
SAQE: Practical Privacy-Preserving Approximate Query
Processing for Data Federations

Johes Bater
Northwestern University

johes@u.northwestern.edu

Yongjoo Park
University of Illinois (UIUC)

yongjoo@illinois.edu

Xi He
University of Waterloo
xi.he@uwaterloo.ca

Xiao Wang
Northwestern University

wangxiao@northwestern.edu

Jennie Rogers
Northwestern University

jennie@northwestern.edu

ABSTRACT
A private data federation enables clients to query the union of data
from multiple data providers without revealing any extra private
information to the client or any other data providers. Unfortu-
nately, this strong end-to-end privacy guarantee requires crypto-
graphic protocols that incur a significant performance overhead as
high as 1,000× compared to executing the same query in the clear.
As a result, private data federations are impractical for common
database workloads. This gap reveals the following key challenge
in a private data federation: offering significantly fast and accurate
query answers without compromising strong end-to-end privacy.

To address this challenge, we propose SAQE, the Secure Ap-
proximate Query Evaluator, a private data federation system that
scales to very large datasets by combining three techniques — dif-
ferential privacy, secure computation, and approximate query pro-
cessing — in a novel and principled way. First, SAQE adds novel
secure sampling algorithms into the federation’s query processing
pipeline to speed up query workloads and to minimize the noise the
system must inject into the query results to protect the privacy of the
data. Second, we introduce a query planner that jointly optimizes
the noise introduced by differential privacy with the sampling rates
and resulting error bounds owing to approximate query processing.

Our research shows that these three techniques are synergistic:
sampling within certain accuracy bounds improves both query pri-
vacy and performance, meaning that SAQE executes over less data
than existing techniques without sacrificing efficiency, privacy, or
accuracy. Using our optimizer, we leverage this counter-intuitive
result to identify an inflection point that maximizes all three crite-
ria prior query evaluation. Experimentally, we show that this result
enables SAQE to trade-off among these three criteria to scale its
query processing to very large datasets with accuracy bounds de-
pendent only on sample size, and not the raw data size.

PVLDB Reference Format:
Johes Bater, Yongjoo Park, Xi He, Xiao Wang, Jennie Rogers. SAQE: Prac-
tical Privacy-Preserving Approximate Query Processing for Data Federa-
tions. PVLDB, 13(11): 2691-2705, 2020.
DOI: https://doi.org/10.14778/3407790.3407854

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407854

1. INTRODUCTION
Querying the union of multiple private data stores is challeng-

ing due to the need to compute over the combined datasets without
data providers disclosing their secret query inputs to anyone. Here,
a client issues a query against the union of these private records
and he or she receives the output of their query over this shared
data. Presently, systems of this kind use a trusted third party to se-
curely query the union of multiple private datastores. For example,
some large hospitals in the Chicago area offer services for a cer-
tain percentage of the residents; if we can query the union of these
databases, it may serve as invaluable resources for accurate diag-
nosis, informed immunization, timely epidemic control, and so on.
Yet, their databases stay siloed by default; these hospitals (i.e., data
providers) are reticent to share their data with one another, fearing
the sensitive health records of their patients may be breached in
the process of carelessly data sharing. To address this, we need a
principled approach to querying over multiple private datastores.
Private Data Federations. A private data federation [9, 58] is
a database system that offers end-to-end privacy guarantees for
querying the union of multiple datastores. In other words, a private
data federation ensures that the secret inputs of each data provider
are accessible only to him or her 1) before, 2) during, and 3) af-
ter query processing. Before query processing, the system makes
all query optimization decisions in a data-independent manner; no
one can learn anything about the data by examining the query’s op-
erators or parameters. During query processing, the system uses
secure computation protocols that compute over the private data of
multiple parties such that none of them learn the secret inputs of
their peers; the only information that is revealed is that which can
be deduced from the query output. Finally, after query process-
ing, the system adds carefully calibrated noise to the query results
using differential privacy [22] such that an adversary viewing this
output will get essentially the same answer whether or not an indi-
vidual chose to make his or her data available for querying. This
system has an integrated suite of differential privacy mechanisms
for modeling this controlled information leakage both during and
after query processing.

Existing differential privacy systems [36,46] with a single trusted
data curator do not have to protect data during query processing.
Conversely, a private data federation must add noise using secure
computation [10] so that no party can deduce the true query answer
and any client that colludes with a data provider is unable to break
the system’s privacy guarantees, even under repeated querying of
a single dataset. To uphold this strong privacy guarantee of the
input data, private data federations must add noise to query results,
reducing accuracy, and thereby compromising their utility.

2691

Privacy Amplification

Pr
iv

at
e

Da
ta

 F
ed

er
at

io
n

Private Sampling Algorithms

Differential Privacy

Accuracy Privacy Performance

Secure Multi-party
Computation

Accuracy Privacy Performance

Approximate
Query Processing

Accuracy Privacy Performance

SAQE

No Effect

Positive Effect

Negative Effect

Figure 1: Key components of SAQE query processing

Secure Computation.. We use secure computation to obliviously
compute over the data of two or more data providers. An oblivious
program’s observable transcript (i.e., its program counter, mem-
ory access patterns, network transmissions) leaks nothing about its
input data because these signals are data-independent. Oblivious
query processing incurs extremely high overhead owing to its use
of heavyweight cryptographic protocols to encrypt and process in-
put data. In practice, an oblivious query execution runs in worst-
case time to uphold rigorous security guarantees. For example, a
join with inputs of length n will have an output cardinality of n2.
Oblivious database operators produce worst-case output cardinal-
ities by padding their results with dummy tuples. These crypto-
graphic protocols also incur significant computation and network
overhead to run with their data encrypted in flight. Queries over
secure computation have runtimes that are multiple orders of mag-
nitude slower than running the same query with no security. Hence,
systems that use secure computation alone to protect data under
computation [9, 58] do not scale to datasets that are greater than
hundreds of megabytes.
Approximate Query Processing. When executing queries over
extremely large data sets, big data systems speed up execution by
using approximate query processing [3, 20, 35, 38, 49], evaluating
a query over a sample of its input data rather than computing the
query exhaustively. On the face of it, approximate query processing
offers an attractive way to scale up private data federation queries to
large datasets. However, naı̈vely executing private data federation
queries over a small data sample fails on two fronts: privacy and
accuracy. Privacy suffers because when creating a sample, data
providers reveal exact sizes of their data. An unauthorized observer
can use this knowledge, along with public information, to decrypt
a data provider’s secure computation. Accuracy suffers because
unlike regular approximate query processing, additional noise must
be added for differential privacy, which can make the end-to-end
error unnecessarily (and extremely) high.

In Figure 2, we plot the noise contributions of approximate query
processing and differential privacy as a function of the sampling
rate. This plot reveals an interesting relationship between the two.
Under certain conditions, sampling actually improves accuracy as
well as efficiency, meaning that including less data in the compu-
tation increases accuracy. We see this result because of the de-
pendency between differential privacy and sample size. A lower
sampling rate reduces the size of the sample and introduces more
sampling error, thus requiring less additional noise to satisfy dif-
ferential privacy. When we do not sample the data, differential pri-
vacy requires more noise to avoid information leakage. Balancing
approximate query processing and differential privacy within a pri-
vate data federation to maximize query result accuracy is a difficult
problem and requires careful sampling and query optimization.
Our Approach. We propose SAQE, the Secure Approximate Query
Evaluator, a system that brings scalability to privacy-preserving

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

·104

Max Accuracy

Sampling Rate

E
rr

or
(V

ar
ia

nc
e

in
Tu

pl
e

C
ou

nt
)

Sampling Error
DP Noise
Summed Error

Figure 2: Expected error for COUNT query results in SAQE, n =
10, 000, ε = 0.05, and δ = 10−5.

SQL querying over private data federations by generalizing approx-
imate query processing to this setting. Unlike the naı̈ve approach,
SAQE generalizes approximate query processing to this setting by
carefully composing it with differential privacy and secure compu-
tation, making their interactions synergistic through an integrated
model of their performance profiles and information leakage. We
illustrate SAQE’s composition of these techniques in Figure 1.

First, SAQE ensures sampling-time privacy by introducing two
private sampling algorithms. That is, the naı̈ve approach— sam-
pling locally at each data provider then computing on all the sam-
ples using secure computation—reveals the exact size of each sam-
ple and the data provider knows their precise contribution to the
query results. A curious data provider could use this knowledge
to deduce unauthorized information about private data from query
results. Our private sampling algorithms prevent this as follows.
In our first private sampling algorithm (i.e., an oblivious sampling
algorithm), the data providers work together in secure computa-
tion to winnow down their input data to a set of samples for use in
query evaluation without leaking any information. It outperforms a
straw-man method by reducing the sampling cost fromO(n log2 n)
to O(n logn), where n is the size of the input data. The second
algorithm uses computational differential privacy to add dummy
tuples to the samples, hiding their true cardinalities. Hence, the
revealed sample sizes use differential privacy to control the infor-
mation leakage associated with running a faster sampling algorithm
while upholding SAQE’s end-to-end privacy guarantees.

Second, SAQE introduces a model for composing approximate
query processing and differential privacy to maximize the accuracy
of its query results. Differential privacy adds noise to the query re-
sults to protect the secret input data. In addition, approximate query
processing naturally has imprecise query results since it computes
over samples of the source data. In SAQE, we reveal how to lever-
age these two sources of noise synergistically; the error introduced
by approximate query processing reduces the noise SAQE must add
to the query results to uphold the privacy of their source data. To
optimally harness these correlated errors, we first model the com-
position of those two noise sources by generalizing privacy am-
plification [8, 15, 24] to private data federations. This composition
makes it possible for our noise sources to be synergistic. By mod-
eling approximate query processing and differential privacy jointly
sampling does not need to reduce our query accuracy – since dif-
ferential privacy’s noise is a sunk cost for this figure. At the same
time, SAQE realizes faster query runtimes via sampling. SAQE ex-
tends privacy amplification with a novel cost model and optimizer
that accounts for the error introduced by each technique during and
after query execution. Our optimizer identifies the inflection point
between differential privacy and approximate query processing that
minimizes query result error before runtime, choosing the optimal
sampling rate for a given query.

2692

Contributions. In this paper, we introduce SAQE, the first system
for practical privacy-preserving SQL query processing. The main
technical contributions in this work are:
• Identify and formalize privacy-preserving SQL query process-

ing over sampled data with provable privacy, accuracy, and per-
formance guarantees.
• Synergistic cost model and optimization framework that com-

poses differential privacy with approximate query processing
to identify optimal sampling rates, enabling scaling to massive
data sizes for private data federations.
• Novel oblivious and DP sampling algorithms for SQL queries

that combine secure computation and approximate query pro-
cessing with controlled information leakage, ensuring efficient
end-to-end privacy throughout query processing.
• An end-to-end system evaluation using both real hospital data

and workloads as well as synthetic data and queries.

Paper Organization. In Section 2 we provide background on pri-
vate data federations and SAQE’s security primitives: secure com-
putation, differential privacy, and approximate query processing.
Section 3 gives an overview of SAQE’s goals and architecture.
Section 4 articulates our novel privacy-preserving sampling algo-
rithms. After that, Section 5 describes the system’s cost model and
query optimizer. We evaluate SAQE over real-world and synthetic
data in Section 6. Lastly, we discuss related work and conclude.

2. PRIVATE DATA FEDERATIONS
In this section, we describe detailed setup of SAQE, including

the architecture, end-to-end privacy guarantee, and query lifecycle.

2.1 System Properties
A data federation makes multiple, autonomous database systems

available for querying via a unified SQL interface. Here, a client
queries the union of these databases as if all of their records are
stored in a single engine. A federation has a query coordinator
that rewrites client queries for distributed execution and orches-
trates their processing among the data providers. Data federations
are either homogeneous – wherein the data providers support a
single schema and the federation’s data is horizontally partitioned
amongst them – or heterogeneous such that the data providers each
may bring different tables to the federation. We operate in the ho-
mogeneous setting for this work.

A private data federation [9] is a generalization of conventional
data federations in which m data providers, D1, . . . Dm, pool their
private data for analysis while each site maintains exclusive ac-
cess to their inputs, D1, . . . Dm, respectively. Each data provider
wishes to keep individual tuples in their private datastore confiden-
tial. They are willing to let a client see the results of a query over
the union of their datasets, D = ∪mi=1Di. All Di ∈ D share
a public schema over k relations (R1, ..., Rk). The private data,
D, is horizontally partitioned over the data providers. The private
data federation’s client-side coordinator plans and orchestrates the
execution of its queries to ensure that queries uphold the security
policy while running efficiently.
Configuration. Before a private data federation accepts its first
query, it performs a two-stage setup process. First, data providers
do private record linkage [29] over individuals or entities that have
records spanning two or more databases so that each one resolves
to a single identifier. This provides a weaker privacy guarantee that
is composable with differential privacy to protect non-matching
records. Our paper focuses on privacy loss during execution and
leaves optimization of private record linkage to future work.

Data owners securely evaluate P
over the union of their private inputs

Query Q

 Time Limit T Analyst Workstation
 Privacy Budget (ε,δ)

SAQE

Assemble secret
shares into tuples

Optimize P
for sampling

Client
Q’s

Results

Executable
oblivious plan P

Query Q

Compile Q into
oblivious plan P

Private Data Servers

Secret shares of approx.,
noisy query results

(1/data provider)

SAQE SAQE

1

2

3

4

Figure 3: SAQE query workflow

Second, the data providers work together to create a security pol-
icy based on the best practices of their domain and any applicable
regulations. They initialize a common data model with this. These
shared table definitions, supported by all data providers are anno-
tated with one security policy per column. This determines the
information data providers are permitted to learn when processing
a SAQE query. A column may be public, or readable by all par-
ties. Otherwise it is private and data providers running queries over
these columns learn either a) nothing about the data of their peers
or b) differentially private information about the data distribution
by observing the intermediate cardinalities of its operators. To do
this, the private data federation executes query operators in plain-
text or obliviously. As tuples move up the query tree, we use the
information flow analysis of SMCQL [9] to determine the execution
mode each operator needs to run with protect the columns upon
which they compute and any private outputs from their children.
Hence, after a query evaluates an operator obliviously it cannot go
back to public query execution. Client access control, or determin-
ing the queries to admit from a query writer and the query results
to which they have access, are outside the scope of this work. In
addition, the engine computes differentially-private metadata over
the unioned records of all data providers using a discrete slice of
the overall privacy budget, (εsetup, δsetup). It generates a noisy
table size for the query inputs, ñ. Also, if the query workload
uses group-by aggregation, the system generates noisy histograms
for the group-by attributes to support stratified sampling. If we
have a group-by clause over g, then our metadata has a set privacy-
preserving strata sizes, (ñg,1, . . . , ñg,Nstrata).

2.2 End-to-end Privacy Guarantee
A private data federation must protect data before, during, and

after query processing. SAQE’s optimizer protects the contents of
its member databases prior to query processing by making query
planning decisions without accessing query’s inputs or statistics.
Next, it protects private query inputs during query evaluation by en-
suring that any information that the data providers or clients glean
from observing a query execution is differentially private. Exist-
ing systems [9, 10] address this by evaluating queries using secure
computation, which we describe in Section 2.3, but they do so very
slowly due to processing the entirety of the query’s input data.
Lastly, the system protects the query’s output so that the results
do not leak information about the query’s inputs. Prior work [10]
leverages differential privacy mechanisms, described in Section 2.3
to add noise to query results, thwarting attacks that may use this in-
formation to deduce the contents of the federation’s inputs. SAQE
generalizes on this to add less noise to the query’s results by ex-
ploiting the inherent noise in approximate query processing.

2693

SAQE provides end-to-end privacy guarantees in the private data
federation (see Figure 3). In detail:
• Clients only learn the differentially-private output of a query.
• Data providers may only learn noisy information about the dis-

tribution of the data provided by their peers. They observe this
controlled information leakage provided by a differential pri-
vacy mechanism during query evaluation.
• If a data provider colludes with a client, neither party will learn

additional private information owing to SAQE’s composition of
differential privacy techniques in the query’s evaluation and its
noising of its results within secure computation.

This system supports a semi-honest adversary who may corrupt
any subset of the data providers and the clients. SAQE guaran-
tees that the inputs from the uncorrupted parties remains private.
Client queries, as well as the common data model, are public.

2.3 System Primitives
Secure Computation refers to cryptographic protocols with which
a set of mutually distrusting parties jointly compute a function with-
out revealing any individual’s input. Secure multi-party computa-
tion has witnessed a huge improvement in efficiency and security in
recent years, with real-life applications such as auctions [13], dis-
tributed key management [40], and anonymous aggregation [52].
Intuitively, secure computation enables function evaluation over
multiple private data providers without requiring them to share data
with a trusted third party that unions their records for query evalu-
ation. This security comes at a cost – evaluating a program using
secure computation remains orders of magnitude slower than non-
private evaluation. A major task of this paper is to explore database
techniques that accelerate the performance of secure computation
over realistic OLAP workloads.

The vast majority of secure computation protocols represent the
function they compute as a circuit. This circuit representation en-
ables secure programs to run with an observable transcript that is
data-independent. In other words, the order of operations is static
and independent of the input. More generally, we say that a func-
tion f is data-oblivious if for any valid inputs x1 and x2, the in-
duced distribution on the data access pattern is indistinguishable.

In this paper, we design SAQE to: 1) use secure computation ef-
ficiently by avoiding and/or reducing the use of heavyweight cryp-
tographic protocols as much as possible; and 2) use more efficient
oblivious algorithms (for sampling in this context) to reduce the
number of gates that a query must run within secure computation.
Designing efficient oblivious algorithms is a difficult task because
their operations need to be deterministic. This frequently intro-
duces dummy operations to prevent a curious observer from deduc-
ing information about a query’s secret inputs by observing the pro-
gram counter during branching, looping, and other program flow.
Indeed, oblivious algorithms always run slower than non-oblivious
ones and sometimes are even asymptotically less efficient.
Differential Privacy [22, 23] provides a strong privacy guarantee
to individuals in the database while supporting multiple releases of
statistics about the data. It has been deployed by government orga-
nizations such as the US Census Bureau [42] and industry including
Google [25], Uber [34], and others. SAQE uses (ε, δ)-differential
privacy, and formally, its guarantees are as follows:

DEFINITION 1 ((ε, δ)-DIFFERENTIAL PRIVACY). A random-
ized mechanism M : D → R satisfies (ε, δ)-differential privacy if
for any pair of neighboring databases D,D′ ∈ D such that D and
D′ differ by adding or removing a row and any set O ⊆ R,

Pr[M(D) ∈ O] ≤ eε Pr[M(D′) ∈ O] + δ.

In SAQE, we consider a computationally bounded, polynomial time
adversary, so we relax our guarantee to computational differen-
tial privacy as in [47]. To achieve differential privacy, SAQE in-
jects noises in two different places: the query output and differen-
tial privacy sampling. The differential privacy guarantee degrades
gracefully when invoked multiple times. In the simplest form, the
overall privacy loss of multiple deferentially private mechanisms is
bounded with sequential composition [21].

THEOREM 1 (SEQUENTIAL COMPOSITION). If M1 and M2

are (ε1, δ1) and (ε2, δ2) differentially-private algorithms respec-
tively, and both use independent randomness, then releasing the
outputsM1(D) andM2(D) over databaseD satisfies (ε1+ε2, δ1+
δ2)-differential privacy.

There exist advanced composition theorems that give tighter bounds
on privacy loss under certain conditions [23], but we use sequential
composition as defined to maximize the generality of this system.

In this work, we use differential privacy to provide strong bounds
on information leakage during query processing. We refer to these
bounds as our privacy budget, (εtotal, δtotal). By adding noise be-
fore and after query processing, we protect the private data of the
data providers, but reduce the final query result accuracy. SAQE’s
query planner maximizes query accuracy while adding noise to up-
hold the guarantees of differential privacy using a constraint solver
when it receives a query for optimization.
Approximate Query Processing is a mechanism that trades the
accuracy of query answers in exchange for shorter latency. Ag-
gregate queries, such as COUNT, SUM, AVG, benefit the most
from approximate query processing since they can achieve an at-
tractive accuracy-performance trade-off by exploiting the statisti-
cal properties of aggregate operations. Although there are numer-
ous approaches to approximate query processing (e.g., wavelet, his-
tograms, sketching), this work focuses on sampling due to its gen-
erality in supporting ad-hoc selection predicates. Although prior
systems [3, 17, 31, 35, 39] have introduced approximate query pro-
cessing for answering relational queries, SAQE is the first to bring
this mechanism to private data federations.

One useful property of sampling-based approximate query pro-
cessing is that the error bounds in its answers quickly diminishes
as the sample size increases,even when the original dataset is quite
large. Specifically, for a sample of size ns records and an original
dataset of size n, the standard error of the mean is proportional to
(
√
n− ns)/

√
ns(n− 1) with an upper bound of 1/

√
ns. Hence,

the upper bound on the error of the approximate query result is
independent of the size of the original dataset. This principle gen-
eralizes to all aggregates including COUNT, SUM, and AVG.

2.4 Query Lifecycle
A query runs in SAQE using the steps shown in Figure 3. This

shows the two main facilities of SAQE and its two main facilities:
query planning and query execution. The system plains and op-
timizes its queries on the client side, where the private data fed-
eration parses the input SQL query Q and compiles a secure ex-
ecutable query plan P that translates SQL to secure computation
for all of the steps that run obliviously over the inputs of two or
more data providers. The query execution occurs on the server side,
amongst the data owners, where they jointly execute P over their
respective private databases and return the final result to the client.
Step 1: Oblivious Query Planning. The client first receives a
SQL query,Q, and parses the query into a directed acyclic graph of
database operators. Next, the private data federation analyzes the
query tree bottom-up using information flow analysis to determine
the minimal subtree that must run in secure computation based on

2694

SELECT diag, COUNT(*) cnt
FROM diagnosis
WHERE patient_id

IN cdiff_cohort
GROUP BY diag
ORDER BY cnt
LIMIT 10

(a) SQL Query

diagnosis

σpid∈cdiff cohort

γdiag,count(∗)

sort(count)

limit 10

Oblivious

(b) Oblivious Query Plan

Figure 4: Comorbidity query and plan

the column-level security policy. We call this the oblivious subtree.
When taken together with the rest of the operators in the query
tree, we have our oblivious query plan. Figure 4 shows an example
query, Comorbidity, and its corresponding oblivious query execu-
tion plan. Figure 4b places the oblivious subtree inside the box,
meaning that the GROUP BY, SORT, and LIMIT operators must
be jointly executed by all data providers using secure computation,
while the SELECT and FILTER operators are executed locally on
each data provider in plaintext. Note that this phase uses no private
information to determine how to run the query.
Step 2: Secure Query Execution. The data providers locally run
any plaintext operators that exist in the query plan to prepare their
inputs for sampling. The data providers perform this step in paral-
lel before unioning their data into a single array obliviously. This
union encrypts the query inputs as secret shares by running a cryp-
tographic protocol. At the end of the protocol, each party has one
share of each tuple. At least k out of m parties must work together
to recover the secret input from their shares. After secret sharing
the query’s inputs, the data providers jointly compute the query by
executing the query plan bottom up.
Step 3: Query Results Release. After the private data federation
evaluates the query, but before sending its results to the client, the
data providers noise its output with a differential privacy mecha-
nism to prevent anyone from learning the precise result. The data
providers then each send their noisy cryptographic shares to the
client, who assembles the shares to reveal the noisy query result.

3. SAQE OVERVIEW
We outline our research goal s and the challenges therein. We

then provide a roadmap for how SAQE addresses these goals with
a novel query compilation and execution pipeline. In addition, we
show the SAQE architecture and present the SAQE client API.

3.1 Research Aims
The overarching goal of this research is to scale private data

federations large datasets while upholding their end-to-end privacy
guarantees and providing query results with high accuracy. To date,
the bottleneck for query processing in this setting has been obliv-
ious query evaluation over secure computation. The main bottle-
neck of existing private data federations is the secure computation
required to protect the data during query execution. To achieve this
speedup with minimal loss in accuracy and privacy, we general-
ize approximate query processing to obliviously sample query in-
puts while providing tight accuracy bounds on their results. More-
over, we integrate approximate query processing with differential
privacy. SAQE exploits the uncertainty inherent in query results
over sampled data to introduce less noise into the query’s final out-
put. We frame this research goal as an optimization problem:
identify the query plan with the highest accuracy subject to a client-
supplied privacy budget and an optional time constraint.

Naı̈vely, one could apply approximate query processing to this
setting by taking a uniform random sample of private data from
each data owner, and then executing the query over secure compu-
tation on the sampled data. This would improve performance since
the system would process a smaller set of inputs. This approach,
however, introduces two new problems: 1) Privacy: approximate
query processing does not provide privacy guarantees, so sampling
with existing algorithms will compromise the end-to-end privacy
guarantee because each data provider knows what tuples he or she
contributed to the query, and 2) Accuracy: in the absence of ad-
ditional mechanisms the interaction between the noise introduced
by sampling and the noise introduced by differential privacy is not
well-defined and may cause query answers to have extremely im-
precise query results.

To address these challenges we introduce SAQE, a private data
federation system that extends approximate query processing to
private data federations to improve performance while ensuring pri-
vacy and accuracy. SAQE introduces novel sampling algorithms
prevent uncontrolled information leakage thereby upholding the
system’s end-to-end privacy guarantee. In addition, we introduce
a novel query optimizer to capture the interaction between SAQE’s
two noise sources. This maximizes the accuracy of our query re-
sults by not “double counting” the information leakage from these
mechanisms. We describe the sampling algorithms in depth in Sec-
tion 4. We then formalize this relationship between approximate
query processing and differential privacy and use this to optimize
the accuracy of our query results in Section 5.

3.2 Architecture
Figure 3 depicts the SAQE architecture and how it augments the

capabilities of a private data federation. SAQE has two compo-
nents: the server and the client. Each data provider runs an instance
of the SAQE server to evaluate queries on their private dataset as
part of the unioned query workload. The SAQE client performs
query planning and optimization. It also assembles the crypto-
graphic shares of the query results from the data providers to reveal
the noisy query output.
SAQE Client. On the client’s workstation, SAQE begins by pars-
ing her SQL query into a directed acyclic graph of operators with
their security policy for running either in the clear or obliviously as
described in Section 2.1. The client-side software next adds one of
the sampling operators from Section 4 to the query tree each time
the federation unions the secret inputs of multiple parties. The sam-
pling algorithms may be full-oblivious or differentially private. Af-
ter that, the client-side software optimizes the sampling rate to max-
imize query accuracy while meeting a client-provided time limit T
using the algorithm in Section 5. Recall that the system completes
this query planning process without using any information about
the data providers’ private query inputs. In contrast to previous
work that maximizes the performance versus privacy trade-off [10],
SAQE optimizes within a three dimensional decision space of ef-
ficiency, privacy, and accuracy. This optimization process is per-
formed independently of the query’s private inputs, hence the plan
leaks no information about this data. Note that the planner does not
reorder commutative operators when it optimizes a query plan, we
leave this challenge to future work.
SAQE Server. As in existing private data federations [9, 10] the
SAQE Server takes in the oblivious query plan generated by the
private data federation and executes it locally on a host running the
private DBMS for each data provider. Next, all of the data owners
compute the public subtree(s) of the query plan in parallel. For
each leaf in the oblivious subtree, SAQE Server runs a sampling
operator selected based on the query type, e.g., stratified sampling

2695

for GROUP BY queries. It then runs both the remaining database
operators and noises the query results within secure computation.
Supported Operators. SAQE supports a large class of database
operators: selection, projection, aggregation (i.e., SUM, AVG, and
COUNT) optionally with group-by, sorting, limit and denormal-
ized joins. We denormalize by precomputing re-usable interme-
diate join results without sampling, as in [3, 36], to simplify our
sampling accuracy bounds.

3.3 Query Syntax
Let’s look at the SAQE system architecture as shown in Figure 3

in terms of a medical research use case. In this scenario, each hos-
pital hosts a database that contains private data, such as individual
patient records. We refer to these hospital databases as the private
databases. In addition, there is a medical researcher that wants to
execute a queryQ over the union of the data in the private databases
within some time limit T and privacy budget (ε, δ). This extended
SAQE query syntax is:

SELECT AGGREGATE([DISTINCT] *)
FROM <table>
WHERE privacy = <epsilonResult,deltaResult,

epsilonSample,deltaSample>
[AND <selection criteria>]

[AND time_limit = <time limit>]
[GROUP BY <attribute>]

In our running example, a medical researcher specifies the de-
sired tables and attributes, the output privacy budget, the sampling
budget, as well as an optional time limit. In the absence of a time
limit, we choose a sampling rate that minimizes the total query
error. Note that the researcher does not need any knowledge of
the source databases besides the shared database schema. This re-
searcher is the client and she is working from a machine we refer
to as the analyst workstation. Throughout the rest of the paper, we
examine how SAQE parses the input query Q, compiles an obliv-
ious plan P according the provided budgets, and executes P over
the union of the data from each hospital.

4. PRIVATE SAMPLING
Our core idea in this work is to use secure sampling algorithms to

improve performance and enhance security, while providing prov-
able guarantees on result accuracy. However, if we naı̈vely sam-
ple our input data without careful examination, we may end up
compromising the accuracy or privacy of our system. In this sec-
tion, we outline several sampling techniques employed in our sys-
tem, including uniform, stratified, and distinct sampling and reveal
our oblivious algorithms for each technique. We then generalize
these fully-oblivious sampling methods—which leak no informa-
tion about the query’s inputs nor the tuples selected in the sample—
to differentially-private sampling. The latter leaks bounded infor-
mation about the query’s inputs, and runs more efficiently by exe-
cuting part of the sampling algorithm on each data provider locally.

4.1 Oblivious Sampling
We now introduce a suite of oblivious sampling algorithms. They

offer the same properties as traditional sampling for approximate
query processing but with one important addition: they guarantee
that as we sample the union of the data of two or more mutually
distrustful parties that none of them learn about tuples that were
selected – either from their query inputs or those of their peers.
SAQE performs its sampling using secure computation to provide
this protection. In the private data federation setting, our algorithm
obliviously samples the combined data of all participating parties

and creates a single encrypted sampled query input for use in the re-
maining query processing. This sampling requires additional time
in our query execution pipeline, and the system amortizes this cost
with the reduced operator runtimes over the sampled query inputs.

We present sampling algorithms that support a broad class of
SQL queries. Uniform sampling offers tight accuracy bounds for
linear queries (e.g., COUNT) without group-by or distinct opera-
tors. Stratified sampling adds tighter accuracy bounds for group-by
queries. Last, distinct sampling brings in support for queries with
DISTINCT aggregation.

4.1.1 Uniform Sampling
In approximate query processing, a system commonly uses uni-

form sampling for its inputs when the following two conditions are
satisfied: 1) a query does not have joins on fact tables; and 2) if
a query includes the group-by clause, the support for every group
(i.e., the number of items that belong to each group) must be large
enough to ensure a certain accuracy guarantee. These conditions
are commonly satisfied when the database schema follows the star
schema (or the snowflake schema) for which joins are mainly per-
formed between a (large) fact table and (smaller) dimension tables.
If rare groups are present in a dataset or fact tables are joined, other
sampling mechanisms discussed later provide higher accuracy.

We cannot release the true number of input records n without re-
vealing private information about the unioned input data. Instead,
we use a noisy estimate of the number of records ñ. We add dummy
tuples to the query inputs to protect their true cardinality. We gen-
erate this noisy input cardinality using the truncated Laplace mech-
anism, TLap(εsetup, δsetup) [10]. It adds a non-negative integer
to the source cardinality. It slightly increases our input size, and
guarantees SAQE samples over all of the true input records.

This privacy-preserving input cardinality, ñ informs our expected
sample size, ns. The probability of selecting a given input record
during sampling is p = ns

ñ
. This figure does not affect the privacy

amplification or the noise we inject into the query answer for the
system’s differential privacy guarantee because it only impacts the
information revealed from observing the query’s execution by alter-
ing the public sample size. Since the system does not disclose the
true input table size, n, we estimate the error in the query answer
owing to sampling using the approximate data input size ñ (minus
the expected number of dummies based on (εsetup, δsetup)) instead
of the true data input size n. Before any queries are executed by
SAQE, the noisy metadata is calculated and cached for future use.
Hence, it does not affect the system’s per-query privacy budget.
Oblivious Algorithm. Creating uniform samples obliviously can
be done using an oblivious random shuffling, which in turn can be
implemented using oblivious sorting. However, this approach is
slow since we need to provide a random index for each element.
In order to speedup the oblivious uniform sampling, we assign
each element a random bit and use an oblivious compaction algo-
rithm, which outperforms random shuffling. We show the details
of our implementation in Algorithm 1. The time complexity of this
sampling implementation is O(n logn) due to the use of oblivi-
ous compaction. We use an oblivious compaction algorithm [28]
that runs in O(n logn) time. Recent work [7] devised an asymp-
totically linear-time oblivious compaction; however, the actual effi-
ciency is not higher than what we use due to high fixed setup costs.
Utility Analysis. In Algorithm 1, the utility of our implementation
relies on the the accuracy of our input parameters: the input data
size ñ and the sampling rate p. SAQE generates ñ using a differ-
entially private mechanism. Since ñ is noisy metadata, it can be
used across multiple queries. Hence, generating ñ only consumes
the privacy budget once, when data is inserted into the database

2696

Algorithm 1: Oblivious uniform random sampling
Input: Dataset D with ñ dummy-padded records secret shared

across m parties as d1, ..., dñ, sampling rate p
Output: Uniform random sample O of expected size ns, where

ns = pñ

Use secure computation to:
1. Append the input lists from all parties together.
2. For each element in the list, securely sample a bit that equals ’1’

with probability p and output as ri.
3. Obliviously select all records Di from D such that ri = 1
4. Collect all selected records into a single relation O

and its accuracy is set by the database administrator. On the other
hand, choosing p to maximize accuracy depends on the constraints
of each query. We discuss our approach in Section 5.
Privacy Analysis. When using oblivious sampling, all computa-
tion on private data is carried out using secure computation. As
such, we do not leak any information when executing the sampling
operator. The input to the sampler is the union-ed data from each
data provider while the output is the noisy result of the query ex-
ecution, just as in existing private data federations. As such, these
two steps also do not leak information. With oblivious sampling,
neither the input, computation, nor output compromise privacy.

4.1.2 Stratified Sampling
Stratified sampling is a biased sampling mechanism that pre-

serves rare groups (e.g., items with eye color = red) by con-
structing a sample as follows. Given a column (e.g., eye color),
the mechanism first partitions a dataset into multiple strata based on
the attribute values in the column; that is, tuples with eye color
= black and tuples with eye color = brown are assigned
to different strata. Then, uniform sampling is performed indepen-
dently for each stratum. The sampling rate for each stratum is set
such that each strata has a sufficient number of samples. For exam-
ple, if there are very few tuples with eye color = brown, then
all these tuples will be included in the samples. After sampling, the
samples from each stratum are concatenated to construct the full
sample. Hence, the contribution of each group to the full sample is
proportional to the size of their stratum.

To prepare stratified sampling, first, we must partition our input
data into separate strata. Given a set of values {v1, . . . , vNstrata}
and a privacy budget (εsetup, δsetup), each party partitions its data
into Nstrata stratum and apply TLap(εsetup, δsetup) to add dummy
records to each strata. A public label vi is assigned to each record
if it falls into strata with value vi (even the record is a dummy).
Then these records are secretly shared among the k parties while
keeping the labels public. With these labels, we can now estimate
the size of each stratum in D in the stratified sampling.
Oblivious Implementation. In Algorithm 2, we detail our oblivi-
ous stratified sampling implementation. For each stratum, we carry
out oblivious uniform random sampling as in Algorithm 1 and col-
lect the selected records. Note that we must construct a sample for
every stratum in the domain, even if the input data does not contain
records in that stratum. If we do not, then we leak the information
about which stratum are present in the private input data. Finally,
we concatenate all samples to form our final sample O.
Utility Analysis. In order to determine the accuracy guarantees of a
stratified sample, we need to bound the error according to our sam-
pling rates {p1, . . . , pNstrata}. For the error, we define our bound as
the maximum variance from any single stratum. If we used uniform
sampling, there is no guarantee that a records in specific stratum
will appear in the sample, resulting in an error of 100%. Con-
versely, our stratified sampling algorithm reduces error by ensuring

Algorithm 2: Oblivious stratified sampling algorithm
Input: Set of data records D stratified over g with size

ñ =
∑Nstrata
i=1 ñg,i distributed across k parties and

partitioned into strata Dg,1, ..., Dg,Nstrata , and sampling
rates {p1, . . . , pNstrata}

Output: Stratified random sample O of expected size ns, where
ns =

∑Nstrata
i=1 ñg,i · pi

Partition D into {A1, . . . , ANstrata} based on their labels
for i← 1 to Nstrata do

1. Oi ← ObliviousUniform(Ag,i, ñg,i, p̃i)
2. Collect all stratum results Oi into a single relation O

Algorithm 3: Oblivious distinct sampling algorithm
Input: Set of data records D with size ñ distributed across k

parties as D1, ..., Dñ, a maximum frequency f , sampling
rate p

Output: Random sample O of expected size ñpf

1. Each party Pi creates two lists, an input list Li that contains all
input records from Di and a de-duplicated list L′i.

Use secure computation to:
2. Append the list L′i from all parties and obliviously de-duplicate

the list using oblivious sorting and a linear scan. The resulting list
is L′.

3. S ← ObliviousUniform(L′, ñ, p)
4. Obliviously select all records Di from {Li}i∈[k] such that the

value is in S
5. Collect all selected records into a single relation O

that all strata are present in the sample. We determine our sampling
rates {p1, . . . , pNstrata}, and our error, by applying the optimization
discussed in Section 5.
Privacy Analysis. For stratified sampling, we apply oblivious uni-
form sampling within each stratum, guaranteeing that privacy leak-
age within each stratum is bounded by the differential privacy guar-
antees given by oblivious uniform sampling. When creating the fi-
nal result, we concatenate the sampled records from all strata within
secure computation, leaking no additional information.

4.1.3 Distinct Sampling
Distinct sampling [27] is used to sample the domain of an at-

tribute rather than the attribute tuples themselves. Given a set of
tuples with multiple possible values (e.g., eye color = black
and eye color = brown), a distinct sampler uses a collision-
resistant hash functionH to hash the attribute values of the column,
where H returns a value between 0 and 1; then, distinct sampling
chooses the tuples if their hash values are smaller than a sampling
probability p. Hence, it is most effective when the query requires
finding distinct values for a given attribute.
Oblivious Implementation. Algorithm 3 details our distinct sam-
pling implementation. In order to carry out distinct sampling with
secure computation, we cannot apply a hash functionH due to pro-
hibitive costs [5]. Instead, we utilize secure computation to gener-
ate a de-duplicated list of records L′ and sample L′ using Algo-
rithm 1 to create a list of sampled records S. Then, we oblivious
select records from D whose values are present in S. We use the
public maximum frequency f to correctly bound the size of the
sampled output.
Utility Analysis. Consider a set of tuples for a single attribute,
where each distinct value appears some unknown number of times.
If we apply uniform random sampling, we may severely under-
count the number of distinct values due to a small number of values
appearing over a large fraction of the tuples. Applying stratified
sampling would return distinct values, but in the case where each
tuple had a different value, it would return the entire set of tuples,

2697

effectively not sampling at all. Conversely, distinct sampling sam-
ples from the attribute domain, ensuring that we obtain a subset of
possible attribute values. As such, we treat error as the number of
records with unique attribute values missing, rather than the total
records missing. With this definition, we determine our sampling
rate p and our error by applying the optimization in Section 5.
Privacy Analysis. In our implementation, all computation over
private data is carried out using secure computation, protecting the
data during computation. At the output, the client only receives
the decrypted final result, guaranteeing that they do not learn ad-
ditional information about the private inputs. Note that our imple-
mentation holds similarities with universe sampling [35]. Unlike
universe sampling, we use distinct sampling only for Distinct ag-
gregate queries, so all duplicates are removed at the query output.
As such, any change to a single input tuple only affects the output
by 1, i.e., query sensitivity equals 1.

4.2 Differentially-Private Sampling
In some cases, such as for extremely large datasets, oblivious

sampling may be too expensive due to its reliance on processing all
input records within secure computation. An alternative approach
is using differential privacy to generate local samples first. Differ-
entially private sampling creates samples at the source database us-
ing plaintext uniform, stratified or distinct samplers, then combines
the samples using secure computation. This means that the ini-
tial sampling is executed in plaintext, with much less performance
degradation compared to oblivious sampling. In exchange, local
sampling leaks information about the source data. Previous work
has shown that we can bound information leakage within differen-
tial privacy guarantees by adding noise to the resulting sample in
the form of dummy records [10] using the TLap(ε, δ) mechanism.

In our implementation, each party i samples their records locally,
without secure computation. Then, using a multiparty protocol for
generating noise as in [48], the parties add dummy records to their
samples to create noisy samples. The magnitude of this noise de-
pends on the privacy budget (εsample, δsample) allocated to the
Laplace noise mechanism TLap. With secure computation, we
combine the noisy samples from all the parties to create an oblivi-
ous, uniform random sample. The time complexity of this sampling
implementation is O(n) due to the use of oblivious union.

With this sampling approach, we avoid costly operations in se-
cure computation, at the expense of query accuracy. We use a por-
tion of our total budget to hide our input sample sizes, leaving a
smaller privacy budget for the query output, which requires SAQE
to add more noise at the output, reducing our query accuracy.
Privacy Analysis. For sampling with differential privacy, each data
provider submits their noisy sampled data to the private data fed-
eration. If their sample is not noised, then the client could learn
additional information about an data provider’s private data. For
example, if the parties send data to the sampler without noise, then
they reveal the true size of their data. When this data is private, the
client can use the input data size to learn private information, such
as the operator selectivity, and deduce the private data values.

5. QUERY OPTIMIZATION
We now discuss the SAQE optimizer and how it chooses a sam-

pling rate by balancing the contributions from our two noise sources:
approximate query processing and differential privacy. We describe
our optimization problem and discuss our two modes of operation,
max accuracy mode and time bound mode. In addition, we clarify
the statistics used during optimization to arrive at an approximately
optimal sampling rate.

5.1 Modeling Query Result Accuracy
The goal of the SAQE query optimizer is to maximize query re-

sult accuracy. The first source of inaccuracy in SAQE is the error
introduced by sampling the query inputs. Since we execute a query
over a sample of the true data, our answer will suffer reduced ac-
curacy. The second noise source is due to the noisy query results
needed to satisfy differential privacy. Using a differentially private
mechanism, we add noise to the query results to prevent attackers
from learning unauthorized information. In SAQE, we want the
optimizer to reason about these two noise sources a priori, mean-
ing that SAQE can choose a sampling rate during query planning
that maximizes result accuracy. As such, we have to define each of
these noise sources and show how to combine them.
Error from Approximate Query Processing. We use well-known
statistical formulas for sampling without replacement to determine
the expression for the variance in our sampling error: Var(X)=
ñ2[r(1−r)/ns][1− (ns−1)/(ñ−1)], where r is the query selec-
tivity, ñ is the population size, and ns is the sample size. Note that
Var(X) depends on the selectivity r of a query, which is typically
unknown before processing the query. We remove this dependency
on r by working with its upper bound as follows: r(1− r) ≤ 1/4.
We further simplify the bound by relying on: 1−(ns−1)/(ñ−1) ≤
1− ns/ñ = 1− p. Finally, we obtain a simplified upper bound on
the sampling variance: ñ(1−p)/(4p). For stratified sampling, the
bound becomes ñi(1 − pi)/(4pi) where i is the current stratum.
For distinct sampling, the bound is ñdistinct(1 − p)/(4p) where
ñdistinct is the estimated number of unique values in the input.
Noise from Differential Privacy. In order to combine our noise
from differential privacy with our sampling noise, we noise our
query results using a Gaussian Mechanism [23]:

THEOREM 2 (GAUSSIAN MECHANISM). Given function f :
D → Rd, define its l2 sensitivity be ∆2f = max|D	D′|=1 ‖f(D)−
f(D′)‖2. Let ε ∈ (0, 1) be arbitrary. The Gaussian Mecha-
nism with parameter σ ≥ c∆2f/ε adds noise to each of the d
components of the output scaled to N (0, σ2). It achieves (ε, δ)-
differential privacy when c2 > 2 ln(1.25/δ).

The l2 sensitivity measures the largest possible change to the
function output when adding or removing a row. For instance, the
sensitivity of COUNT(*) is 1 and the sensitivity for Sum(*) is the
maximum domain value. When adding sufficient noise to match the
sensitivity of the function, differential privacy can be achieved [23].

Given a query plan consisting of a DAG of operators where the
last operator is an aggregate function f : D → Rd, we apply
an (ε, δ)-differentially private mechanism M such as the Gaussian
mechanism to the last operator. The overall privacy loss on the in-
put dataset at the leaf of the query plan can be analyzed using the
stability of the operators in the query plan. In SAQE, we use a
general stability notion from prior work [24].

DEFINITION 2 (PROBABILISTIC STABILITY). Letα and β be
functions in R≥0 → R≥0. A randomized transformation RS is
(α, β)-probabilistic stable if for any (ε, δ)-differentially private
mechanism M , M ◦RS satisfies (α(ε), β(δ))-differential privacy.

Prior work for private databases [10, 36, 46] only consider deter-
ministic transformations , i.e., their stability functions (α(·), β(·))
are linear. For instance, for Selection, and Projection, Count(*),
and Count Distinct(*), α(·) and β(·) are identity functions, i.e., the
privacy parameters are unchanging. For GroupBy, α(ε) = 2ε and
β(δ) = 2δ. OrderBy and Limit usually have very high stabilities,
and hence we consider a query plan that applies these operators
after a differentially private mechanism as a post-processing step.

2698

Table 1: Error Contributions of COUNT and SUM queries
Query Var(X) Var(Y)
Count n(1− p)/(4p) 2 ln(1.25p/δresult)/ ln(1 + (eεresult − 1)/p)2

Sum n∆2(1/p− 1) 2∆2 ln(1.25p/δresult)/ ln(1 + (eεresult − 1)/p)2

On the other hand, sampling operators are randomized trans-
formations and their stability depends on many factors [8]. Uni-
form sampling used by SAQE applies Bernoulli sampling (or Pois-
son subsampling) with sampling rate p and is (σ, β)-stable [8, 24],
where α(ε) = ln(1 + p(eε − 1)) and β(δ) = p · δ, As p < 1,
this sampling operator actually tightens the privacy parameter, i.e.,
α(ε) < ε, β(δ) < δ, and hence strengthens or amplifies the privacy
guarantee, unlike deterministic transformations. We also show that
the stability results for the other two sampling techniques. Distinct
sampling shared similar stability as uniform sampling. Stratified
sampling has different sampling rates among strata and hence its
stability is analyzed based on the maximum sampling rate. We
show the full proof in the full paper.

THEOREM 3. Stratified sampling (Algorithm 2) has a stabil-
ity α(ε) = ln(1 + pmax(eε − 1)) and β(δ) = pmax · δ, where
pmax = max(p1, . . . , pNstrata). Distinct sampling (Algorithm 3)
has a stability α(ε) = ln(1 + p(eε − 1)) and β(δ) = p · δ.

Then we can bound the privacy loss of a complex query plan and
derive the corresponding noise parameter of the the Gaussian mech-
anism that applies to the final aggregate in the query plan.

PROPOSITION 1. For a query plan with l operators (RS1, . . . ,
RSl) with an aggregate function f , for whichRSi is (αi(·), βi(·))-
probabilistic stable, if the mechanism applied is (εresult, δresult)-
differentially private, then the overall privacy loss is (ε0, δ0), where
ε0 = α1 ◦ · · · ◦ αl(εresult) and δ0 = β1 ◦ · · · ◦ βl(δresult).

Take a counting query with uniform sampling as an example.
If a sampling operator with sampling rate p is applied, to achieve
(εresult, δresult)-differential privacy on the input data, the Gaus-
sian mechanism applied to the final count aggregate operator only
needs to be (ε0, δ0)-differentially private, where ε0 = ln(1 +
(eεresult − 1)/p) and δ0 = δresult/p. This requires a Gaus-
sian noise with a variance Var(Y)= 2 ln(1.25p/δresult)/(ln(1 +
(eεresult −1)/p)2, which is smaller than the case without sampler.
Approximately Maximizing Query Result Accuracy. Now that

we have our two Gaussian noise distributions, as well as their am-
plification, we can combine them as follows. Let X be a random
variable standing for the sampling error from approximate query
processing, and let Y be a random variable standing for the out-
put error from differential privacy. We use the mean squared error
and represent the total output error of the query by the sum of the
variances of X and Y, i.e. Var(X) + Var(Y), as X and Y are inde-
pendent and have zero mean. We show the equations for X and Y
for Count and Sum queries in Table 1.

5.2 The SAQE Optimizer
With the noise source definitions in Table 1 , we can approxi-

mately optimize the accuracy of our query results. The SAQE op-
timizer offers two modes. In the first, max accuracy, it takes in a
SQL query and a privacy budget constraint. The optimizer identi-
fies a query plan that maximizes accuracy and only samples the data
until no additional accuracy gains are possible owing to the fixed
noise requirements of differential privacy. In order to maximize ac-
curacy, we use an objective function that incorporates our two noise
sources: sampling and differential privacy. In the second mode,
time bound, we maximize accuracy within fixed time and privacy
constraints. We handle our time constraint using our cost model
from Section 5.2 and our privacy constraint according to existing

differential privacy analyses on relational databases [10,36,46]. We
use a solver to identify the optimal query plan in both modes where
the goal of our objective function is to determine the optimal sam-
pling rate p for a given secure leaf operator λ.

Given a query, SAQE constructs an objective function to deter-
mine the sampling rate used during query execution. Using an off-
the-shelf solver, we can solve this function to maximize query ac-
curacy, while satisfying our privacy constraints. Through query
optimization, SAQE creates query plans that balance differential
privacy, approximate query processing, and secure computation.
Max Accuracy: Uniform Sampling. For max accuracy mode, we
combine the expressions for our noise sources shown in Table 1
to determine the optimal sampling rate p using the following opti-
mization problem:

min
p

n(1− p)/(4p) + 2 ln(1.25/δresult)/ε
2
result (1)

s.t. pδresult ≤ δ0
ln(1 + p(eεresult − 1)) ≤ ε0

The above analysis details a linear count query utilizing a uniform
sampler. In Table 1, we show the result of similar error analyses on
queries involving Sums, where ∆ = maximum domain value.
Max Accuracy: Stratified Sampling. For stratified sampling, we
adjust our optimization problem to minimize the maximum error
from any single stratum. We optimize:

min
p1,...,pNstrata

maxiError(ñi, pi, εresult, δresult) (2)

s.t. maxi piδresult ≤ δ0
maxi ln(1 + pi(e

εresult − 1)) ≤ ε0
Here Error(ñi, pi, εresult, δresult) is similar to uniform sam-

pling, except the optimization is carried out for all strata. Since the
optimization is over disjoint data, we can carry out the optimization
in parallel, avoiding additional latency overhead.
Max Accuracy: Distinct Sampling. In distinct sampling, we sam-
ple from the space of unique values in the source data. To handle
this setting, we adjust our optimization problem as follows:

min
p

Error(ñdistinct, p, εresult, δresult) (3)

s.t. pδresult ≤ δ0 and ln(1 + p(eεresult − 1)) ≤ ε0
Again, Error(ñdistinct) here is the same equation as in uniform

sampling, except that we use the number of possible distinct values
ñdistinct instead of the number of input records ñ. We estimate
ñdistinct as ñ/f , where f is the maximum frequency. Since we
use distinct sampling only for queries that measure accuracy by the
number of distinct values in the output, our accuracy equations are
identical to the uniform sampling setting.
Time Bound Mode. We extend our optimization problem in Equa-
tion 2 to time bound optimization by adding the constraint T ≤
TMAX where we solve for T using our SAQE cost model.

For a single operator, λi, we express the cost as function of the
cardinality card(λi,Ni) and the cost of oblivious operator eval-
uation co(λi, card(λi,Ni)). We take the sum of our two cost
sources, bounded by our fixed time limit Tmax, to arrive at our
cost model:

T =
∑̀
i=1

cp(pi, Ni) + co(λi, card(λi,Ni)) ≤ Tmax

where cp(pi, Ni) = 0 for non-secure leaf operators

(4)

Since the time cost T varies depending on client and host hard-
ware, we use I/Os as a stand-in for time. This fits well with our

2699

SMCQL(1) Shrinkwrap(1) SAQE(.5) SAQE(.1) SAQE(.01)
0

50
100
150
200
250
300

Error: 24%Error: 5.1%

Error: 3.3%

Error: 0.2%

Error: 0%

System Name (sampling rate)

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Figure 5: End-to-end performance comparison with existing sys-
tems. HealthLNK Comorbidity, εtotal = 0.5, δtotal = 10−6.

oblivious execution environment due to memory accesses being the
overriding cost source during execution [10]. When communicat-
ing the cost to the user, the system will need an I/O to time conver-
sion factor. This conversion factor will account for the hardware-
dependent costs of a given execution environment.

6. EXPERIMENTAL RESULTS
In this section, we evaluate SAQE using real-world hospital data

and analytics queries, as well as a selected TPC-H query workload.
We begin by describing our experimental design and configuration,
including our query workloads. Next, we examine the end-to-end
performance of SAQE against both a fully oblivious, non-sampled
execution and a non-secure, plaintext execution. Finally, we exam-
ine the effectiveness of our cost model and optimization in relation
to the trade-offs between accuracy, privacy, and efficiency.

6.1 Experimental Setup
TPC-H Workload We evaluate SAQE on TPC-H, scale factor 1.
We configure the private data federation as if we were running an
international online shop. Businesses of this kind are increasingly
subject to data residency requirements such as that of the European
Union’s GDPR. Hence, we partition the suppliers and customers by
their nationkey and collocate a customer with his or her orders and
lineitems. The primary keys for order and customer are public ow-
ing to their known domain of (1... <table cardinality>). Likewise,
we partition suppliers and the partsupp table by their country of
origin and have public primary keys. Since the company’s website
makes their catalog, prices, and countries served visible to anyone
who accesses it, we replicate the parts, nation, and region table on
all nodes and set the supplycost as public. Lineitem, the fact table,
has all of its attributes set to private. This guards against a curious
observer attempting to deduce the contents of individual shopping
carts. In the same vein, the foreign key relationship between cus-
tomer and order and between partsupp and lineitem are also private.
For our experiments, we denormalize the schema as described in
Section 3.2. SAQE use secure computation to create to pre-join the
source relations securely, and the system maintains a secret-shared
mapping table from this that is not accessible to anyone.
HealthLNK Workload We compare SAQE with existing systems
by using HealthLNK [50], a clinical data research network that pro-
vides a repository containing records from Chicago-area healthcare
institutions. Our experiments use one year’s worth of data from two
hospitals, totalling 500,000 patient records, or 15 GB of data. This
data set contains a public patient registry with anonymized patient
identifiers. HealthLNK provides public schema with security an-
notations denoting public and private attributes.
Configuration We implemented SAQE on top of a two-party pri-
vate data federation using an off-the-shelf secure computation li-
brary, EMP-Toolkit [59]. We ran SAQE using 6 servers running
in pairs. Each machine has PostgreSQL 9.6 running on Ubuntu
Linux, as well as 64 GB of memory and 7200 RPM NL-SAS hard
drives on a dedicated 10Gbps network. We use (εtotal, δtotal)
to represent the sum of the result and sample per query budgets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

Sampling Rate

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Oblivious Sampling DP Sampling

Figure 6: Sampling approach performance comparison,
HealthLNK Comorbidity, εtotal = 0.001, δtotal = 10−6.

Unless otherwise specified, our figures show the average runtime
of three runs per experiment, apply differentially private sampling,
and use a default per query privacy budget of (εtotal = 0.001, δtotal
= 1.0× 10−6). Under oblivious sampling, the default privacy bud-
get is used entirely for the result, while for differentially private
sampling, the budget is split evenly between result and sample. For
each database, we release noisy table and group sizes using εsetup
= 0.1 for each. As the metadata is used for all queries, it does not
consume our per query budget.
Performance Analysis We motivate SAQE by comparing overall
execution times against existing systems and provide an analysis
of our two sampling strategies. Since we can set our execution
time a priori using our cost model, our performance numbers are
not meant to show that SAQE outperforms previous systems in all
ways. Instead, we want to provide a sense of the efficiency design
space and how we can tune SAQE to adjust our trade-offs.

6.2 End-to-end Performance
First, we look at the end to end performance of SAQE in com-

parison with two existing private data federations, SMCQL [9] and
Shrinkwrap [10]. SMCQL works in a similar setting and provides
privacy guarantees on the input data and on all computation. For
a fair comparison, we implemented secure operators in SMCQL us-
ing EMP, an MPC implementation much faster than the one used in
SMCQL. Note that SMCQL has no output error since it does not add
output noise to protect query result information leakage.

Shrinkwrap combines differential privacy guarantees with secure
computation to speed up query execution. By relaxing privacy of
computation guarantees, Shrinkwrap reduces the intermediate re-
sult cardinalities, speeding up execution by processing fewer tu-
ples. Shrinkwrap bounds this information leakage according to a
privacy budget (ε, δ). Note that Shrinkwrap introduces error by us-
ing a portion of the privacy budget to add noise to the query output.
To provide an apples to apples comparison, we use oblivious sam-
pling for SAQE and fix both the Shrinkwrap and SAQE privacy
budgets to (εtotal = 0.5, δtotal = 10−6).

In Figure 5, we see the performance comparison between SM-
CQL, Shrinkwrap, and SAQE using the HealthLNK Comorbidity
query, shown in Figure 4a. For SAQE, we provide results from
three different sampling rates. We see that by adjusting the sam-
pling rate we can tune the execution time of the system. In ex-
change for performance, SAQE’s use of approximate query pro-
cessing introduces error into the query result, with the lower sam-
pling rates providing higher error along with better execution times.

We also see a weakness of Shrinkwrap. In Shrinkwrap, perfor-
mance is improved by minimizing the oblivious intermediate re-
sult cardinalities needed for secure computation. This works best
for queries where the worst case, oblivious cardinality is extremely
large compared to the true cardinality, such as in foreign key-foreign
key joins where the output cardinality can be the cross product of
the inputs. For linear queries, such as Comorbidity, the oblivious
cardinality is, at worst, equal to the input size n. In this case,

2700

.1 .2 .3 .4 .5 .6 .7 .8 .9
0

0.1

0.2

0.3

0.4 SAQE Sampling Rate

Sampling Rate

R
el

at
iv

e
E

rr
or

(%
)

DP Error Sampling Error

(a) TPC-H Query 4

.1 .2 .3 .4 .5 .6 .7 .8 .9
0

1

2

3

4 SAQE Sampling Rate

Sampling Rate

R
el

at
iv

e
E

rr
or

(%
)

(b) TPC-H Query 13

.1 .2 .3 .4 .5 .6 .7 .8 .9
0

1

2

3

4 SAQE Sampling Rate

Sampling Rate

R
el

at
iv

e
E

rr
or

(%
)

(c) HealthLNK Comorbidity

.1 .2 .3 .4 .5 .6 .7 .8 .9
0

1

2

3

4 SAQE Sampling Rate

Sampling Rate

R
el

at
iv

e
E

rr
or

(%
)

(d) HealthLNK Aspirin Count

Figure 7: Result error as sampling rate increases, εtotal =

0.001, δtotal = 10−6.

the benefit of Shrinkwrap is greatly reduced. For this class of
queries, SAQE provides performance improvements that far exceed
the lower bound of Shrinkwrap. In fact, we can combine SAQE
sampling with Shrinkwrap to further improve performance on other
classes of queries, such as those with foreign key-foreign key joins.

6.3 Sampling Approaches
Now we compare the performance of oblivious and differentially-

private sampling from Section 4. Here, differential privacy sam-
pling uses half of the privacy budget during sampling, reducing
query answer accuracy but improving performance. Figure 6 shows
the two approaches with varying sampling rates.

We see that, as expected, differential privacy sampling outper-
forms oblivious sampling for all sampling rates. However, the dif-
ference between the two narrows as the sampling rate increases.
Oblivious sampling takes all tuples from data providers as input to
secure computation so that the selected tuples are not disclosed to
anyone. This means that the oblivious sampler’s performance is
dependent on the source data size, rather than the sample size.

Differential privacy sampling on the other hand, samples before
any secure computation, so its performance is a function of the sam-
pling rate, p instead of the raw data size. As the sampling rate in-
creases, and the sample size approaches that of the source relation,
the gap between these two approaches reduces proportionally. Note
that the performance after sampling is better with oblivious sam-
pling, since differential privacy sampling introduces more dummy
tuples that must be processed within secure computation.

6.4 Accuracy Analysis
Now we examine the effects of the sampling rate and the privacy

budget on the final result error. In these experiments, we fix the per-
formance of SAQE using the time bound optimizer from Section 5
and collect results over the queries workload. We use the relative
error –

∑
|(released - true) / true| – as a measure of the utility of

SAQE’s privacy-preserving query answers with respect to its true,
unnoised output.
Result Accuracy and Sampling Rate. In this experiment, we
show the relationship between error and sampling rate. We set our
privacy budget to (εtotal = 0.001, δtotal = 0.00001) and show the
relative error as our sampling rate changes. We include our SAQE-
optimized sampling rate selected using Table 1.

10
−4

10
−3

10
−2

10
−1

10
0

10−5
10−4
10−3

0.01
0.1

1
10

Privacy Budget

R
el

at
iv

e
E

rr
or

(%
)

(a) TPC-H Query 4

10
−4

10
−3

10
−2

10
−1

10
0

10−5
10−4
10−3

0.01
0.1

1
10

Privacy Budget

R
el

at
iv

e
E

rr
or

(%
)

(b) TPC-H Query 13

Figure 8: Result error as privacy budget increases, εtotal =

0.001, δtotal = 10−6.

Figure 7 plots sampling rates against the relative error for TPC-H
queries 4 and 13, as well as HealthLNK Comorbidity and Aspirin
Count queries [10]. Aspirin Count uses distinct sampling, while
the other queries use stratified sampling. In traditional approximate
query processing, we expect the relative error to decrease mono-
tonically as the sampling rate rises. This reflects that as a greater
proportion of the source data is used, the query result is more accu-
rate. With SAQE, this is no longer the case due to the presence of
differential privacy guarantees. As discussed in Section 5, a larger
sample size requires more noise to obscure the result and guarantee
the same level of differential privacy. Our two noise sources, sam-
pling and differential privacy, work in opposition. Which source
dominates depends on the sampling rate and privacy budget. In
Figure 7, we show that the SAQE-optimized sampling rate points
out the inflection point where the contributions of each source are
minimized. This point is where we maximize our trade-off between
accuracy and performance according to our optimization problem
in Equation 2. Our results show that we can identify the inflec-
tion point for all our selected sampling strategies. If we choose
the incorrect strategy, such as uniform sampling for Q13, our error
increases due to strata with lower counts being dropped. Exper-
imentally, we see that 20% of groups in Q13 are dropped at the
maximum accuracy sampling rate (0.24).
Error and Privacy Budget. Now we fix our sampling rate to the
SAQE-optimized value and use oblivious sampling to see the role
of the privacy budget. In Figure 8, we see see a different view of
sampling versus privacy noise effect shown in Figure 7. The larger
the privacy budget, the less noise SAQE needs to add to guarantee a
differential privacy query result. This means that when the budget
is large enough, the majority of noise in the system is due to sam-
pling. Since we fix the sampling rate in our experiment, the relative
error levels off once we reach this inflection point.

6.5 Data Size Scaling
We now look at how SAQE adjusts as the data input size scales.

We show two different execution modes: max accuracy mode and
time bound mode. In this experiment, we hold constant that SAQE
maintains max accuracy by always executing at the inflection point
shown in Figure 7. Figure 9 shows the end-to-end execution times
as we increase our source table size up to 1 TB in max accuracy
mode. We compare SAQE with the SMCQLand Shrinkwrap sys-
tems. Note that the gray shaded regions represent estimated execu-
tion times as the prior systems do not have enough available mem-
ory to execute the query. SAQE successfully executes previously
un-executable queries with maximum accuracy.

Figure 10 compares the execution time for Shrinkwrap, SMCQL,
and SAQE over a synthetically scaled version of the HealthLNK
dataset. In the baseline, 1X, case, all three systems execute well
under the time limit, but as the data size increases, the non-SAQE
systems fall out. We see that SMCQL can only execute successfully
in the 1X case and Shrinkwrap only runs in the the 1X and 2X

2701

100 200 300 400 500 600 700 800 900 1000

1
2
3
4
5
6
7

·104

Table Size (GB)

E
xe

cu
tio

n
Ti

m
e

(s
ec

)
SMCQL
Shrinkwrap
SAQE

Figure 9: Scaling up in max accuracy mode, HealthLNK Comorbidity,
εtotal=0.001, δtotal=10−6.

cases. This limitation is due to the time budget, where the systems
cannot return a result within the specified time. With SAQE, we can
continue executing well above the 1X or 2X cases. In exchange,
SAQE sacrifices final result accuracy. Our experiments show that
we only incur a modest decrease in accuracy, with a 4.6% relative
error at 7X the baseline data size. By allowing the client to tune
the sampling rate to their specific requirements, SAQE provides
significant performance flexibility with minimal accuracy cost.

7. RELATED WORK
SAQE builds upon research in approximate query processing,

differential privacy, secure computation, and private data federa-
tions. We highlight the state-of-the-art in each area and describe
how SAQE reveals novel synergies among them.

Private data federations offer privacy-preserving query evalua-
tion over the union of multiple private data stores. This is a natu-
ral extension to research on secure querying for data outsourced to
an untrusted cloud service provider. There were many approaches
to solving this challenge including storing and querying the pri-
vate outsourced data with homomorphic encryption [51,56], secure
computation [4, 30] or a trusted hardware module [6, 64]. Private
data federations [9,58] offer in-situ SQL evaluation among the mul-
tiple private data providers where each one wishes to maintain ex-
clusive access to his or her dataset. Shrinkwrap [10] generalized
this by offering differentially-private query processing and results
for private data federation queries, but it relies on using the privacy
budget to accelerate each query, whereas SAQE speeds up query
performance with oblivious sampling—requiring no additional pri-
vacy use for its faster runtime. SAQE advances this line with its
general-purpose, hardware-agnostic, SQL analytics with provable
privacy guarantees with increased scalability owing to its general-
ization of approximate query processing to private data federations.

Approximate query processing makes it possible for a system to
meaningfully estimate query results by sampling their inputs with
tight accuracy bounds. Some systems [3, 49] compute their query
results from a sample set on the initial, larger dataset. Others sam-
ple the data for a given query at runtime [31, 35, 39]. We take the
latter approach with this system to support ad-hoc querying, al-
though offline approaches offer fertile ground for future research
for well-known workloads. This work expands on the state of the
art in approximate query processing to support privacy-preserving
analytics by introducing oblivious and differential privacy sampling
algorithms. SAQE’s oblivious uniform sampler is a natural exten-
sion to the one proposed in [53], although the previous algorithm
required the use of a trusted execution environment to work effi-
ciently and our algorithms are hardware-independent. The remain-
ing oblivious and differentially-private algorithms described in this
work are the first of their kind for processing analytical queries and
readily generalize to the untrusted cloud setting.

There has been significant research in differential privacy query
processing [33, 34, 36, 37, 45, 46, 60] that provides strong privacy
guarantees while minimizing query result noise, as well as accuracy-

1× 2× 3× 4× 5× 6× 7×
0

100

200

300

400

E
rr

or
:

0%

E
rr

or
:

0.
22

%

E
rr

or
:

0.
94

%

E
rr

or
:

2.
4%

E
rr

or
:

3.
2%

E
rr

or
:

4.
5%

E
rr

or
:

4.
6%

Time Limit

Synthetic Data Size Over Baseline

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

SMCQL Shrinkwrap SAQE

Figure 10: Data-size scaling comparison, HealthLNK Comorbidity, 150
MB baseline

aware approaches [26, 41] that constrain accuracy rather than opti-
mize it as in SAQE. Additional research [10, 48] revealed how to
add differentially-private noise to query results with secure compu-
tation to ensure that the recipient of the result does not have access
to private inputs. Using secure computation in private federated
databases [16, 19, 44, 47] or private federated learning [14, 55, 63]
has a smaller error, in the query results or trained model, than lo-
cal differentially private mechanisms that assume no trusted data
curators. Prior approaches to combining differential privacy with
approximate query processing in centralized setting [1, 8, 24] or in
federated learning [2,54] quantify the privacy amplification a query
receives from sampling. However, they do not investigate the per-
formance improvement and the accuracy optimization brought by
sampling. SANNS [18] offers approximate KNN queries over se-
cure computation. It is efficient, but lacks the formal guarantees of
DP. Moreover, its techniques do not generalize to SQL queries.

We use secure computation [62] for privacy-preserving query
evaluation over the union of data from multiple data providers such
that none can learn the secret inputs of their peers. Although re-
searchers proved the feasibility of this technology more than 30
years ago, in the past 15 years the cryptography community has
improved its efficiency by more than five orders of magnitude [11,
32, 43]. Owing to these advances we increasingly see these proto-
cols used in big data workflows on untrusted servers [12, 57, 58].

Opaque [64], Shrinkwrap [10], and Hermetic [61] proposed an-
alytical cost models to optimize the performance of private query
evaluation. These approaches supported oblivious query process-
ing with the latter two incorporating differential privacy into their
analysis to minimize query runtime. Similarly, BlinkDB [3] and
VerdictDB [49] optimize the sampling rates of their queries to pro-
vide high performance with strong accuracy guarantees, but do
not offer any privacy guarantees. SAQE takes the best of both
worlds. SAQE’s cost model estimates the performance of approxi-
mate query processing over secure computation and creates execu-
tion plans that meet user-set deadlines while maximizing accuracy.

8. CONCLUSIONS
SAQE is a private data federation that answers SQL queries over

the union of multiple datasets without requiring data providers to
disclose their private records. It introduces a novel generalization
of approximate query processing for private query processing, opti-
mizing the sampling rate and query result noise to maximize query
accuracy while leaking no information about a query’s private in-
puts. We validate this work on synthetic and real-world workloads
to verify that SAQE identifies the inflection point between sampling
and differential privacy that maximizes the query result accuracy.

9. ACKNOWLEDGEMENTS
This work was supported by National Science Foundation under

the grant CNS-1846447 and NSERC through a Discovery Grant.

2702

10. REFERENCES
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,

I. Mironov, K. Talwar, and L. Zhang. Deep learning with
differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pages 308–318. ACM, 2016.

[2] N. Agarwal, A. T. Suresh, F. X. Yu, S. Kumar, and
B. McMahan. cpsgd: Communication-efficient and
differentially-private distributed SGD. In NeurIPS, 2018.

[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB. In Proceedings of the 8th ACM
European Conference on Computer Systems - EuroSys ’13,
page 29, New York, New York, USA, 2013. ACM Press.

[4] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina,
K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and
Y. Xu. Two can keep a secret: A distributed architecture for
secure database services. CIDR, 2005.

[5] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and
M. Zohner. Ciphers for MPC and FHE. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 430–454. Springer, Heidelberg, Apr.
2015.

[6] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal Security
with Cipherbase. CIDR 2013, Sixth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA,
January 6-9, 2013, Online Proceedings, 2013.

[7] G. Asharov, I. Komargodski, W.-K. Lin, K. Nayak,
E. Peserico, and E. Shi. Optorama: Optimal oblivious ram.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 403–432.
Springer, 2020.

[8] B. Balle, G. Barthe, and M. Gaboardi. Privacy amplification
by subsampling: Tight analyses via couplings and
divergences. In Proceedings of the 32Nd International
Conference on Neural Information Processing Systems,
NIPS’18, pages 6280–6290, USA, 2018. Curran Associates
Inc.

[9] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers.
SMCQL: secure querying for federated databases. PVLDB,
10(6):673–684, 2017.

[10] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and
J. Rogers. Shrinkwrap: efficient sql query processing in
differentially private data federations. PVLDB,
12(3):307–320, 2018.

[11] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a
system for secure multi-party computation. In P. Ning, P. F.
Syverson, and S. Jha, editors, ACM CCS 2008, pages
257–266. ACM Press, Oct. 2008.

[12] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
S. Jajodia and J. López, editors, ESORICS 2008, volume
5283 of LNCS, pages 192–206. Springer, Heidelberg, Oct.
2008.

[13] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler,
T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen,
K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft. Secure
multiparty computation goes live. In R. Dingledine and
P. Golle, editors, FC 2009, volume 5628 of LNCS, pages
325–343. Springer, Heidelberg, Feb. 2009.

[14] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth.

Practical secure aggregation for privacy-preserving machine
learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’17, page 1175–1191, New York, NY, USA, 2017.
Association for Computing Machinery.

[15] M. Bun, K. Nissim, U. Stemmer, and S. P. Vadhan.
Differentially private release and learning of threshold
functions. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20
October, 2015, pages 634–649, 2015.

[16] T. H. Chan, E. Shi, and D. Song. Optimal lower bound for
differentially private multi-party aggregation. In Algorithms -
ESA 2012 - 20th Annual European Symposium, Ljubljana,
Slovenia, September 10-12, 2012. Proceedings, pages
277–288, 2012.

[17] S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified
sampling for approximate query processing. ACM
Transactions on Database Systems (TODS), 32(2):9, 2007.

[18] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya,
I. Razenshteyn, and M. S. Riazi. Sanns: Scaling up secure
approximate k-nearest neighbors search. arXiv preprint
arXiv:1904.02033, 2019.

[19] A. R. Chowdhury, C. Wang, X. He, A. Machanavajjhala, and
S. Jha. Cryptε: Crypto-assisted differential privacy on
untrusted servers. In SIGMOD, 2020.

[20] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and
T. Kraska. Vizdom: interactive analytics through pen and
touch. PVLDB, 8(12):2024–2027, 2015.

[21] C. Dwork. Differential privacy. Proceedings of the 33rd
International Colloquium on Automata, Languages and
Programming, pages 1–12, 2006.

[22] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our Data, Ourselves: Privacy Via Distributed Noise
Generation. Proceedings of EUROCRYPT’06,
4004:486–503, 2006.

[23] C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci., 2014.

[24] H. Ebadi, T. Antignac, and D. Sands. Sampling and
partitioning for differential privacy. In 2016 14th Annual
Conference on Privacy, Security and Trust (PST), pages
664–673, Dec 2016.

[25] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor:
Randomized aggregatable privacy-preserving ordinal
response. In Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security, pages
1054–1067. ACM, 2014.

[26] C. Ge, X. He, I. F. Ilyas, and A. Machanavajjhala. APEx. In
Proceedings of the 2019 International Conference on
Management of Data - SIGMOD ’19, number 1, pages
177–194, New York, New York, USA, 2019. ACM Press.

[27] P. B. Gibbons. Distinct sampling for highly-accurate answers
to distinct values queries and event reports. VLDB 2001 -
Proceedings of 27th International Conference on Very Large
Data Bases, pages 541–550, 2001.

[28] M. T. Goodrich. Data-oblivious external-memory algorithms
for the compaction, selection, and sorting of outsourced data.
In Proceedings of the twenty-third annual ACM symposium
on Parallelism in algorithms and architectures, pages
379–388, 2011.

[29] X. He, A. Machanavajjhala, C. Flynn, and D. Srivastava.
Composing differential privacy and secure computation: A
case study on scaling private record linkage. In Proceedings

2703

of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1389–1406. ACM, 2017.

[30] Z. He, W. K. Wong, B. Kao, D. W. L. Cheung, R. Li, S. M.
Yiu, and E. Lo. SDB: a secure query processing system with
data interoperability. PVLDB, 8(12):1876–1879, 2015.

[31] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Acm Sigmod Record, volume 26, pages
171–182. ACM, 1997.

[32] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. In USENIX
Security 2011. USENIX Association, Aug. 2011.

[33] N. Johnson, J. P. Near, J. M. Hellerstein, and D. Song.
Chorus: Differential privacy via query rewriting, 2018.

[34] N. Johnson, J. P. Near, and D. Song. Towards practical
differential privacy for sql queries. In VLDB, 2018.

[35] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl,
S. Chaudhuri, and B. Ding. Quickr: Lazily approximating
complex adhoc queries in bigdata clusters. In Proceedings of
the 2016 international conference on management of data,
pages 631–646. ACM, 2016.

[36] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour,
A. Machanavajjhala, M. Hay, and G. Miklau. Privatesql: a
differentially private sql query engine. PVLDB,
12(11):1371–1384, 2019.

[37] I. Kotsogiannis, Y. Tao, A. Machanavajjhala, G. Miklau, and
M. Hay. Architecting a differentially private sql engine. In
CIDR, 2019.

[38] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online
aggregation via random walks. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July
01, 2016, 2016.

[39] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online
aggregation via random walks. In Proceedings of the 2016
International Conference on Management of Data, pages
615–629. ACM, 2016.

[40] Y. Lindell. Fast secure two-party ECDSA signing. In J. Katz
and H. Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 613–644. Springer, Heidelberg, Aug.
2017.

[41] E. Lobo-Vesga, A. Russo, and M. Gaboardi. A Programming
Framework for Differential Privacy with Accuracy
Concentration Bounds. pages 1–22, 2019.

[42] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map. In
ICDE, 2008.

[43] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay -
secure two-party computation system. In M. Blaze, editor,
USENIX Security 2004, pages 287–302. USENIX
Association, Aug. 2004.

[44] A. McGregor, I. Mironov, T. Pitassi, O. Reingold, K. Talwar,
and S. Vadhan. The limits of two-party differential privacy.
In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, 2010.

[45] R. McKenna, G. Miklau, M. Hay, and A. Machanavajjhala.
Optimizing error of high-dimensional statistical queries
under differential privacy. PVLDB, 11(10):1206–1219, 2018.

[46] F. D. McSherry. Privacy integrated queries: An extensible
platform for privacy-preserving data analysis. In Proceedings
of the 2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’09, pages 19–30, New
York, NY, USA, 2009. ACM.

[47] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan.
Computational differential privacy. In CRYPTO, 2009.

[48] A. Narayan and A. Haeberlen. DJoin: differentially private
join queries over distributed databases. Proceedings of the
10th USENIX Symposium, page 14, 2012.

[49] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. VerdictDB:
Universalizing approximate query processing. Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pages 1461–1476, 2018.

[50] PCORI. Exchanging de-identified data between hospitals for
city-wide health analysis in the Chicago Area HealthLNK
data repository (HDR). IRB Protocol, 2015.

[51] R. Popa and C. Redfield. CryptDB: protecting confidentiality
with encrypted query processing. SOSP, pages 85–100, 2011.

[52] L. Qin, A. Lapets, F. Jansen, P. Flockhart, K. D. Albab,
I. Globus-Harris, S. Roberts, and M. Varia. From usability to
secure computing and back again. In Fifteenth Symposium on
Usable Privacy and Security (SOUPS 2019), Santa Clara,
CA, Aug. 2019. USENIX Association.

[53] S. Sasy and O. Ohrimenko. Oblivious sampling algorithms
for private data analysis. In Advances in Neural Information
Processing Systems, pages 6495–6506, 2019.

[54] R. Shokri and V. Shmatikov. Privacy-preserving deep
learning. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, pages 1310–1321,
2015.

[55] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig,
R. Zhang, and Y. Zhou. A hybrid approach to
privacy-preserving federated learning. In AISec, New York,
NY, USA, 2019. Association for Computing Machinery.

[56] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data. PVLDB,
6(5):289–300, 2013.

[57] N. Volgushev, M. Schwarzkopf, A. Lapets, M. Varia, and
A. Bestavros. Integrating mpc in big data workflows. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1844–1846.
ACM, 2016.

[58] N. Volgushev, M. Varia, M. Schwarzkopf, A. Lapets,
B. Getchell, and A. Bestavros. Conclave: Secure multi-party
computation on big data. In Proceedings of the 14th EuroSys
Conference 2019, volume 70, pages 1–18, New York, New
York, USA, aug 2019. ACM Press.

[59] X. Wang, A. J. Malozemoff, and J. Katz. EMP-Toolkit:
Efficient Multiparty Computation Toolkit.
https://github.com/emp-toolkit, 2016.

[60] R. J. Wilson, C. Y. Zhang, W. Lam, D. Desfontaines,
D. Simmons-Marengo, and B. Gipson. Differentially Private
SQL with Bounded User Contribution. pages 1–20, 2019.

[61] M. Xu, A. Papadimitriou, A. Feldman, and A. Haeberlen.
Using Differential Privacy to Efficiently Mitigate Side
Channels in Distributed Analytics. In Proceedings of the
11th European Workshop on Systems Security - EuroSec’18,
pages 1–6, New York, New York, USA, 2018. ACM Press.

[62] A. C.-C. Yao. How to generate and exchange secrets
(extended abstract). In 27th FOCS, pages 162–167. IEEE
Computer Society Press, Oct. 1986.

[63] N. Zhang, M. Li, and W. Lou. Distributed Data Mining with
Differential Privacy. In 2011 IEEE International Conference
on Communications (ICC), pages 1–5. IEEE, jun 2011.

2704

[64] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica. Opaque: An Oblivious and
Encrypted Distributed Analytics Platform. 14th {USENIX}

Symposium on Networked Systems Design and
Implementation, {NSDI} 2017, Boston, MA, USA, March
27-29, 2017, pages 283–298, 2017.

2705

