
A.M.B.R.O.S.I.A: Providing Performant Virtual Resiliency
for Distributed Applications

Jonathan Goldstein (jongold), Ahmed Abdelhamid (samy)ᵻ, Mike Barnett (mbarnett),
Sebastian Burckhardt (sburckha), Badrish Chandramouli (badrishc), Darren Gehring (darrenge),

Niel Lebeck (nl35)ӻ, Christopher Meiklejohn (cmeiklej)ӷ, Umar Farooq Minhas (ufminhas),
Ryan Newton (rrnewton)ӽ, Rahee Ghosh Peshawaria (raghosh), Tal Zaccai (talzacc), Irene Zhang (irzha)

Microsoft (@microsoft.com), Purdue University (@purdue.edu)ᵻ, University of Washington (@cs.washington.edu)ӻ,
Carnegie Mellon University (@andrew.cmu.edu)ӷ, Indiana University (@indiana.edu)ӽ

ABSTRACT
When writing today’s distributed programs, which frequently span
both devices and cloud services, programmers are faced with
complex decisions and coding tasks around coping with failure,
especially when these distributed components are stateful. If their
application can be cast as pure data processing, they benefit from
the past 40-50 years of work from the database community, which
has shown how declarative database systems can completely isolate
the developer from the possibility of failure in a performant
manner. Unfortunately, while there have been some attempts at
bringing similar functionality into the more general distributed
programming space, a compelling general-purpose system must
handle non-determinism, be performant, support a variety of
machine types with varying resiliency goals, and be language
agnostic, allowing distributed components written in different
languages to communicate. This paper introduces Ambrosia, the
first system to satisfy all these requirements. We coin the term
“virtual resiliency”, analogous to virtual memory, for the platform
feature which allows failure oblivious code to run in a failure
resilient manner. We also introduce novel programming language
constructs for resiliently handling non-determinism. Of further
interest is the effective reapplication of much database performance
optimization technology to make Ambrosia more performant than
many of today’s non-resilient cloud solutions.

PVLDB Reference Format:

Jonathan Goldstein, Ahmed Abdelhamid, Mike Barnett, Sebastian

Burckhardt, Badrish Chandramouli, Darren Gehring, Niel Lebeck,

Christopher Meiklejohn, Umar Farooq Minhas, Ryan Newton,

Rahee Ghosh Peshawaria, Tal Zaccai, Irene Zhang.

A.M.B.R.O.S.I.A: Providing Performant Virtual Resiliency for

Distributed Applications. PVLDB, 13(5) : 588-601, 2019.

DOI: https://doi.org/10.14778/3377369.3377370

INTRODUCTION
When writing today’s distributed programs, which span both
devices and cloud, programmers are faced with complex decisions
and coding tasks around coping with failure, especially when
applications are stateful: Consider an application consisting of two
objects, Client and Server, where Server keeps a counter, initially
0, and exposes a method called Inc() to increment the counter and
return the new value. Furthermore, assume Client calls Inc() twice

and prints the value of the counter after each call. If both objects
are run in a single process, the outcome is clear: the values 1, and 2
are displayed in Client output. In contrast, consider the possibilities
when Client and Server run on different machines, where state is
maintained locally, and method calls are performed through an
RPC (remote procedure call) mechanism.

First let’s consider possible outcomes when Client fails and is
naively restarted from scratch and reconnected: If Client fails after
the first call and after the return value is received, the output will
instead be 2, 3, which is incorrect. If Client fails after successfully
issuing the RPC request, but before receiving the return value,
Server will initially try to provide to Client an unexpected return
value, which is problematic. Even worse, consider that Client may
be restarted on a different machine, with a different IP address.

Outcomes when Server fails are further complicated by the loss,
and subsequent reinitialization of the counter. If Server fails after
Client has completed the first RPC, the output will be 1, 1, which
is incorrect. Furthermore, if Server fails after receiving the first
RPC request, but before communicating the return value, Client is
left waiting for a return value which never arrives.

In order to get the answer consistent with no failures occurring,
developers face varying challenges, depending on the type of
application they are writing.

If a task is pure data processing, it benefits from the past 40-50
years of work from the database community, which has shown how
declarative database systems, which produce deterministically
replayable behavior through logging, along with technology to
make database sessions robust ([1], [30]) can completely isolate the
developer from the possibility of failure in a performant manner.
Most recently, map-reduce and its progeny ([2], [3], [42]), by
pursuing similar strategies, have achieved similar results.

Unfortunately, while there have been attempts at bringing some of
these capabilities to general purpose distributed programming,
frequently called “exactly once execution” ([1], [30], [4]), the
failure to address a number of important issues (details below) has
prevented their widespread use. As a result, developers either give
up entirely on fully reliable applications, or implement solutions
that involve complex, error-prone, and difficult to administer
strategies to make applications reliable in today’s cloud
environments (Section 2). A compelling general-purpose solution
to this problem must address the following:

• Virtual Resiliency - In this paper, we coin the term virtual
resiliency, which provides developers the illusion that machines
never fail, by automatically fully healing the system after physical
failure, analogous to how virtual memory provides developers the
illusion that physical memory never runs out by automatically
paging memory to disk. While most data processing platforms
already provide efficient programming and execution environments

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 5

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3377369.3377370

588

with virtual resiliency, there are no commonly used analogous
systems for general purpose distributed programming.

• Non-determinism – Most distributed applications contain non-
determinism, like generating timestamps, or collecting user input.
Reliable systems must handle sources of non-determinism
gracefully, providing virtual resiliency in the face of such
challenges. In this paper, we introduce impulses, a novel platform
feature for handling non-determinism. Database logging provides
some hints for handling these situations, capturing non-
deterministic choices in the replay log before committing.

• Performance/Cost - Any general-purpose implementation of
virtual resiliency, must have performance comparable to failure-
sensitive code with a good application specific strategy. Only data
processing systems have achieved this today.

• Machine Heterogeneity - While machines inside a datacenter
can be homogenous, distributed apps typically span devices and
datacenters. Additionally, some devices may be heavy and able to
persist information necessary to hide failure while others may be
best effort. The end-to-end semantics must be easy to understand,
reason about, and code against. Today, [4] is the closest to
achieving this goal.

• Language Heterogeneity - Because distributed applications
span across a variety of machines and settings, distributed
components written in different languages must be able to work
together. Architecture (e.g. .NET DataContract [25]) and language
independent serialization formats (e.g. Protobuf [26], Avro [27],
JSON [28]) effectively solve this problem.

In this paper, we present Ambrosia (Actor Model Based Reliable
Object System for Internet Applications), the first general purpose
distributed programming platform for non-deterministic
applications, with virtual resiliency, high performance, and
machine and language heterogeneity. Ambrosia is a real system,
available on GitHub [29], and is used in a cloud service which
manages the machine images of hundreds of thousands of machines
running a cloud application [40].

Ambrosia’s high performance was achieved by incorporating the
decades’ old wisdom used to build performant, reliable, and
available database systems. For instance, we make extensive use of
batching, high-performance log writing, high-performance
serialization concepts, and group commit strategies.

Using the technology mentioned above, we implement virtual
resiliency with only a 25% reduction in throughput for the worst
case. We also achieve throughput comparable to gRPC, a popular
RPC framework which lacks any kind of failure protection.
Compared to gRPC, ping latency increases by only 5.5ms. We
vastly outperform today’s typical cloud-based, fully resilient
designs, in some cases achieving about a 1000x improvement in
cost per unit of work served, and with 1 to 3 orders of magnitude
lower latency. In active/active configurations, typical Ambrosia
failover times are less than 2 seconds, and, excluding service logic,
recovery costs are roughly half the primary running costs, leading
to generally low recovery times.

Because Ambrosia’s virtual resiliency implementation is based on
database style logging technology, we also offer familiar related
features, like transparent high availability through active standbys.
In addition, we also provide application centric features less
familiar to databases, such as time-travel debugging [23],
retroactive code testing, and inflight application upgrades.

Ambrosia’s machine heterogeneity goes beyond allowing
applications on different types of machines to communicate. For

instance, .NET core applications written in Ambrosia can
seamlessly recover from a Windows PC to a Raspberry Pi running
Linux, without requiring help from developers.

While constructing Ambrosia, we learned a number of important
lessons about modern performant system design. Most of these are
based on the following observation: the cost of transferring and
storing bytes is going down rapidly, while the cost of processing
bytes is improving very slowly. Looking through historical trade
magazines, we determined that until 7 years ago, network, storage,
and CPU price/performance (i.e. p/p) were all improving
comparably. Over the last 7 years, however, network and storage
throughput p/p have both improved by about 10x and 7x
respectively, while CPU p/p has only improved by about 1.5x. The
future, with terabit networking and NVRAM persistent memory
looks to hold more of the same. This encourages approaches and
system designs, like Ambrosia, which exploit cheap network and
storage bandwidth. By carefully optimizing CPU costs through
adaptive batching and minimal byte interpretation, Ambrosia’s
design results in very low costs for the protection it affords.

Paper organization: Section 1 introduces a running example used
throughout the paper, and a naive implementation, where we
simply assume failure never happens. Section 2 describes how to
implement our running example resiliently using standard cloud
application building blocks. Section 3 describes the basic Ambrosia
design and presents the Ambrosia implementation of our running
example. Section 4 describes how externally originating non-
determinism (e.g. user input) is handled by Ambrosia, and extends
our running example to demonstrate. Section 5 describes important
Ambrosia features enabled by its logging oriented approach
towards resiliency. Section 6 contains an experimental evaluation
which compares Ambrosia against the strategy described in Section
2, as well as a comparison to gRPC. Additionally, we test failover
and recovery times. Sections 7, and 8 present related work, and
conclusions and future work, respectively.

1. Running Example: Message Forwarding
Consider a message forwarding service which, every thousand
messages received, reports the current and time elapsed since the
last report. Further, assume that the forwarded and reporting
messages go to different destinations, with eventual, but not
consistent, freshness guarantees. Below is a naive C#
implementation, where we assume failure never happens, and
where services communicate with one another through RPC calls
on proxies to other services, using a single threaded (i.e. one request
at a time per actor) actor style like Orleans [16]:
1 public interface IForwarder {

2 void Process(string userMessage);

3 }

4

5 class Forwarder : IForwarder, Actor {

6 DateTime startTime;

7 int count=0;

8 IForwardToService forwardTo;

9 IReportToService reportTo;

10

11 public Forwarder(ServiceSet services) {

12 forwardTo = GetProxy<IForwardTo>(“forwardTo”);

13 reportTo = GetProxy<IReportTo>(“reportTo”);

14 }

15

16 void public Process(string userMessage) {

17 if (count == 0) {

18 startTime = DateTime.Now;

19 }

20 count++;

21 if (count%1000 == 0) {

22 long reportNum = count/1000;

23 DateTime now = DateTime.Now;

589

24 reportTo.Send(reportNum–1, now,

25 now–state.startTime);

26 state.startTime = now;

27 }

28 forwardTo.Send(userMessage);

29 } }

In the above example, we assume that an instance of the Forwarder
class is instantiated in some program which hosts the code, and
directs incoming requests to the Process method. This could be
mostly generated given IForwarder, which specifies the signature
of the Process method. The service could then be started by running
the code, and providing a string which other services can use to
connect to the running forwarder instance.

Connections are made to other services by creating proxies in the
constructor. These proxies’ methods exactly match the request
types supported by the destination services. In this case, we can
deliver messages to the forwardTo and reportTo services by calling
Send methods on the created proxies. The interface types
IForwardTo and IReportTo, like IForwarder, exactly define these
request types as method calls. Names for the actual running services
to connect to are given when creating the proxies (e.g.
“forwardTo”, and “reportTo”). Note that GetProxy is a service
lookup method defined in the actor base class, and the passed
strings are the names used when the corresponding running
instances were created.

When a Send method is called, the arguments are automatically
serialized and sent to the destination actor, where they are then
deserialized and executed.

In the absence of failure, this code would sufficiently define the
logic of our service: Forwarder contains all necessary state, the
constructor establishes all necessary outgoing connections, and the
Process method performs all necessary computation, state changes,
and sends all required output. Observe that where the Forwarder
runs is immaterial. It could be running at the edge, in the cloud, or
even on the same machine as one of the other services. Ideally, an
implementation of our forwarder in a system with virtual resiliency
would look very similar to this code.

Note that we have neglected to address some important issues: do
the Send method calls execute synchronously with execution on the
called actors, or do they merely initiate the request and continue.
Minimally, the send ordering must be respected w.r.t. each
individual destination actor, but concurrent execution could be
allowed across destinations. For performance reasons, we should,
in this example, allow concurrency across destinations, since our
problem clearly states that eventual consistency is sufficient. This
may, however, not always be the case, and synchronous execution
should be possible in a general-purpose framework. Also,
aggressive batching of both request processing and communication
is needed for high throughput [8]. How can this be accomplished?

2. DISTRIBUTED RESILIENCY TODAY
It is possible, without virtual resiliency, to build fully resilient
distributed applications with today’s cloud development tools, and
today’s practitioners do so when necessary. In this section, we
explore what such implementations, without virtual resiliency, look
like in the context of our running example. At times, developers
choose less resilient strategies due to the implementation and
deployment complexity, as well as performance challenges, most
of which will be made apparent in this section.

Figure 1 shows a typical configuration for a cloud application
today. In this particular example, a client, which may or may not be
in the datacenter, first durably records its service request in some

record sink, like Event Hub, Kafka, or Kinesis, ensuring that the
request is preserved in replicated storage. The application logic is
then expressed as an Azure/Lambda function and is called on
batches of requests. Any output (e.g. to other services), is then sent
to other durable queues, and the pattern is potentially repeated. The
infrastructure guarantees that every function will run to completion
exactly once on every input, although multiple failed attempts may
be made before successful completion.

Client/s
Event
Hub Q

Service
Logic

Azure
Functions

Event
Hub Q ...

Figure 1: Resiliency using stateless compute

Since Azure and Lambda functions are stateless, to make the
application resilient, every call must begin by retrieving all
application state necessary to process the request, and write the
state back after processing. But since the function may fail at any
time during execution, and be retried many times before
succeeding, we will need to add code to recover from partial
executions when side-effects occur (e.g. communicating), or non-
deterministic code is run (e.g. getting a timestamp).

While only one Azure function can be run at a time, in order, and
still guarantee correct behavior, most applications naturally
partition into independent identical pipelines, which may be run in
parallel to achieve higher application throughput. Consequently,
they store application state in key/value stores, keyed on the
partition id, and present the requests in batches for each partition.

Consider our message forwarding service: to process a batch of
messages (per source), the state for that partition is first loaded from
storage. Then, the messages are processed, forwarding messages
and sending a time reporting message every thousand user
messages. Finally, the state is written back to storage. The
application state type, message types, and initial values for relevant
state fields follow:
class State { class ReportMessage {

 Id source; Id source;

 long count = 0; long reportNum;

 long lastSeqNo = -1; DateTime reportTime;

 DateTime startTime; TimeSpan elapsedTime;

} }

class UserMessage {

 Id source;

 long seqNo;

 string message;

}

The following code assumes that when a message sink is asked to
give the sequence number of the last event received, prior to
receiving any events, -1 is returned. This code also assumes that
sequence numbers start at 0 and are consecutive. Finally, when a
message send is complete, it is assumed that message loss is no
longer possible, and that message order is determined by the order
in which they are sent.
1 void Process(Id source, List<UserMessage> batch,

2 MessageSink ForwardTo, MessageSink ReportTo)

3 {

4 State state = LoadState(source);

5 long lastSent = ForwardTo.Last().seqNo;

6 foreach(var m in batch) {

7 if (m.seqNo > state.lastSeqNo) {

590

8 state.count++;

9 state.lastSeqNo++;

10 if (state.count%1000 == 1) {

11 if (count == 1) {

12 state.startTime = DateTime.Now;

13 SaveState(source);

14 }

15 else {

16 state.startTime =

17 ReportTo.Last().reportTime();

18 }

19 } else if (state.count%1000 == 0) {

20 long reportNum = count/1000;

21 if (reportNum > (ReportTo.Last().seqNo+1)) {

22 DateTime now = DateTime.Now;

23 ReportTo.Send(new UserMesage(source,

24 reportNum–1, now, now–state.startTime));

25 }

26 }

27 }

28 if (m.seqNo > lastSent)

29 ForwardTo.Send(m);

30 }

31 SaveState(source);

32 }

Note that great care has been taken in the above code to ensure
correct behavior in the presence of partial executions:

• We increment the counter only if the message wasn’t counted in
the last SaveState, by checking lastSeqNo (lines 7-9).

• We save state when the first event ever is processed, since we
need to set startTime for later computation of duration, and failure
could occur on the first Process call (line 13).

• We check, before sending a ReportMessage, whether we’ve
already sent that message in a previous execution (line 21).

• We put reportTime into ReportMessage, and then retrieve it for
duration calculations, in order to ensure that durations are
consistent with the wall clock passage of time (e.g. the sum of
durations is equal to actual time elapsed), even in the presence of
partial executions. The timestamp is, in fact, a source of non-
determinism that if improperly handled, would produce nonsensical
ReportMessages (lines 24, 10-19).

• Before forwarding a message, we check to see if a previous
execution already forwarded the message by checking the sequence
number. We are careful to forward at the end of the loop iteration
since we don’t want message forwarding to interfere with
timestamp generation (line 28).

The subtle design issues discussed above illustrate some of the
challenges associated with writing resilient code today without
virtual resiliency. As we’ll see in Section 6, there are also serious
performance problems with these deployments in practice.

3. AMBROSIA DESIGN
3.1 Ambrosia’s Approach and Architecture
Ambrosia’s approach for implementing virtual resiliency is an
evolution of past approaches for creating deterministic robust
distributed systems ([1], [6], [30], and [33]).

In particular, these other systems advocate logging incoming
requests, and using replay to recover the system to an equivalent
state prior to failure. Some are even able to transparently reconnect
after failure. For instance, Pheonix [1] can fully recover
deterministic components and their connections, ensuring that
failure does not change overall application state or behavior, even
though the application writer’s code is oblivious to the possibility
of failure. We are now ready for a more precise definition of virtual
resiliency:

Virtual Resiliency – A distributed platform capability which
enables developers to produce applications whose behavior, other
than performance, are unaffected by failure, but where developers
write failure oblivious code. This capability is supported through a
combination of logging and language idioms which make the
application deterministically replayable, as well as automatic
reconnection protocols which ensure that disconnected/recovered
components may reconnect and continue as if failure didn’t occur.

Note the use of the phrase “deterministically replayable”.
Transactional databases provide deterministic replayability, even
though they have many sources of non-determinism, like thread
scheduling. They are, however, deterministically replayable, which
means that with the aid of the recovery log, they can recover to a
state consistent with previous interactions.

Map-reduce systems, and their progeny, like Spark (excluding
Spark Streaming), had virtual resiliency from their inception.
Always, the capability relied on deterministic replay.

Unfortunately, none of the general purpose distributed platforms
which provide virtual resiliency, like Pheonix, handle non-
determinism, have designs which make Ambrosia’s level of
performance possible, or provide machine and language
heterogeneity.

The following diagram illustrates the architectural components of
two communicating Ambrosia services/objects/actors, called
“immortals”:

Immortal
Coordinator

Immortal
Coordinator

Application

Ambrosia
Binding

Application

Ambrosia
Binding

Fast TCP
Loopback

Fast TCP
Loopback

Immortal 1 Immortal 2

Process 1

Process 2

Process 1

Process 2

Log +
Checkpoints

Log +
Checkpoints

Figure 2: Resiliency using Ambrosia

Ambrosia is a peer to peer system. Any Ambrosia immortal can
make RPC style requests of any immortal it’s connected to,
including itself, given a published API.

For recovering the state of a failed immortal, Ambrosia’s approach
is similar to previous work. In particular, all input requests are
logged to replicated storage prior to execution, guaranteeing correct
state reconstruction during replay-based recovery. Additionally,
upon reconnection, like previous work, Ambrosia employs a
protocol using internal sequence numbers to ensure
deterministically ordered exactly once delivery of requests.
Through an open-source process and communication virtualization
layer called the Common Runtime for Applications (CRA) [20],
successful reconnection happens even if an immortal comes up on
a different machine. The end result is virtually resilient, an
ecosystem which can fully self-heal without assistance from the
immortal developer, where all failure is turned into waiting.

While the basic viability of Ambrosia’s approach should be clear
for deterministic immortals, there are important challenges which
need to be overcome for this approach to be practical:

591

• How should Ambrosia handle non-deterministic immortals?
Non-determinism can come from a variety of sources, including
non-deterministic results like getting the current time, and
accepting input from non-replayable sources, like user input.

• How do we make Ambrosia’s approach performant?

• How do we achieve language and machine heterogeneity?

We begin with a deeper discussion of Ambrosia’s architecture,
shown in Figure 2, which addresses the issues of language and
machine heterogeneity, and will frame our explanation of how we
support C#.

First, note that each immortal is composed of two running
processes, which are expected to run on the same container/VM
/machine. The choice to run each immortal as two separate
processes is an implementation convenience which allows us to
more easily add support for multiple languages, at additional
latency cost, but is not fundamental to Ambrosia’s design.

We assume that the two processes that comprise each
immortal share a failure domain. That is, if one process crashes, the
other will also crash or will stop prior to any attempt at restarting.
In clusters, a recommended deployment model uses Kubernetes
pods, which correctly establish failure domains. Ambrosia relies on
TCP for network connections; as a result, we assume messages are
always delivered reliably and in order. Any failures at the network
level are handled by the TCP protocol (e.g., missing packets). On
Windows, Ambrosia uses fast TCP loopback, reducing the penalty
for a two-process design.

Note that Ambrosia is intentionally careful to NOT make
deployment decisions. For instance, Ambrosia’s only responsibility
is to run correctly in a properly deployed environment, and not
pollute the log when infrastructure failure occurs. Being in the same
failure domain, deployers are expected to ensure that both
processes are brought down before restarting them on the same, or
a different node. Whether to try again on the same node, or move
to another node, is in the hands of the deployer, and is intentionally
not Ambrosia’s concern. In this manner, Ambrosia may be used in
a maximally flexible way. Note that there are certain situations
which will cause one or both of the processes to crash, like a
primary losing the file write lock on the log, losing access to the
log or metadata, or running out of memory. Deployers are expected
to monitor the health of deployed immortals, and fully fail (and
possibly restart) the instance when these error situations are
encountered.

The first process is the immortal coordinator (IC), which handles
all log interactions, and communication with other immortals. This
process is also responsible for orchestrating immortal recovery,
including both broken connections to other immortal coordinators.
and handling failover when active secondaries are present.

The IC relies on CRA [20] as an application hosting layer that
virtualizes the TCP connections between a graph of vertices, which
are, in our case, Immortals. For instance, when an immortal fails
and is restarted on another machine, after the state has been
recovered through replay, all previously connected immortals are
automatically reconnected by CRA to the restarted instance, going
through an Ambrosia specific sequence number based reconnection
protocol guaranteeing logically exactly once delivery.

The IC is blissfully unaware of types, or even the nature of requests
passed between immortals. From the IC’s point of view, messages,
in the form of byte arrays, are passed along the connections that
they share, are logged, and sent to a language binding. Any

information about types, endianness, and even whether the message
is a new request or return value, is immaterial to the IC.
Furthermore, we’ve implemented the IC in both .NET Framework
and .NET Core, enabling it to run on a wide variety of architectures
and operating systems. There will be a more detailed discussion of
the IC in Section 3.3, which will be revisited in Section 4.2 to
describe how impulses are implemented.

The second process is divided into 2 parts: the first part is a
language-specific Ambrosia binding, responsible for interacting
with the IC. The IC sends messages to the language binding, which
interprets those messages as new requests or return values
associated with previous outgoing requests. The language binding
then executes service logic in response to these messages, and sends
to the IC any outgoing requests or return values in the form of new
messages. We now state an overly strong language binding contract
which guarantees virtual resiliency:

Strong Language Binding Contract: From some initial state, any
execution of the same incoming requests in the same order must
result in both an equivalent final state, as well as the same outgoing
requests in the same order. In addition, the binding must also
provide a state serializer.

Note that the above definition does not specify anything about
threading, language idioms or style, or even if the language needs
to be Turing complete. Rather, it only requires determinism w.r.t.
the log. Also, to avoid replaying from the start of the service during
recovery, the IC must occasionally checkpoint the state of the
immortal, which includes the application state. The specific method
of, and format for, serialization can vary from language to
language, or even amongst bindings for the same language.

Machine heterogeneity in Ambrosia is achieved by the
architecture described above. Since ICs pass untyped byte arrays
amongst themselves, leaving it to the language binding layer to
interpret these messages, machines with varying operating systems
and architectures need only to agree on the serialization format of
these messages to successfully communicate. Furthermore, our
choice to implement .NET core versions of both our IC and C#
language binding, combined with support for C#’s architecture
independent binary data contract serialization [25], makes this
capability available in Ambrosia today for a wide variety of
architectures and operating systems.

Ambrosia today goes even further: a .NET core immortal running
on a Windows PC is recoverable on a Raspberry Pi running Linux,
including all the connections to other immortals. This is a
consequence of .NET core applications running on a wide variety
of platforms, and state serialization for both the C# language
binding and IC depending exclusively on architecture independent
serialization strategies.

Since the IC is serialization format oblivious, as long as two
language bindings agree on an argument serialization format, like
Avro, or Protobuf, they may successfully invoke each other’s
RPCs, achieving language heterogeneity.

At this point, it is interesting to point to a few important differences
between Ambrosia’s architecture, and the architecture described in
Section 2:

• Because the log of requests is hidden in the IC, there is great
flexibility in storing the log. For instance, the IC could store the log
in a local file, or some form of cloud storage, depending on an
application’s needs. This decision may even be delayed until

592

deployment time, with different decisions made for different
deployments.

• Application developers no longer write logic to recover from
partial executions, since this is all handled by the IC. For the same
reason, they also no longer write code to retrieve and store state,
since all state is made implicitly durable through logging.

• Since the log implicitly contains all state changes for the
application, debugging is greatly facilitated. To perform “time
travel debugging” [23], we simply execute from a checkpoint
before a bug occurred, and roll forward with the debugger attached,
without involving any distributed components outside the
immortal. This kind of debugging convenience is very difficult to
replicate when applications explicitly write recovery code and

durable state.

3.2 C# Language Binding
We begin by observing that the Ambrosia C# code for our running
example is very similar to the naive code presented in Section 1.
This is facilitated by a few similar assumptions about how code is

run by our C# language binding:

• The public API for an Immortal is given using a C# interface.
• We assume that all incoming requests and interleaved return
values of previous outgoing calls are processed sequentially in a
single threaded manner
• Asynchrony (but not parallelism) is achieved using the standard
C# async framework, where outgoing asynchronous calls may be
awaited, resulting in a suspension of the request execution until the
return value arrives in the incoming request and return value
stream.

The biggest difference between our naive C# code and actual C#
code derives from the use of DateTime.Now, which is non-
deterministic upon replay. Specifically, upon recovery, a different
timestamp is generated from the original, violating the language
binding contract by producing different outgoing message
argument values for the Send calls.

We overcome this problem by relaxing the language binding
contract:

Weak Language Binding Contract: From some initial state, any
execution of the same incoming requests in the same order must
result in an equivalent final state. In addition, the outgoing requests
must be deterministic in their number and destination ordering, but
the contents may vary. Finally, the binding must also provide a state
serializer.

The IC then guarantees that for each Immortal, only the first
successfully logged incoming message is actually used for
execution, regardless of content differences if the source recovers.
This weak language binding contract, combined with the first
logged replay guarantee together provide deterministic
replayability across the whole distributed system by guaranteeing
the integrity of message position, and ensuring that only one
version of each message is ever acted upon.

We exploit this relaxed language binding contract to harden values
from polled non-deterministic sources like DateTime.Now.
Specifically, we perform an awaited Ambrosia self-call, passing the
current time. Like all other incoming calls, the IC logs the self-call
before processing. Upon execution, the self-call assigns the passed
timestamp to a member, which is used when the awaiting original
request continues.

The interface for the Ambrosia message forwarding immortal in
our running example is shown below:

public interface IForwarder {

 void Process(string userMessage);

 void setStart(DateTime newSTime);

}

First, note the similarity to our naive code from Section 1. Also
observe the existence of setStart, which is the self-call used to
harden the polled timestamps.

Additionally, some important differences with the example in
Section 2 are immediately apparent. First, note that there is no need
for a batch interface. As we will see in Section 3.3, Ambrosia
automatically batches requests when needed. Also, note the lack of
sequence numbers. Since Ambrosia handles correct reconnection
upon failure, there is no need to surface sequence numbers in the
application code. Finally, Ambrosia today does not have automatic
parallelization, which remains an item for future work, so there is
no need to pass source.

The implementation of the forwarder contains the application logic,
some attributes to support state serialization, and initialization to
set up proxies for sending messages and reports:
1 [DataContract] class Forwarder:

2 Immortal<IForwarderProxy>, IForwarder {

3 [DataMember] DateTime startTime;

4 [DataMember] int count=0;

5 [DataMember] IForwardToProxy forwardTo;

6 [DataMember] IReportToProxy reportTo;

7

8 protected override async Task<bool> OnFirstStart() {

9 forwardTo = GetProxy<IForwardTo>(“forwardTo”);

10 reportTo = GetProxy<IReportTo>(“reportTo”);

11 }

12

13 void override async Task Process(string userMessage)

14 {

15 if (count == 0) {

16 await thisProxy.setStartAsync (DateTime.Now);

17 }

18 count++;

19 if (count%1000 == 0) {

20 long reportNum = count/1000;

21 DateTime lastTime = startTime;

22 await thisProxy.setStartAsync (DateTime.Now);

23 reportTo.Send(reportNum–1, startTime,

24 startTime–lastTime);

25 }

26 forwardTo.SendFork(userMessage);

27 }

28

29 void override async Task setStart(DateTime newSTime)

30 {

31 startTime = newSTime;

32 } }

From the IForwarder interface, we generate C# libraries which
contain abstract base classes with associated abstract method calls,
which are implemented by the application writer. For instance, the
Forwarder class in the above example implements IForwarder,
which is in the associated generated C# library.

These generated libraries also contain proxies for making method
calls on immortal instances of this type from other Ambrosia
applications. For instance, in the above example, forwardToProxy
is of type IForwardToProxy, which is a generated type for
interacting with immortals which implement IForwardTo, which is
not shown here. Like the naive version of our code, GetProxy is
used to get a handle to an immortal registered in a catalog of
immortals stored in a table. (Ambrosia uses Azure tables.). The two
GetProxy calls reside in OnFirstStart, which is a logical constructor
and is called once at the logical start of an application.

Observe that Forwarder is data contract serializable, and relevant
fields, including references to other immortals (proxies), are
labeled as data members. This ensures that when a checkpoint is

593

taken, the forwarder’s state is serialized. This state is then
automatically deserialized during recovery.

In C#, Ambrosia calls to other immortals can be executed in either
an awaitable (called async), or non-awaitable (called fork) fashion.
For instance, the Send call on forwardToProxy is a forked call,
which means it is not awaitable. This corresponds to the call version
assumed for best performance in the naive code. Both RPC versions
are automatically generated in the proxy for using an Ambrosia
immortal. If an RPC is executed in a non-awaitable fashion, no
return value is expected or sent, similar to sending an event. If an
awaitable Ambrosia call is awaited, as in the call to setStart, the
executing call is suspended until the return value arrives through
the message queue from the coordinator. When the return value is
handled, the suspended RPC is woken up, and continues execution.

Again, note the use of the setStart method. By making an Ambrosia
call to itself with the newSTime argument, the IC ensures that each
time the setStart call is successfully logged, all subsequent replays
will use the logged timestamp argument rather than the one from
the call generated by replay.

Note, in Forwarder, the lack of sequence number logic, LoadState
and SaveState, and the disregard for the possibility of partial
execution followed by failure. The code will nevertheless execute
in Ambrosia in a fully fault tolerant manner, and is deterministically
replayable as a result of Ambrosia being virtually resilient.

3.2.1 Consistency and the C# Binding Model
Consider the overall programming model presented in this section:
Aside from the influence of non-replayable sources, like getting the
current time, Ambrosia reduces the standard fully distributed cloud
programming model with exposed failure and migration, to failure
free independently executing actors running on a single node,
where each actor is single threaded. Concurrency is allowed within
an actor, specified using C#’s async framework. Specifically, each
Immortal maps to an object, and Ambrosia method calls, which can
be made as either async or fork calls, correspond to traditional C#
method calls.

An interesting corollary of Ambrosia’s single threaded Immortal
execution model is that if all Immortal calls across the application
are made using the async version of the call, and immediately
awaited, and only one Immortal has an OnFirstStart, the application
becomes a globally single-threaded job.

This does NOT mean that Ambrosia eliminates the need for further
mechanisms required for consistency. Consider that locks and
transactions are useful mechanisms for maintaining consistency
even within a single node, when concurrent execution is present. In
fact, these mechanisms may now be used in a manner consistent
with single node execution without failure, eliminating failure
induced mechanism inconsistency (e.g., losing lock state). Clearly,
such consistency mechanisms are still potentially useful in
Ambrosia applications which require consistency in the presence of
concurrent calls across Immortals.

3.3 Performant IC Design
In Ambrosia, most of the heavy lifting for virtual resiliency is done
in the IC. In particular, it is responsible for maintaining connections
to other immortals, including reconnecting after disconnection or
after recovery, as well as coordinating logging, checkpointing, and
recovery. In addition, Ambrosia’s IC design is very performance
oriented, to great benefit (see Section 6).

We discuss the IC design in the context of an example shown in
Figure 3. In this example, we follow an immortal method call, m,
through the caller and callee’s immortal coordinators, and all the
logging and other activity caused by the call. We discuss our
various performance optimizations in this context.

We begin with a method call on Immortal 2, labeled “1)”, for step
1, made from Immortal 1’s application. Once the method call is
made in the application code, it is passed to the language binding,
which serializes all the arguments, including the destination, and
adds the result to a queue of page buffers for later sending (step 2).
After serialization, the entire message associated with m, except the
destination, which comes first, is considered one big byte array, and
is not interpreted until the language binding in Immortal 2. This
greatly facilitates high performance. Also, the strategy of queueing
serialized requests for sending, as a result creating batches of

requests, similar to the strategy used in Trill [8], is a strategy used
throughout the system. In particular, while a batch is being sent, all
arriving messages are added to the next batch, which is sent after
the previous one is sent. These batches have a maximum size to
control memory footprint, which can result in blocking the
enqueueing source. Visually, buffers in the diagram imply that
batching is happening.

Data Connection

Immortal 1 Immortal 2
IC 1 IC 2

1) m

2) m

3) m

4) m,s 5) m,s

6) m,s

8) m
7) m,s

8) s
Control Connection

9) s

11) s

10) s

Ambrosia
Binding

Application

Figure 3: Method call protection example

(m = a message, s = m’s sequence number)

In the IC, each outgoing connection to another immortal has an
associated set of output buffers for batching, so when the method
call is passed as part of a batch to the IC (step 3), the IC looks at
the destination of each message in the batch, and adds it to the
appropriate output buffer (step 4). It is worth pointing out that the
batches (in addition to the individual messages!) produced in this
output buffer aren’t unpacked or interpreted until they reach the
language binding which dispatches the individual method calls.
This greatly facilitates performance. Also, notice the introduction
of s, which is the sequence number associated with the message.
This sequence number is associated with the outgoing connection,
and monotonically increases with each message (not batch) sent
through that connection. As a consequence, the association of
sequence number to messages is the same for both Immortal 1 and
Immortal 2, and is independent of batching decisions. While it’s not
actually transmitted, we include it here to note the importance of
associating sequence numbers with messages. The batch is then
sent to Immortal 2’s IC (step 5), where it is added to a buffer, which
serves as a log page (step 6).

When the buffer page is flushed to disk (step 7), the new high
sequence number watermarks for all inputs which contributed to
the flushed page are recorded as part of the log record. This enables
a recovering immortal to know how much input has been

594

consumed, which is important in establishing correct reconnection.
Once the log page has been flushed, it is sent to the language
binding for Immortal 2 (step 8), which dispatches the method. By
waiting to send the page to the language binding until after it has
been flushed, we are preventing the creation of side effects, in the
form of outgoing calls, until the input has been “committed”. This
is similar, in spirit, to batch commit.

If this concluded our activity, the output buffer in IC 1 for the
connection to IC 2 would grow infinitely, because, it couldn’t
release buffer pages until it knew that their contents had been
flushed to disk by IC 2. For this reason, after IC 2 flushes the page
to disk, it sends a batched message (step 8) back to IC 1 (step 9)
containing the high sequence number watermark for the messages
just flushed to disk originating from IC 1. Since these messages
have been successfully flushed, there is no longer a need for IC 1
to remember them, and IC 1 may release the memory used to store
them. These cleanup messages arrive along a different TCP
connection than data to avoid possible deadlocks, when limitations
on buffer sizes could prevent cleanup messages from getting
through. As a result, for each unidirectional logical connection
between immortals, there are 2 TCP connections, one for data and
one for “control” messages.

Finally, IC 1 flushes changed per output high watermarks for
received cleanup messages, each time log pages are flushed to disk
(steps 10 and 11). This enables the IC, during recovery, to discard
output produced during replay which consumers have already
durably consumed.

In additional to the adaptive batching and batch committing, in
order to improve performance, we also employ strategies familiar
to DBMS architects for concurrently writing to in-memory log

pages efficiently. While a log write is taking place, input arriving
from multiple immortals, each with its own thread, contend for
space in the log buffer page, effectively creating a serial order for

arriving input from different sources.

We therefore take the usual approach, described in [18], where each
thread grabs the position in the current log page in which it will
write its bytes. Threads then concurrently write their bytes to the
log record, where the last writer, which closes the page to further
writes, waits for the concurrent writers to finish before writing the
page to storage. After the page is closed to writing, new writers
write to the next log page etc. Our implementation uses compare
and swap to execute this strategy in a highly efficient manner, as is
described in [18]. Like other page buffers, these buffers are size

limited, and may cause blocking which cascades to senders.

It is also worth pointing out that checkpoints are periodically taken,
when the log file exceeds a particular file size, at which point a new
log file is started with all records which follow the checkpoint.
Checkpoints contain both serialized application state, as well as
immortal coordinator state, which includes the state of all send and
log buffers. While checkpointing causes loss of availability in non
active-active configurations, for active-active configurations, the
primary simply starts a new log file without taking a checkpoint,
and one of the secondaries is used to create the actual checkpoint.

This allows checkpointing without associated loss of availability.

4. IMPULSES

4.1 Non-replayable sources and impulses
While polled non-replayable sources can be handled in a manner
similar to the example in Section 3.2, which makes calls to
DateTime.Now, what should we do about non-replayable sources
that push data into an immortal? This could include data sources

like live Twitter feeds, where best effort is all that’s available, or
even UI input, where a user can’t be expected to reenter input
during recovery. For applications with UI input, the immortal
represents the state of a running application, including all
information needed to render, and the UI makes calls into the
immortal to modify that state from the same process.

When faced with such sources of non-determinism, Ambrosia
developers use a novel feature called impulses, which are special
RPCs that can only be called on a fully recovered and operating
immortal instance. Specifically, this means that impulse calls
cannot be made during recovery. When receiving an impulse call,
the arguments are recorded in the log before execution, and will be
replayed during recovery.

Impulses are identified in the immortal interface, like other RPCs,
but are tagged with the property “ImpulseHandler”. For instance,
consider the following extension to our running example, where
new messages may also originate from user input entered through
the keyboard. We use “…” to represent previously presented code.
The interface and immortal follow:
1 public interface IForwarder {

2 …

3 [ImpulseHandler]

4 void AcceptInput(string newInp);

5 }

6

7 [DataContract] class Forwarder:

8 Immortal<IForwarderProxy>, IForwarder {

…

9

10 void override async Task AcceptInput(string newInp){

11 thisProxy.Process(newInp);

12 }

13

14 protected override void BecomingPrimary() {

15 new Thread(() => {

16 while (true) {

17 var line = Console.ReadLine();

18 thisProxy.AcceptInputFork(line);

19 } } } }

Note that the background thread which accepts and submits user
input, through our impulse, is created in BecomingPrimary.
BecomingPrimary is an overrideable immortal method which is
called after recovery is over, when the instance takes a primary role
(see Section 5.1 for a discussion of Ambrosia’s active-active
capabilities). By starting the input thread in this method, we ensure
that new input isn’t being submitted through our impulse during
recovery, and that none of the secondaries, if we are running in an
active-active deployment, are requesting input.

From the above, it should be clear that all incoming external
interactions can be easily handled in an at most once manner with
impulses. Traditional approaches for handling external incoming
and outgoing interactions may still be used, similar to what’s
presented in Section 2, given that code is guaranteed to run at least
once. Exploiting this guarantee, in conjunction with application
level sequence numbers and durable queues, one can still achieve
exactly once semantics, but without the benefits of Ambrosia.

4.2 Implementing impulses
Unlike conventional Ambrosia methods, impulses are logically
executed at most once. If an immortal, which collects and sends an
impulse, fails prior to transmitting the impulse to the receiving
immortal, or if both the sender and receiver fail before the impulse
is made durable, the impulse will be lost. In particular, we cannot
rely on replay to reproduce the outgoing impulse on the sender.

As a result, if we tried to treat impulses as ordinary method calls in
the protocol described in Section 3.3, the sequence numbers in

595

senders and receivers could become inconsistent. For instance,
suppose a sender A takes a checkpoint, and at the time of the
checkpoint, has sent a total of 200 messages to receiver B. After
checkpointing, assume 100 impulses are sent to B, after which A
fails. After A’s recovery, during which outgoing impulses are not
recreated, A will believe it has sent 200 messages to B, while B
believes it has received 300 messages from A. A will subsequently
eat the next 100 messages to B, though they’ve never been sent.

We therefore keep track of two sequence numbers instead of one:
total, and replayable (i.e. non impulses). The protocol described
below has the following behavior:

1) Non-impulses are executed exactly once in the proper order

2) Logged impulses are executed exactly once in their proper order

3) Impulses which are not logged are lost

4) Impulses from a recovering sender not already sent to a receiver
are lost, including checkpointed impulses in send buffers

It is easy to see that in the absence of system failure, running the
protocol described in Section 3.3, but with sequence number pairs,
will result in correct behavior with no loss of impulses. Similarly,
broken TCP connections (without system failure), can be similarly
healed without loss.

Complications, however, ensue, with system failure and recovery.
Recovery begins by restoring the last checkpoint, including both
application and immortal coordinator state. Recovery then cleans
all impulses out of all restored send buffers. This enforces behavior
4 above. Note that as recovery processes log records, it retrieves
both total and replayable sequence numbers for cleanup messages
(written to the log in step 11 in Figure 3). Since, at this point, the
recovered output buffers only contain replayable messages, the
replayable sequence numbers are used to clean output buffers
during recovery.

After replay, during reconnection, the receiver sends both the
replayable and total sequence numbers to the sender. The sender
then begins replay from the call following the last received
replayable message, and sets the total sequence number for that
message to 1 higher than the total sequence number from the
receiver. In this manner, the receiver receives the first call
following the last received, and sequence numbers between the
sender and receiver are made consistent.

Note that the sequence number consistency enforcing protocol
described above is only for reconnecting for the first time after
recovery. When reconnecting in other situations (e.g. after TCP
connection failure), sequence numbers are already consistent, and
the sender simply starts from the message after the last received.

5. LOG BASED AMBROSIA FEATURES
There are four additional major capabilities enabled by Ambrosia’s
logging-based approach to virtual resiliency.

5.1 High Availability
The first of these features is high availability through active
standbys. In Ambrosia, the log, and associated checkpoints, are
written to a directory specified by the immortal deployer. In both
Windows and Linux, that directory can be backed by either local
storage, or cloud-replicated storage. For instance, Azure Files [24]
may be mounted on all internet connected Linux and Windows
machines. Alternatively, Azure Managed Disks [24] offer a
performant and very cost-effective alternative for immortals
running inside Azure datacenters.

At any given moment, there is one primary, which produces the log
and is connected to other Ambrosia immortals, and secondaries,

which consume the log in recovery mode, until they become
primary. Leader election is simply the result of all instances
continuously (e.g. every half second) trying to acquire the exclusive
write lock on the log file. When an instance acquires the lock, it
becomes primary, and CRA establishes all connections to other
immortals. If a primary ever loses the file lock, it commits suicide.

The log is broken into deployer specified chunks, such that
whenever a threshold is reached, a new log file is created with an
incremented chunk number as part of the filename. When a
secondary becomes primary it immediately starts a new log file.

In Ambrosia’s implementation of high availability, checkpoints are
generated by a secondary, such that each time a new log file is
started, there is an associated generated checkpoint which contains
the state of the immortal instance at the start of the log file. The
secondary-based checkpointing prevents loss of primary
availability while checkpointing and turns out to be the optimal
strategy in a resource-reservation based environment like the cloud
[21]. A new secondary then starts from the latest checkpoint and
rolls forward until it is caught up.

5.2 Time Travel Debugging
Using checkpoints and log files, Ambrosia exploits application
deterministic replay to implement time travel debugging: the
developer starts the application process and attaches the debugger,
and then starts the immortal coordinator in time travel mode. In this
mode, the developer points the coordinator to the log and
checkpoint files (which may still be live) and specifies the
checkpoint number to begin recovering from. The immortal
coordinator then runs recovery, never becoming primary.

Since the debugger is attached to the application process, all the
usual debugger features may be used, like setting breakpoints, and
stepping through code. Because replaying the log is deterministic,
the same application behavior may be replayed and debugged as
many times as desired, even against a live log.

5.3 Retroactive Code Testing
Related to time travel debugging, if the application writer wants to
test an alternate version of the application which has the same
interface and state (as is frequently the case when fixing bugs), they
can perform time travel debugging with the updated version of the
application, using the debugger, to find a bug or test a fix. A
developer may even use this feature to create new application

generated logs against the replay.

Observe that new versions of services may be rolled out this way,
where the new version starts as an active secondary and becomes

primary when all instances associated with old versions are killed.

5.4 Live Service Upgrades
Occasionally, services go through significant upgrades, where the
API to the service broadens, and/or where the type of the
application state changes (e.g. the addition of new counters). For
such situations, Ambrosia allows developers to define an
“upgraded Immortal”, where both old and new versions of the
application code are present in the process.

When such an immortal is deployed, it recovers using the old
version of the service. When it becomes primary, it calls a
constructor for the new version of the service, which takes as an
argument the state of the old version at the time it becomes primary.
A new checkpoint is then taken of the new version of the service,
and the upgrade is complete.

To deploy such an upgrade, it is initially added as an active
secondary. While killing all the instances of the old service, the new

596

version becomes primary and the service continues. Note that any
old versions of the service still running simply die once the new
version becomes primary.

6. EXPERIMENTAL EVALUATION
In this section, we present performance results comparing
Ambrosia with alternative baselines. We measure throughput,
latency, overhead of logging, fail-over and recovery times.

6.1 Implementations under Test
We explore the performance of several different implementations
of a client-server application, where the client sends requests to the
server, each of which contains a byte array. The server counts the
total number of requests and bytes sent. We focus on three different
implementations, which we describe next.

6.1.1 gRPC
gRPC is a performance-oriented cloud RPC framework that does
not do any logging or recovery. It is just straight-up RPC. As such,
we would expect it to soundly beat Ambrosia, and it should
represent an upper bound of what’s possible.

Note that we used the gRPC streaming implementation in C++,
which according to [22], is the most performant option. In our
streaming setup, the server has a streaming RPC, called Receive,
which takes a byte array of the appropriate size and keeps a running
total of all bytes received. The choice of a byte array is designed to
minimize serialization and deserialization overhead, which is
orthogonal to the issues tested here.

For the latency test, we use a single RPC call, which performs the
fastest round trip available in gRPC, performing one at a time to
ensure minimum interference.

6.1.2 Ambrosia – C#
The focus of this paper, we provide both .NET framework and core
implementations, and run on both Windows and Linux. In these
experiments, we use the .NET framework implementation on
Windows. We wrote two Immortals: a client and a server. Both are
fully recoverable and generate their own logs and checkpoints.
Each write their logs to Azure storage. In particular, we wrote our
logs to 6x P10 Azure Premium Managed Disks, which were pooled
together in a software RAID configuration with aggregate
bandwidth of 600 MB/s. Note that this RAID configuration
represents the cheapest way to allocate replicated storage with the

bandwidth we anticipated we’d need for our tests.

Like the gRPC implementation, the server computes the total bytes
sent, which is part of the server’s serializable state, and is marked
as a data member. Except for our resiliency tests, checkpointing
(but not logging) was turned off for these experiments.

Like gRPC, we use our streaming RPC calls (Fork). Conceptually,
there is very little difference between the code written to implement
this microbenchmark in gRPC and Ambrosia, although differences
in C# and C++ make the Ambrosia-C# version more readable.

6.1.3 Serverless and Stateless Compute
A popular design (see Figure 1) for microservices is to ingress data
into a fully managed, real-time data ingestion and messaging layer
such as Azure Event Hubs or AWS Kinesis. The messaging layer
feeds data to a serverless execution fabric such as Azure Functions
or AWS Lambda, which pulls data batches from the messaging
layer and executes the user code. The user code is stateless; it loads
state from a persistent backend such as Azure Tables or AWS
DynamoDB, runs application logic, and writes back the state at the
end of execution. We can compute the total cost to run a
microservice using this architecture, in terms of dollar amount per

month, per MB/sec of ingress. We assume that both the messaging
layer and the serverless functions layer can parallelize as much as
needed. For Azure, the cost components of a deployment are:

(1) EventHub ingress cost: It currently costs $0.028 per million
messages, plus $0.015 per hour, per throughput unit (1 MB/sec
ingress, 2 MB/sec egress). Event Hubs also offers a dedicated
option that costs $4999.77 per month; we choose the lower cost
between these options for our computations.

(2) Azure Function costs have two components. First, there is a cost
of $0.20 per million executions, we assume that a function is
invoked with batches containing up to 256KB of data from Event
Hubs. Second, there is an execution time cost of $0.000016 per
GB/sec, a unit of resource consumption. Resource consumption is

calculated by multiplying average memory size in gigabytes by the
time in milliseconds it takes to execute the function. We assume
128MB of average memory (the lowest allowed) and that it takes
0.1ms per event in the batch fed to Azure functions.

(3) We perform one read and write to storage per function
invocation. Azure Tables cost $0.00036 per 10,000 transactions,
with a $0.07 per GB cost for the actual first terabyte of storage. We
assume that 1GB is enough to hold the state for our example.

The costs for AWS were computed similarly and verified using the
AWS cost calculator [31]. Briefly, AWS Kinesis is priced at $0.015
per shard-hour (1MB/second ingress, 2MB/second egress), plus
$0.014 per million PUT payload units, AWS DynamoDB is priced
at $1.25 per million reads and $0.25 per million writes, and AWS
Lambda is priced similarly to Azure Functions.

We vary the per-message size from 16 bytes and up, and compute
costs over a month if the service ingests 100MB/sec over the entire
month. We then scale the result down to report the cost per month,
per MB/sec of ingested data.

6.2 Experimental Setup
In all cases except serverless, we perform two types of throughput
experiments, run on 2xD14v2 (16 cores, unlimited storage
bandwidth) Azure instances to optimize performance and the most
efficient of 2xF2S (2 cores, 96 MB/s to storage) and 2xF2SV2 (2
cores, 47 MB/s to storage) to optimize price/performance. We also
measure ping latency under minimal load, where one instance acts
as the client, and the other as the server. The same actual instances
were used in all experiments to eliminate hardware variation.

The resilient setup based on Section 2 uses only serverless
components, and simply calculates costs for comparable work
done, and measures end-to-end ping latency on Azure, starting
from a VM, going to Event Hubs, serviced by an Azure Function,
outputting to Event Hubs, and retrieved by the original VM.

6.3 Results
6.3.1 Throughput
The results of the performance optimized throughput experiments
are shown in Figure 4. First, observe that even though gRPC is a
bare RPC framework, without any notion of failure resiliency, it is
nevertheless significantly less performant for small message sizes
than Ambrosia. For 16-byte arguments, it is actually more than 10x
slower than Ambrosia-C#! Also, note that gRPC slightly outper-
forms Ambrosia-C# near the throughput limit, but pulls back, for
some reason, to efficiency levels indistinguishable from Ambrosia-
C#. We saw this trend continue for even larger message sizes.

For the throughput -- price/performance optimized experiment, we
compare the costs of performing our throughput experiment in
terms of cost per month per MB if we ran the experiment
continuously for a month.

597

Figure 4: Performance Optimized

Performing any comparison of this sort is fraught with difficult
decisions which can make one strategy fare better or worse. For
instance, EventHub can be run in either basic or standard mode.
There are several differences, one of which is the ability to write
queue history to cold storage for later processing. The difference in
price is a factor of two. Of course, Ambrosia provides this
capability, making the log directly available. Nevertheless, in our
calculations, we chose the basic level of support, as some users may
not care about this feature.

Figure 5: Price/Performance Optimized

Also, unlike earlier throughput experiments, for gRPC and
Ambrosia, we chose instances which optimize price/performance,
even though overall performance is lower, in some cases choosing
different instances for different message sizes. Also, we use the on-
demand price of these VMs, which can be reduced by about 30%
with long term reservations.

The results are shown in Figure 5. Both gRPC and Ambrosia are
much cheaper than stateless compute, in some cases, by about
1000x! For gRPC, this isn’t a surprise, as our stateless compute
pipeline is resilient to failure, and gRPC isn’t, but Ambrosia
provides equivalent resiliency with a much easier programming
model. Another surprise, Ambrosia is significantly cheaper than
gRPC for message sizes below 1K. One might expect the cost of
storage bandwidth to be a large component of Ambrosia’s cost to
run, but this is not the case. The monthly cost of an FS2 instance,
one of the cheapest VM instances on Azure, is $169.36, while the
monthly cost of 100MB of continuous storage bandwidth is only
$19.71. There is a throttle on storage bandwidth, though, for such
small VM sizes, which is responsible for gRPC pulling ahead of
Ambrosia for larger message sizes by about a factor of 1.9.

We also ran the throughput experiment with logging turned off on
our largest instances. Turning off logging increases throughput by
33% for message sizes >= 256, and by 0% for 16 byte messages.
33% reflects network bound scenarios, where per connection TCP
bandwidth is surpassed, since storage is written to using a different
connection. Eventually, though, NIC capacity is reached, causing
1/4 overall loss of throughput. For small message sizes, the CPU is
the bottleneck and the logging overhead becomes negligible.

6.3.2 Latency
This experiment is designed to test the latency of the various
implementations under light load, which reflects the best latency
achievable by these systems. For this we perform pings, where only
one outstanding ping is allowed. The results of the ping experiment
are shown in Table 1:

Table 1: Latency in milliseconds

 0.5 0.9 0.99 0.999 Mean

Ambrosia 6.57 7.1 8.71 11.34 6.63

gRPC 0.5 0.59 0.8 61.85 0.58

Azure Serverless 31.62 130.5 324.7 6708 80.51

Ambrosia-NoLog 2.15 2.49 3.05 7.59 2.32

The first four columns show the latencies for various percentiles.
For instance, 0.5 is the median, 0.9 is the value for which 90% of
the latencies are lower, etc. Unsurprisingly, gRPC, which simply
sends a message across the wire from one machine to the other, is
the clear latency champ. Ambrosia, on the other hand, must make
two sequential round trips to our P10 disks. What we see here is
that adaptive batching and asynchrony completely closes the gap
(and then some) on throughput, but not latency. Oddly, gRPC has
higher tail latency around 60ms. These are not one-time outliers;
they occur regularly throughout the workload. It likely reflects
global locking associated with gRPC periodically cleaning up
resources. For stateless compute, latency is about 5x higher than
Ambrosia at the median, but steadily becomes higher and higher as
the percentile increases, resulting in 600x higher latency than
Ambrosia at three nines.

The last row in Table 1 shows the result of the latency experiment
with logging turned off. As expected, with logging turned off
Ambrosia’s latencies are roughly 3x lower than with logging. But
they are still higher than those of gRPC’s because Ambrosia
requires strictly more network hops vs. gRPC due to its multi-
process design (Figure 2).

6.3.3 Testing Ambrosia’s Resiliency
This last set of experiments measures (a) the fail-over time, and (b)
the recovery time. In doing these measurements our goal is to
provide evidence that in the presence of failures, Ambrosia can fail-
over quickly and also that Ambrosia’s recovery overhead is low.

To test Ambrosia’s failover performance, we performed our latency
test continuously with 3 active instances for the server, where the
log is backed by Azure Files. We induced periodic failure of the
primary server, resulting in failover to an active secondary, and
restarted the failed server to setup for the next failure. We then
found the corresponding spikes in ping latency. Since failover time
was orders of magnitude higher than ping latency, we simply used
these measured latency spikes as our failover time measurements.

The result of this experiment shows that with this setup, Ambrosia

fails-over in 1.8 seconds, on average, with little variation.

To measure recovery time, we conduct an experiment where we
perform our throughput test on 20GB of 64K messages, with only
the initial checkpoint generated. We measure the total execution
time of this experiment, without failures, to be 77 seconds.
Ambrosia is able to recover from the initial checkpoint and log from
start to finish in 40 seconds. This shows that Ambrosia recovery
costs are less than the Ambrosia costs of running the service with
logging in the first place, which puts a bound on recovery time.

Shrink [21] combines this sort of per service information with other
information, like the availability target, and rate of failure, and
additionally tunes parameters like checkpointing frequency and

1

10

100

1000

Th
ro

u
gh

p
u

t
(M

B
/s

)

Message Payload Size (Bytes)

gRPC

Ambrosia-C#

0.1

1

10

100

1000

10000

D
o

lla
rs

Message Payload Size (Bytes)

Price of 1MB/s RPC for one month
gRPC

Azure Serverless

Ambrosia-C#

AWS Serverless

598

number of active instances to achieve optimal cost for an
availability target. For instance, consider the following tradeoffs:
adding more active secondaries to mask recovery time increases
availability, but at additional cost. More frequent checkpointing
decreases recovery time, but increases the cost of overall
checkpoint generation, and is limited by the size of the checkpoint
compared to the size of the log between checkpoints. Connecting
Ambrosia and Shrink to create a highly efficient, adaptive
deployment framework is a subject of future work.

7. FURTHER RELATED WORK
Ambrosia builds on ideas first proposed in Phoenix ([1], [30]).
Similar to Ambrosia, Phoenix provides virtual resiliency focusing
on database applications but lacks support for non-determinism,
design elements that would provide performance comparable to
Ambrosia, and language and machine heterogeneity. In [33],
authors propose a light-weight logging and replay technique
namely, command logging. Their goal is to overcome the overhead
of fine-grained logging typically required by the ARIES protocol
[32]. Command logging records all the transactions which were
executed on the database, taking transactionally consistent
checkpoints of the log periodically. During recovery, starting from
a recent checkpoint, it replays all the commands in the log to bring
the database to a consistent state. At a high-level, Ambrosia also
uses a light-weight logging and recovery technique and thus
benefits from this research. However, Ambrosia's use-cases go
beyond database systems, and thus certain assumptions do not hold.
For example, as opposed to [33], in Ambrosia all the commands are
logged before they are executed and it assumes no transactions
support (and hence no aborts).

Support for deterministically replayable computation is relevant for
language bindings, or maybe even the construction of languages
and runtimes specifically for use with Ambrosia. In C#,
deterministic replayability is accomplished via a combination of
programmer obligations and language-specific mechanisms.
Ensuring deterministic execution has been the subject of a
substantial body of research in operating systems ([10], [11]),
threading libraries ([12], [13]), and programming languages ([14],
[15]). When developing a service to run on top of Ambrosia, any
combination of these approaches may be used, as deterministic
replayability is a local property of each communication endpoint.

One of the important design goals for Ambrosia is to support

machine heterogeneity. Sapphire [4] is the system that comes
closest to our work in this respect. Sapphire provides a distributed
runtime, which can be extended to run code across a variety of
devices ranging from cloud data center machines to mobile devices.
Unlike Ambrosia, the main focus in Sapphire is on flexibility and
extensibility, which is achieved by separating the application logic
from the deployment logic. Sapphire could benefit from and build
on top of the virtual resiliency guarantees provided by Ambrosia.

Ambrosia also takes inspiration from actor-based systems, such as
Orleans [16] and Erlang [34], which provide simple abstractions to
build scalable distributed applications. In contrast, Ambrosia
provides virtual resiliency guarantees with high performance.
Reactor [41] extends actor-based frameworks with support for
transactions. As discussed earlier, transactions are orthogonal to the
virtual resiliency guarantees provided by Ambrosia.

There is also work on VM/container level replication for resiliency
based on checkpointing ([37], [38], [39]). These are all relatively
high cost physical approaches to logging that require infrastructure
support, as opposed to our lightweight logical approach which
doesn’t rely on special infrastructure support. While some of these

approaches ([36], [35]) enable virtual resiliency on servers, even
with arbitrary multithreaded code, clients are out of scope, and must
deal with broken TCP connections. In addition, since they don’t
have a logical understanding of the workload, they are unable to
support retroactive code testing, live service upgrades, and efficient
migration across architectures and operating systems. Finally, the
most efficient of these is based on an epoch mechanism which loses
state changes, meaning that users have to choose between lower
overhead and time travel debugging.

8. CONCLUSIONS AND FUTURE WORK
This paper introduces Ambrosia, the first general purpose platform
for distributed nondeterministic applications that provides its
developers virtual resiliency with unprecedented performance, and
the flexibility of working across a variety of machines, operating
systems, and languages. Furthermore, Ambrosia supports high
availability, time-travel debugging, retroactive debugging, and live
service upgrades. Ambrosia is a real system, used to build a service
which manages hundreds of thousands of machines. The service
development team, when asked for feedback, indicated that
Ambrosia, in practice, significantly improved the time it took to get
their service to an acceptable level of quality, due to the elimination
of failure associated bugs, and always-on time travel debugging.

Ambrosia’s performance depends upon technology, developed by
the database community, used to develop performant data
processing systems. For instance, we make extensive use of
adaptive batching from the streaming community, efficient log
writing, and batch commit concepts.

Therefore, Ambrosia achieves competitive throughput with gRPC,
a widely used non-resilient RPC framework, but with higher
latency costs due to cloud storage latency. Furthermore, Ambrosia
is both simpler to program, and cheaper to run, than a typical
stateless compute cloud configuration designed to be resilient to
failure, outperforming this configuration by about 1000x for small
message sizes on cost, and 1-3 orders of magnitude on latency.

These results also indicate that the stateless compute approach
embraced by most cloud developers is likely a temporary
workaround until systems like Ambrosia mature.

While Ambrosia is immediately useful, there are many related
research problems worth thinking about. The most obvious next
step is elastic scale out. While databases have certainly solved the
problem for transactional systems, they rely on the ability to abort
in flight transactions. In an exactly once system, this is not an
option, and performant solutions to this problem must be found as
part of a desirable implementation.

While this work hasn’t emphasized the ability to relocate immortals
on other machines, this is potentially very exciting in the world of
devices, where Ambrosia facilitates the construction of easily
migratable apps from one device to another, without loss of state.

Figuring out how to support other languages is both useful and
interesting. For instance, the language binding choices made for
Javascript, a single-threaded language, may be quite different from
a language like C#, where thread non-determinism can complicate
achieving deterministically replayable behavior.

Finally, as the number of CPUs and distributed state proliferates
with IOT, the problem of distributed state management in
distributed applications will become excruciating. Ambrosia
provides a crucial building block to tame this complexity.
Understanding Ambrosia’s role, and potential gaps, for these
scenarios is very important.

599

9. REFERENCES
[1] Roger S. Barga, David B. Lomet. Phoenix: Making

Applications Robust. SIGMOD Conference 1999: 562-564

[2] Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. OSDI Conference 2004:
137-150

[3] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin,
Scott Shenker, Ion Stoica: Spark: Cluster Computing with
Working Sets. HotCloud 2010

[4] Irene Zhang, Adriana Szekeres, Dana Van Aken, Isaac
Ackerman, Steven D. Gribble, Arvind Krishnamurthy, Henry
M. Levy: Customizable and Extensible Deployment for
Mobile/Cloud Applications. OSDI 2014: 97-112

[5] Laura M. Haas, Patricia G. Selinger, Elisa Bertino, Dean
Daniels, Bruce G. Lindsay, Guy M. Lohman, Yoshifumi
Masunaga, C. Mohan, Pui Ng, Paul F. Wilms, Robert A.
Yost: R*: A Research Project on Distributed Relational
DBMS. IEEE Database Eng. Bull. 5(4): 28-32 (1982)

[6] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, David B.
Johnson: A survey of rollback-recovery protocols in
message-passing systems. ACM Comput. Surv. 34(3): 375-
408 (2002)

[7] Wilschut, A., and Apers, P.: Dataflow Query Execution in a
Parallel Main-memory Environment. In Distributed and
Parallel Databases 1(1), 1993.

[8] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett,
James F. Terwilliger: Trill: Engineering a Library for
Diverse Analytics. IEEE Data Eng. Bull. 38(4): 51-60
(2015)

[9] Manish Mehta, David J. DeWitt: Data Placement in Shared-
Nothing Parallel Database Systems. VLDB J. 6(1): 53-72
(1997)

[10] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford.
Efficient system-enforced deterministic parallelism. In
Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, 2010.

[11] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven Gribble.
Deterministic process groups in dOS. In Proceedings of the
9th USENIX Conference on Operating Systems Design and

Implementation, 2010.

[12] Marek Olszewski, Jason Ansel, and Saman Amarasinghe.
Kendo: Efficient deterministic multithreading in software. In
Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIV, pages 97–108, New
York, NY, USA, 2009. ACM.

[13] Tongping Liu, Charlie Curtsinger, and Emery D. Berger.
Dthreads: Efficient deterministic multithreading. In
Symposium on Operating Systems Principles. ACM, 2011.

[14] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami,
and Ryan R. Newton. Freeze after writing: quasi-
deterministic parallel programming with lvars. In POPL,
pages 257–270, 2014.

[15] Robert Bocchino, Mohsen Vakilian, Vikram Adve, Danny
Dig, Sarita Adve, Stephen Heumann, Rakesh Komuravelli,
Jeffrey Overbey, Patrick Simmons, and Hyojin Sung. A type
and effect system for deterministic parallel Java. In
Proceeding of the 24th ACM SIGPLAN conference on

Object oriented programming systems languages and
applications - OOPSLA ’09, page 97, Orlando, Florida,
USA, 2009.

[16] Philip A. Bernstein, Sergey Bykov: Developing Cloud
Services Using the Orleans Virtual Actor Model. IEEE
Internet Computing 20(5): 71-75 (2016)

[17] Badrish Chandramouli, Raul Castro Fernandez, Jonathan
Goldstein, Ahmed Eldawy, Abdul Quamar: Quill: Efficient,
Transferable, and Rich Analytics at Scale. PVLDB 9(14):
1623-1634 (2016)

[18] Justin J. Levandoski, David B. Lomet, Sudipta Sengupta:
LLAMA: A Cache/Storage Subsystem for Modern
Hardware. PVLDB 6(10): 877-888 (2013)

[19] David J DeWitt, Randy H Katz, Frank Olken, Leonard D
Shapiro, Michael R Stonebraker, and David A. Wood. 1984.
Implementation Techniques for Main Memory Database
Systems. In Proceedings of the 1984 ACM SIGMOD
International Conference on Management of Data (SIGMOD
’84). ACM, New York, NY, USA, 1–8.

https://doi.org/10.1145/602259.602261

[20] Ibrahim Sabek, Badrish Chandramouli, Umar F. Minhas.
CRA: Enabling Data-Intensive Applications in Containerized
Environments. In ICDE Conference, 2019.

https://github.com/microsoft/CRA.

[21] Badrish Chandramouli, Jonathan Goldstein: Shrink -
Prescribing Resiliency Solutions for Streaming. PVLDB
10(5): 505-516 (2017).

[22] gRPC Benchmarking.
http://grpc.io/docs/guides/benchmarking.html

[23] ET Barr, M Marron: Tardis: Affordable time-travel
debugging in managed runtimes. ACM SIGPLAN Notices 49
(10), 67-82

[24] Azure Storage. https://azure.microsoft.com/en-us/product-

categories/storage/

[25] Data Contracts. https://docs.microsoft.com/en-
us/dotnet/framework/wcf/feature-details/using-data-contracts

[26] Protocol Buffers. https://developers.google.com/protocol-
buffers/

[27] Avro. https://avro.apache.org/

[28] JSON. http://json.org/

[29] A.M.B.R.O.S.I.A. https://github.com/microsoft/AMBROSIA

[30] Roger S. Barga, David B. Lomet, German Shegalov, Gerhard
Weikum. Recovery guarantees for Internet applications.
ACM Trans. Internet Techn. 4(3): 289-328 (2004)

[31] AWS Cost Calculator.
https://calculator.s3.amazonaws.com/index.html.

[32] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh,
and Peter Schwarz. 1992. ARIES: a transaction recovery
method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans. Database
Syst. 17, 1 (March 1992), 94-162

[33] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, Michael
Stonebraker: Rethinking main memory OLTP recovery.
ICDE 2014: 604-615

[34] Erlang Programming Language. http://www.erlang.org/

600

https://github.com/Microsoft/CRA
https://azure.microsoft.com/en-us/product-categories/storage/
https://azure.microsoft.com/en-us/product-categories/storage/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/using-data-contracts
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/using-data-contracts
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://avro.apache.org/
http://json.org/
https://github.com/Microsoft/AMBROSIA
https://calculator.s3.amazonaws.com/index.html
http://www.erlang.org/

[35] Manos Kapritsos and Yang Wang, University of Texas at
Austin; Vivien Quema, Grenoble INP; Allen Clement, MPI-
SWS; Lorenzo Alvisi and Mike Dahlin, University of Texas
at Austin. All about Eve: Execute-Verify Replication for
Multi-Core Servers. OSDI, 2012

[36] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chenx, and Junfeng
Yang. PAXOS Made Transparent. SOSP 2015

[37] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer,
Mike Feeley, Norm Hutchinson, and Andrew Warfield.
Remus: High Availability via Asynchronous Virtual Machine
Replication. NSDI 2008

[38] George W. Dunlap, Dominic G. Lucchetti, Peter M. Chen,
Michael Fetterman. Execution Replay for Multiprocessor

Virtual Machines. ACM VEE 2008

[39] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, Chen Yu. Live
Migration of Virtual Machine Based on Full System Trace
and Replay. HPDC 2009

[40] Ambrosia Technical Report. https://www.microsoft.com/en-
us/research/publication/a-m-b-r-o-s-i-a-providing-
performant-virtual-resiliency-for-distributed-applications/

[41] Shah, Vivek and Marcos Antonio Vaz Salles. "Reactors: A
case for predictable, virtualized actor database systems."
Proceedings of the 2018 International Conference on
Management of Data. ACM, 2018.

[42] Alvaro, Peter, et al. "BOOM: Data-centric programming in
the datacenter." EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-113 (2009).

601

https://www.microsoft.com/en-us/research/publication/a-m-b-r-o-s-i-a-providing-performant-virtual-resiliency-for-distributed-applications/
https://www.microsoft.com/en-us/research/publication/a-m-b-r-o-s-i-a-providing-performant-virtual-resiliency-for-distributed-applications/
https://www.microsoft.com/en-us/research/publication/a-m-b-r-o-s-i-a-providing-performant-virtual-resiliency-for-distributed-applications/

