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ABSTRACT

In this paper, we study the problem of large-scale trajectory
data clustering, k-paths, which aims to efficiently identify k
“representative” paths in a road network. Unlike traditional
clustering approaches that require multiple data-dependent
hyperparameters, k-paths can be used for visual exploration
in applications such as traffic monitoring, public transit
planning, and site selection. By combining map matching
with an efficient intermediate representation of trajectories
and a novel edge-based distance (EBD) measure, we present
a scalable clustering method to solve k-paths. Experiments
verify that we can cluster millions of taxi trajectories in less
than one minute, achieving improvements of up to two or-
ders of magnitude over state-of-the-art solutions that solve
similar trajectory clustering problems.
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1. INTRODUCTION

Ubiquitous trajectory data is being generated from a di-
verse range of resources, such as Global Positioning System
(GPS) devices, cameras, and radio frequency identification
(RFID) readers [50]. Its volume is enormous — a car carry-
ing embedded mobile broadband chips can produce up to 25
gigabytes of data in an hour, including GPS routes [1].

In this paper, we study the problem of large-scale vehicle
trajectories clustering. Despite a great deal of progress since
2007 [34] (summarized in Table 1), significant challenges re-
main in designing scalable algorithms for large-scale trajec-
tory data. Moreover, many algorithms require users to make
difficult hyperparameter choices, such as density thresholds
in density-based clustering [34, 35], in order to generate can-
didate line segments. Properly tuning them is challenging
even for domain experts (due to various degrees of limited
domain knowledge).
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Figure 1: A glimpse of TRACLUS and k-paths.

Figure 1 visualizes the results of a widely used density
based trajectory clustering algorithm, TRACLUS [34], on two
taxi trip datasets: Porto [7] and T-drive [56]. TRACLUS
uses a density threshold to group all frequent edges into the
final clusters (the threshold is set as the average edge fre-
quency). In Porto, the skeleton of the road network is iden-
tified by TRACLUS, but it is hard to observe any discernible
trends; in T-drive only discrete edges which appear discon-
nected are identified as the clustered result. This suggests
that the threshold selection is highly sensitive to the data.

In this paper, we propose k-paths, which aims to cluster
trajectories into k groups where k representative real paths
are selected as the delegates, as shown in Figure 1(c) where
k = 10. k-paths is reminiscent of the classical k-means [3§],
where in both problems k is the only parameter required
from user. k-paths is useful in many upstream applications:

e Scenario 1: Traffic Flow Analysis. A traffic analyst
needs to find the k frequently travelled paths to visually
analyze complex transportation networks [9, 24].

e Scenario 2: Public Transit Planning. A transport
department wants to open k new bus routes to meet grow-
ing demands [29] using historical taxi trip records [46, 56].

e Scenario 3: Site Selection. A company plans to place
k billboards over the busiest routes in a city [57, 58].
Efficient k-means with Lloyd’s algorithm [36] has previ-

ously been investigated for large-scale point data [22]. By

choosing k objects as the initial centroids, it iteratively as-
signs each object to the nearest centroid, and refines the
new centroid in each cluster. k-paths can be answered by ex-
tending Lloyd’s algorithm. However, scaling this approach
is challenging since the assignment requires O(nkt) distance
computations, where n is the number of trajectories and ¢
is the number of iterations. Meanwhile, a simple refinement
requires O(n?t) distance computations (see a thorough anal-
ysis in Section 3.3). Therefore, answering k-paths requires

a prodigious number of distance computations, and existing

trajectory distance measures are expensive to compute, e.g.,

Edit Distance on Real Sequences (EDR) [15] has quadratic

complexity. When using EDR, our experiments showed that
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this straightforward approach did not converge after several
days when clustering as few as 10,000 trajectories.

Recent studies [48, 55] found that raw trajectories have
precision problems derived from GPS errors and sampling
rates, and employed map-matching [37] of raw trajectories
to road network paths when constructing indexes, in order
to significantly reduce both storage and computational com-
plexity while achieving better precision when measuring the
trajectory similarity. However, the distance computation
cost remains quadratic.

In order to overcome the above obstacles when scaling k-
paths to larger collections, we propose an efficient clustering
method which has two important properties:

1) A quasilinear distance measure. We propose a
new distance measure EBD, as an extension of the recently
proposed distance measure LORS [48]. EBD computes the
distance between two trajectories based on the intersecting
road segments and travel length. It can reduce the distance
computation cost from quadratic (in LORS) to quasilinear,
and meanwhile return the same score when measuring the
similarity between two trajectories, and allow compressed
trajectory representations to be used during clustering.

2) Fewer distance computations. We design novel
indexing techniques to significantly reduce the number of
distance computations in the assignment and refinement
phases. After proving that EBD satisfies the triangle inequal-
ity (metric), we employ a lower bound technique to prune
the computational space and propose an indexing framework
to accelerate the clustering. To refine the centroid path more
efficiently, we present a linear-time approach that exploits
the length histogram and an edge histogram. We further
extract the centroid path by traversing the road network
graph, which is independent of the number of trajectories.

To summarize, we have made the following contributions:
e We define a fundamental trajectory clustering problem

k-paths based on a map-matched trajectory modeling

method (Section 3), combined with a novel distance mea-

sure EBD that is fast to compute (Section 4).

e We propose a clustering method with low complexity for
k-paths based on Lloyd’s algorithm, coupled with lower
bounds based assignment and histograms based refine-
ment on improving clustering performance (Section 5).

e We design an indexing framework called PIG to accelerate
the pruning in the assignment process, and transform the
refinement to a graph traversal problem—CPEP (Section 6).

e We evaluate the efficiency, scalability, and effectiveness of
EBD-based k-paths by comparing with five widely-used dis-
tance measures, and the state-of-the-art trajectory clus-
tering work [12, 34] using two real-world datasets. A
case-study based on visualization verifies that the most
frequent paths can be identified accurately (Section 7).
Complete proofs for lemmas in this paper can be found in

our technical report [47]. The source code, curated datasets,

and visualization tools are also available [6] for reproducibil-

ity.
2. RELATED WORK

Trajectory Modeling. A set of coordinates denoted by
two floats is a traditional representation of a trajectory for
storage, search, and analytics. To further reduce space, con-
verting the raw data to a vector of the same length is pro-
posed [51]. Such a simple conversion is often inefficient when
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Table 1: A summary of existing trajectory clustering work
(“P” denotes “Partition”, “D” denotes “Density”).

Work Type Measure Data Scale #Para Time

k-paths P EBD Million (Vehicle) 1 Minute
12 Hausdorff 422 (Vehicle) 4 Hours
51 DTW 4700 (Vessels) 2 NA
24 Euclidean 372,601 (Vehicle) 2 2497s
27 P Fréchet 2 soccer players 2 700s
42 ERP 1100 (Vehicle) 4 10s
50 EDR 100 (Cellular) 3 400s
9] - 176,000 (Vehicle) |D| NA
35 - 7000 (Vehicle 3 100s
29 D Hausdorff 5000 (Vehicle 6 120s
34 - 570 (Hurricane 2 NA
8] Fréchet 20,000 (Vehicle 3 50.4hrs

used for hashing or training machine learning models. Re-
cently, storing raw trajectories as a path on a road network
using map matching [37] has been shown to be more effective
in terms of storage and retrieval performance [48]. Wang et
al. [48] modeled road networks as a directed graph, where
each road is an edge with a unique ID, and a trajectory can
be represented as a sequence of integers.

Trajectory Distance Measures. Many distance mea-
sures have been proposed for trajectory data. Com-
mon measures include Dynamic Time Warping (DTW) [32],
Longest Common Sub-sequence (LCSS) [45], Edit Distance
on Real sequence (EDR) [15], Hausdorff distance [40], Dis-
crete Fréchet distance [21], and Edit distance with Real
Penalty (ERP) [14]. However, all these existing point-based
measures have a high complexity (quadratic) and are sensi-
tive to GPS errors, sampling rate, point shifts, or hyperpa-
rameter tuning (EDR, LCSS, and ERP all need one parameter)
when applied to raw vehicle trajectories. In our recent work
[48], experiments verified the robustness of a new distance
measure: the longest overlapped road segments (LORS). Yuan
et al. [55] normalized LORS to measure the distance between
two trajectories by considering the length of trajectories.

Trajectory Clustering. As shown in Table 1, existing
trajectory clustering methods can be divided into two types
[64], Partition-based [12, 24, 27, 30, 42, 51] and Density-
based [8, 9, 29, 34, 35]. Note that when the trajectory is
stored as points, Ding et al. [20] utilized DBSCAN [23]
to cluster trajectory points at a specific timestamp, rather
than trajectories as a whole. Based on this categorization,
three important observations about current techniques can
be made: 1) Existing solutions are only tractable for small
datasets such as animals and hurricanes. For example, the
most cited trajectory clustering solution [34] clusters only
570 trajectories (so we optimized [34] to generate Figure 1,
see Section 7.3.1 for details); 2) Clustering is done on raw
trajectory data composed of points, and the distance mea-
sure computations have a quadratic complexity; 3) Most
solutions have at least two threshold parameters which are
highly sensitive to the dataset, making them difficult to re-
produce or use in practice (thus the running time shown in
Table 1 is reported from the original papers). In contrast,
our solution for k-paths requires no threshold parameteriza-
tion, and has a novel distance measure-EBD which is both
scalable and effective.

3. DEFINITIONS & PRELIMINARIES

3.1 Trajectory Data Modeling
DEFINITION 1. (Point) A point p = {lat,Ing} contains
the latitude lat, the longitude Ing.



Table 2: Summary of notations.

Symbols Description
T:, D A trajectory, and the dataset
| T3 The travel length of trajectory T;
G,E,V, P The road network, edges, vertices and paths
o, S The objective function, clusters
a (4), a(z) T;’s previously and newly assigned cluster ids
;4;-, 145 Cluster S;’s previous and current centroid paths

The upper bound distance from T;

ub(i) to its nearest cluster

The lower bound distance from T; to
its second nearest cluster

The centroid drift and bound of y;

1b(i)

cd(4), cb(j)

FEH, ALH The edge and accumulated length histograms
llell, 1G5 The weight of edge e and frequency graph G;
Edgeid =3
32
A19 6
T, T,
Mapped
trajectory [19]3[s[1[32]6|[2]5]1]4]
sortedlist (135 | s w]n][1]2]4]s]
Compressed
trajectory |1|2|2 1|13l13’||1|1 2|1|

Figure 2: Trajectory data modeling and compression.

DEFINITION 2. (Raw Trajectory) A trajectory T of
travel length |T| is in the form of {p1,p2,...,Dm}, where
each p; is a point.

DEFINITION 3. (Road Network) A road network is a di-
rected graph G = (V, E), where V is a set of vertices v rep-
resenting the intersections and terminal points of the road
segments, and E is a set of edges e representing road seg-
ments, each vertex has a unique id allocated from 1 to |V]|.

DEFINITION 4. (Path) A path P is composed by a set of
connected road edges e — e2 — ... — ey, in G. The travel
length of P is defined as the sum of length of all edges.

DEFINITION 5. (Map-Matched Trajectory) Given a
raw trajectory T and a road network G, we map T to a set
of connected edges in G, such that T : e1 — ez — ... — €m.

In the rest of this paper, we use trajectory to represent
the mapped trajectory. Frequent notations are summarized
in Table 2. Example 1 shows a case of converting a raw
trajectory to an edge id list.

EXAMPLE 1. As shown in Figure 2, two trajectories Ti
(blue) and T> (red) have been mapped into the road network.
Note that we just show the one-way edges here, and label
each of them with an integer. Then, we can store them as
T ={19,3,5,1,32,6} and To = {2,5,1,4}.

3.2 k-paths Trajectory Clustering

DEFINITION 6. (k-paths Trajectory Clustering) Given
a set of trajectories {Th,T>,--- ,Tn}, k-paths aims to par-
tition the n trajectories into k (k < n) clusters S

{51,852, - ,Sk} to mim’mige the objective function:
O = arg min Dist (T3, u; 1
i S D) ()
J=1T; ESj

where each cluster S; has a centroid path p; which should
be a path in G, and Dist is the trajectory distance measure.
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The key differences between k-paths and k-means are three-
fold: (1) trajectories can be of varying lengths instead of
fixed-length vectors in a Euclidean space; (2) a trajectory
distance measure Dist for two trajectories must be defined;
(3) the centroid path p; cannot be found by simply comput-
ing the mean value of all trajectories in the cluster. Similar
to a variant of k-means called k-medoids [41], an existing tra-
jectory can be chosen as the centroid path.

3.3 Lloyd’s Algorithm for k-paths

Since k-paths is a direct variant of k-means to solve the
trajectory clustering problem, the processing framework of
the well-known Lloyd’s algorithm [36] for k-means can be
extended to solve k-paths, consisting of three steps:

1) Initialization. Randomly choose k trajectories from D
as the initial centroid paths (seeds): {p1,..., e}

2) Assignment. Find the nearest centroid path pu; for
every trajectory T; in the database, and assign it to the
centroid path’s affiliated cluster, denoted as a(i) = j.!

3) Refinement. Update the centroid path of each cluster
by choosing an existing trajectory that can minimize the
sum of distance to all other trajectories in the cluster. If
all the centroid paths stop changing, return the k centroid
paths as the final result; otherwise, go to step 2).

There are two core challenges in the assignment and re-

finement steps when using Lloyd’s algorithm to solve k-paths.
Challenge 1. The complexity of the assignment step is
O(nk) x O(dis), where n is the total number of trajectories,
k is the number of clusters and O(dis) is the complexity of
distance computation which is quadratic when using exist-
ing distance measures.
Challenge 2. In the refinement step, the complexity of
computing the mean is constant in k-means, but it does not
hold in k-paths. Ferreira et al. [24] proposed a fitting field
vector solution, which costs O(kn|S(D)|), where S(D) de-
notes the set of line segments that compose the trajectories
in the dataset D. This point-based trajectory approach does
not scale well in practice based on our experiments (Fig-
ure 9). Even though we can extend k-medoids [41] to choose
an existing trajectory as a new centroid path, a distance
matrix with a complexity of O(n?) x O(dis) must still be
computed.

4. A NOVEL DISTANCE MEASURE

Large-scale clustering requires a distance measure that
is precise and cheap to compute. The distance measure
LORS [48], which is the state-of-the-art in term of precision,
can be extended for k-paths without sacrificing effectiveness.

4.1 Defining LORS

LORS measures the similarity based on the length of over-
lapped edges while ensuring that matched edges do not vio-
late ordering constraints, which is also known as local time
shifting [15]. Formally, LORS is defined as:

0, if Ty or T3 is empty
\elm\ +S(I‘I(Yﬁ),]?(j—’z))7

if €1m = €2g

max(S(H(T1),Tz2),S(T1, H(Tz))), otherwise

where T1 = (e11,€12,...,e1m) and To = (e21, €22, ..., €22);
|eim| is the travel length of graph edge eim. H(T1) =

S(Th, Tz) = 2

Tn the rest of the paper, indices i and j always refer to
trajectory and cluster indices, respectively.



(e11, ..., e1m—1) is the sub-trajectory of 77 minus the last
edge e1,,. For example, to calculate LORS between T and
T5 in Figure 2, we can use a dynamic programming ap-
proach similar to existing measures [15, 52], and return
S(Ty,Ts) = |es|+|ei| as they share a common sub-trajectory
(es,e1). The detailed computation using dynamic program-
ming with a 2D matrix can be found in [47].

4.2 Edge-based Distance Measure

LORS’s quadratic complexity is not tractable for large-
scale trajectory clustering. However, with certain relax-
ations, LORS is a viable solution, unlike other popularly used
distance measures. Observe that in Figure 2, 71 and T3
there are two overlapping edges es and e;, and the same
score |es| 4 |e1| can be computed using only an in-order in-
tersection traversal without dynamic programming.

To verify this observation, we randomly conducted one
million LORS computations using the Porto and T-drive
datasets, and found 92.3% and 91.3% of trajectory compu-
tations using set intersection return identical scores to LORS,
and the remaining 8% have only a small average percent
variance of 6.6% and 2.7% (see distribution in Figure 3),
respectively. In order to achieve identical similarity scores,
any two edges must have a stable successive co-occurrence
relationship for any two paths in G, e.g., es is before e; in
Figure 2, which co-occur in most trajectories. To formalize
this observation, we introduce the following concept:

DEFINITION 7. (Successive Probability P(e1,ez)) The
successive probability of two edges e1 and ez is computed as:

max(Co(ere2), Co(ezer))
Co(erez) + Co(ezer) ¥

where Cy(e1e2) is the number of trajectories where e1 and ez
co-occur successiely in D, i.e., Co(ere2) = [{Ds C DIVT €
D, :T(e1) < T(e2)}|, T(e) is the order of e in T.

Based on these observations, we performed additional ex-
periments to compute the successive probability distribu-
tion of two datasets in order to further verify the viability
of our new approach. There are 185,528,027 pairs of edges
co-occurring in 1.56 million paths in Porto. Figure 3 shows
that around 65% of edge-pairs (e1,e2) in Porto have a sta-
ble successive relationship, i.e., P(e1, e2) = 1, and more than
80% have a probability P > 0.8.

A visual analysis of the paths on a map shows that a stable
successive co-occurrence relationship is mainly because most
taxis follow the shortest or fastest path between an origin
and destination suggested by the navigation apps in practice
(the percentage was reported as 96.8% [43]). For successive
probability less than 100%, it means that a path has a detour
with a high chance. For example, T-drive has multiple
trips in a trajectory without segmentation, so detours are
common, and this is confirmed in Figure 15(a)(b). This
explains why only 48% of edge-pairs have P(e1,e2) = 1,
which is much lower than Porto. However, the precision of
EBD still remains high (91.3%) in T-drive. We thus derive
the following lemma.:

LEMMA 1. For any two trajectories Ty and Ta in the road
network G, a LORS(T1,T>) = |T1 NTs| equivalent similarity
score exists if Th and Ty followed the shortest or fastest path
to travel in G, where Th NT» denotes the intersecting edges
of T1 and Ts.

PROOF. The detailed proof is in our technical report [47],
where we prove in two steps: (1) for any two edges e; and

]P’(el, 62) =
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Figure 3: Distribution of variance & successive probability.
Table 3: Time (us) for pair-wise distance computations.

EBD LORS EDR DTW  Fré Hau ERP
Porto 0.88 19.5 20.2 107.3 1809 125.1 1725
T-drive 2.56 155.3 165.4 1940 3026 1991 2948

e2, P(e1,e2) = 1 holds when all the trips are the shortest
(fastest) paths in the road network (weighted graph); (2)
LORS(T1,T2) = |T1 N 12| holds when P(e1,e2) = 1. O

Based on Lemma 1 established under the above reasonable
relaxations, we can define a new heuristic distance measure
EBD using set intersection to support scalable k-paths clus-
tering. Specifically, we define EBD as follows:

EBD(T1,T2) = max(|T1|, ‘TQD — |T1 N T2| (4)
where |T1] is the travel length of the entire trajectory. To fit
the Dist in Definition 6, we use the trajectory travel length
|T1| and |T3| to normalize the similarity to a distance value,
similar to previous work [15, 55, 45]. Inspired by EDR [15]
which bounds the distance value to [0, max(|T4],|T%])], we
also choose the max(|T1],|T2|), which can limit the length
of centroid path p; when minimizing the objective value
in Equation 1. Moreover, EBD obeys the non-negativity,
identity of indiscernible, and symmetry.

EXAMPLE 2. As shown in Figure 2, T =
{19,3,5,1,32,6} and To = {2,5,1,4}. We assume
each edge has an equal length 1, then |Th| = 6, |T>2| = 4 and
they have two intersected edges {ei,es}, the EBD distance
between T1 and T is: EBD(T1,T2) = max(6,4) — 2 = 4.

4.3 Set Intersection with Sorted Lists

Computing the list intersection for two integer arrays has
a complexity of O(m?) when these two sequences are un-
sorted, while two sorted lists will further reduce the com-
plexity from quadratic to quasilinear (O(mlogm)).? This is
an order of magnitude improvement over unsorted lists, and
the fast set intersection is a fundamental problem and being
continuously explored [19], which leaves space to improve
the efficiency of EBD in the future.

Less Computation. Table 3 compares six distance mea-
sures with EBD. We build the distance matrix of two datasets
by setting |D| = 1000 as other six measures are too slow to
produce results when setting |D| = 10,000, and record the
time on pair-wise distance computations. It shows that EBD
is the fastest among all distance measures. EBD achieves two
orders of magnitude improvement over the other six mea-
sures, especially for T-drive which stores long trajectories.

2The exact cost is O(milog(mz/m1)) [18, 19] using it-
erative binary search, where m; and mgo are the length of
the shorter and longer lists, as intersection requires m; fin-
ger searches in the longer list. Linear expected time can be
achieved using hash tables, but not with a comparison-based
complexity model, and cannot be delta compressed. Next,
we use O(EBD) as EBD’s complexity.



For this collection, EBD only needs % of LORS and EDR’s

. 1
time, and almost 555

Less Space. Sorting the trajectory lists not only acceler-
ates the distance computation in Equation 4, but also re-
duces the storage costs as the data can be delta coded [59].

of the time on other measures.

EXAMPLE 3. After sorting the trajectory list incremen-
tally, we can compress it using delta encoding [59] — Th =
{1,3-1,5-3,6—-5,19—-6,32—-19} = {1,2,2,1,13,13}, as
shown in the bottom of Figure 2.

In our experiments on Porto, we show that the dataset
can be compressed from 385MB to 178MB (see Table 5).
Note that decompression is very efficient and will not affect
the performance, as previously shown [48]. Hence, we pre-
process all the trajectories by sorting in monotonically in-
creasing order before clustering. It is not necessary to store
the original trajectory, as the sorted array can be recovered
easily using the graph connectivity information.

4.4 Triangle Inequality

Fully metric distance measures are not generally required
for trajectory-based pruning and indexing to be effective.
However, obeying the triangle inequality can greatly im-
prove those commonly used pruning algorithms [25], and re-
duce the number of distance computations required in prac-
tice (see the detailed applications in Section 5.2). We prove
that EBD guarantees to satisfy the triangle inequality.

LEMMA 2. For any trajectories 11, T, and T3, we have:

EBD(T:,Ts) + EBD(T,Ts) > EBD(T:, T3)
|EBD(T:, Tz) — EBD(T2,T3)| < EBD(T},T)

()

Proor. This lemma can be proved using a Venn diagram
[44] with the three trajectories. The detailed proof is in our
technical report [47]. [

Any metric index such as a VP-tree [53] or M-tree [16] can
be used to index the trajectories and support EBD for fast
similarity search. In Section 6.2, we will propose an index-
based batch pruning algorithm to further accelerate k-paths
clustering.

S. BASELINE FOR K-PATHS

When using EBD, our baseline for k-paths works as shown
in Algorithm 1. We first conduct the centroid initialization
in line 1 (Section 5.1). Then in the first iteration (¢ = 0)
from line 4 to 9, we assign every trajectory T; to the nearest
centroid path. From the second iteration onward (line 12 to
25), we introduce two bounds between each trajectory and
the centroid path to avoid unnecessary distance computa-
tions and accelerate assignments (Section 5.2). After the
assignment in each iteration (line 27), we propose a solution
to reduce the time complexity of refinement to linear with
an objective function (Section 5.3).

5.1 Centroid Initialization

Good initial clustering assignments can lead to faster con-
vergence in k-means algorithms [11]. Here, we compare two
different strategies: 1) randomly choosing k trajectories
from dataset; 2) adopting k-means++ [11]. We find that
random initialization is sufficient for fast convergence when
using EBD for k-paths clustering (details in [47]). Hence, the
centroid initialization of k-paths is not further explored here.
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5.2 Trajectory Assignment

Based on the k newly chosen centroid paths, assigning
each trajectory to the nearest cluster is called trajectory as-
signment. A baseline to achieve this is to compute its dis-
tance to every cluster’s centroid path p;, as shown in line 4
to 9 of Algorithm 1 in the first iteration. The overall com-
plexity of each iteration will be O(nk) x O(EBD).

Pruning by Lower Bounds. Reducing the complexity
for a single distance computation can significantly increase
the performance, while computing the distance with all cen-
troid paths for every trajectory is still expensive. If we can
reduce the number of distance computations, additional per-
formance gains can be achieved. Computing lower bounds
of distance without accessing the trajectory directly based
on the triangle inequality and the previous distance compu-
tation is a widely adopted method in k-means [22].
Algorithm 1: k-paths (k, D)

Input: k: #clusters, D: dataset.

Output: k centroid paths: {u1,...,ux}-
1 t < 0, initialize the centroid paths p = {p1, -+, pur};
2 while p changed or t =0 do

3 if ¢t =0 then
4 for every trajectory T; € D do
5 min <— +00;
6 for every centroid path p; do
7 Ib(i, j) < EBD(T}, 115);
8 if 1b(4,5) < min then
9 | a(i) « 4, min < 1b(i, j);
10 HisTOGRAMUPDATE(a(i), EH, ALH, T;);
11 else
12 Update the centroid drift e¢d and bound c¢b for
each cluster;
13 for every trajectory T; € D do
14 Update ub and [b;
15 if max (Ib(3), M) > ub(7) then
16 ‘ T; stays in current cluster: a(i) < a (4);
17 else
18 man <— +o0;
19 for every centroid path p; do
20 if ub(i) > 1b(i,j) then
21 Ib(i, j) < EBD(T3, 1j);
22 if 1b(i,7) < min then
23 ‘ a(i) < 7, min < 1b(i,7);
24 if a/(i) # a(7) then
25 ‘ HisToGRAMUPDATE(a(z), EH, ALH, T;);
26 for every centroid path p1; do
27 | Compute O; (Equation 10) and update j;;
28 t—t+1;

29 return {p1,..., 4 };

We now show how our bounding method solves the EBD
based k-paths. Let Ib(i,j) denote the lower bound distance
between a trajectory T; (which was assigned to S/ ) in last

iteration) and a centroid path p; (1 < j <k and j # a/(i)),
and let ub(z) denote the upper bound distance between T;
and its nearest centroid path p,(;). An array is maintained
to store the lower bound distance to all other clusters for
each trajectory, each of which is initialized as the real dis-
tance in the first iteration of assignment (line 7).

1) Centroid Drift. For every trajectory T;, we main-
tain (1) the lower bound distance to the previous centroid
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paths u; for all k — 1 clusters, i.e., Ib(i,j) = EBD(TZ'“LL;-),
where j € [1,k] and j # a/(i)7 and (2) an upper bound
distance ub(i) = EBD(Tuua/(i))
the distance between the current centroid p; and the pre-

@ Centroid path

O Trajectory

After each refinement,

vious centroid ,u;- in cluster S; will be computed as the

centroid drift cd(j) = EBD(u;,uj). Before computing the
distance between a trajectory and the new centroid path,
we update the stored bounds with the centroid drift based
on the triangle inequality, i.e., Ib(i,5) = |Ib(i,5) — cd(5)],
ub (i) = ub(i) + cd(a/(i)). As a result, T; cannot be assigned
to the centroid path u; (a(z) # ) if ub(i) < 1b(i, ), denoted
as:
1b(i, ) > ub(3) : ali) # j (6)
In addition to maintaining a lower bound for every cen-
troid path, the minimum lower bound is set as the global
lower bound 1b(i) = min,_, s, Ib(, j) distance for each tra-
jectory Tj, i.e., Ib(7) is the lower bound distance from T; to
its second nearest cluster. Then, 7} can stay in cluster Sa/m
(line 16) if 1b(¢) > ub(3), denoted as:
Ib(i) > ub(i) : a(i) = a () (7)
Note that 1b(4,5) will be updated as EBD(T;, ;) if it is
computed during the assignment (line 21); otherwise, we
keep the current bound for next iteration. The same applies
to ub(i) if EBD(T3, 11, ;) is computed.

2) Centroid Bound. For every centroid path, we com-
pute its distance to all other k — 1 centroid paths and build
the distance matrix over the centroid paths, which can be
completed immediately as k is always small. Also, we store
the minimum distance cb(a/ (1)) =min,_ ;) EBD(1,/ ;)5 H5)
as the global filtering lower bound (line 16), then we use
the following comparisons to judge whether T; should be
assigned to S (line 20) or stay in cluster S,/

2
cb(a’ (i)

2

> ub(i) s a(i) #j
(8)

> ub(i) : a(i) = d (i)
Then, we combine two bounds to induce further pruning:

max (Ib(i) > ub(i) : a(i) = a (i) (9)

ebla’ (i)
T2

EXAMPLE 4. In Figure 4, T; was assigned to Sa/(i) i pre-

vious iteration.> Now the two new centroid paths are updated

to new centroids, e.g., ,u; — i, and we need to assign T;
to a new centroid path. Instead of computing the distance
EBD(T;, ,ua/m) and EBD(T;, u;), we compute the upper bound

3For a clearer observation of the pruning, the trajectory
and EBD distance are simply drawn as point and line in a
metric space.
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of EBD(T, p1, ;) as ub(i) = ub(i) + cd(a/ (7)), and the lower
bound of EBD(T;, ;) as lb(i,5) = |Ib(i,5) — cd(f)| using the
triangle inequality. If 1b(i,j) > ub(i), then EBD(T;, ;) >
EBD(Ti,ua/(i)), which means T; is closer to B! (i than pj,
and T; can stay in cluster Sa/(i). Similarly, another bound

%@) can be used to compare with ub(i) for pruning.

5.3 Centroid Path Refinement

Similar to k-medoids [41], choosing the existing trajectory
as the centroid path can make the result a real path in G.
Such a trajectory T' will minimize the distance to all other
trajectories in the same cluster S; (j € [1, k]), which can be

denoted as:
O; = argmin Z EBD(T, p;)
1€ Tes;

(10)

A naive way to update the centroid path is to pre-compute
a distance matrix first, followed by an enumeration of each
trajectory in the cluster. Then a sum checking over all
the trajectories in each cluster is performed, and the tra-
jectory with minimum distance as the new centroid path
is chosen. The above baseline has a time complexity of
O(|S;]?) x O(EBD) where |S;| is the number of trajecto-
ries in the cluster S;. To reduce the complexity, we further
transform the objective function to Equation 4:

Oj = argmin (Y max(|T|, |p;]) = > llel])

Hi€Sj  res; eEp;
=argmin (3 171+ S (il =17 = 3 llell)
#j€S;  Tes; T8’ ecp; (11)
J
= argmin (|G, ]|+ > (gl =T = 3 ell)
njES; T8’ e€p;
J

where |T'| is the length of trajectory T', and |le|| is the fre-
quency weight of the edge e, i.e., a product of the number
of trajectories crossing e in cluster Sj, |e| (the length of e),

and S; is a subset of S; and stores all the trajectories with
a length less than |y, ||G;|| = ZTGSJ_ |T| is the weight of
frequency graph G; for cluster S; built from G, where the
weight of each edge e € G; equals to EH ;(e) which is an
edge histogram to be built. ||G,|| is a constant and can be
pre-computed by building a length histogram. Through the
above transformation, trajectories with frequent edges are
selected as the centroid paths. This further verifies that the
paths returned from EBD-based k-paths are frequency-based
representatives for the whole dataset.

5.3.1 Histogram Construction

To compute the objective function for every trajectory in
the cluster using Equation 11, we maintain two histograms
for each cluster to update the centroid path in each iteration.

Edge Histogram. Given all trajectories in S;, an edge
histogram (EH ;) for cluster S; will store the frequency of
edges in the graph, sorted in descending order. EH[l] re-
turns the [-th largest frequency, and EH ;(e) returns the
frequency of edge e, i.e., EH ;j(e) = |le||. We do not need to
rebuild it in each iteration, instead we incrementally main-
tain one histogram for each cluster, and update it only when
a trajectory moves into or out of this cluster (line 24). With
more iterations, most trajectories will stay in the same clus-
ter and there will be fewer updates to the histogram. For
all of the clusters, we also maintain a global edge histogram
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(EH ¢) for estimating the upper bound of the weight of each
trajectory in Equation 14.

Length Histogram. The length histogram (LH) mainly
works for computing the second part of Equation 11. For
each entry, the key is the length of trajectories (the stan-
dard unit is meter), the value is the number of trajectories
having this length. LH is sorted by the key in ascending
order, LH ;[l] returns the number of trajectories which have
a length [ in cluster S;. With the built FH and LH, we
further convert Equafc}gn1 10 to:
J
0; = argmin (|Gl + > (luj| = DLH ;[ = > EHj(e))
nj€S; =1 e€pu; (12)
= argmin (|G|l + ALH;[|n;]] — > EH;(e))
nj €Sy e€n;
where ALH j is the accumulated length histogram built from
LH; by:
0,1<m< minTEsj |T|
ALH jlm =1+ X, <1< LH; U,
m < maxres; |7

ALH j[m] = (13)

5.3.2 Selecting Trajectories as Centroid Paths

By Equation 12, we use the edge and length histograms
to check every trajectory in the cluster and find the one
with the minimum objective value. This method reduces
the complexity from O(]S;]?) x O(EBD) to O(|S;|) based on
the incremental histograms maintained.

To this end, we still need to check the aggregated distance
in Equation 12 of every trajectory to choose the minimum
one, so the running time will increase w.r.t. the size of
the data. Computing a lower bound for every trajectory
T before computing the objective value by Equation 10 is
a better approach. By using the sum of the |T| highest
frequency of edges in the histogram of a cluster, the lower
bound objective value for the trajectory can be computed,
as shown below:

> " EHj(e) < UB1(T) = > EHq(e) (14)
SSEH @ < BT = S BH (9)
e€T 1<i<|T|

We can combine these two bounds as max(UB1(T'), UB2(T))
to prune a trajectory before computing Equation 12.

5.4 Performance Discussion

The proposed baseline can avoid distance computations
to some extent by using bounding and histogram techniques
during assignments (Equation 6 and 9), and refinement
(Equation 14 and 15). However, the algorithm still needs
to scan every trajectory in the dataset, as shown in lines 4
and 26 of Algorithm 1. Scanning every trajectory does not
scale in large collections, and so indexing techniques can be
used to minimize trajectory data processing costs.

Moreover, choosing an existing trajectory as the centroid
path may reduce quality. For example, traffic cameras may
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not correctly read the plate number every time which leads
to incomplete trajectories, or when an entire-day taxi trajec-
tory is improperly segmented (which occurs in the T-drive
dataset as shown in Figure 15(a) and (b)). To avoid such
cases and have a more robust refinement process, choosing
a complete real path of moderate length is crucial.

6. BOOSTING K-PATHS WITH PIG

In this section, we propose an indexing framework called
PIG to further boost the performance. PIG is composed of
three modules (Figure 5): a Pivot-table, an Inverted index,
and a Graph traversal algorithm. In particular, the inverted
index on each edge e of the road network can further reduce
the distance computation cost; pivot nodes in the Pivot-
table can bound a set of similar trajectories together instead
of assigning them individually; the refinement step is con-
verted to a more scalable graph traversal problem-CPEP to
avoid repeated scanning of the trajectory dataset, where a
robust, practical, and efficient greedy algorithm is proposed.

6.1 Inverted Index Acceleration

For all trajectories in the dataset, an inverted index is
built where the key is the edge and the value is a sorted list
of trajectory IDs passing this edge. The inverted index can
avoid distance computations to accelerate the k-paths.

We first assign the trajectories that intersect with the cen-
troid paths by computing the EBD distance and using the
lower bound for pruning. For the remaining trajectories
which do not intersect with any of the centroid paths, we
assign each of them according to their lengths as the dis-
tance between T; and the cluster will be max(|T5|, |u;]). If
a trajectory T; does not occur in any inverted list of a cen-
troid path p;, then we do not need to check the intersection
|T; N ;| as it is equal to 0, and we can use max(|T;|, |u;|)
as the distance directly. Similarly, we can also build an in-
verted index on every vertex to accelerate the range query,
path query, and top-k similarity search [48] if it is used for
road network trajectories, thus allowing us to interactively
explore the trajectories in a specific range or path efficiently.

6.2 Pivot-table for Metric Features

In this subsection, we will present an index which groups
similar trajectories to accelerate the assignment step of the
baseline proposed in Section 5. Before introducing our solu-
tion, it is noteworthy that Kanungo et al. [31] have earlier
used a k-d tree and a perpendicular bisector to prune a group
of points in nodes of the k-d tree in Euclidean space, and
showed that the index can greatly improve performance for
k-means, especially in low dimensional space [28]. However,
it cannot be used in a metric space covering EBD.

6.2.1 Pruning Mechanism

Metric space indexing is a widely explored area for fast
similarity search. Among all metric indexing methods, a
pivot-based index is one of the most popular choices [13]. The
idea is to group a set of trajectories into several nodes. Inside
each node N, a trajectory called pivot T}, is chosen, and each
trajectory inside N has a distance less than a radius r to
T». When a query trajectory g scans node NN, the node will
be pruned if dist(q,Tp) — r > mingst(q), where mingist(q)
is the current minimum distance. The assignment can be
accelerated by pruning a group of trajectories.
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Grouping Trajectories. Similarly, given a node N with

a pivot trajectory T, and radius r, we can have the following
pruning rules with cluster S; by extending Equation 6 & 8:

b(p,j) —r > ub(p) +7:a(N) #j

EBD (kg ()r 145)
2
Before comparing with every centroid path, we use a global
bound similar to t/he one described in Equation 9.
cb(a (p)))
2

(16)

—r>ub(p)+riaN) A5 (17)

max (b(p), —r>ub(p)+r:a(N)=a (p) (18)

For the assignment process, we will assign a node of sim-
ilar trajectories directly to cluster S; if the gap between
bounds is bigger than 27, as shown in Equation 18; other-
wise, we scan the trajectories inside the node and proceed
with assignments. The centroid paths p; pruned by Equa-
tion 16 and 17 are no longer checked for the child trajectories
of node N.

EXAMPLE 5. As shown in Figure 6, a pivot-table is cre-
ated with a set of trajectory nodes represented as circles.
Node N has a pivot trajectory Ty, and all trajectories inside
the node have a distance less than a radius r to Ty,. p; is the
second nearest centroid path to T,. We can assign the whole
node N to the cluster Sa/(p) if its pivot trajectory Tp’s up-
per bound plus the radius r (the greatest distance from any
trajectory in N to u,s (p)) is smaller than the lower bound
minus r (the smallest distance from any trajectory in N to
1y ), i.e., Ib(p) —r > ub(p) +r.

Algorithm 2: PIvoTTABLECONSTRUCTION (k, D)

Input: k: #clusters, D: dataset.
Output: pivot table PT
1 PT « 0, Q.push(D);
2 while Q is not empty do
3 D, + Q.poll();
S < k-paths(k, Dy);
for every cluster S; € S do
if [S;j| < k then
r <— GETRADIUS(Sj, 115);
PT.add(pj,7,S;5);
else
10 | Q.push(S;);
11 return PT;

© g O Gk

To group all trajectories into nodes, an M-tree [16] can
be used. However, when millions of trajectories are inserted
into the tree, it is inefficient, and nodes can have unaccept-
ably large radii to cover the mc trajectories or sub-nodes,
where mc is the minimum capacity of a node. This results
in degraded pruning performance. From Equation 18, we
can observe that a node with a large radius r rarely induces
pruning, and we have to scan the child trajectories in that
node if it is not pruned. Therefore, the tree structure is not
used in this work. Instead, we use a lookup table containing
all the pivot nodes.
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6.2.2 Pivot-table Construction

As shown in Algorithm 2, we propose a novel index con-
struction method for the k-paths clustering problem. First,
all trajectories are divided into k clusters with k-paths
(line 4), by employing the baseline in Section 5. For a cluster
with more than k trajectories, we keep performing k-paths
clustering until the number of trajectories inside is no larger
than k. The final cluster will form a node and be added
into the pivot table PT, and the centroid path p; is the
pivot trajectory for that node. After generating all of the
nodes, the edge and length histograms are built for every
node. This is used for refinement when a node is assigned
to a cluster.

Algorithm 2 can also be used to discover the best k if
we have a better idea on the capacity of each cluster than
the parameter k, especially when clustering taxi trips to an
unknown number of potential bus routes, where the capacity
of a route is given. If a cluster has a number of trajectories
greater than the capacity, we will divide this cluster into
more sub-clusters, same as the pivot-table construction.

6.3 Graph-based Centroid Path Extraction

To further minimize the objective value in Equation 10,
we define the following problem with an objective function
to find a path in G instead of an existing trajectory.

DEFINITION 8. (Centroid Path Extraction Problem
(CPEP)) Given a road network G, CPEP finds a path u§
i G to minimize the EBD with all the trajectories in the
cluster S, which can be formulated as:

OJG = arg min Z EBD(T, ;LJG)

n§eG; Tes; 19)
19
= argmin (||G; || + ALH;[|u§'[] - > EHj(e))
Gea; el
Mg J ecp;

where M]G € G, denotes that ,u? is a path in the frequency
graph G; with a length \,u]G| = [lmin;lmaz], and initially,
lmin = minres; |T| and lmaz = maxres, IT).

Minimizing this function can return a centroid path no
worse than choosing an existing trajectory as the centroid
path, because each trajectory in S; is a path in G;, Such
a path is used to build the frequency graph G; of S;, so
it can be found in G to achieve the same objective value
in Equation 10. Moreover, a new path composed of the
connected edges with high frequency in the graph can be
scanned, so as to further reduce the objective value.

A straightforward method to answering CPEP is to find all
of the candidate paths in G. However, there are too many
choices for a path with a length in the range [lmin, lmaz), and
the brute force method cannot be resolved in the estimated
time as CPEP is NP-hard by converting it to the k minimum
Travel Salesman Problem (k-TSP) [26, 39].

LEMMA 3. The CPEP which finds a path ij in graph G
for Of is NP-hard.

PrOOF. We can convert Equation 19 as follows:

05 = argmin (|G, || + ALH, 1| - max 3" EH,(e))
H?Ecj een&
! (20)
= argmin (IG5l + ALH[|u§ || = kKTSP(|u§|, G;))
[

where kT'SP(|u§|,G;) = max ) . ¢ EH;(e) outputs the
J

maximum sum of the frequency of a path with a given length



of [u§| in graph Gj, which finds the path of length |u$|
in graph G; with the greatest weight, which is an NP-hard
problem: k minimum Travel Salesman Problem (k-TSP) [26,
39] (Given a weighted graph, find a path of minimum® weight
that passes through any k vertices, where we can relax our
problem by setting the length of each edge e as 1 similar to
Example 2, i.e., |e| = 1). Hence, CPEP is NP-hard. []

Note that a bounded approximation ratio for k-TSP can
be obtained only under the assumption that the edge-lengths
satisfy the triangle inequality [26, 10], since the length in
our graph G is the frequency of edges crossing trajectories,
and does not satisfy the triangle inequality, then no known
bounded approximate solutions currently exist for CPEP.

Algorithm 3: REFINECPEP (G, 11;)

Input: G: graph, u;-: previous centroid path.
Output: the centroid path p;.
1 PQ <+ 0,B <+ 0, min + O]G(,u;), it 0, pj u;-;
2 for each edge e € EH; do

3 if min > LB(e) then

4 | PQ.push(e, LB(e));

5 while PQ.ISNOTEMPTY() do

6 (ps,LB(ps)) +— PQ.poll();

7 if LB(ps) > min or it < itmax then

8 ‘ break;

9 for each neighbor edge e of ps do

10 if EH;.contains(e) and e ¢ ps then
11 pS < ps+e;

12 Compute Of (ps) by Equation 19;
13 if OF (ps) < min then

14 | min < Of (ps), u; + ps;

15 Compute LB(ps) by Equation 21;
16 if min > LB(ps) then

17 if B(ps) > LB(ps) then

18 PQ.push(ps, LB(ps));

19 B.add(ps.be, ps.ee, LB(ps));
20 it < it + 1;

21 return p;;

The CPEP can be solved by setting different \,u]G| €
[lmin, lmaz] for k-TSP,5 and then choosing the one with
a minimum objective value. We can further narrow the
range of |,uJG| by decreasing lma. from maxres;, |T| to
the first value that makes the objective value increase —
ALH j[lmaz]— ALH j[lmaz—1]— EH j[lmas] = 3574 LH ;[4]—
EH;[lmez] > 0. When a /L]G has a length of . and
Z;Z‘{I LH;[j] > EHj[lmas], the objective value will not
decrease anymore. However, such a method still needs
(lmaz — lmin + 1) times of k-TSP. Hence, we develop an
efficient growth-pruning search algorithm over the graph.

A Greedy Algorithm for CPEP. In Algorithm 3, we first
initialize all edges of the candidate paths, then all paths
are grown by appending neighbor edges using a breadth-
first search. We call this process as growth. Pruning is
performed on a growing path if it cannot be the result based
on the lower bound computed by appending highly weighted
potential edges (we call this the threshold potential).

4Renormalization can be conducted to convert minimum
to maximum.

SHere, k is the number of edges, which is a different con-
cept from the k in k-paths.
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Note that for a candidate path, we assume that there are
no cycles (cycle-free) as most real paths will not cover the
same edge more than once, and it is also a requirement of
the shortest path search problem [17]. We do not insert this
kind of path into the priority queue. Moreover, a consistent
path should be only expanded to a start edge and an end
edge, and the connectivity of these two edges (be,ee) can
be retrieved from the graph G. Further, we check whether
there is a trajectory crossing e, i.e., FH j.contains(e).

1) Priority Queue. A priority queue PQ is used to
maintain the candidate paths ps with a threshold potential
LB(ps). Each path in the queue is polled by choosing the
smallest threshold potential, and checked to see if the path
should be further expanded with a new edge. If true, it is
added to PQ. We insert the path candidates incrementally
from each of the single edges initially, and poll the ones with
the smallest threshold potential to check if it can beat the
current best centroid path. To achieve a tighter threshold
potential, the temporary best centroid path is initialized as
p;- from the previous iteration, as shown from line 1 to 6.

2) Threshold Potential. If the threshold potential of
the extended path with a new edge is greater than the cur-
rent best path’s objective value min, we will not push this
candidate path onto PQ. For every candidate path, we can
compute the threshold potential of the new path by append-
ing it to the best path (line 15), which is computed as:
Imax

LB(ps) = |G;ll = 32 BH(e)+ i

_min  (ALH;[l] - ¢(BH;, D) (21)
eEps ‘=1ps

where ¢(EH;,1) is the maximum possible edge weight for
the appending path with a length [, — I, we can let
$(BH;,1) = Y0m" ™' EH,[2].

3) Repeatability. Moreover, to avoid repetitive scanning
of paths which share the same start and end edges, a buffer
B is created to store the signature of each checked candi-
date path, where the key is composed of the start and end
edge IDs, and the value is the threshold potential. If any
path being checked has the same start and end edge IDs,
we compare the threshold potential LB(ps) with the bound
in the buffer B(ps). The checked path will be pruned if
LB(ps) > B(ps), as shown in line 17.

4) Termination. If the current minimum objective value
min is greater than the next polled path’s threshold poten-
tial (in Equation 21), the whole algorithm will terminate and
return the best path (line 7), as all unscanned paths’ best
cases are impossible to beat the current best path. However,
according to our experiments, the gap between the best and
threshold potential can be hard to determine. Hence, we ter-
minate if the best path does not change after a fixed number
of iterations tmax (5000 is sufficient according to our exper-
iments), and the experiment shows that we achieve a better
objective value than Equation 10 within thousands of itera-
tions, i.e., it can find a better path than the dataset scanning
based refinement method.

7. EXPERIMENTS

Goals. We wish to conduct experiments to show the ef-
ficiency of EBD based k-paths over state-of-the-art [12, 24],
scalability of the PIG index proposed for k-paths, the effec-
tiveness of EBD over state-of-the-art [12, 34, 24], as well as
the impact of varying k.



Table 4: Summary of datasets and road networks.

Porto T-drive
trajectories 1,565,595 250,997
total edges 100,995,114 59,360,981
edges per trajectory 65 237
average travel length (m) 5632 31,056
Space (MB) of raw D 1853 752
Edges 150,761 126,827
Vertices 114,099 54,198
Average edge length (m) 119 217

11 5

Space (MB) of G

(a) Porto (b) T-drive

Figure 7: Road network overview of two collections.

Datasets. 1) Porto [7]: trips in the city of Porto for one
year (from 01/07/2013 to 30/06/2014) performed by all the
442 taxis; 2) T-drive [56]: trips for 30,000 taxis in Beijing
over three months. Porto and T-drive are mapped into the
road network using GraphHopper [4]. Table 4 shows the
statistics of these two datasets, Figure 7 shows the underly-
ing road networks [5], and Figure 8 shows the histograms of
all the edge length of Porto and T-drive.

Implementations. All experiments were performed on
a server using an Intel Xeon E5 CPU with 256 GB RAM
running RHEL v6.3 Linux, implemented in Java 8.0. The
JVM Heap size was set to 16GB. HashMap is used to store
the trajectories and build the inverted index, and Google
Guava MultiSet [2] is used to build the histograms.

Comparisons & Measures. Our primary baseline is the
most cited trajectory clustering work TRACLUS [34] which
is density-based, and the state-of-the-art k-center for point-
based trajectories [12] which is partition-based. We also
use LORS and five other existing trajectory distance mea-
sures widely used for partition-based clustering as shown
in Table 1, and integrate them with k-paths. Specifically,
DTW [51], Discrete Fréchet Distance (Fré for short) [8], and
EDR [50], Hausdorff (Hau for short) [12], ERP [42] are com-
pared with k-paths and EBD, where the starting vertices of
edges embody the point-based trajectory. Running time, a
case study, convergence (objective value and running time
in each iteration), and pruning power (#pruned distance
computations) are reported.

7.1 Efficiency Study of k-paths

For fair comparisons, we run experiments on the same
dataset with the same randomly selected initial centroid
paths in each test for the efficiency validations. We ran-
domly generate the seed pool which contains 200 groups of
initial centroid paths, and each group includes 100 trajecto-
ries for each dataset. For all k& < 100, we choose the first &
trajectories from each group and run every comparison for
each group, and finally record the average running time and
the number of iterations (#iterations).

k-paths with Various Distance Measures. In Figure 9,
we first compare the single-iteration running time of EBD-
based k-paths with that of other distance measures based
k-paths for Porto (see [47] for the performance on T-drive).
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Figure 8: Edge length histograms of two datasets.

We set |D| = 1000 due to poor efficiency of other measures.
The EBD-based k-paths incorporates all of the optimizations
proposed in this paper; ERP also uses our lower bounding ap-
proach described in Section 5.2 and LORS uses our inverted
index approach from Section 6.1. We omit EDR as it has a
similar running time to LORS. Both use a similar dynamic
programming approach, and the key difference is that EDR
is point-based while LORS is based on edges. All other dis-
tance measures use assignments and refinements based on a
distance matrix. We also show the number of iterations for
all distance measures (Note that EBD and LORS overlap as
they produce a similar trajectory distance on the collections,
and require the same number of iterations).

k-paths with EBD. The histograms in Figure 9 show the
time spent on assignment and refinement respectively, and
compare five methods from left to right:

1): PIG proposed in Section 6; 2): baseline solution pro-
posed in Section 5; 3): Lloyd’s algorithm introduced in Sec-
tion 3.3 (we ignore it when verifying k as it is not com-
petitive); 4): k-center [12] which adopts the Hausdorff
distance measure [40] and uses an alternative partition-
based clustering framework. k-center tries to bound all
points in k circles, and minimize the sum of the ra-
dius;  5): VFKM [24] (Vector Field k-means) which
uses vector fields to induce a notion of similarity be-
tween trajectories, define and represent each cluster. We
test |D| = {100, 1000, 10,000, 100,000, 1,000,000} and k& =
{10, 20, 30,40,50}. The underlined number is the default
value when testing multiple parameters.

Breakdown of Assignment Process. Figure 10 shows
the number of distance calculations in the assignment pro-
cess using our proposed solutions as they are gradually in-
creased. We compare Lloyd’s algorithm (LL), Centroid drift
(CD), Centroid bound (CB), Inverted index (II), and Pivot-
table (PT). The number of relocated trajectories (line 24 of
Algorithm 1) and histogram updating time in each iteration
are also observed.

Breakdown of Refinement Process. Figure 11 com-
pares the refinement time and objective value changes in
each iteration. Here “Scanning” represents the baseline
method proposed in Section 5.3. Refinement time changes
with the iterations in all of the 200 groups of experiments,
and the boxplot reinforces our belief that we can get stable
performance using randomly chosen seeds. It shows that
CPEP can find a better centroid path (a smaller objective
value defined in Equation 19 than Equation 10’s), and the
running time of refinement is also smaller than the full scan
based method. Moreover, Figure 12 shows the refinement
performance of the greedy algorithm for CPEP. We show the
average termination time (the steps used to update the min
in Algorithm 3) in each iteration of k-paths, which decreases
with the iterations. This suggests that the optimal path can
always be found in a limited number of path scans.
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paths requires fewer distance computations (more than 80%
are pruned) by using an index. The histograms and graph
traversal not only accelerate the refinement, but also return
better centroid paths with a smaller objective value.

Finally, as the dataset size grows, the running time in-
creases linearly, and the number of iterations increases
slightly. Increasing k leads to a small rise in the number
of iterations and running time.

7.2 Scalability Study of Indexing

Index Construction. Table 5 shows the time spent on
index and histogram construction. To compress the dataset
and index, we use an open source library JavaFastPFOR
[3] to compress the sorted lists as shown in Example 3. We
also perform a scalability test on pivot-table construction by
increasing the size of the data in both datasets in Figure 13.

k-paths with Updates. When we insert a new trajectory
into the dataset, efficiently updating the centroid path is
crucial. We can assign this new trajectory to k centroid
paths using the lower bound technique, update the corre-
sponding cluster’s edge and length histograms, and then we

can run CPEP and update the centroid path. We only insert
new edges in the trajectory in the priority queue, as other
edges have already been checked. Then the update cost is
only related to k, and is independent of |D].

OBSERVATION 2. The compression techniques help reduce
the total trajectory dataset size from 385MB to 178MB for
Porto, and from 226 MB to 82MB for T-drive. Then, we get
a compression ratio of 2.16 and 2.76, respectively. T-drive
has a higher ratio as it has longer trajectories with 237 edges
on average (see Table 4), where the compression will be more
effective [59]. Hence, our algorithms are space-efficient and
scalable. Moreover, our algorithm efficiently supports up-
dates in large collections. The running time grows linearly
with the size of the data.

7.3 Effectiveness Study of k-paths
7.3.1 Case Study by Visualization

As shown in Figure 14, 15, 16, and Figure 1 which we in-
troduced previously, we cluster the taxi datasets to help plan
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Figure 15: Case studies on T-drive.

new bus routes. We compare six different methods: 1) TR-
ACLUS; 2) LORS-based; 3) k-center [12]; 4) EBD-based with-
out CPEP; 5) EBD-based with CPEP; 6) VFKM [24]. Figure
1(a)(b) presents the density-based method TRACLUS [34].
The remaining five are partition-based methods and are pre-
sented in Figure 14, 15, 16(a)(b), and 1(c), and the output
is k paths, each shown with a different color. Note that we
omit LORS-based for T-drive due to space limitations.

Since the original TRACLUS algorithm [34] needs to pro-
cess every trajectory to generate line segments, and is not
scalable to cluster million-scale datasets, we have optimized
TRACLUS using our data modeling method. TRACLUS is
composed of two steps: partitioning and grouping. Parti-
tioning finds the segments shared by trajectories, which can
be seen as constructing the road network using trajectories.
Since we use network-based trajectories, we can use the road
network as the partition’s output directly. In grouping, we
select all the edges with a frequency higher than a threshold
(Lee et al. [34] set it as the average frequency by default),
which can be done with our edge histogram. Figure 16(c)
shows the ten most frequent edges in Porto. We find that
they gather at the center of Porto and are too short to be
particularly informative.

In Figures 1(c) and 15(c) we highlight the locations of the
airport and main railway stations in each city. For Beijing,
T-drive has three main railway stations, i.e., Beijing sta-
tion, Beijing West, and Beijing South; Porto has two main
railway stations, Sdo Bento and Campanh&. We can observe
that our cluster paths are often closely aligned with these
prominent locations (see [47] for more detailed figures).

7.3.2 Choice of k

As k is the only hyperparameter required for k-paths, we
also explore how to estimate the best k for each dataset. Us-
ing the elbow method [33] to determine the optimal number
of clusters is a common approach for k-means, i.e., finding
the k where the gradient of objective value (Equation 1)
starts to decrease. As shown in Figure 17, we increase k
and observe changes to the objective values produced.

OBSERVATION 3. Firstly, Figure 1, 14, and 15 both show
that the returned centroid paths for EBD based k-paths cover
the path beginning from or ending at the airport while the
other two methods (LORS and k-center) do not. Since
VFKM [24] generates vector fields instead of using exist-
ing trajectories on the road network, the results are not real
paths in a road network. LORS performs poorly as we can
only use it to cluster 1000 trajectories. This is consistent
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with our intuition that taxis are one of the primary modes
of transportation around the airports and railway stations,
and provides additional qualitative evidence of the quality of
the results being returned by our approach.

Secondly, by comparing Figure 1(c) which is CPEP-based
k-paths and Figure 14(c), we can see that they are very simi-
lar visually, i.e., CPEP can find centroid paths as effective as
scanning every trajectory. In Figure 15(b)(c), since T-drive
stores the complete trajectory of every vehicle for long du-
rations (while every trajectory in Porto is a single trip),
choosing the existing trajectories as the centroid paths in k-
paths produces long and chaotic trajectories, which are not as
easy to work with as Porto is for visualizations. In contrast,
CPEP based k-paths chooses the paths from the graph, which
is much clearer and validates the robustness of our algorithm
for CPEP which we believed is crucial (see Section 5.4).

Finally, Figure 17 shows that the selection of k based on
finding the elbow is feasible for our two datasets. For Porto,
the elbow is around k = 21 (where the arrow points to), and
the elbow is quite clear for T-drive, at around k = 13.

Remarks. More effectiveness studies can be explored using
our demo system® with interactive visualizations (see Sce-
nario 2 of [49] for instructions, the response time may vary
due to network delay).

8. CONCLUSIONS

In this paper, we proposed and studied k-paths— a fun-
damental trajectory clustering problem. To answer k-paths
efficiently, we model trajectory data using a road network,
and propose a distance measure called EBD, which reduces
the time complexity of distance computation and obeys the
triangle inequality. Based on EBD, effective lower bound
pruning and built histograms, k-paths can be answered us-
ing the classic Lloyd’s clustering algorithm efficiently. To
further resolve the problem of 1:1 data access during assign-
ment and refinement, we proposed an indexing framework
called PIG that groups trajectories in a pivot-table and uses
an inverted index to avoid unnecessary distance computa-
tions, and traverses a graph to find k centroid paths. In the
future, we hope to further explore the distributed k-paths
problem as well as k-paths on other types of trajectory data.
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