Software-Defined Data Protection: Low Overhead Policy
Compliance at the Storage Layer is Within Reach!

Zsolt Istvan
IT University of Copenhagen
zsis@itu.dk

ABSTRACT

Most modern data processing pipelines run on top of a distributed
storage layer, and securing the whole system, and the storage layer
in particular, against accidental or malicious misuse is crucial to
ensuring compliance to rules and regulations. Enforcing data protec-
tion and privacy rules, however, stands at odds with the requirement
to achieve higher and higher access bandwidths and processing
rates in large data processing pipelines.

In this work we describe our proposal for the path forward
that reconciles the two goals. We call our approach “Software-
Defined Data Protection” (SDP). Its premise is simple, yet powerful:
decoupling often changing policies from request-level enforcement
allows distributed smart storage nodes to implement the latter at
line-rate. Existing and future data protection frameworks can be
translated to the same hardware interface which allows storage
nodes to offload enforcement efficiently both for company-specific
rules and regulations, such as GDPR or CCPA.

While SDP is a promising approach, there are several remaining
challenges to making this vision reality. As we explain in the paper,
overcoming these will require collaboration across several domains,
including security, databases and specialized hardware design.

PVLDB Reference Format:

Zsolt Istvan, Soujanya Ponnapalli, and Vijay Chidambaram.
Software-Defined Data Protection: Low Overhead Policy Compliance at the
Storage Layer is Within Reach!. PVLDB, 14(7): 1167-1174, 2021.
doi:10.14778/3450980.3450986

1 INTRODUCTION

Our online presence has been generating unprecedented amounts of
data, a large portion of which are personally identifiable and hence
prone to misuse. Even though companies have long used different
access control and encryption techniques to secure the information
they collect, with the emergence of regulatory frameworks such as
GDPR in the EU [12] and CCPA in California [8], there is a need to
homogenize and perhaps standardize these techniques to enforce
rules at all levels of application stacks [37, 41]. Enforcing privacy
rules through all the processing steps of large-scale applications
is important but the storage layer plays a disproportionately im-
portant role. With it being the layer that persists the data and acts
as its source and destination, it is important to ensure efficient

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 7 ISSN 2150-8097.
doi:10.14778/3450980.3450986

1167

Soujanya Ponnapalli
University of Texas at Austin
soujanya.ponnapalli@utexas.edu

Vijay Chidambaram
University of Texas at Austin and
VMware Research
vijay@cs.utexas.edu

Untrusted, Governed by Application

: Authenticate,

! Compute node Compute node ' .

! A A i authorize

| Authorization key, Authorization key, 1

| Permissions Permissions

________________ T 1 Controller
Encrypte annels . .

Privacy policies,

Permissions,
Authorization keys,
Encrypt/Decrypt

Storage node
Permissions,
Authorization keys,
Encrypt/Decrypt

Data mapping,

Configure cipher keys,

Configure

authorizations,
permissions of
compute nodes

' Encryption at rest Encryption at rest

Trusted (after configuration by Controller)

Figure 1: We propose Software-Defined Data Protection as
a design approach to decouple policies from storage node
implementation.

compliance with rules and regulation. Matter of fact, analysis of
GDPR finds that more than 30% of the articles enforcing data pro-
tection are directly related to storage [39]. However, maintaining
strict compliance, as done today, is challenging because it requires
computational resources beyond the capacity of storage nodes and
slows down data access.

In this work we make the case that there is an optimistic outlook
to enforcing privacy rules directly in the storage layer — mainly
driven by two recent trends. First, disaggregated architectures with
query pushdown to the storage layer, such as Amazon Aqua [1],
are becoming a commodity in the cloud. There are also several
SSDs on the market with in-storage processing [10, 36] and high
bandwidth connectivity to the network. Second, as an effort to keep
the management, configuration and monitoring of a large number
of storage nodes scalable, Software-Defined Storage (SDS) has been
proposed [42]. Our work relies on the realization that even though
the goal of existing SDS systems is to guarantee performance isola-
tion and service levels in distributed multi-tenant settings [30], the
underlying ideas can be translated to the data protection domain.

The growing number of specialized-hardware-based smart stor-
age solutions show that it is already challenging to keep up with
increasing network speeds and workload complexities. When fac-
toring in additional security and privacy operations, it is important
to establish how we can rely on offloading functionality to avoid
slowdown. Our goal is to make it feasible to implement rich policies,
such as GDPR or CCPA, with smart storage devices at the network
line-rate. This, however, will only happen if we use them to do
what they do best: pipelined data processing. To deal with complex

https://doi.org/10.14778/3450980.3450986
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3450980.3450986

decision-making code required for policy interpretation, we pro-
pose the use of a software-based logically centralized controller. We
call the approach Software-Defined Data Protection (SDP). Figure 1
shows how policy interpretation and decision making (i.e., the con-
trol plane) is separated from applying rules to request processing
(data plane).

We validate our SDP vision by sketching how GDPR could map to
it. We chose GDPR because it is relatively restrictive and therefore
it can be seen as a superset of possible company-wide policies. It is
also a precursor to other, similar, regulatory frameworks, such as
CCPA in California. As a result, if our proposal can handle GDPR,
it will work with other rule-sets as well.

To summarize, our vision is that using in-storage compu-
tation together with a control-plane/data-plane separation
will allow enforcing data protection rules at line-rate, with-
out requiring storage nodes to be implemented with large, power-
hungry, servers. Somewhat surprisingly, much of the required in-
storage functionality can be provided by re-purposing existing
hardware building blocks, opening the path to ensuring regulation
compliance without negatively affecting performance.

There, are, however, two remaining challenges to making
SDP reality: One is related to bootstrapping storage nodes and will
require adding Trusted Execution Environments (TEEs) [18] inside
the storage nodes to enable remote attestation of the firmware
by the controller. The second is the translation of complex, high
level, rules and policies at the controller level to the common SDP
substrate. Today’s solutions in this space, e.g., [5, 31, 38, 44], already
use secure enclaves and forms of offloading but all implement a
different interface and low-level enforcement logic.

2 BACKGROUND AND RELATED WORK

2.1 Implications of GDPR on Storage

The General Data Protection Regulation (GDPR) outlines the rights
and responsibilities of the companies handling the personal data of
EU citizens. GDPR regulates the entire life cycle of personal data,
from its collection to its deletion. A vast majority of companies to-
day rely on cloud services providers, for their infrastructural needs,
making GDPR compliance in cloud environments a necessity. There-
fore, rich related work proposes frameworks enabling cloud users
to develop GDPR-compliant applications [35], GDPR-compliant
databases [25, 37], along with studies that outline the compliance
challenges faced by cloud users [11, 21, 41]. Other works propose
benchmarks [40] and tools [29] that test GDPR-compliance, and
explore the benefits of trusted hardware to prove compliance [31].
Below we summarize the features identified by related work [39]
and required for a storage system to be GDPR-compliant [39]. Our
proposal uses GDPR as its main use-case because it is a framework
with strict requirements and representative for other state-wide
regulations, such as CCPA. The six features are:
1. User-Specific Deletion. GDPR introduces the right to be for-
gotten, allowing users to demand the deletion of personal data in
a timely manner. GDPR also states that personal data cannot be
stored beyond its purpose in its storage limitation clause.
2. Logging and Monitoring. With GDPR, companies are vested
with the responsibility of detecting potential data breaches, inform-
ing users about those data breaches, and proving their compliance.

DRAM (GBs)

Programmabl Flash

Logic ontroller Flashigies

Storage Node

Figure 2: Emerging Smart Storage nodes incorporate both
low-power CPU cores and Programmable Logic (FPGAs) of-
fering both flexibility and predictable performance.

GDPR also provides users with the right to access, allowing them
to request with whom and why their personal data is shared.

3. Metadata and Secondary Indexes. As GDPR requires personal
data to be associated with a specific purpose, storage has to accom-
modate for additional metadata. Even though not a requirement,
secondary indexes that categorize data as per purposes can be useful
as an optimization.

4. Fine-grained Permissions. With GDPR’s right to object, users
can object to using their personal data for specific purposes. Fur-
ther, with the purpose limitation clause, GDPR disallows companies
to process user’s data beyond its purpose and without appropri-
ate security measures. To comply with these clauses, fine-grained
permission checks and access control are required at the storage
layer.

5. Encryption. GDPR mandates that personal data should be pro-
tected against accidental loss or damage and should be incom-
prehensible to any person unauthorized to access it. Encrypting
personal data is a suitable measure to comply with this clause.

6. Location Control. GDPR requires companies to adhere to its
standards, independent of the geographical location of where per-
sonal data is stored.

7. Data Integrity. GDPR requires storage systems to resist or detect
malicious activities that compromise the integrity and confidential-
ity of personal data. Using checksums or Merkle tree-based data
integrity checks have been proposed to comply with the integrity
and confidentiality clause of GDPR.

2.2 Emerging Smart Storage Devices

The database community has long demonstrated the potential of
“smart storage” [4, 16, 20] and now it is becoming mainstream.
Amazon Aqua [1] provides query offloading to distributed storage
using specialized hardware and there are commercially available
Samsung SmartSSDs [36] appearing in the cloud as well.

As several studies showed, building smart storage only relying
on small CPU cores (often by borrowing cores from the controller
of the flash device itself) is very sensitive to the types of offloaded
processing and can often become a severe bottleneck, instead of
alleviating one [19, 23]. As a result, the architecture of smart storage
nodes typically incorporates some form of specialized ASIC [1,
19] or a more general purpose Field Programmable Gate Array
(FPGA) [4, 16, 20, 36]. Figure 2 depicts a high level overview of a
modern smart storage node, attached to fast networking to be used
in disaggregated architectures.

Related work in the space of FPGA-based smart storage has
shown that it is possible to implement line-rate hash-tables [16],

1168

deduplication schemes [26], in-storage filtering with regular ex-
pressions [15] on FPGA-based distributed storage. These operations
are similar in nature to those required for building an SDP system
(discussed in Section 3.3) and can be re-purposed (re-implemented)
to this domain.

We sketch our proposal targeting today’s smart storage plat-
forms, that is, with a combination of low-power CPU cores and
FPGA logic, such as the Fidus Sidewinder-100 [4] or the Samsung
SmartSSD [9, 36]. The presence of both a general-purpose, albeit low
power, CPU, and a re-programmable hardware element ensures that
the devices can be managed remotely by software and, at the same
time, can deliver high-performance behavior for privacy-related
processing.

3 SOFTWARE-DEFINED DATA PROTECTION

3.1 Assumptions and Threat Model

Software-Defined Data Protection (SDP) targets cloud and datacen-
ter use-cases within the context of a large corporation. Data is being
stored in the distributed storage layer and is processed by several
applications governed by a single set of privacy rules. We assume
that user/client data can be identified explicitly through a universal
user identifier (e.g., corresponding to a real-life person) and, de-
pending on the purpose for which the data has been collected for,
a purpose identifier (e.g., billing purposes, recommendation service
purposes). Some applications will represent a single purpose (e.g.,
notifying users of unpaid bills) and some will map to several pur-
poses (e.g., recommendations based on previous purchases), hence
identifiers are valid across applications of the company, and the
trusted SDP controller has a global view of which application can
access what purposes. All users within a purpose are accessible to
the application, unless consent has been revoked (e.g., user opting
out from personalized recommendations).

We assume that attackers could tamper with the storage nodes
while powered down (devices can be stolen or lost) but not when
powered on and having been bootstrapped by the SDP controller.
Therefore, it is important that the storage nodes provide encryption
to safeguard persisted data and mechanisms for detecting when data
has been modified or corrupted off-line. Furthermore, applications
can be temporarily faulty, or even malicious, so SDP has to protect
against data loss and corruption. This is achieved by checking
permissions for all accesses to users or purposes. SDP allows several
applications belonging to the same company (controller) sharing
storage nodes, but, in the current design, using more than one
controller per storage node is not envisioned.

3.2 The Anatomy of an SDP Deployment

Figure 1 shows the three types of nodes in SDP: storage, processing,
and controller. Storage nodes implement a general-purpose key-
value store (KVS) interface on binary data, can be shared across
applications, and all communication with them happens over an
encrypted channel (e.g., TLS). Applications run on one or several
processing nodes and are managed under the governance of the
developers. Applications have to register with the controller before
accessing data but once granted access, can carry out most of their
operations directly with the storage nodes.

1169

Clients)
/" N\ Controller
1
Programmable Logic DRAM |

Session Handling Session Table

Client Authentication Auth. Table

Permission Checking Perm. Table

Index Cache

Logging and Monitoring

—

Encryption/Decryption Cypher Key Table

—

Hash Table Cache

[

| Hash Table for Keys |

TT_TTTT
TA

|
|
|
| Indexing
|
|
|

Key-Value Management

Flash

Encrypted Values

Encrypted Log

| Secondary Indexes |-—

Figure 3: SDP enables separation of concerns, and as a result,
policy enforcement can be laid out as pipeline within the
storage nodes. The SDP controller configures and manages
the nodes from the outside.

The controller node is logically centralized and is trusted by
both the storage and processing layers and is controlled by the
company’s data officers. It interprets policies and maintains data
mappings and is used to bootstrap storage nodes, authenticate
application nodes, and manage their permissions. Storage nodes
are trusted once configured by the controller. As we explain in
the following subsections, once authenticated and configured, in
common case neither the application nor the storage nodes have
to communicate with the controller. For this reason, we do not
consider the controller as a performance bottleneck.

Based on the assumptions and threat model, we depict the hard-
ware pipeline structure for SDP storage nodes in Figure 3. It handles
authenticated connections and encryption at the transport layer,
as well as inside the storage. It also performs permission checks
and detailed logging and monitoring. Furthermore, to enable point
lookups and queries based, for instance on purpose-identifiers, it
also includes a secondary indexing element. The controller can con-
figure the behavior of SDP pipeline stages through the in-memory
tables, depicted on the right-hand side in Figure 3. This means
that the physical implementation of the stages can change without
having to modify the controller or the SDP interface.

Given the threat model, SDP will only be effective if all permis-
sions are verified and honored correctly by the storage node, even
if it has been tampered with while powered down. Therefore, it
is crucial to ensure it is running the expected software/firmware
so that the Controller can trust the storage node once it has been
powered on and “booted”. For this, we propose expanding the stor-
age node with a Trusted Execution Environment that can attest the
correctness of the software and hardware contents to the Controller

— this is, however, a challenge that requires collaboration across
research domains and is explained in more detail in Section 5.

3.3 Pipeline Functionality

The pipeline in Figure 3 assumes all in-storage processing to take
place on an FPGA. In real-world implementations it can be beneficial
to only keep performance-critical steps in hardware and move
others to more traditional CPU cores within the storage nodes,
reducing this way the development effort. The SDP approach makes
this possible because the pipeline stages are loosely coupled. As
an example, non-performance-critical steps such as Authentication
that is only carried out once per session could be handled by a
CPU core that shares in-memory data structures with the hardware
modules, achieving this way heterogeneous processing.

In the following, we explain how the SDP pipeline provides the
salient features required for enforcing company-wide policies or
higher level regulations in an efficient way:

Encryption. Encryption can be implemented inside the storage
layer in a way that a) relies on existing schemes and best practices
and b) makes it possible to map the key-management operations to
the SDP scheme we propose.

Data needs to be encrypted both at rest and on the move. We en-
vision a system where clients (processing nodes) receive plain-text
tuples over encrypted channels. Block ciphers underlying TLS have
been shown to work well on FPGAs [7, 13] reaching throughputs
high enough to saturate even 40Gbps links.

Persistent data on flash is always encrypted, assuming industry-
standard, symmetric-key cryptography (e.g., AES). The storage
nodes must not persist cipher keys. Instead, they have to remain
in memory and need to be configured and managed by the SDP
controller at run-time. This forbids unauthorized access to the
drives and prevents leaks. One difference to traditional encrypted
storage is that in the context of fine-grained rules and regulations,
such as GDPR, it can be beneficial if each tuple is encrypted with a
key specific to the user whose data it represents (or even the user-
purpose combination) because, as later explained in the Deletion
subsection, this enables quick logical deletion of data.

A side-effect of having multiple (de)encryption keys is that each
client request will have to retrieve a different one. Since requests
encode user and purpose explicitly, the storage node can use this
to lookup the cipher key in an internal ephemeral cipher key table
(KT). It is important that this table can sustain high access rates
because, in contrast to other meta-data structures described later,
this one has to be accessed on every incoming client request.

One challenge of creating fast hash tables on specialized hard-
ware is that it is unlikely that cipher keys will fit on on-chip SRAM
memory and will have to spill into off-chip DRAM (there is recent
work in the context of high-performance key-value stores built on
FPGAs [16, 28] using DRAM, showing feasibility).

Fine-grained Permissions. Beyond the question of how clients
can reach storage devices (solved by SDS), an authentication step
is necessary. Authentication matches a client’s identity to a set
of permissions (read/write/insert rights per purpose). To carry out
authentication, an Authentication Table (AT) holds the public keys
belonging to applications. A Permission Table (PT) stores the map-
ping of identities to permissions. Both tables are ephemeral and are

1170

populated and managed by the controller. In most workloads, the
number of purposes (e.g., number of internal applications) will be
orders of magnitude smaller than that of individual users, hence, the
PT can be represented compactly, perhaps even on on-chip caches.

Permissions in the permission table (PT) are orthogonal to the
presence/absence of cipher keys in the key table (KT): even if a
client has the right to read all key-value pairs belonging to a purpose,
only those for which the storage device holds a cipher key in the
KT can be successfully read. The same holds for inserting tuple
belonging to a new user or purpose. The SDP controller has to first
insert the corresponding entries in the KT. It is important to note
that permissions in themselves do not forbid applications to, for
instance, make copies of data under bogus user keys. For this reason,
end-to-end information tracking is required, as we highlight this
in Section 5.

Metadata and Indexing. We expect that, in company-specific
rules and national regulations alike, auditing (internal or exter-
nal) will require an efficient way of retrieving all tuples belonging
to a specific user or purpose. This can be achieved by relying on
meta-data stored with the key-value pairs and by enforcing a tuple
naming scheme.

While not strictly necessary, if such reads will occur often, it
can be beneficial to maintain secondary indexes for performance
reasons. Even though write operations will become more expen-
sive, these data structures can be used to avoid scanning TBs of
data to find a specific user’s entries. For this purpose, there are al-
ready FPGA-based key-value stores with low cardinality secondary
index [16] and by using the same hash table approach as for per-
missions, etc., higher cardinality cases could be also handled.

Logging and Monitoring. Logging is important for ensuring au-
ditability of the storage layer and can be implemented at various
granularities. The storage node will persist an encrypted log (the
key for the log is configured at run-time by the SDP controller)
and implement some form of integrity check at the tuple level.
While we foresee no challenges with the former task, the latter
might require further investigation. Increasing the efficiency of
data structures that ensure the integrity storage are still a topic in
exploration [3, 33, 34].

For monitoring, the storage node has to notify the SDP controller
of any request that failed any of the validation steps outlined above
or has retrieved a key-value pair whose decryption key is missing.
These events allow the controller to take adequate action, rectifying
mis-configuration, revoking permissions, etc.

Efficient Deletion. As explained above, in many cases it can be
a requirement that the storage can remove all data belonging to
a specific user, e.g., once they revoked consent. In this work we
focus on logical deletion of user data, since physically destroying all
copies, and proving this to a third party, is orthogonal to our goals
and a challenge in itself [22, 32]. If using an encryption scheme
with a single key, the SDP controller can delete tuples belonging
to a user and purpose by delegating this task to the storage device
that will either scan the tuple space or use a secondary index. But
in case an encryption scheme with multiple keys is used, deletion
can be performed more efficiently by removing the corresponding
cypher keys from the KT of the storage nodes. As a result, deleted
tuples will not be accessible any more as plain-text, and without

Table 1: This table summarizes the GDPR articles relevant to storage and the high level functionality that the storage nodes
and SDP controller need to fulfill those. Functionality outside of the scope of this paper is marked with 7.

No. GDPR article

5.1 Purpose limitation (data collected for specific purpose)
21 Right to object (data not used for objected reason)
5.1 Storage limitation (data not stored beyond purpose)
17 Right to be forgotten

15 Right of access by users

20 Right to portability (transfer data on request)

5.2 Accountability (ability to demonstrate compliance)
30 Records of processing activity

33, 34 | Notify data breaches

25 Protection by design and by default

32 Security of data

13 Obtain user consent on data management

46 Transfers subject to safeguards

Required functionality Impacts mostly
Fine-grained permissions Storage, Controller
Fine-grained permissions Storage, Controller
Deletion Controller
Deletion Controller
Metadata (and Secondary indexes) | Storage

Metadata (and Secondary indexes) | Storage

Logging and Monitoring Storage, Controller
Logging Storage

Logging and Monitoring Storage, Controller
Encryption Storage
Encryption and Access control Storage

High level policy™ Controller
Location control” Controller

the cipher keys, cannot be decrypted. This approach is in-line with
existing practices [6, 46].

Bootstrapping and Interfaces. When powered on, the storage
nodes will have to load the correct firmware/software (attested
by the TEE) before they can operate on the persisted data. The
controller is responsible for performing these steps and then pop-
ulating the in-memory data structures of the SDP pipeline. These
tables represent the interface to the SDP pipeline and decouple the
physical implementation from the meta-data required to perform
them.

Integrity checks after startup can be performed once the con-
troller bootstraps the nodes and loads the crypto keys (until this
happens, the key-value store of the storage node cannot decrypt
the values). Data that cannot be decrypted with its corresponding
key can be considered corrupted or tampered with.

3.4 Features and Questions out of Scope

Location. The mapping of user and purpose to the actual storage
devices is carried out by the controller following either general
purpose sharding strategies or depending on the privacy policies at
the high level. Company-wide rules and regulations, such as GDPR,
however, can mandate that regardless of the physical location of
data belonging to a user, the same rules apply to it. The logically
centralized nature of the SDP controller is essential for ensuring
rule consistency at scale.

Fault Tolerance through Replication. For simplicity, in our dis-
cussion we assumed that each piece of data resides inside a single
storage node. In a real system, however, replication will be required
to ensure fault tolerance. As highlighted by the above two points,
the task of setting up and controlling replication is external to
our proposal and can be tackled by numerous existing schemes.
Nonetheless, there is work on performing transparent, line-rate,
replication of the KVS running on the FPGAs [17] that could be
easily adapted to be managed by the Controller.

Performance of the Controller.C In our SDP vision, the Con-
troller is required to actively participate only in a subset of oper-
ations. After carrying out initial authentications and configuring

1171

encryption keys and permissions, it is seldom accessed by either the
processing nodes (application) or the storage nodes. Once exception
is when data belonging to a new user or purpose is inserted for the
first time. Such operations, however, are less common than regular
reads and updates of existing data. Nonetheless, it is likely that the
Controller will have to be implemented as a logically centralized
by physically decentralized solution, to be able to keep up with the
workloads of large enterprises.

4 FEASIBILITY STUDY
4.1 Does GDPR Map to SDP?

In Table 1, we summarize the GDPR articles relevant to storage and
what type of functionality is required for their fulfillment. We also
indicate for each aspect, whether the SDP storage nodes (data plane)
or the controller (control plane) would bear most of the required
complexity. Naturally, even if the storage node performs almost
all the computation, for instance, as is the case with Encryption,
the controller will still have to bootstrap the nodes. As visible from
the table, the required functionality maps well to the SDP model
with the storage node being able to utilize the specialized hardware
pipeline to offload all data-intensive tasks. This means that, with
SDP, GDPR-compliance is possible without negatively impacting
the performance of the applications running on top.

The main remaining challenges for providing GDPR-compliance
in practice, namely the mechanisms for obtaining user consent
and controlling the location of data, are pertinent to the controller
implementation and the way this interprets the regulation. We talk
more about these aspects as part of the future work outlined in
Section 5.

4.2 Are FPGAs the Right Platform?

We “approximate” the proposed SDP functionality to verify whether
it can be implemented on today’s SmartSSD solutions while guar-
anteeing 10Gbps and faster line-rate behavior. As a stand-in for
the SDP functionality, we rely on the multi-tenant version of Cari-
bou [14], an open-source FPGA-based key-value store. This version

Table 2: Resource consumption of single encryption and
decryption cores (AES128-CBC) and the estimated size of
the crypto engines necessary for sustaining 10Gbps network
line-rate on a Virtex Ultrascale+ VU9P device.

Module Logic Blocks (%)
AES128 Decryption core (1xD) 4.4k (2.9%)
AES128 Encryption core (1xE) 1.8k (1.2%)
Key-Value Store [14] 28.4k (19%)

+12k (+8%)
+20.5k (+£13.5%)
+61k (£41.5%)

+ AES128 Engine (1xD + 4xE) for TCP
+ AES128 Engine (3xD + 4xE) for Storage (>256B)
Estimated total with AES

of Caribou already handles TCP connections from multiple ten-
ants and is able to allocate bandwidth to them independently, it
implements logic roughly equivalent to the Session and Authenti-
cation tables in SDP. It also has secondary bit-map indexes, which
require similar logic as needed for Indexing in SDP. The main type
of functionality that is missing from this “approximation” is encryp-
tion, decryption and authentication. Since authentication is not a
performance-critical task, we focus in the following on quantifying
the cost of providing encrypted TCP connections to clients and the
encryption of the data at rest.

We investigate the cost of a commonly used encryption method
that uses symmetric keys, namely AES-128 in CBC mode. We de-
ploy a single encryption and decryption module (core) on a Xilinx
VCU1525 board with an UltraScale+ VU9P FPGA (a chip similar to
the one in the Amazon F1 machine instances). The cores are imple-
mented relying on the Xilinx Vitis 2020.1 library. Table 2 shows that
the single cores occupy only a small portion of the logic resources
on the FPGA and do not utilize DSPs (small arithmetic units on
the FPGA fabric) or BRAM (on-chip memory distributed over the
FPGA fabric), except for buffering input. To provide a realistic SDP
implementation, two AES engines, composed of several AES cores,
are needed. One engine handles the network traffic and the other
one secures data on the storage medium. As an estimate of the logic
resources required in a real implementation, we estimate the size of
a 10Gbps line-rate capable AES engine for the TCP traffic and the
storage based on the single-core performance. Figure 4 shows how
the AES cores behave with increasing packet size. Encryption has
less overhead and the performance of a single core is less impacted
by the size of the data that needs to be encrypted. Decryption, on
the other hand, has a high overhead per data packet and its per-
formance with small data sizes (64-128 Bs, representative of Hash
Table entries) is significantly lower than with larger ones (1-2KBs,
representative of values stored in the KVS). The resource consump-
tion numbers in Table 2 summarize our findings: on a device similar
to the one we used, an SDP solution is likely to consume at least
around 40% of the logic resources, half of which is used for the AES
engines.

The above findings show that the proposed functionality can
be fitted on the type of FPGA device we used but many FPGAs
deployed in smart SSD solutions contain much less programmable
logic. This consideration and the fact that the estimates in this
section do not include the cost of RSA or ECDSA cores required
for authentication purposes, we conclude that while feasible to

1172

e 125 T w
a
5 10} |
‘g 75 AES128 Decrypt core
_g; 5 —e— AES128 Encrypt core
5 254 * . b
=
= 0 | | |
64 256 512 1,024 2,048

Data size [B]

Figure 4: Performance of a AES128 cores running at 250MHz
on a Xilinx Ultrascale+ device with various data sizes.

implement SDP on large FPGAs, moving forward, it will be crucial to
design SDP solutions around heterogeneous platforms, combining
several small CPU cores and programmable hardware in an efficient
manner. Authentication, for instance, is a non-performance-critical
task that can be delegated to software, freeing up FPGA resources
whereas streaming encryption is a better match for a hardware-only
implementation.

>

5 FUTURE CHALLENGES

Trusted Execution Environments. There are several trust-related
challenges in implementing SDP. First of all, the security of the
encrypted data at rest hinges on the assumption that the storage
device cannot and will not leak cipher keys from DDR memory.
Also, the Controller has to be able to trust the storage node once
it has been powered on and “booted”. This could be ensured by
using a Trusted Execution Environment inside the storage node
- something that, for the moment, is missing from smart storage
targeting the cloud! However, emerging research projects, such as
Keystone [27], can implement TEEs with custom hardware compo-
nents. This approach fits the use-case of SDP well, because a small
RISC-V or ARM core could be used to load the firmware on the
storage node that the controller provides. This firmware, in turn,
can be verified not to be able to read out cipher keys to clients,
etc. FPGAs have been also proposed to be used as TEEs in project
examples such as Cipherbase [2] where they perform transaction
processing in an always-encrypted database management system.

Translating Policies to SDP The question of how company- and
application-wide policies are written, managed and translated to
SDP rules is future work. There is rich related work [24, 43, 45]
which demonstrates how to translate high level policies to com-
pliant queries in databases (or compliant accesses in data storage
layers) and there is also recent work that uses SGX enclaves for
similar goals [5, 38]. These implementations, however, all differ and
we believe that there is value in unifying them on top of SDP. In
parallel to implementing a prototype of SDP we are also encour-
aging collaborations across domains to investigate how to convert
rules to an SDP interface.

Data Tracking Beyond Storage. While making sure that the stor-
age layer protects privacy and respects all rules, data misuse can
happen at other layers of the application stack as well. There is no
guarantee that a buggy or malicious application does not store, for
instance, data belonging to one user under some other, potentially
non-existent, one’s data; or that results of processing do not leak

personally identifiable information to the outside world. Counter-
ing such behavior has been the subject of numerous studies in the
context of Information Flow Control, but practical, general pur-
pose, solutions are still not widely available. Even though the SDP
approach does not solve this challenge, we believe that at least it
makes it easier: On the one hand, removing all decision making
and policy interpretation from the storage nodes and moving it
into a logically centralized controller allows for better overview of
the system. Other monitoring tools might be used to augment the
monitoring capability of the controller, achieving this way better
coverage. Furthermore, by not allowing storing new tuples into
the storage unless they belong to a user and purpose known to the
controller, some misuse scenarios can be limited and be audited
after the fact (identifying, for instance, the application that created
non-existent user IDs).

6 CONCLUSION

In this paper we painted our vision Software-Defined Data Protection
(SDP) for smart storage that separates control path and data path in
order to simplify the complexity of in-storage processing necessary
for enforcing data protection and privacy rules. This makes high
bandwidth, network line-rate, implementation of complex rules and
regulations possible without increasing the energy consumption
of storage nodes significantly. We describe a high level pipeline
model that exposes a simple interface to the controller and can
handle even as strict and complex regulations as GDPR. Based on
recent advances in FPGA-based key-value stores and near-storage
processing, the functionality needed for making SDP a reality could
almost be provided by re-purposing existing building blocks. There
are, however, open challenges to be tackled: most importantly,
SDP requires secure boot and attestation of the software/firmware
running on smart storage nodes and this will be only possible if we
incorporate TEEs in them. Hence, this paper is a call to arms for
security, database and systems researchers to join forces in making
privacy protecting distributed smart storage a reality.

ACKNOWLEDGMENTS

Vijay Chidambaram and Soujanya Ponnapalli were partially sup-
ported by a grant from VMware. Zsolt Istvan was partially sup-
ported by a grant from the Novo Nordisk Foundation. We thank
Xilinx for their generous donation of hardware and software used
in this work.

REFERENCES

[1] Amazon. 2020. AWS announces AQUA for Amazon Redshift (pre-
view). https://aws.amazon.com/about-aws/whats-new/2020/12/aws-announces-
aqua-for-amazon-redshift-preview/.

Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann,
and Ravi Ramamurthy. 2015. Transaction processing on confidential data using
cipherbase. In 31st International Conference on Data Engineering (ICDE). IEEE,
435-446.

Maurice Bailleu, Jorg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda,
and Kapil Vaswani. 2019. SPEICHER: Securing LSM-based Key-Value Stores using
Shielded Execution. In 17th USENIX Conference on File and Storage Technologies
(FAST 19). 173-190.

Wolfgang Bauer, Philipp Holzinger, Marc Reichenbach, Steffen Vaas, Paul Hartke,
and Dietmar Fey. 2018. Programmable HSA Accelerators for Zynq UltraScale+
MPSoC Systems. In European Conference on Parallel Processing. Springer, 733-744.

Eleanor Birrell, Anders Gjerdrum, Robbert van Renesse, Havard Johansen, Dag
Johansen, and Fred B Schneider. 2018. SGX enforcement of use-based privacy. In
Proceedings of the 2018 Workshop on Privacy in the Electronic Society. 155-167.

[2

[

1173

G

(1]

[12

[13

[14

[15

[16

(17

[18

=
2

[20

[21

[22

[24

[25]

[26

[28

[29]

Dan Boneh and Richard J Lipton. 1996. A Revocable Backup System.. In USENIX
Security Symposium. 91-96.

Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
et al. 2016. A cloud-scale acceleration architecture. In 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1-13.

CCPA. 2018. California Consumer Privacy Act. California Civil Code, Section
1798.100 (Jun 28 2018).

Keith Chapman, Mehdi Nik, Behnam Robatmili, Shahrzad Mirkhani, and Maysam
Lavasani. 2019. Computational Storage For Big Data Analytics. In Proceedings
of 10th International Workshop on Accelerating Analytics and Data Management
Systems (ADMS).

Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Programmable
solid-state storage in future cloud datacenters. Commun. ACM 62, 6 (2019),
54-62.

Bob Duncan. 2019. EU General Data Protection Regulation Compliance Chal-
lenges for Cloud Users.

GDPR. 2016. Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
Directive 95/46. Official Journal of the European Union 59, 1-88 (2016).

Alireza Hodjat and Ingrid Verbauwhede. 2004. A 21.54 Gbits/s fully pipelined
AES processor on FPGA. In 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 308-309.

Zsolt Istvan, Gustavo Alonso, and Ankit Singla. 2018. Providing multi-tenant
services with FPGAs: Case study on a key-value store. In 28th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 119-1195.
Zsolt Istvan, David Sidler, and Gustavo Alonso. 2016. Runtime parameteriz-
able regular expression operators for databases. In 24th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE,
204-211.

Zsolt Istvan, David Sidler, and Gustavo Alonso. 2017. Caribou: intelligent dis-
tributed storage. Proceedings of the VLDB Endowment 10, 11 (2017), 1202-1213.
Zsolt Istvan, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016. Consensus
in a box: Inexpensive coordination in hardware. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). 425-438.

Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2020. Trusted
Execution Environments: Properties, Applications, and Challenges. IEEE Security
& Privacy 18, 2 (2020), 56—60.

Insoon Jo, Duck-Ho Bae, Andre S Yoon, Jeong-Uk Kang, Sangyeun Cho, Daniel DG
Lee, and Jaeheon Jeong. 2016. YourSQL: a high-performance database system
leveraging in-storage computing. Proceedings of the VLDB Endowment 9, 12
(2016), 924-935.

Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
and Shuotao Xu. 2016. Bluedbm: Distributed flash storage for big data analytics.
ACM Transactions on Computer Systems (TOCS) 34, 3 (2016), 1-31.

Miriam Kelly, Eoghan Furey, and Kevin Curran. 2020. How to Achieve Compliance
with GDPR Article 17 in a Hybrid Cloud Environment. Sci 2, 2 (2020), 22.
Myungsuk Kim, Jisung Park, Genhee Cho, Yoona Kim, Lois Orosa, Onur Mutlu,
and Jihong Kim. 2020. Evanesco: Architectural Support for Efficient Data Saniti-
zation in Modern Flash-Based Storage Systems. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 1311-1326.

Gunjae Koo, Kiran Kumar Matam, I Te, HV Krishna Giri Narra, Jing Li, Hung-Wei
Tseng, Steven Swanson, and Murali Annavaram. 2017. Summarizer: trading com-
munication with computing near storage. In 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 219-231.

Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth,
Pramod Bhatotia, and Christof Fetzer. 2018. Pesos: Policy enhanced secure
object store. In Proceedings of the Thirteenth European Conference on Computer
Systems (EuroSys). 1-17.

Tim Kraska, Michael Stonebraker, L. Michael Brodie, Sacha Servan-Schreiber,
and J. Daniel Weitzner. 2019. SchengenDB - A Data Protection Database Proposal.
Poly/DMAH@VLDB (2019), 24-38.

Lucas Kuhring, Eva Garcia, and Zsolt Istvan. 2019. Specialize in modera-
tion—building application-aware storage services using FPGAs in the datacenter.
In 11th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage).
Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovi¢, and Dawn
Song. 2020. Keystone: an open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys). 1-16.

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. Kv-direct: High-performance
in-memory key-value store with programmable nic. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP). 137-152.

Z.S.Li, C. Werner, and N. Ernst. 2019. Continuous Requirements: An Example Us-
ing GDPR. In 27th International Requirements Engineering Conference Workshops
(REW). 144-149.

Ricardo Macedo, Jodo Paulo, José Pereira, and Alysson Bessani. 2020. A Survey
and Classification of Software-Defined Storage Systems. ACM Computing Surveys
(CSUR) 53, 3 (2020), 1-38.

Miti Mazmudar. 2019. Mitigator: Privacy policy compliance using Intel SGX.
Soumyadeb Mitra and Marianne Winslett. 2006. Secure deletion from inverted
indexes on compliance storage. In Proceedings of the second ACM workshop on
Storage security and survivability. 67-72.

Soujanya Ponnapalli, Aashaka Shah, Amy Tai, Souvik Banerjee, Vijay Chi-
dambaram, Dahlia Malkhi, and Michael Wei. 2019. Scalable and Efficient Data
Authentication for Decentralized Systems. arXiv preprint arXiv:1909.11590 (2019).
Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky, Gilad Oved, Zachary Keener,
Vijay Chidambaram, and Ittai Abraham. 2018. mlsm: Making authenticated
storage faster in ethereum. In 10th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage).

Erkuden Rios, Eider Iturbe, Xabier Larrucea, Massimiliano Rak, Wissam Mallouli,
Jacek Dominiak, Victor Muntés, Peter Matthews, and Luis Gonzalez. 2019. Service
level agreement-based GDPR compliance and security assurance in (multi)Cloud-
based systems. IET Software 13 (2019), 213-222.

Samsung. 2020. Samsung SmartSSD Product Brief. https://www.nimbix.net/wp-
content/uploads/2020/02/SmartSSD_ProductBrief 12.pdf.

Malte Schwarzkopf, Eddie Kohler, M Frans Kaashoek, and Robert Morris. 2019.
Position: Gdpr compliance by construction. In Heterogeneous Data Management,
Polystores, and Analytics for Healthcare. Springer, 39-53.

Shayak Sen, Saikat Guha, Anupam Datta, Sriram K Rajamani, Janice Tsai, and
Jeannette M Wing. 2014. Bootstrapping privacy compliance in big data systems.
In IEEE Symposium on Security and Privacy. IEEE, 327-342.

Aashaka Shah, Vinay Banakar, Supreeth Shastri, Melissa Wasserman, and Vijay
Chidambaram. 2019. Analyzing the Impact of GDPR on Storage Systems. In 11th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage).
Supreeth Shastri, Vinay Banakar, Melissa Wasserman, Arun Kumar, and Vijay
Chidambaram. 2020. Understanding and Benchmarking the Impact of GDPR on
Database Systems. Proc. VLDB Endow. 13, 7 (March 2020), 1064-1077. https:
//doi.org/10.14778/3384345.3384354

Supreeth Shastri, Melissa Wasserman, and Vijay Chidambaram. 2019. The Seven
Sins of Personal-Data Processing Systems under GDPR. In 11th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud).

Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Row-
stron, Tom Talpey, Richard Black, and Timothy Zhu. 2013. IOFlow: a software-
defined storage architecture. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (SOSP). 182-196.

Prasang Upadhyaya, Magdalena Balazinska, and Dan Suciu. 2015. Automatic
enforcement of data use policies with datalawyer. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. 213-225.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak Garg, Peter
Druschel, Rodrigo Rodrigues, Johannes Gehrke, and Ansley Post. 2015. Guardat:
Enforcing data policies at the storage layer. In Proceedings of the Tenth European
Conference on Computer Systems (EuroSys). 1-16.

Frank Wang, Ronny Ko, and James Mickens. 2019. Riverbed: enforcing user-
defined privacy constraints in distributed web services. In 16th USENLX Sympo-
sium on Networked Systems Design and Implementation (NSDI 19). 615-630.
Qingbo Zhu and Windsor W Hsu. 2005. Fossilized index: The linchpin of trust-
worthy non-alterable electronic records. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data (Sigmod). 395-406.

https://doi.org/10.14778/3384345.3384354
https://doi.org/10.14778/3384345.3384354

