2

s5

v10 v9

v7

v1

v6

v5

v3

s4

s3

s2

s1

v8

v4

v2

v11

sp(s2, s10)
sp(s2, s8)1 3

2

2
4
/t

(b) Top down traversal of Tb

Figure 3: Illustration of the tree-join and top-
down algorithms with user at s2. Grey vertices are
pruned. Vertices with the same color form a plateau.

Pruning Rule 2. Let v be a node in the backward tree
Tb such that d(si, v) + d(v, t) > dP (si, t) × ε. The subtree
rooted at v cannot have any valid plateau for any sj on P
where j ≥ i.

Proof. Let u be any descendant node of v in Tb. The
Pruning Rule 1 shows that d(si, u) + d(u, t) > dP (si, t)× ε.
We now show that for any sj on P s.t. j ≥ i, d(sj , u) +
d(u, t) > dP (sj , t)× ε, i.e., u cannot be on any valid plateau
for sj . Let dP (si, sj) be the distance between si and sj along
the path P . Note that dP (si, t) = dP (si, sj) + dP (sj , t).
Thus d(si, u) + d(u, t) > dP (si, t) × ε can be written as
d(si, u) + d(u, t) > ε × (dP (si, sj) + dP (sj , t)). Subtract-
ing dP (si, sj) on both sides gives us d(si, u) − dP (si, sj) +
d(u, t) > (ε−1)×dP (si, sj)+ε×dP (sj , t). Since dP (si, sj) ≥
d(si, sj), due to the triangle inequality, we have d(sj , u) ≥
d(si, u) − d(si, sj) ≥ d(si, u) − dP (si, sj). Thus, we have
d(sj , u)+d(u, t) > (ε−1)×dP (si, sj)+ε×dP (sj , t). Since ε ≥
1, the right side of the above inequality is at least dP (sj , t)×
ε. Thus, we have d(sj , u) + d(u, t) > ε× dP (sj , t).

At the beginning (i.e., at s1) when the backward tree Tb

is computed, we store d(v, t) for each vertex v in Tb. Thus,
d(v, t) can be obtained in O(1). However, d(si, v) may not
be known when the user moves to si. Instead, we use a
lower bound (e.g., Euclidean distance dE(si, v)) to prune
the subtree as stated in the next pruning rule.

Pruning Rule 3. Let v be a node in Tb where dE(si, v)
+ d(v, t) > dP (si, t) × ε. The subtree of v cannot have any
valid plateau for every sj on P where j ≥ i.

The proof is straightforward and is omitted. The next
pruning rule prunes the subtree of v by using the length of
k-th longest plateau found so far by the algorithm.

Pruning Rule 4. Let si be a user’s current location and
Lk be the length of the k-th longest plateau found so far by
the algorithm. The subtree rooted at v cannot contain any
top-k plateau for si if Lk + d(v, t) > dP (si, t)× ε.

Proof. Assume that a plateau pl(u, x) is longer than Lk

where both u and x are in the subtree rooted at v. We show
that the plateau is invalid, i.e., d(s, x) +d(x, t) > dP (si, t)×
ε. Since x is a node in the subtree of v in the backward
tree Tb rooted at t, we have d(x, t) ≥ d(v, t). So, we have
d(s, x) + d(x, t) ≥ d(s, x) + d(v, t). Also, if pl(u, x) is longer
than Lk, we have d(s, x) > Lk (because pl(u, x) ⊆ sp(s, x)
according to Property 1). Thus, we have d(s, x) + d(x, t) >
Lk + d(v, t) > dP (si, t)× ε.

Let maxleafdist(v) be the distance from a vertex v to the
furthest leaf in the subtree rooted at v. The next pruning
rule prunes the subtree using maxleafdist(v).

Algorithm 1: Top Down Algorithm

Input: si: user’s current location on P
Tb: backward shortest path tree

Output: Ri: top-k plateaus for si
1 use plateaus from si−1 to initialize Ri and Lk;
2 initialize a queue S with root of Tb;
3 while S is not empty do
4 pop a vertex v from S;

5 if dE(si, v) + d(v, t) > dP (si, t)× ε then
6 remove the subtree rooted at v from Tb;
7 continue;
8 if v is not pruned then // Pruning Rules 4&5
9 insert children of v in S;

10 if v is not marked visited then
11 obtain pl(u, v) using sp(si, v);

12 update top-k plateaus and Lk if needed;
13 mark vertices on pl(u, v) as visited;
14 return Ri

Pruning Rule 5. The subtree rooted at v cannot contain
a top-k plateau if maxleafdist(v) < Lk.

Proof. Recall that each plateau pl(u, v) is the overlap
of sp(si, v) and the subtree rooted at v. Hence, the length
of any plateau pl(u, v) is bounded by maxleafdist(v). Thus,
the length of pl(u, v) is smaller than Lk.

3.2.2 Algorithm
Algorithm 1 details how to update the top-k plateaus

when a user moves from si−1 to si. First, we use the top-k
plateaus for si−1 and check which of these are still plateaus
for the new location si. Specifically, u and v are on the same
plateau iff d(si, u) + d(u, t) = d(si, v) + d(v, t) (Property 2).
Hence, we issue two shortest path queries from si to both
u and v to check if pl(u, v) is still a plateau or not. Then,
we initialize the set of top-k plateaus Ri by inserting the
valid plateaus in Ri and update Lk accordingly (set to 0
if Ri contains less than k plateaus). Note that we cannot
terminate the algorithm even if all k plateaus from si−1 are
still the plateaus for si. This is because the length of any of
these plateaus or some other plateaus may have increased
thus the top-k plateaus may have changed.

The algorithm accesses the tree in a top-down fashion
by iteratively accessing nodes from a queue S. We apply
the pruning rules presented in Section 3.2.1. Specifically,
we remove the whole subtree of v from Tb if dE(si, v) +
d(v, t) > dP (si, t) × ε (line 5) because the subtree cannot
contain any valid plateau for all future locations of the user.
If v cannot be pruned using the pruning rules, we insert
its children in S to be accessed in future iterations (lines 8
and 9). We issue a shortest path query from si to v to
obtain the plateau pl(u, v) and update top-k plateaus and
Lk as needed (lines 11 and 12). In our implementation,
we use pruned highway labeling (PHL) [7] to obtain the
shortest paths. Each vertex v′ on pl(u, v) is marked visited
(line 13). In each iteration, a vertex which is already visited
is ignored (line 10). This ensures that the algorithm does not
issue an unnecessary shortest path query to obtain a plateau
pl(u, v′) which is contained by a pl(u, v) already found. The
algorithm terminates when the queue S becomes empty.

Fig. 3 shows execution of the top-down algorithm when
the user is at s2. The algorithm first issues a shortest path
query to s5 and obtains the plateau pl(s2, s5) with length
8. When v8 and v10 are accessed, two plateaus pl(v6, v8)
and pl(v11, v10) are found with length 1 and 3, respectively.

2247

The vertices on these plateaus are marked visited and not
processed by the algorithm. Plateaus for v4 and v9 contain
only single nodes, i.e., pl(v4, v4) and pl(v9, v9) have length 0.
The grey vertices are pruned by the pruning rules. Hence,
the algorithm returns pl(s2, s5) and pl(v11, v10) as the top-2
plateaus (assuming k = 2).
Complexity Analysis: The space complexity is O(E +
SPindex) where O(E) is the space for the input graph and
SPindex is the size of the shortest path index (depending
on which shortest path algorithm is used). Next, we anal-
yse the time complexity. Let V TD

u be the total number of
unpruned and umarked vertices by the Top-Down (TD) al-
gorithm and SPcost be the cost of a single shortest path
query. Applying each pruning rule takes O(1). Since the
algorithm uses a queue, push and pop operations also take
O(1). The algorithm processes O(V) vertices in total and
issues V TD

u shortest path queries. Therefore, the total cost
is O(V +V TD

u ×(SPcost+log k)) where O(log k) is the cost to
update the top-k plateaus whenever a new plateau is found.

3.3 Depth-Aware Top Down Algorithm
In this section, we present a novel approach that assigns

each node v with a maximum depth which guarantees that
pl(u, v) cannot be longer than the maximum depth. Further-
more, the depths do not necessarily become invalid as the
user moves from si to sj , which allows reusing the previous
computations for the user’s new locations.

3.3.1 Observations

Definition 4. Deviation vertex & overlapping path.
Let si be the user’s current location. The deviation vertex
of a vertex v w.r.t. si is the first vertex after which the
shortest path sp(si, v) deviates from the user’s path P (si, t).
Formally, the deviation vertex of v is the first vertex sj on
P (si, t) such that P (si, sj+1) is not a sub-path of sp(si, v).
The path P (si, sj) is called the overlapping path of v because
this represents the overlap of sp(si, v) and P (si, t).

The deviation vertex of v w.r.t. the user’s location si
is denoted as dvsiv and the overlapping path is denoted as
P (si, dv

si
v). Consider the example in Fig. 2(a) where the

path is P = 〈s1, s2, s3, s4, s5〉 and the current location
of user is s1. By the definition, s4 is the deviation vertex
for vertex v6 because the shortest path from s1 to v6 is
〈s1, s2, s3, s4, v6〉 which deviates from the user’s path P at
vertex s4. The overlapping path of v6 is 〈s1, s2, s3, s4〉. The
deviation vertex and overlapping path for v8 are the same
as those of v6. The deviation vertex of v11 is s3.

The deviation vertex of v can be computed by issuing a
shortest path query from si to v. Specifically, when we issue
a shortest path query from si to a vertex v in Algorithm 1
(line 11), for each vertex x on this shortest path sp(si, v),
we update the deviation vertex of x. Next, we show that
the deviation vertex of v does not change as long as the user
is on the overlapping path of v (i.e., as long as the user has
not crossed the deviation vertex). E.g., in Fig. 2(a), the
deviation vertex of v11 remains s3 as long as the user is on
the overlapping path P (s1, s3), i.e., the user has not crossed
s3. The next lemma formalizes this.

Lemma 1. Let dvsiv be the deviation vertex of v for the
user at location si. For every sj ∈ P (si,dv

si
v), dvsiv =dv

sj
v .

Proof. By definition of the deviation vertex, each sj ∈
P (si,dv

si
v) lies on the shortest path sp(si, v). Therefore,

sp(si, v) = sp(si, sj) ⊕ sp(sj , v) where ⊕ is the concatena-
tion operation. Also, P (si, t) = P (si, sj) ⊕ P (sj , t). Since
sj is on the overlapping path, P (si, sj) = sp(si, sj) which
implies P (si, t) = sp(si, sj) ⊕ P (sj , t). Thus, sp(sj , v) and
the path P (sj , t) deviate from each other at the same vertex
as sp(si, v) and the path P (si, t) deviate from each other,
i.e., dvsiv =dv

sj
v

Hereafter, whenever clear by context, we use dvv to denote
the deviation vertex of v w.r.t. the user’s current location.

We have established that the deviation vertex of v does
not change unless the user crosses it. When the user crosses
it, the algorithm may not know the deviation vertex of v
unless it issues another shortest path query which passes
through v in which case its new deviation vertex is updated
and is known to the algorithm. For example, in Fig. 2, when
the user crosses s3, the deviation vertex of v11 is not known
to the algorithm unless a shortest path query involving v11
is issued. Next, we classify each vertex based on whether its
deviation vertex is known to the algorithm or not.
Familiar/unfamiliar vertices. A vertex v for which the
algorithm knows its deviation vertex is called a familiar ver-
tex. In contrast, a vertex is called an unfamiliar vertex if
our algorithm does not know its deviation vertex. For each
familiar vertex v, in addition to its deviation vertex dvsiv ,
we also store d(si, v). As we show shortly (Lemma 2), this
may help obtaining the shortest distances d(sj , v) for other
vertices sj on the path in constant time.

Initially (at location s1), the algorithm knows the devia-
tion vertex for each vertex in the graph (which is recorded
during the construction of Tf). So, all vertices are familiar
initially. In Fig. 2(a), the deviation vertex for v5 is s1 and
the deviation vertex for both v6 and v8 is s4. When the user
crosses s1 and reaches s2, the deviation vertex of v5 is un-
known whereas the deviation vertex of v6 and v8 remain s4.
Thus, at s2, both v6 and v8 are familiar vertices whereas v5
is an unfamiliar vertex. Assume that, at s2, our algorithm
needs to issue a shortest path query sp(s2, v5) which returns
the path 〈s2, s3, v3, v5〉. As a result, the deviation vertex for
all the unfamiliar vertices on this path (i.e., v3, and v5) is
updated to be s3 and these vertices become familiar vertices.

Next, we show that the shortest distance to any familiar
vertex v can be computed in O(1) as long as the user is on
its overlapping path.

Lemma 2. Let v be a vertex which became familiar to the
algorithm at location si, i.e., the algorithm records d(si, v)
for v. For every vertex sj on the overlapping path P (si, dv

si
v),

d(sj , v) = d(si, v) - d(si, sj).

Proof. By definition of deviation vertex and overlap-
ping path, sj is on sp(si, v), which implies that d(si, v) =
d(si, sj) + d(sj , v). Hence, d(sj , v) = d(si, v) - d(si, sj).

Using the above lemma, d(sj , v) can be computed in O(1)
because d(si, v) is stored by the algorithm and d(si, sj) can
also be obtained in O(1). Specifically, at the beginning,
for each sk on the path P , we record dP (s1, sk). Hence,
dP (si, sj) = d(si, sj) = dP (s1, sj) − dP (s1, si). Note that
dP (si, sj) = d(si, sj) because sj is on the overlapping path.

Next, we present several lemmas to identify the cases
when a vertex v and its child u in Tb cannot be on the
same plateau. Afterwards, we will present techniques that
exploit these to update top-k plateaus efficiently.

Lemma 3. Let v be a vertex that became familiar to the
algorithm at location si. Let u be a child of v in Tb which
is an unfamiliar vertex at si. Vertices u and v cannot be on
the same plateau for the user’s location si.

2248

Proof. We prove this by contradiction. Assume u and v
are on the same plateau at si. This implies that the shortest
path from si to v must pass through u, i.e., u ∈ sp(si, v).
Recall that when our algorithm issues a shortest path query
sp(si, x), each vertex on sp(si, x) becomes a familiar vertex.
Since v became familiar at si, this implies v ∈ sp(si, x) for
some vertex x for which our algorithm had issued a shortest
path query. This implies that sp(si, v) ⊆ sp(si, x). Since
u ∈ sp(si, v), u ∈ sp(si, x). Thus, u must also be a familiar
vertex which is not the case.

Note that the above lemma implies that u and v cannot
be on the same plateau if u is unfamiliar but v is familiar.
However, this does not imply that u and v must be on the
same plateau if u is also familiar. If both u and v are familiar
vertices, u and v may or may not be on the same plateau.

Lemma 4. Let u be a child of v in Tb. If u is an unfamil-
iar vertex and v is a familiar vertex, u and v cannot be on
the same plateau as long as the user is on the overlapping
path of v, i.e., user is on sj ∈P (si, dv

si
v).

Proof. If u and v are on the same plateau for a location
sj , then sp(sj , v) must pass through u. We prove that, for
each sj ∈ P (si, dv

si
v), sp(sj , v) does not pass through u.

Lemma 3 implies that u and v are not on the same plateau
when the user is at si, i.e., sp(si, v) does not pass through u.
By definition of deviation vertex, for each sj ∈P (si, dv

si
v),

sp(si, v) = sp(si, sj)⊕sp(sj , v). Since sp(si, v) does not pass
through u, sp(sj , v) also cannot pass through u.

According to the above lemmas, a familiar vertex v and
its unfamiliar child u in Tb cannot make a plateau as long as
the user has not crossed the deviation vertex of v. Consider
the example in Fig. 4 where a backward tree Tb is shown
(not related to the running example). Assume that green
vertices are familiar and red vertices are unfamiliar. The
vertex v2 and its child v5 cannot be on the same plateau.
Likewise, v4 and its child v6 cannot be on the same plateau.

Lemma 5. Let u be a child of v in Tb. Let u and v both
be familiar vertices at a user’s location si. If u and v are not
on the same plateau when the user is at si, they cannot be
on the same plateau as long as the user is on the overlapping
path of v, i.e., sj ∈P (si, dv

si
v).

Proof. Since u and v are not on the same plateau when
the user is at si, sp(si, v) does not pass through u. By defini-
tion of deviation vertex, for each sj ∈P (si, dv

si
v), sp(si, v) =

sp(si, sj) ⊕ sp(sj , v). Since sp(si, v) does not pass through
u, sp(sj , v) also cannot pass through u.

In Fig. 4, assume that v13 and v18 are not on the same
plateau at a location si. They cannot be on the same plateau
as long as the user is on the overlapping path of v13. In
Fig. 4, we use the dashed edges to show all cases where it
is guaranteed (by Lemmas 4 and 5) that v and its child u
cannot be on the same plateau for each location on the over-
lapping path of v. For the solid edges, the pair of vertices
may or may not be on the same plateau.

3.3.2 Depth and Maximum Depth
The lemmas presented in Section 3.3.1 can be used to infer

the maximum possible length of any plateau pl(x, v) with v
as its target end. Below, we introduce the concept of depth
and maximum depth to formalize this.

Definition 5. Depth. Let u be a child of v in the back-
ward tree Tb. The depth of v w.r.t. u, denoted as v.depth[u],
is the maximum possible length of a plateau pl(x, v) that
contains both u and v with v as the target end.

v1

v12

v3v2

v5 v6 v7
v8

v10

v11

v13 v14

v15
v16

v17 v18
v19

v20

v21 v22 v24 v25 v27

2

v26v23

v4

v9
2 2

0 0

4 4

6 6

22 0

0 0
88 2

6 6
4 4

2 2

0

02 2
0 0 0

4 4

2

2

2 0

2 2

0000

2 2 2 2 0

2 2
00 0

0

0

Figure 4: Tb with depth arrays and maximum
depths. Red vertices are unfamiliar and green ver-
tices are familiar. The dashed edges show that the
two vertices cannot be on the same plateau.

Definition 6. Maximum depth. Maximum depth of a
node v, denoted as v.maxdepth, is the maximum possible
length of any plateau pl(x, v) with v as the target end. In
other words, v.maxdepth = max{v.depth[u] | u ∈ C} where
C denotes all children of v in the backward tree Tb.

For each non-leaf node v in Tb, we store its maximum
depth along with a depth array that records depths for each
of its children. In Fig. 4, depth array for each node is shown
along with the maximum depth shown with grey background
besides the array. In this example, when the depth array of
a node contains two values, the first (resp. second) value in
it corresponds to the depth of the node w.r.t. the left (resp.
right) child. For simplicity, we assume that each edge has
weight 2. As stated earlier, if the algorithm does not yet
know whether two nodes are on the same plateau or not, we
show the edge in solid line. For v14, its depth w.r.t. right
child v20 is v14.depth[v20] = 0 because v14 and v20 cannot be
on the same plateau (Lemma 4). The depth of v14 w.r.t. v19
is v14.depth[v19] = 2 because v14 and v19 may or may not be
on the same plateau but we set depth by assuming that they
are on the same plateau (recall depth corresponds to the
upper bound on the length of the plateau). The maximum
depth of v14 is max(v14.depth[v20], v14.depth[v19]) = 2. The
depth of v3 w.r.t. its both children is 0 and its maximum
depth is also 0.
Computing maximum depth and depth array. Before
we show how to initialize and continuously update depth ar-
rays and maximum depths of each vertex, we first show how
to compute the depth array and the maximum depth of a sin-
gle vertex v assuming that the maximum depth for each of
its children u has been correctly computed, i.e., u.maxdepth
is known for each child u of v. First, we summarize the ob-
servations presented in Section 3.3.1.
Case 1: v is familiar but u is unfamiliar . u and v cannot

be on the same plateau (Lemma 4), hence, v.depth[u] = 0.
E.g., v14.depth[v20] = 0 and v3.depth[v7] = 0 in Fig. 4.
Case 2: v and u both are familiar . In this case, u and v
may or may not be on the same plateau. We determine
whether u and v are on the same plateau or not. Case 2a:
If u and v are not on the same plateau then v.depth[u] = 0
(Lemma 5), e.g., v3.depth[v8] = 0. Case 2b: If u and v are
on the same plateau then v.depth[u] = u.maxdepth+d(u, v),
e.g., v8.depth[v14] = v14.maxdepth+ d(v14, v8) = 2 + 2 = 4.
Case 3: v is unfamiliar . Note that the lemmas presented
in Section 3.3.1 do not apply when v is an unfamiliar ver-
tex (regardless of whether u is a familiar vertex or not).
Since v.depth[u] is an upper bound (i.e., maximum length
of pl(x, v) with both u and v on it), we assume that v and u
are on the same plateau and set v.depth[u] = u.maxdepth+
d(u, v). E.g., v6.depth[v9] = v9.maxdepth + d(v9, v6) =

2249

Algorithm 2: computeDepths(v)

1 foreach child u of v do
2 v.depth[u] = u.maxdepth+ d(u, v);
3 if v is a familiar node then // Case 1 and 2
4 if u is an unfamiliar node then // Case 1
5 v.depth[u] = 0;
6 else // Case 2
7 if d(si, v) 6= d(si, u) + d(u, v) then

// Case 2a
8 v.depth[u] = 0;
9 v.maxdepth← maximum value in v’s depth array;

6 + 2 = 8 and v11.depth[v16] = v16.maxdepth+d(v16, v11) =
2 + 2 = 4 in Fig. 4.

Now, we present Algorithm 2 that details how to compute
the depth array and maximum depth of v assuming that
the maximum depth of each of its children u is known. For
each child u, we initialize v.depth[u] = u.maxdepth+d(u, v)
assuming Case 2b and Case 3 (line 2). Later, we update
v.depth[u] = 0 if v and u correspond to Case 1 or Case 2a.
Specifically, if v is familiar and u is unfamiliar (Case 1), we
set v.depth = 0 (line 5). If v and u are both familiar, we
check whether u and v are on the same plateau. Recall that
u and v are on the same plateau iff d(si, v) = d(si, u) +
d(u, v) (Property 1). Note that d(u, v) is the edge weight
and d(si, x) for any familiar node x can be computed in O(1)
(Lemma 2). Therefore, since u and v are both familiar, we
can check in O(1) whether u and v are on the same plateau
or not. Otherwise, (Case 2a), we update v.depth[u] = 0
(lines 7 and 8). The maximum depth of v is set to be the
maximum of all values in the depth array (line 9).

3.3.3 Initializing and Maintaining Depth Arrays
First, we explain how to update depth arrays and max-

imum depths of affected vertices when a user moves from
si−1 to si. Afterwards, we explain how to initialize depth
arrays and maximum depths.
Maintaining Depth Arrays. As implied by Lemmas pre-
sented in Section 3.3.1, the depth arrays and maximum
depths remain valid unless at least one familiar (resp. un-
familiar) vertex becomes unfamiliar (resp. familiar). We
handle these two cases as follows.
Case 1: Some familiar vertices become unfamiliar . When
the user moves from si−1 to si, the familiar vertices for which
the deviation vertex was si−1 become unfamiliar. Let L
be the set of such vertices. We update the depth arrays
and maximum depths using Algorithm 3. The algorithm
updates the depth arrays and maximum depths in a bottom
up approach, i.e., the vertices are processed in descending
order of level(v) where level of a vertex v is the number of
edges between v and the root of the backward tree Tb. For
each vertex v, we call Algorithm 2 to recompute its depth
arrays and maximum depth. If the maximum depth of v
changes, the maximum depth of its parent may also need to
be updated (because the depth array of the parent depends
on the maximum depths of its children). In that case, we
insert the parent of v in L unless it is already in L.

Since the algorithm processes the affected vertices in a
bottom up fashion, this guarantees that the maximum depth
of each child u of v is correctly updated before the depth
array of v is computed by Algorithm 2. Note that, in the
worst case, the above algorithm requires updating the depth
array and maximum depth for each vertex at most once.
However, in practice, the total number of vertices for which
depth arrays need to be updated is much smaller.

Algorithm 3: depthUpdate(L)

Input: L: List of affected vertices
1 foreach v ∈ L in descending order of level(v) do
2 computeDepths(v); // Algorithm 2
3 if v.maxdepth changes then
4 insert parent of v in L if not already present

Finally, we describe how to efficiently obtain L, the list
of vertices that become unfamiliar when a user moves from
si−1 to si. This can be efficiently done by maintaining in-
verted lists for each vertex si on the path P . Specifically,
the inverted list for si contains all vertices for which si is
a deviation vertex. These lists are initialized at s1 and are
maintained as the algorithm finds the new deviation ver-
tices. Thus, the list of affected vertices when the user moves
from si−1 to si corresponds to the inverted list of si−1.
Case 2: Some unfamiliar vertices become familiar . As
stated earlier, when our query processing algorithm issues
a shortest path query from si to a vertex v (e.g., line 11 in
Algorithm 1), each vertex x ∈ sp(si, v) becomes a familiar
vertex and the deviation vertex of x is updated. To update
the depth arrays, we set L by inserting in it each vertex
x ∈ sp(si, v) which was not already a familiar vertex. Then,
Algorithm 3 is called with L as the input to update the
depth arrays and maximum depths.
Initialization. When the user is at s1, we initialize depth
arrays and maximum depths of all vertices by calling Algo-
rithm 3 where the input L contains all vertices in Tb.

3.3.4 Algorithm
The Depth-Aware Top Down Algorithm is the same as Al-

gorithm 1 except the following three important differences.
1. Since v.maxdepth is an upper bound on the maximum
length of a plateau pl(x, v), we do not need to issue a shortest
path query from si to v to obtain the plateau if v.maxdepth
is smaller than Lk, the length of k-th longest plateau found
so far. Specifically, lines 11 to 13 in Algorithm 1 are not
processed if v.maxdepth < Lk.
2. If v is a familiar vertex, Pruning Rule 2 is used at line 5
instead of Pruning Rule 3, i.e., we use d(si, v) instead of
the Euclideadn distance dE(si, v) because d(si, v) can be
computed in O(1) for each familiar vertex (Lemma 2).
3. If v.maxdepth ≥ Lk, one option to obtain the plateau
pl(x, v) is to issue the shortest path query to v. However, if
v is a familiar vertex, we can get the plateau pl(x, v) without
issuing a shortest path query. Specifically, v and its child u
can be on the same plateau only if both u and v are familiar.
So, we only need to traverse down the branch with a familiar
child u such that u and v are on the same plateau which
can be confirmed in O(1) (by checking whether d(si, v) =
d(si, u) + d(u, v) as discussed in Section 3.3.2).
Complexity Analysis: The space used by all the depth
arrays is O(V) ≤ O(E). This is because for each vertex in
Tb, constant space is used in its parent for the depth array.
Also, other bookkeeping information (e.g., dist(si, v) and
familiar/unfamiliar status) uses constant space per vertex.
Thus, the total space complexity is O(E+Spindex), the same
as for the basic top down algorithm.

To analyse time complexity, we first analyse the cost of up-
dating maxdepths. Cost for computeDepths (Algorithm 2)
is O(1) since the size of depth array is bounded by max-
imum out-degree which is a small constant in road net-
works. Cost of depthUpdate(L) (Algorithm 3) is O(VL)
where VL ≤ V is the number of vertices with updated
maxdepths. Thus, the total cost to maintain maxdepths is

2250

O(VL) which is bounded by O(V). Each pruning rule takes
O(1). Let V DA

u be the number of unpruned and umarked
vertices for the depth-aware (DA) algorithm. The algorithm
traverses the whole tree, which takes O(V), and issues V DA

u

shortest path queries. The cost to update top-k plateaus
is O(log k) per new plateau found. So, the total cost is
O(V + V DA

u × (SPcost + log k)).

3.4 Depth-Aware Best First Algorithm
The depth-aware top down (DA-TD) algorithm processes

the backward tree Tb in a top down fashion which is sub-
optimal because many of the top-k plateaus usually appear
deeper in the tree. A better approach would access the
vertices in the descending order of their maxdepth values.
However, maxdepth values of vertices change throughout
the algorithm and maintaining a list of vertices sorted on
maxdepth is expensive, e.g., for large road networks, the
backward tree Tb may contain hundreds of thousands of ver-
tices. Next, we propose a novel solution which uses root lists
to allow accessing the vertices in the best first order without
requiring expensive maintenance.

3.4.1 Root Lists
We conceptually partition the backward tree Tb into a set

of disjoint subtrees. Fig. 5 shows such a conceptual parti-
tioning of the tree Tb shown in Fig. 4. Based on the obser-
vations presented in Section 3.3.1, we partition Tb using two
rules: 1) A familiar vertex v and its unfamiliar child u in Tb

cannot be in the same conceptual partitions (i.e., subtrees)
because they cannot be on the same plateau (Lemma 4); 2)
Two familiar vertices u and v cannot be in the same subtree
if u and v are not on the same plateau (Lemma 5). These
two rules can be summarized as follows. Vertex v and its
child u are in two disjoint subtrees if v.depth[u] = 0. Such
instances are represented in Fig. 5 using dashed edges and,
note that, each dashed edge connects two disjoint subtrees,

Given the tree Tb which is conceptually partitioned into
disjoint subtrees as described above, we keep the roots of
these subtrees in two separate lists: 1) a sorted root list
(denoted as RLS); and 2) an unsorted root list (denoted as
RLU). Specifically, we use a threshold η and insert every
root node v with v.maxdepth > η in RLS which is kept
sorted in descending order of the maxdepth values. Every
other root node is pushed to unsorted RLU . Consider the
example in Fig. 5 and assume that the threshold is η = 3.
The sorted root list is RLS = {v6, v5, v8} (sorted on max-
imum depths 8, 6 and 4, respectively). The unsorted root
list RLU contains all other root nodes not necessarily sorted,
i.e., v1, v2, v26, v20, v17, v18 and v7. Note that the total num-
ber of vertices in the backward tree Tb is 27 whereas the root
list contains 10 roots (equal to the number of conceptual
subtree). In our experiments (see Fig. 9(b)), we show that
the number of nodes in the sorted root list RLS is around
100 for all road networks even when the backward tree con-
tains up to 1 million nodes. Fig. 9(b) also shows that the
unsorted list RLU contains less than 10% of the nodes in
Tb. Furthermore, in majority of cases, we are able to com-
pute the top-k plateaus by using only the root nodes in RLS

whereas RLU is rarely accessed during query processing.

3.4.2 Maintaining Root Lists
Recall that a vertex v and its child u are in two different

subtrees iff v.depth[u] = 0. Therefore, we only need to han-
dle the situations when v.depth[u] changes to zero from a
non-zero value and when it changes from zero to non-zero.

v56

v104

v152

v21 v22 00

v6

v12v9
v11

8

6
4 0

v16 2

v23 0

v2
v4

2

0

v1 2 v3 0

v7
v13

2
0

v20 2

v27 0

v8

v14v19

0

2

4

v17

v24 0

2

v26 0

v18 2

v25 0

Figure 5: Tb with conceptual partitions. Only
maxdepth values are shown – depth arrays are omit-
ted for brevity.

Case 1: v.depth[u] becomes zero. If v.depth[u] becomes 0,

this means u and v are now in two different sub-trees (and
u is the root of the new subtree). In this case, u is inserted
in the root list with u.maxdepth.
Case 2: v.depth[u] becomes non-zero. In this case, u and v

were in two different subtrees but now the subtree rooted
at u is merged with the subtree that contains v. So, u is
removed from the root list.
Case 3: v.maxdepth is updated . If v is a root node, its
maxdepth is updated in the root list. Furthermore, it is
moved fromRLS toRLU or vice versa depending on whether
v.maxdepth is bigger than the threshold η or not.

For each vertex v in Tb, we maintain pointers to their
locations in RLS or RLU (the pointer is set to null if the
vertex is not in any of the two lists). These pointers allow
efficiently updating the root lists.

Note that the above cases can be easily detected and han-
dled in Algorithm 3. In Fig. 5, assume that v1 becomes
unfamiliar and v10 becomes familiar. We call Algorithm 3
by passing to it v10 and v1. Since these vertices are processed
based on level, v10 is processed first. As v10 is now famil-
iar, computeDepths (Algorithm 2) sets v10.depth[v15] = 0.
This implies that v15 is the root of a new subtree. So, v15
is inserted in the root list with its maximum depth, i.e.,
v15.maxdepth = 2. Since v10.maxdepth has changed (to 0)
and, as per Algorithm 3, its parent v5 is inserted in L. In
the next iteration, v5 is processed. Both v5.depth[v10] and
v5.maxdepth are updated to v10.maxdepth + d(v10, v5) =
0 + 2 = 2. Since v5.depth[v10] was non-zero and is still
non-zero, this does not indicate a subtree split. However,
v5.maxdepth is updated from 6 to 2. Since v5 is a root
node, its maxdepth is updated in the root list. Assuming
η = 3, v5 is moved from RLS to RLU . As v5.maxdepth has
changed, its parent v2 is inserted in L and processed but
its depth array and maxdepth do not change. Finally, node
v1 is processed. As v1 has now become an unfamiliar node,
v1.depth[v2] = v2.maxdepth + d(v2, v1) = 2 + 2 = 4. Since
v1.depth[v2] was zero and now has become non-zero (Case
2), the subtree rooted at v2 is merged with the subtree that
contains v1. Hence, v2 is removed from the corresponding
root list. Finally, v1.maxdepth = 4 which is updated to 4 in
the root list and moved from RLU to RLS .

3.4.3 Algorithm
The key idea behind our Depth-Aware Best First (DA-

BF) Algorithm (Algorithm 4) is that it traverses each sub-
tree in the sorted root list in the descending order of the
maxdepths of their root nodes (lines 2 and 3). Each traversal
(line 3) is similar to the DA-TD algorithm except that here
it does not traverse the subtree of v if v.maxdepth ≤ Lk.

2251

Table 2: Complexity analysis. V is # of vertices in the shortest path tree. V TD
u (resp. V DA

u) is # of shortest path
queries issued by the top-down algorithm (resp. the two depth-aware algorithms). VL is # of vertices for which maxdepth
changes at the timestamp and V > is # of vertices in Tb with maxdepth greater than Lk. SPindex and SPcost are the index
size and cost of the shortest path algorithm used. E is # of edges in the graph.

Tree-Join Top-Down Depth-Aware Top-Down Depth-Aware Best-First
Space O(E) O(E + SPindex) O(E + SPindex) O(E + SPindex)

Time O(E log V) O(V + V TD
u (SPcost + log k)) O(V + V DA

u (SPcost + log k)) O(VL + V > + V DA
u (SPcost + log k))

Note that it is possible that the unsorted root list RLU

contains a top-k plateau if a root node in RLU has max-
imum depth greater than Lk. During the update of root
lists, we maintain maxdepth(RLU) which denotes the max-
imum maxdepth in RLU . If maxdepth(RLU) > Lk, the
algorithm processes the entries in it (line 4). Each entry
e is accessed and if e.maxdepth > η, the entry is moved
to RLS (line 6). Also, if e.maxdepth > Lk, the subtree
rooted at e is traversed as described above to update the
top-k plateaus and Lk (line 8). The algorithm also updates
maxdepth(RLU) (line 9) which may have been changed as
some entries are moved to RLS . Note that the algorithm ac-
cesses each unpruned vertex v with maxdepth greater than
Lk which ensures its correctness.

Algorithm 4: Depth-Aware Best First Algorithm

1 use plateaus from si−1 to initialize Ri and Lk;

2 foreach e in RLS with e.maxdepth > Lk do
3 traverse tree rooted at e to update Ri and Lk;

4 if maxdepth(RLU) > Lk then
5 foreach e in RLU with e.maxdepth > η do
6 move e from RLU to RLS ;

7 if e.maxdepth > RL then
8 traverse subtree of e to update Ri&L

k;
9 update maxdepth(RLU);

10 η = Lk/α;
11 return Ri

Just before returning the top-k plateaus, we also update
η = Lk/α (line 10), where α > 1 and helps setting the
threshold relative to Lk. Our experimental study shows that
α = 5 is a reasonable choice. The intuition behind setting
η several times smaller than Lk is to ensure that, in most
cases, the top-k plateaus can be found from RLS without
the need to process RLU . Also, since Lk varies throughout
the algorithm, η also changes. However, unless a root node
is implicitly accessed in the root list, we do not move it
from RLS to RLU or vice versa. This does not affect the
correctness of the algorithm.
Complexity Analysis: Compared to the DA-TD algo-
rithm, the only additional data structure needed by the
DA-BF algorithm consists of the two root lists with to-
tal size O(V) ≤ O(E). Thus, the space complexity is
O(E + SPindex).

Now, we analyse time complexity. As earlier, the cost to
maintain maxdepths is O(VL) where VL is the number of
vertices with updated maxdepths. We analyse the cost for
maintaining the root lists. Insertion/deletion cost for sorted
(resp. unsorted) root list is O(log β) (resp. O(1)) where β is
the size of the sorted root list. Note that at most VL entries
are inserted/removed in/from the two lists. Let m (resp.
VL−m) be the number of entries inserted/removed in/from
the sorted (resp. unsorted) root list. The total maintenance
cost is O(VL +m log β + (VL −m)) = O(VL +m log β).

Let V > be the number of vertices in Tb with maxdepth
larger than Lk. The algorithm traverses at most V > vertices
during the traversal of all subtrees in the two root lists. Let
γ be the number of entries in the unsorted list. In the worst
case, the algorithm may also access all entries in the un-
sorted root list (when the results cannot be computed using
the sorted list). So, the algorithm accesses V > + γ ver-
tices in the worst case. The algorithm issues V DA

u shortest
path queries where V DA

u is the number of unpruned and un-
marked vertices (the same as the DA-TD algorithm). Thus,
the cost of Algorithm 4 is O(V >+γ+V DA

u ×(SPcost+log k)).
The total cost including the maintenance of maxdepths and
root lists is O(VL+m log β+V >+γ+V DA

u ×(SPcost+log k)).
Comparison of complexities: Table 2 summarizes the
space and time complexities of all the algorithms. For the
DA-BF algorithm, we simplify the complexity by remov-
ing β, γ and m because our experimental study shows that
β ≈ 100 for all different road networks (Fig. 9(b)). Fur-
thermore, Fig. 9(b) also shows that γ � V for all road
networks. Also, although not shown in the experimental
study due to the space limitations, m < 10 and the un-
sorted root list, containing γ nodes, is rarely accessed by
DA-BF (around 1–2 times out of 100). Thus, the cost is
simplified to O(VL + V > + V DA

u × (SPcost + log k)). As
shown in Fig. 9(c), V DA

u is less than 2 on average, which is
significantly smaller than V TD

u . This explains why the two
depth-aware algorithms are significantly faster than the ba-
sic top-down (TD) algorithm. Finally, Fig. 9(c) also shows
that VL + V > is (around 30) which is up to 2 orders of
magnitude smaller than V . This explains why the DA-BF
algorithm outperforms the DA-TD algorithm.

4. EXPERIMENTS

4.1 Settings
Algorithms and environment. We compare four algo-
rithms that continuously monitor top-k alternative paths,
namely the TJ algorithm (Section 3.1), the TD algorithm
(Section 3.2), the DA-TD algorithm (Section 3.3), and the
DA-BF algorithm (Section 3.4). For the DA-BF algorithm,
we studied the effect of η = Lk/α by using different values
of α and observe that the best performance is achieved for
α = 5 which is used as the default value for DA-BF.
Datasets: Table 3 shows details of the eight real road net-
works in the USA that we use in the experiments (down-
loaded from DIMACS5). Similar to some existing works
(e.g., see [35]), we fix some issues such as removing self-loops
and unconnected components from the graphs.
Parameters: We investigate the effect of varying k, length
of path P , upper bound parameter ε, and the road network
size. We vary k from 2 to 16 where the default value is 6.
Note that k = 6 means the shortest path and 5 other alter-
native paths are reported to the user. Similar to previous

5http://www.dis.uniroma1.it/challenge9

2252

Table 3: Road Network Datasets
Name Region #Vertices #Edges

NY New York City 264,346 733,846
COL Colorado 435,666 1,042,400
NW North-west US 1,207,945 2,545,844
NE North-east US 1,524,453 3,897,636

E-US Eastern US 3,598,623 8,708,058
W-US Western US 6,262,104 15,119,284
C-US Central US 14,081,816 33,866,826
USA United States 23,947,347 57,708,624

works [5, 25] on the snapshot queries, ε is varied from 1.05
to 1.25 and 1.15 is the default value. Alternative paths are
continuously reported for each location si on the user’s path
and, unless mentioned otherwise, the results report average
CPU time for each location, i.e., the total CPU time divided
by the number of vertices on the path. For each experiment,
we run 1000 queries and present the average cost.

4.2 Performance Evaluation
Varying Query Path Length. In this experiment, we
vary the distance between source and target of the CTKP
query. More specifically, similar to several existing studies
on the shortest path queries (e.g., see [34, 27]), we generate
eight groups of queries Q1, Q2, . . . , Q8 as follows: we set lmin

to 10 km and set lmax to the maximum distance of any pair
of vertices in the road network. Let z = (lmax/lmin)1/8. For
each 1 ≤ i ≤ 8, we generate 1,000 queries to form Qi, in
which the distance between the source and target vertices
for each query pair fall in the range (lmin × zi−1, lmin × zi].
Note that the distances of queries increase exponentially in
each group from Q1 to Q8.

The experimental results for CTKP queries in each group
from Q1 to Q8 are shown in Fig. 6 for four different road
networks. As expected, the query processing time increases
with the increase of the path length, which is mainly be-
cause the search space increases with the path length. The
TD algorithm performs worst, mainly because, despite prun-
ing, it still requires issuing a large number of shortest path
queries. We were not able to run TD for bigger road net-
works and, hereafter, we omit TD from the comparisons.
The two depth-aware algorithms outperform the TJ and TD
algorithms by up to several orders of magnitude, especially
for bigger road networks. This shows the effectiveness of the
ideas proposed in Sections 3.3 and 3.4. Furthermore, DA-BF
is several times faster than DA-TD showing the effectiveness
of maintaining root lists and accessing the tree in the best
first order. Even for the largest road network (USA), DA-
BF can continuously monitor k alternative paths in around
1 ms on average per location si.
Varying k. We vary k and show the results in Fig. 7. The
cost of TJ does not change with k because it computes Tf

and joins it with Tb regardless of the value of k. The cost
of our algorithms increases with increasing k because the
algorithms need to compute more plateaus which increases
the space searched by our algorithms. Our best algorithm
DA-BF is more than two orders of magnitude faster than
the TJ algorithm even for the largest k. Also, DA-BF is 3-6
times faster than DA-TD, which shows the effectiveness of
the proposed best first traversal.
Varying ε. In this experiment, we study the effect of the
upper bound distance parameter ε and report the results in
Fig. 8. As expected, the cost of each algorithm increases
with the increase in ε because the search space (i.e., Tb)
becomes larger for a larger ε. However, DA-BF outperforms
TJ by more than two orders of magnitude for all values of

ε on bigger road networks. Also, DA-BF is several times
faster than DA-TD.
Effectiveness of optimisations. Fig. 9 shows the effec-
tiveness of different optimisations presented in the paper.
Specifically, Fig. 9(a) shows the effectiveness of different
pruning rules. The No-UB algorithm is the same as DA-
TD except that it does not use the pruning rules that prune
the search space using the upper bound distance dP (si, t)×ε.
Recall that TD uses the Euclidean distance dE(si, v) to ap-
ply the pruning rules. However, DA-TD uses the exact dis-
tance d(si, v) if v is a familiar vertex because d(si, v) can be
obtained in O(1) for the familiar vertices. The No-FUB uses
the upper bound pruning rules but does not use this opti-
misation for the familiar vertices, i.e., it uses Euclidean dis-
tance instead of the exact shortest distance for the familiar
vertices. As shown in Fig. 9(a), each proposed optimisation
significantly improves the performance of the algorithm for
different groups of queries Q1 to Q8.

Fig. 9(b) shows the size of two root lists RLS and RLU ,
the total size of two root lists RL and the total number of
valid nodes in Tb for different road networks. Note that the
size of RLS is around 100 for all road networks. This shows
the effectiveness of the root list which maintains only around
100 nodes in sorted order (and the algorithm can find the
top-k plateaus using these nodes in most of the cases). Also,
the total size of RL is 10 times smaller than the size of Tb.

Fig. 9(c) shows different variables used in the complexity
analysis (Table 2). Recall that V TD

u (resp. V DA
u) corre-

spond to the number of shortest path queries issued by TD
(resp. DA-TD and DA-BF) per location si. Fig. 9(c) shows
that DA-TD and DA-BF need to issue less than 2 shortest
path queries per location of si on average. This shows the
effectiveness of maintaining maxdepth values. TD requires
issuing up to 1000 shortest path queries on average for each
location, which explains the reason why it is slow. Never-
theless, it is able to prune a lot of vertices in Tb, i.e., V TD

u

is up to two orders of magnitude smaller than V , the size
of Tb. Also, VL + V > is significantly smaller than V , which
explains why DA-BF outperforms DA-TD.

Finally, Fig. 9(d) shows the average number of familiar
nodes, unfamiliar nodes and total nodes in Tb for each lo-
cation si as the user moves on P towards the target. Most
of the nodes are familiar, which explains the effectiveness of
the depth-aware algorithms. Also, as expected, the size of
Tb decreases as the user gets closer to the target.
Different road networks (CPU time and memory).
Fig. 10 shows the CPU time and memory used by each al-
gorithm for all road networks shown in Table 3. The x-axis
shows the road networks in increasing order of their sizes.
As expected, Fig. 10(a) shows that the running time of each
algorithm increases with the increase in the size of the road
network. DA-BF consistently outperforms TJ and DA-TD
for all data sets.

The memory used by each algorithm is shown in
Fig. 10(b). “Graph” corresponds to the size of the input
graph (road network). As expected, DA-BF and DA-TD
consume more memory than TJ and TD due to the ad-
ditional data structures employed (e.g., depth arrays, root
lists). However, the memory used by each algorithm in-
creases linearly with the graph size. Recall that the algo-
rithms also need a shortest path index to efficiently compute
shortest paths. However, in Fig. 10(b), we do not include
the memory used by the shortest path index due to two
main reasons: 1) the memory usage depends on the spe-
cific shortest path algorithm employed; 2) almost all nav-
igation systems already have a shortest path index which

2253

10-3

10-2

10-1

100

101

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q
ue

ry
 T

im
e

(m
s)

Query Set

TJ
TD

DA-TD
DA-BF

(a) NY

10-3

10-2

10-1

100

101

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q
ue

ry
 T

im
e

(m
s)

Query Set

TJ
DA-TD

DA-BF

(b) NW

10-3
10-2
10-1
100
101
102
103

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q
ue

ry
 T

im
e

(m
s)

Query Set

TJ
DA-TD

DA-BF

(c) E-US

10-3
10-2
10-1
100
101
102
103

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q
ue

ry
 T

im
e

(m
s)

Query Set

TJ
DA-TD

DA-BF

(d) USA

Figure 6: Effect of Varying Path Length

10-2

10-1

100

101

2 4 6 8 11 16

Q
ue

ry
 T

im
e

(m
s)

k

TJ
DA-TD

DA-BF

(a) NY

10-2

10-1

100

101

2 4 6 8 11 16

Q
ue

ry
 T

im
e

(m
s)

k

TJ
DA-TD

DA-BF

(b) NW

10-2

10-1

100

101

102

103

2 4 6 8 11 16

Q
ue

ry
 T

im
e

(m
s)

k

TJ
DA-TD

DA-BF

(c) E-US

10-1

100

101

102

103

2 4 6 8 11 16

Q
ue

ry
 T

im
e

(m
s)

k

TJ
DA-TD

DA-BF

(d) USA

Figure 7: Effect of Varying k

10-3

10-2

10-1

100

101

1.05 1.1 1.15 1.2 1.25

Q
ue

ry
 T

im
e

(m
s)

ε

TJ
DA-TD

DA-BF

(a) NY

10-2

10-1

100

101

1.05 1.1 1.15 1.2 1.25

Q
ue

ry
 T

im
e

(m
s)

ε

TJ
DA-TD

DA-BF

(b) NW

10-2

10-1

100

101

102

103

1.05 1.1 1.15 1.2 1.25

Q
ue

ry
 T

im
e

(m
s)

ε

TJ
DA-TD

DA-BF

(c) E-US

10-1

100

101

102

103

1.05 1.1 1.15 1.2 1.25

Q
ue

ry
 T

im
e

(m
s)

ε

TJ
DA-TD

DA-BF

(d) USA

Figure 8: Effect of Varying ε

10
-3

10
-2

10
-1

10
0

10
1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q
u

e
ry

 T
im

e
 (

m
s
)

Query Set

TD
No-UB

No-FUB

DA-TD
DA-BF

(a) Prune rules

10
0

10
2

10
4

10
6

NY COL NW NE E W C US

N
u

m
b

e
r

o
f

e
n

tr
ie

s

Road Network

RLS
RLU

RL
Tb

(b) Root list size

10-3
10-2
10-1
100
101
102
103
104
105

2 4 6 8 11 16

N
um

be
r

of
 v

er
tic

es

k

Vu
DA

VL+V>
Vu

TD

V

(c) Comp. analysis variables

0

30K

60k

90k

s1 s500 s1000 s1500 s2000

N
u

m
b

e
r

o
f

n
o

d
e

s

User Location

Familiar

Unfamiliar

Total

(d) # of familiar nodes

Figure 9: Effectiveness of optimisations

10-3

10-2

10-1

100

101

102

103

NY COL NW NE E W C US

Q
ue

ry
 T

im
e

(m
s)

TJ
DA-TD

DA-BF

(a) Running time

200

400

600

800

1000

NY COL NW NE E W C US

M
em

or
y

U
sa

ge
 (

M
B

) TJ
TD

DA-TD

DA-BF
Graph

(b) Memory usage

Figure 10: All road networks

our algorithms can directly use (thus Fig. 10(b) represents
the memory overhead for each of our algorithms). We used
pruned highway labelling (PHL) [7] in our implementation
with index size around 16 GB for the US road network as
reported in [7] (which dominates the overall memory used
by our algorithms). If the index size is an issue, one can use
other shortest path algorithms such as Contraction Hierar-
chies (CH) [18] or Arterial Hierarchy (AH) [37], which have
an order of magnitude smaller indexes but provide compara-
ble or better running time for the shortest path queries [23].

5. CONCLUSIONS AND FUTURE WORK
To the best of our knowledge, this is the first paper to

study the problem of continuously monitoring k alternative
paths as the user is moving on a path towards the target.
Due to the popularity of plateaus-based alternative paths,
we also continuously report alternative paths based on
plateaus. We present several algorithms each improving
on the previous using some non-trivial observations and
novel optimisations. We provide complexity analysis of our
algorithms and a comprehensive experimental study using
real-world road networks and demonstrate the efficiency of
the proposed algorithms. An important direction for future
work is to design techniques for snapshot and continuous
top-k alternative path queries for dynamic road networks
and time-dependent road networks.

Acknowledgements. Muhammad Aamir Cheema is sup-
ported by ARC FT180100140 and DP180103411. Hua Lu’s
work was partly conducted when he was employed at Aal-
borg University, Denmark.

2254

6. REFERENCES
[1] T. Abeywickrama, M. A. Cheema, and A. Khan.

K-SPIN: Efficiently processing spatial keyword queries
on road networks. IEEE TKDE, 32(5):983–997, 2019.

[2] T. Abeywickrama, M. A. Cheema, and D. Taniar.
K-nearest neighbors on road networks: a journey in
experimentation and in-memory implementation.
PVLDB, 9(6):492–503, 2016.

[3] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In International Symposium
on Experimental Algorithms. Springer, 2011.

[4] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. Hierarchical hub labelings for shortest paths.
In European Symposium on Algorithms, 2012.

[5] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. Alternative routes in road networks. Journal
of Experimental Algorithmics (JEA), 18:1–3, 2013.

[6] V. Akgün, E. Erkut, and R. Batta. On finding
dissimilar paths. European Journal of Operational
Research, 121(2):232–246, 2000.

[7] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and
Y. Kawata. Fast shortest-path distance queries on
road networks by pruned highway labeling. In
ALENEX, pages 147–154, 2014.

[8] R. Bader, J. Dees, R. Geisberger, and P. Sanders.
Alternative route graphs in road networks. In
International Conference on Theory and Practice of
Algorithms in (Computer) Systems, 2011.

[9] F. Barth and S. Funke. Alternative routes for next
generation traffic shaping. In Proceedings of the 12th
ACM SIGSPATIAL International Workshop on
Computational Transportation Science, 2019.

[10] S. Cabello, E. W. Chambers, and J. Erickson.
Multiple-source shortest paths in embedded graphs.
SIAM Journal on Computing, 42(4):1542–1571, 2013.

[11] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and
W. Wang. Continuous monitoring of distance-based
range queries. IEEE TKDE, 23(8):1182–1199, 2010.

[12] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and
X. Li. Continuous reverse k nearest neighbors queries
in euclidean space and in spatial networks. The VLDB
Journal—The International Journal on Very Large
Data Bases, 21(1):69–95, 2012.

[13] Y. Chen, M. G. Bell, and K. Bogenberger. Reliable
pretrip multipath planning and dynamic adaptation
for a centralized road navigation system. IEEE Trans.
on Intelligent Transportation Systems, 2007.

[14] T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser,
and D. B. Blumenthal. Finding k-dissimilar paths
with minimum collective length. In ACM
SIGSPATIAL, pages 404–407, 2018.

[15] T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser,
and D. B. Blumenthal. Finding k-shortest paths with
limited overlap. The VLDB Journal, pages 1–25, 2020.

[16] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische mathematik, 1959.

[17] H. Döbler and B. Scheuermann. On computation and
application of k most locally-optimal paths in road
networks. 2016.

[18] R. Geisberger, P. Sanders, D. Schultes, and
D. Delling. Contraction hierarchies: Faster and
simpler hierarchical routing in road networks. In
International Workshop on Experimental and Efficient
Algorithms, pages 319–333. Springer, 2008.

[19] A. H. Jones. Method of and apparatus for generating
routes, Aug. 21 2012. US Patent 8,249,810.

[20] M. Kobitzsch. An alternative approach to alternative
routes: Hidar. In European Symposium on Algorithms,
pages 613–624. Springer, 2013.

[21] M. Kobitzsch, M. Radermacher, and D. Schieferdecker.
Evolution and evaluation of the penalty method for
alternative graphs. In ATMOS, 2013.

[22] L. Li, M. A. Cheema, H. Lu, M. E. Ali, and A. N.
Toosi. Comparing alternative route planning
techniques: A web-based demonstration and user
study. arXiv preprint arXiv:2006.08475, 2020.

[23] Y. Li, M. L. Yiu, N. M. Kou, et al. An experimental
study on hub labeling based shortest path algorithms.
PVLDB, 11(4):445–457, 2017.

[24] H. Liu, C. Jin, B. Yang, and A. Zhou. Finding top-k
shortest paths with diversity. IEEE TKDE, 2017.

[25] D. Luxen and D. Schieferdecker. Candidate sets for
alternative routes in road networks. Journal of
Experimental Algorithmics (JEA), 19:2–7, 2015.

[26] K. Mouratidis, M. L. Yiu, D. Papadias, and
N. Mamoulis. Continuous nearest neighbor monitoring
in road networks. In Proceedings of the 32nd
international conference on Very large data bases,
pages 43–54. VLDB Endowment, 2006.

[27] D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, and
Q. Zhu. When hierarchy meets 2-hop-labeling:
efficient shortest distance queries on road networks. In
SIGMOD, pages 709–724, 2018.

[28] D. Ouyang, L. Yuan, L. Qin, L. Chang, Y. Zhang, and
X. Lin. Efficient shortest path index maintenance on
dynamic road networks with theoretical guarantees.
PVLDB, 13(5):602–615, 2020.

[29] A. Paraskevopoulos and C. D. Zaroliagis. Improved
alternative route planning. In ATMOS, 2013.

[30] C. Salgado, M. A. Cheema, and M. E. Ali. Continuous
monitoring of range spatial keyword query over
moving objects. World Wide Web, 21(3):687–712,
2018.

[31] Z. Shao, M. A. Cheema, D. Taniar, and H. Lu.
VIP-tree: An effective index for indoor spatial queries.
PVLDB, 10(4):325–336, 2016.

[32] S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. In SIGMOD, 2007.

[33] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu.
Dual labeling: Answering graph reachability queries in
constant time. In ICDE, pages 75–75. IEEE, 2006.

[34] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and
S. Zhou. Shortest path and distance queries on road
networks: An experimental evaluation. PVLDB,
5(5):406–417, 2012.

[35] B. Yao, Z. Chen, X. Gao, S. Shang, S. Ma, and
M. Guo. Flexible aggregate nearest neighbor queries
in road networks. In ICDE, pages 761–772, 2018.

[36] R. Zhong, G. Li, K.-L. Tan, L. Zhou, and Z. Gong.
G-tree: An efficient and scalable index for spatial
search on road networks. IEEE TKDE, 2015.

[37] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and
S. Zhou. Shortest path and distance queries on road
networks: towards bridging theory and practice. In
SIGMOD, 2013.

2255

