Demonstration of ScroogeDB: Getting More Bang For
the Buck with Deterministic Approximation in the Cloud

Saehan Jo
Cornell University, NY, USA

sj683@cornell.edu

ABSTRACT

We demonstrate ScroogeDB which aims at minimizing mon-
etary cost of processing aggregation queries in the Cloud. It
runs on top of a Cloud database that offers pay-as-you-go
query processing where users pay according to the num-
ber of bytes processed. ScroogeDB exploits deterministic
approximate query processing (DAQ) to achieve monetary
savings. That is, ScroogeDB provides deterministic bounds,
i.e., bounds that contain the true value with a 100% prob-
ability. ScroogeDB creates small synopses of the database
and uses these synopses to answer aggregation queries. By
rewriting a query on base tables into a query on smaller syn-
opses, we significantly reduce the amount of processed data.
We do not pre-compute synopses in advance of an analysis
session. Instead, we generate them on the fly, interleaving
synopsis generation with query execution.

In our demonstration, we show that our system realizes
impressive monetary savings with little precision loss. We
run our system on top of the Google BigQuery Cloud plat-
form and provide users with a graphical interface that vi-
sualizes deterministic bounds. The graphical interface also
provides information regarding the generated synopses and
how they contribute to monetary savings.

PVLDB Reference Format:

Sachan Jo, Jialing Pei, Immanuel Trummer. Demonstration of
ScroogeDB: Getting More Bang For the Buck with Deterministic
Approximation in the Cloud. PVLDB, 13(12): 2961-2964, 2020.
DOI: https://doi.org/10.14778/3415478.3415519

1. INTRODUCTION

With the proliferation of Cloud-based query processing
services like Google BigQuery or Amazon Redshift, very
large data sets have become more readily accessible for data
analysis. A novel pricing model available for Cloud-service
users is the pay-as-you-go policy where users pay solely based
on the amount of data processed and stored in the Cloud.
In this scenario, we want to minimize the amount of data
read per query to minimize monetary fees for end-users.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 12

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3415478.3415519

Jialing Pei
Cornell University, NY, USA

jp2475@cornell.edu

2961

Immanuel Trummer
Cornell University, NY, USA

itrummer@cornell.edu

ScroogeDB aims at minimizing the number of bytes pro-
cessed via deterministic approximate query processing.

Prior work on approximate query processing (AQP) typi-
cally uses sampling to generate confidence bounds on query
aggregates |1]. Confidence bounds can be hard to inter-
pret for lay users [6]. Sampling is problematic if aggregates
are sensitive to outliers (e.g., maxima and minima). Those
drawbacks have recently motivated DAQ [6], aimed at pro-
ducing hard bounds on query aggregates. Prior work on
DAQ focuses on simple (single table) queries [4}/6] or time
series data |2|. Another recent work, BitGourmet [3], intro-
duces a specialized execution engine that operates on bit-
sliced data to produce deterministic bounds. All prior work
focuses on minimizing execution time, rather than mone-
tary execution fees. On the other hand, ScroogeDB is non-
intrusive (i.e., runs on top of existing Cloud databases) and
focuses on minimizing monetary fees.

ScroogeDB operates as a layer on top of a Cloud pro-
cessing platform offering pay-as-you-go pricing. It is non-
intrusive since it does not require access to the internals of
the Cloud database. When a user issues a query, ScroogeDB
rewrites the query into a semantically equivalent query on
data synopses and executes it instead. Each data synopsis
is a table that summarizes a portion of the database (cover-
ing one or multiple base tables). These synopses are much
smaller in size than base tables, and thus, using synopses
rather than base tables reduces monetary fees. ScroogeDB
chooses the synopsis to use to answer a specific query based
on a precision model. The precision model estimates the
result precision when answering the current query using a
specific synopsis. Given a user-defined precision constraint,
ScroogeDB finds the synopsis with minimum processing cost
among synopses that satisfy the precision constraint.

Prior AQP systems usually generate auxiliary data struc-
tures offline, prior to query executions. Their goal is to
reduce run time, whereas our goal is to reduce monetary
cost. Since we pay per byte processed, creating redundant
synopses directly translates into unnecessary monetary fees.
We have to ensure that each generated synopsis pays off.
For this reason, ScroogeDB generates synopses in an online
fashion. That is, we interleave synopsis generation (which is
done in the background) with query execution. ScroogeDB
does not require an example workload nor does it create pre-
computed synopses. Instead, we only rely on (a handful of)
queries from the ongoing analysis session to determine the
query distribution in a probabilistic manner.

Based on that, ScroogeDB searches for a synopsis that
benefits us not only for the current query but also in future

Happy User
(Due to Monetary Savings)

g + Target Precison Internal Components of ScroogeDB

Deterministic Aggregation -
Bounds sQL Query . Precisioi s :
B ynopsis
Model Catalog Query Log
ScroogeDB ¢ ¢
. ¢ Query Synopsis ¢ Utility
Query Rewritten ™, Rewriter Generator Model
Results sQL Query *
iml =] =F NS
R Database A Synopsis Generation
Base Tables Synopses " saL Query
Figure 1: Overview of the ScroogeDB system.
. . . a c cnt

query executions. ScroogeDB relies on a cost-based synopsis
utility model to determine the optimal synopsis to generate. A - 2
We formulate the problem of choosing the synopsis with B 1 78
maximum utility as an integer linear program. A 2 17 a Cmin Cmax cnt

In our demonstration, we run ScroogeDB on top of Google B 2 19 A 1 2 71
BigQuery and demonstrate its effectiveness in reducing mon- B 3 1 B 1 2 97
etary cost. ScroogeDB demonstrates impressive monetary A 2 5 2 S 75
savings with little precision loss on query results. Section 2
gives an overview of ScroogeDB, introducing its components. B 5 A 4 4 3

In Section 3, we provide details on our demonstration plan
which includes an interactive user experience of our system.

2. PROBLEM MODEL

We introduce our problem model and relevant definitions.
ScroogeDB supports aggregation queries with key-foreign
key joins on a star schema. We currently support Count,
Sum, Avg, Min, and Max aggregation functions and group
by clauses as well as equality and inequality predicates.

2.1 Data Synopsis

A Data Synopsis is a table summarizing a portion of the
underlying database. It can cover a subset of columns in
the fact table as well as columns in dimension tables. To
specify a synopsis, we select a subset of columns from the
database. Then, the synopsis consists of all distinct value
combinations appearing in the selected columns and their
frequencies. In other words, a data synopsis resembles a
materialized view created by the following SQL statement:

select C, Count(*) as cnt

from F
[join D on {foreign key constraint}]x*
group by C;

where C' denotes a subset of columns in the database, F' is
the fact table, and D denotes a dimension table. Note that
there can be multiple dimension tables, each joined along
the foreign key constraint.

Now, we introduce approximation to synopses. We can
divide the value domain of a column so that distinct values
are clustered into a smaller number of coarser value groups.
Each value group can represent multiple consecutive values
in the value domain. We call a column in a synopsis an Ap-
proximate Column if its value domain is divided into coarser
value ranges. Otherwise, if the value domain of a column in

2962

Exact Column ¢ Approximate Column ¢
Figure 2: Example of exact and approximate
columns in a synopsis.

a synopsis is at its finest granularity, we call it an Ezact Col-
umn. This is when there is one value per value group. We
use a tilde over a column symbol to denote an approximate
column (i.e., ¢ indicates that a column c is approximate).
The size of a synopsis depends on how many distinct value
combinations appear in the selected columns. With approx-
imate columns, we can reduce the number of distinct value
combinations, and thus, shrink the size of a synopsis even
further compared to when it only contains exact columns.
For an approximate column, a synopsis stores the minimum
and maximum values of each value group.

Example 1. Figure [2| depicts a case where the number of
distinct value combinations reduces from seven to four. We
divide the value domain [1,5] of an integer column c into
two value ranges [1,3) and [3,5]. The synopsis with the
approximate column ¢ stores its minimum and maximum
for each value range.

2.2 Problem Statement

We measure the Precision of deterministic bounds as the
lower bound divided by the upper bound. In other words,
we get [/u where [is the lower bound and w is the upper
bound (assuming positive numbers for aggregates). We get
a precision of one when the query result is exact (i.e., [= u)
and a precision of zero when we have a trivial lower bound
of zero.

The goal of Monetary Fee Minimization via DAQ is to
minimize the monetary cost of pay-as-you-go query process-

ing in the Cloud. In our problem model, a user conducts an
analysis session and executes queries on a database one after
another. In this scenario, there is no example workload and
the specifics of a query are not given until its execution. We
exploit DAQ in our solution to achieve this goal. Given a
target precision, we produce deterministic bounds with the
desired level of precision as query results.

3. SYSTEM OVERVIEW

Figure [I] shows how ScroogeDB interacts with the under-
lying Cloud database to reduce monetary cost. When a
user issues an aggregation query, ScroogeDB rewrites it into
a semantically equivalent query on data synopses (Query
Rewriter in Figure [1)). Synopses are much smaller in size,
compared to base tables, and thus, the rewritten query ac-
cesses less data than the original. As a result, ScroogeDB
reduces monetary cost, as pay-as-you-go query processing
charges users per byte processed.

We illustrate the internal process of ScroogeDB. First,
given an aggregation query to execute, ScroogeDB identi-
fies synopses (among all synopses stored in the Cloud) that
can be used to answer the current query while satisfying the
user-defined precision constraint (Precision Model in Fig-
ure [1)). If there are multiple such synopses, we choose a
synopsis that results in the minimal number of bytes pro-
cessed. Otherwise, we consider generating a new data syn-
opsis. ScroogeDB takes into account whether a synopsis can
answer the current query as well as the expected utility for
future queries in the ongoing analysis session (Utility Model
in Figure . We consider two factors to estimate synop-
sis utility: 1) how likely the synopsis is to be used and 2)
how much savings we get per usage. To predict upcoming
queries, we use a probabilistic approach and model the query
distribution of the current session. If the size of the smallest
synopsis that can answer the current query is already com-
parable to that of base tables, there is no benefit in using
a synopsis. In that case, we do not create a synopsis and
execute the query without rewriting it.

3.1 Query Rewriting

ScroogeDB utilizes query rewrite rules to transform an
aggregation query on base tables into a semantically equiv-
alent form that operates on a synopsis. The high-level idea
for query rewriting is to scale aggregated values in the syn-
opsis based on the frequency counts. The following example
illustrates rewriting a query using an exact column.

Example 2. Consider the synopsis with the exact column ¢
in Figure [2| and the aggregation query Sum(c) where a =‘B’.
To compute a sum over ¢, we simply multiply each value in ¢
with the frequency count and add them up to get the result.
In other words, we get 1-78+2-194+3-114+5-8 =189. In
summary, we rewrite the query as Sum(c - cnt) where a =‘B’.

Now, suppose we use the synopsis with the approximate
column ¢ to calculate the summation over c.

Example 3. Consider the same query Sum(c) where a =‘B’.
ScroogeDB computes the deterministic lower bound by mul-
tiplying the frequency count to the minimum value for each
row and adding them together. We get a lower bound of
1-97+3-19 = 154. Similarly, we compute the deterministic
upper bound using the maximum values as 2-97+5-19 = 289.
In short, we rewrite the query as Sum(cpiy, - cnt) as lower,

2963

Sum(cmax - cnt) as upper where a =‘B’. Note that cp;, and
cmax are column names rather than aggregates.

3.2 Precision Model

If a synopsis only contains exact columns, we get the best
possible precision of one (i.e., we compute exact results).
When a query evaluation involves approximate columns,
we still can get a lower bound on the precision. We can
show that if the relevant approximate columns satisfy cer-
tain properties, it is guaranteed that the query result meets
the desired level of precision. We describe this concept using
the following example.

Example 4. Suppose we are executing the following query
Sum(c) where a =‘B’ using the synopsis with the approxi-
mate column ¢ in Figure 2] Each value range of ¢ has the
property that the ratio of the lower bound to the upper
bound is greater than or equal to 0.5. That is, we get
1/2 = 0.5 for the first value range and 3/5 = 0.6 for the
second value range. Then, it is guaranteed that the deter-
ministic bounds of the summation give us a precision better
than or equal to 0.5. For this example, we get a precision of
154/289 =~ 0.53 from the deterministic bounds we computed
in Example

This is true for the case when an approximate column
is used as an aggregated column or a constrained column
in an inequality predicate. For other cases (e.g., equality
predicate or group by clauses), we resort to exact columns
in the synopsis.

3.3 Synopsis Utility Model

Internally, ScroogeDB selects synopses to generate based
on a synopsis utility model. Based on the query history and
the current set of stored synopses, the utility model calcu-
lates an estimated benefit of constructing a new synopsis.
For each possible synopsis, we weigh two factors: the prob-
ability that this synopsis will be used in the future and the
monetary savings obtained when using it.

To predict likely future queries, ScroogeDB determines a
probability distribution over queries in the current query
workload. Based on past query executions, we calculate the
probability of a certain column appearing in a specific part
of a query. These probabilities together form the query dis-
tribution for the ongoing analysis session. Based on that,
we obtain the probability of a synopsis being used in the
future. We know that a synopsis can answer a query only
when the synopsis supports all columns of the query. Thus,
the probability that a synopsis supports a future query is
the probability that no unsupported column appears in the
query. In addition, the set of synopses we already have in-
fluences our utility estimates about others. If a query can
be answered by an existing synopsis, there is little benefit
in creating a new synopsis for that particular query. Thus,
we focus on creating a synopsis that can answer currently
unsupported queries.

The expected monetary saving per synopsis usage can be
computed based on the size difference between the synopsis
and the base tables. We approximate this difference using
the ratio of the number of rows in the synopsis to the num-
ber of rows in the fact table. Since it is hard to compute the
exact number of rows in a synopsis without actually gener-
ating it, we estimate the number using a space model. For a
synopsis, the model considers the number of distinct values

7 N
z 712

I I
London crime Natality SSB

B8 Workload 1(W1)BBw28aw3BewaBaws ‘

Savings (%)
.
S
T

— \“\1
| |

Figure 3: Relative monetary savings per bench-
mark.

in each of its columns and the total number of rows in the
base table.

4. DEMONSTRATION

We present ScroogeDB on top of Google BngueryEI and
demonstrate its monetary savings compared to standard ex-
ecution (i.e., executing queries on base tables). We provide
a graphical interface which displays deterministic bounds as
well as various details regarding the internal decision process
(e.g., query rewriting, synopsis utility model, and synopsis
generation) of the ScroogeDB system.

4.1 Data Sets and Experimental Results

We use two real-world data sets as well as a standard
benchmark in our demonstration. The first data set is about
childbirths in the United States between 1969 to 2008 (na-
tality data setfl The second data set contains information
about the number of reported crimes per crime type in Lon-
don (London crime data setﬂ Also, we use the Star Schema
Benchmark (SSB) [5] with a scaling factor of 10. We con-
ducted a user study with five participants to collect analyti-
cal query workloads on the two real-world data sets. Giving
the participants 20 minutes per data set, they were asked
to find interesting facts or trends from the data set. As a
result, we collected five query workloads per data set where
each workload has up to 76 queries. Since SSB only consists
of 13 queries (which is a small number for a query workload),
we create ten variants per query by randomly changing the
constant values in predicates. Figure [3 illustrates the ex-
perimental results on the three benchmarks. We assign a
value of 0.9 as the target precision for the experiment. That
is, the ratio of the lower bound to the upper bound is at
least bigger than or equal to 0.9. Our system was evaluated
against a standard execution (i.e., without ScroogeDB) to
get initial experimental results. ScroogeDB gives us average
monetary savings of 47.23% for all benchmarks and up to
83.39% in the best case for a query workload. By averag-
ing over all five workloads, we get savings of 70.27% for the
London crime data set and 30.65% for the natality data set.
For SSB, where there is only one workload, we get savings
of 40.77%.

4.2 Demonstration Plan

Figure [shows a screenshot of the ScroogeDB graphical
interface. It allows users to easily formulate aggregation
queries on the underlying data sets. The interface visualizes
deterministic bounds using black bars (on the right side of

"https://cloud.google.com/bigquery
2https ://www.kaggle.com/bigquery/samples
3https ://www.kaggle.com/LondonDataStore/london-crime

Query Result

SELECT Sum(value) WHERE c_year BETWEEN 1998 AND 2008
GROUP BY minor_category;

[Plot]
120000
100000
TARGET PRECISION:
C—— 80000
AGGREGATION FUNCTION: 60000 . -

- -

40000 -
AGGREGATED COLUMN: -

—
GROUP BY:
minor_category =

FILTER: 2K

:

[Table]
m minor_category Bound Bound
Assault with Injury 54386 61483

|—

Burglary in Other Buildings 30586 33438

Figure 4: Screenshot of the ScroogeDB interface.

the figure). It also displays information regarding the inter-
nal decisions of ScroogeDB, including which synopses have
been generated and which synopsis has been used per query
(under Log in the top-left corner). In addition, monetary
fees charged per query execution will be shown to users.

In our demonstration, we present the graphical user inter-
face as a Web application. We provide the option for users
to change between ScroogeDB and the standard execution
of Google BigQuery. By switching between the two execu-
tion methods, users can experience accumulated monetary
savings offered by ScroogeDB. Also, users can change the
precision constraint for ScroogeDB and observe how it af-
fects the size of the generated synopses. By using smaller
synopses, users can save even more monetary fees per query
execution.

S. REFERENCES

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner,

S. Madden, and I. Stoica. Blinkdb: queries with
bounded errors and bounded response times on very
large data. In EuroSys, pages 29-42, 2013.

[2] E. Boursier, J. J. Brito, C. Lin, and
Y. Papakonstantinou. Plato: Approximate Analytics
over Compressed Time Series with Tight Deterministic
Error Guarantees. CoRR, abs/1808.04876, 2018.

[3] S. Jo and I. Trummer. BitGourmet: Deterministic
Approximation via Optimized Bit Selection. In CIDR,
2020.

[4] K. Li, Y. Zhang, G. Li, W. Tao, and Y. Yan. Bounded
Approximate Query Processing. TKDE,
31(12):2262-2276, 2019.

[5] P. O. Neil, B. O. Neil, and X. Chen. Star Schema
Benchmark. 2009.

[6] N. Potti and J. M. Patel. DAQ: A New Paradigm for
Approximate Query Processing. PVLDB, 8(9):898-909,
2015.

2964

https://cloud.google.com/bigquery
https://www.kaggle.com/bigquery/samples
https://www.kaggle.com/LondonDataStore/london-crime

	Introduction
	Problem Model
	Data Synopsis
	Problem Statement

	System Overview
	Query Rewriting
	Precision Model
	Synopsis Utility Model

	Demonstration
	Data Sets and Experimental Results
	Demonstration Plan

	References

