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ABSTRACT

The problem of community search, which aims to find a cohesive
subgraph containing user-given query vertices, has been exten-
sively studied recently. Most of the existing studies mainly focus
on the cohesiveness of the returned community, while ignoring
the size of the community, and may yield communities of very
large sizes. However, many applications naturally require that the
number of vertices/members in a community should fall within
a certain range. In this paper, we design exact algorithms for the
general size-bounded community search problem that aims to find
a subgraph with the largest min-degree among all connected sub-
graphs that contain the query vertex g and have at least £ and at
most h vertices, where g, ¢, h are specified by the query. As the
problem is NP-hard, we propose a branch-reduce-and-bound algo-
rithm SC-BRB by developing nontrivial reducing techniques, upper
bounding techniques, and branching techniques. Experiments on
large real graphs show that SC-BRB on average increases the min-
imum degree of the community returned by the state-of-the-art
heuristic algorithm GreedyF by a factor of 2.41 and increases the
edge density by a factor of 2.2. In addition, SC-BRB is several or-
ders of magnitude faster than a baseline approach, and all of our
proposed techniques contribute to the efficiency of SC-BRB.
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1 INTRODUCTION

Graph data is ubiquitous in real world applications, as the relation-
ship among entities in the applications can be naturally captured by
the graph model. Graph-based data analytics, as a result, has become
increasingly popular, among which cohesive subgraph computation
is a fundamental problem [9]. Many of the recent focus of cohesive
subgraph computation is on cohesive subgraph search, also known
as community search, which aims to find cohesive subgraphs that
contain user-specified query vertices and possibly satisfy some
other constraints [16, 22]. Community search has a wide range
of applications, such as event organization [33, 34], social market-
ing [30], task scheduling [35], and social network analysis [24, 31].

The basic setting is as follows: given a large graph G = (V, E) and
a query vertex g € V, community search aims to find a subgraph of
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G that contains q and is most cohesive (e.g., densest). One of the
most popular cohesiveness measures adopted in the literature is the
minimum degree [6, 13, 36], which is also the one we adopt in this
paper. That is, it aims to find the one with the largest min-degree
among all subgraphs of G that contain g. As there could exist many
subgraphs having the same min-degree, the existing studies return
either a maximal one [6] or an arbitrary one [13, 36] among all
subgraphs with the largest min-degree. The maximal subgraph
with the largest min-degree can be computed in linear time [36], by
iteratively peeling the vertex with the smallest degree; the optimal
result is among these n (i.e., |V|) subgraphs. However, the result
could be extremely large which may overwhelm end-users [9].

It is observed in [36] that limiting the size of the returned commu-
nity, to accommodate resource limitations, is natural and interesting
from application point of view: for example, organize a hiking trip
with up to 15 attendees, assemble a team of up to 10 workers for a
project [29]. Motivated by this, the problem of community search
with size restriction is formulated and studied in [36], which re-
stricts the consideration to subgraphs with at most h vertices for a
user-given h. The problem with size restriction becomes NP-hard,
and two heuristic algorithms, GreedyD and GreedyF, are proposed
in [36]. Both algorithms involve solving the problem without size
restriction (i.e., compute the maximal subgraph with the largest
min-degree) on subgraphs of G. Specifically, GreedyD iteratively
solves the problem without size restriction on the subgraphs of
G induced by V., for different d values, where V. is the set of
vertices that are within d hops from g in G. It returns the solution
of V. 4+ where d* is the largest d such that the solution size of Vg4
is at most A; if there is no such d, then it returns the solution of V<;.
For time efficiency consideration, GreedyF simply extracts the set
S C V of h vertices that are closest to g in G, and then returns the
solution of the problem without size restriction on the subgraph
of G induced by S.! Both algorithms have no guarantee on the
minimum degree of the returned community compared with the op-
timal one (i.e., largest min-degree). We observe in our experiments
that the communities returned by GreedyD and GreedyF are far
from being optimal. We also observe that GreedyD usually returns
a community with larger min-degree than GreedyF, but the size of
the community returned by GreedyD may exceed h.

In this paper, we aim to develop exact algorithms for the general
size-bounded community search (SCS) problem, which in addition
to the size upper bound h, also imposes a size lower bound ¢. This
is because some applications may also require the size of the iden-
tified community to be not too small. For example, consider the toy
social network in Figure 1 of an event organization platform (e.g.,
Meetup). Suppose user v; is planning to organize a group trip, and
(s)he is deciding whom to invite. There are several considerations.

!Note that our descriptions here for GreedyD and GreedyF are simplified for the case
that there is only one query vertex.
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Figure 1: A toy graph

Firstly, to enjoy a friendly atmosphere during the trip, it is desirable
that every attendee has as many friends in the group as possible.
Secondly, due to the limitation of accommodation, there can be
at most eight attendees. Thirdly, to be qualified for an air-ticket
discount, the group should not be smaller than four. Thus, v; may
issue an SCS query with size constraint £ = 4 and h = 8, and find
that {vg, v1,v2,v3,04}, which has minimum degree 3, is the best
group. Note that, the existing approaches without size constraint
may recommend the entire graph which also has minimum degree
3; however, this exceeds the accommodation capacity.

Formally speaking, given a large graph G, a query vertex g and a
size constraint [#, h], the SCS problem aims to find a subgraph with
the largest min-degree among all connected subgraphs of G that
contain q and have at least £ and at most h vertices. As expected,
the SCS problem is NP-hard. A straightforward approach is to
enumerate all subgraphs of G whose sizes are between ¢ and h and
then identify the one with the largest min-degree. However, the time
complexity would be ©(n') which is too high to be practical. Note
that, we cannot exploit the apriori-based pruning which has been
demonstrated to be very successful for reducing the search space of
frequent subgraph mining that also enumerates subgraphs of size
up to a threshold [23]. This is because the property of minimum
degree is not hereditary; that is, a graph can have subgraphs with
smaller min-degree than itself, and may also have subgraphs with
larger min-degree than itself.

In order to efficiently solve the SCS problem for large real graphs,
we propose a branch-reduce-and-bound algorithm SC-BRB by de-
veloping nontrivial reducing techniques, upper bounding tech-
niques, and branching techniques. Specifically, we develop three
reduction rules, degree-based reduction, distance-based reduction,
and inclusion-based reduction, to reduce the size of an instance
before generating new branches/recursions. We also design three
upper bounds, degree-based upper bound, neighbor reconstruction-
based upper bound, and degree classification-based upper bound,
for pruning branches. In addition, we also devise domination-based
branching to reduce the number of branches. We rigorously proved
the correctness of our techniques.

Contributions. Our main contributions are as follows.

o To the best of our knowledge, we are the first to study the
general size-bounded community search (SCS) problem that
has both a size lower bound and a size upper bound.

e We propose a branch-reduce-and-bound algorithm SC-BRB
for solving the SCS problem exactly over large real graphs.

e We develop nontrivial reducing techniques, upper bounding
techniques, and branching techniques for the SCS problem.

We conduct extensive experiments on large real graphs. It shows
that compared with GreedyF, our algorithm SC-BRB on average
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increases the minimum degree of the returned community by a
factor of 2.41 (and by absolute value 5.05) and increases the edge

density (i.e., %) by a factor of 2.2. In addition, SC-BRB is
several orders of magnitude faster than a baseline approach, and all
of our proposed techniques contribute to the efficiency of SC-BRB.

Related Works. The problem of community search aims to find a
cohesive subgraph for user-given query vertices. The cohesiveness
of a subgraph is usually measured, in the literature, by minimum
degree [13, 26, 36], minimum number of triangles each edge par-
ticipates in [21], or edge connectivity [8, 10]; see [9] for a survey.
Most of the existing studies do not explicitly control the size of the
returned community, and thus may output arbitrarily large commu-
nities. Sozio et al. [36] first studied the problem of size constrained
community search (i.e., SCS without size lower bound ¢) in view
of its importance, and proposed heuristic algorithms GreedyD and
GreedyF. However, as observed in our experiments, the quality of
the results returned by GreedyD and GreedyF are unsatisfactory.
Approximation algorithms for the size constraint community search
are investigated in [3]. Specifically, for any ¢ > 0, a solution with ap-
proximation ratio Zn%” can be obtained in no(%) time. In addition,
a randomized O (4/n log n)-approximation algorithm is proposed
in [3]. However, these approximation algorithms are of theoretical
interest only, and also size lower bound ? is not considered.

Li et al. [26] recently proposed a branch-and-bound algorithm
PSA for the minimum k-core problem that aims to find the smallest
subgraph with min-degree at least k and containing user-given
query vertices. This problem is also NP-hard. In particular, PSA
maintains alower bound /b and an upper bound ub for the minimum
k-core size, and terminates the algorithm once ll‘—ll; < ¢ for a user-
given approximation parameter ¢ > 1. We show in our experiments
that although PSA can be adapted to solve the special case of SCS
problem without size lower bound (i.e,, £ = 1), the performance
is not satisfactory. Specifically, PSA does not return the optimal
solution when ¢ > 1, and runs extremely slow for exact computation
(i.e., ¢ = 1). Moreover, PSA cannot be adapted to solve the general
SCS problem with size lower bound. Note that, our techniques can
potentially be used to speed up the computation of minimum k-core.
That is, given an upper bound ub of the minimum k-core size, we
will be searching for a subgraph of size at most h = ub — 1 and with
minimum degree at least k; thus, our techniques can be applied.

Ma et al. [29] formulated the size-constrained k-core group query
(SCGQ) over edge-weighted graphs, which aims to find a subgraph
with the largest total weight (i.e., number of edges for unweighted
graphs) among all subgraphs that contain a query vertex q and ex-
actly h vertices, and have minimum degree at least k. This problem
is NP-hard, and an exact algorithm BS that traverses the solution
space in breadth-first manner is proposed in [29]. We can adapt BS
to solve our SCS problem by enumerating h and k. However, our
experimental results show that BS is extremely inefficient due to
lack of pruning and bounding techniques. Our techniques can also
potentially be used to speed up SCGQ queries, the same as above.

Besides simple undirected graphs, community search has re-
cently also been investigated for graphs associated with other infor-
mation, e.g., attributed graphs [20], geo-social graphs [11], temporal
graphs [27], directed graphs [28], and heterogeneous graphs [17];
please refer to the two recent surveys [16, 22] for more details. Due



to inherently different graph models and moreover not considering
size constraints, these techniques cannot be applied to solve our
SCS problem. Another line of related works is geo-social group
queries (GSGQ), which aims to find a fixed number of users who
possess strong social connections with each other and have the
minimum aggregated spatial distance to a rally point [19, 38, 39].
GSGQ is essentially different from our problem since it needs to
consider the spatial location of each user and moreover it fixes the
number of vertices/users to be a specific value. Thus, the proposed
algorithms cannot be applied to our problem.

2 PRELIMINARIES

We focus on a large undirected and unweighted graph G = (V, E),
where V is the set of vertices and E is the set of edges. We denote
the number of vertices and the number of edges in G by n and m,
respectively. The set of neighbors of u in G is Ng(u) = {v € V|
(u,v) € E}, and the degree of u in G is dg(u) = [Ng(u)|. When the
context is clear, NG (u) and dg (u) are simplified to N(u) and d(u),
respectively. Given a vertex subset S of G, we use G[S] to denote
the subgraph of G induced by S, i.e., G[S] = (S,{(w,v) € E |u €
S,u € S}). Given an arbitrary graph g, we use V(g) and E(g) to
denote its set of vertices and its set of edges, respectively.

We measure the cohesiveness of a subgraph by its minimum
degree. Minimum degree is a widely adopted cohesiveness mea-
sure in the literature [6, 13, 26, 36], due to its simplicity and easy
computability. A related concept is k-core. Given a graph G and
an integer k, the k-core of G is the maximal subgraph g of G such
that dyin (9) > k, where dyin (g9) denotes the minimum degree of g.
Note that, the k-core of G is unique for any k > 0, and is a vertex
induced subgraph of G. The core number of a vertex v in G, denoted
cn(v), is defined as the largest k such that the k-core of G contains
v. It is well-known that computing the core number for all vertices
in a graph, called the core decomposition problem, can be achieved
in linear time [5, 32].

Problem Definition (Size-Bounded Community Search). Given a
graph G = (V, E), a query vertex q € V, and a size constraint [, h],
the Size-Bounded Community Search (SCS) problem aims to find a
subgraph H of G such that it satisfies all of the three conditions:

1) Connected: H is connected and contains g;

2) Size Bounded: H satisfies the size constraint, i.e., < |V (H)|
< h;

3) Cohesive: The minimum degree of H is maximized among
all subgraphs of G satisfying the above two conditions.

An SCS query consists of a query vertex ¢, size lower bound ¢,
and size upper bound h. Note that, the aim of SCS query is not to re-
cover the ground-truth communities, but to find densely-connected
subgraphs that are of a certain size (i.e., between ¢ and h). The param-
eters ¢ and h should be specified based on the resource limitations
of the applications as illustrated in Introduction. For presentation
simplicity, we assume there is only a single query vertex; never-
theless, our techniques can be extended to handle multiple query
vertices. We call a subgraph of G that satisfies the first two condi-
tions (i.e., connected, and size bounded) a feasible community (or
feasible solution), and a subgraph satisfying all the three conditions
an optimal community (or optimal solution). We call the minimum
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degree of an optimal community the optimal min-degree. Note that,
the optimal community is not unique, but the optimal min-degree
is unique. It is easy to see that if H is an optimal community to the
SCS problem, then the subgraph of G induced by V(H) is also an op-
timal community. Thus, we consider only vertex-induced subgraphs
in the remainder of the paper, and we denote a subgraph simply by its
set of vertices. The notations that are frequently used in the paper
are summarized in Table 1.

Table 1: Frequently used notations

Notation | Definition
Ns(u) the set of neighbors of u in the subgraph S
ds (v) the degree of vertex v in the subgraph S
dmax (S) maximum degree of the subgraph S
dmin (S) minimum degree of the subgraph S
cn(v) core number of vertex v in G
dists(u,v) | the shortest distance between u and v in the subgraph S
Ccr the set of all feasible communities X s.t. C € X C CUR
kand k lower bound and upper bound of the optimal min-degree
csT the set of vertices of degree < 7, i.e, {u € C: dc(u) < T}

Example 2.1. Consider the graph in Figure 1, and suppose the
SCS query is ¢ = v1 and [¢, h] = [3,5]. Then, Hy = {vg, v1,02} is
a feasible community which has minimum degree 2, while Hy =
{v0,v1,02,03,04} is an optimal community which has minimum
degree 3. O

We prove in the theorem below that the SCS problem is NP-hard.
Theorem 2.1. The SCS problem is NP-hard.

Proor. We prove that the decision version of the SCS problem
is NP-complete, by reducing from the k-clique problem which is
NP-complete [18]. The decision SCS problem is as follows: given
a graph G = (V,E), a query vertex q € V, a size constraint [, h]
and an integer k, determine whether G has a subgraph g such that
(1) g is connected and contains g, (2) £ < |[V(g)| < h, and (3) the
minimum degree of g is at least k. It is obvious that the decision
problem is in NP.

Now, given an instance of the k-clique problem which takes a
graph G = (V, E) and an integer k as input and aims to determine
whether G has a k-clique (i.e., a complete subgraph with k vertices),
we reduce it into a decision SCS problem as follows. We add a
dummy vertex vg, and an edge between vy and every vertex of
V. Denote the resulting graph as G’, i.e, V(G’) = V U {vg} and
E(G’) = EU {(vg,0) | v € V}. The query of our decision SCS
problem consists of a query vertex 0g, size constraint [k+1,k+1],
and minimum-degree threshold k. It is easy to verify that C C V is
a k-clique if and only if C U {04} is a solution to the decision SCS
problem. Thus, the decision SCS problem is NP-complete, and the
(optimization version of) SCS problem is NP-hard. O

3 A BASELINE APPROACH

In this section, we present a baseline approach for the SCS problem.
It computes an optimal community by enumerating all feasible
communities and identifying the one with the largest min-degree.

2Note that the proof in [36] reduces from the Steiner tree problem, and thus does not
work for the special case that there is only one query vertex.



Algorithm 1: SC-Enum(G, g, [¢, h])

1 Heuristically compute a feasible community H; /* e.g., invoke
GreedyF */;

2 k « minimum degree of G[H];
min-degree */;

/* Lower bound of optimal

Compute core number cn(-) for all vertices in G;
ke min{cn(q),h—1};
min-degree */;

if k < k then
Remove from G all vertices v satisfying cn(v) < k;
Enum({og}, V(G) \ {vg})

return H;

IS

/* Upper bound of optimal

o o

<

3

Procedure Enum(C, R)
if |C| € [£,h] and dpin (C) > k then
L ke dmin(C); H « C;
if |C| < hand R # ( then
v « a vertex from R;
Enum(C U {o}, R\ {v});
Enum(C, R\ {0});

The pseudocode of the enumeration procedure Enum is shown in
Lines 9-14 of Algorithm 1. Given a partial solution C and a candidate
set R of vertices such that C N R = 0, Enum aims to enumerate
all feasible communities X such that C C X C C U R; denote the
set of all such feasible communities by Cc g. Enum in addition
maintains H, the currently found best community (i.e., the one with
the largest min-degree among all enumerated feasible communities),
and I; the minimum degree of G[H|, which is a lower bound of the
optimal min-degree. If C is a feasible community (i.e., |C| € [¢, h])
and the minimum degree of G[C] is larger than k (Line 9), then
Enum updates H and k (Line 10); note that, C is assumed to always
contain g, and for presentation simplicity, we also assume that C is
connected. Then, to enumerate all feasible communities Cc g for
the instance (C, R), Enum partitions the enumeration space into
(CU{v},R\ {v}) and (C, R\ {v}) for an arbitrarily chosen vertex
v € R and conducts a recursion on each of the two enumeration
subspaces (Lines 12-14); note that, Coy (o} R\ {0} N CcR\ {0} = 0
and Cou{o},R\ {0} Y Cor\{v} = Ccr- Moreover, as the feasible
communities have a size upper bound h, we can stop the recursion
if |C| = h (Line 11). It can be verified by induction that invoking
Enum with C = {q} and R = V(G) \ {q} successfully enumerates
all feasible communities of G.

Figure 2: An example search tree
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Example 3.1. For the graph and query in Example 2.1, Figure 2
illustrates a part of the search tree of the enumeration procedure
Enum, where the root is the query vertex v;. Initially, C = {01}
and R = V(G) \ {v1}. In the first level, vy is selected from R and
two branches/recursions are generated: the left branch moves vg
from R to C, and the right branch discards vy. For the first branch,
we have C = {v1,00} and R = V(G) \ {v1,v0}, and we proceed
forward by selecting the next unvisited vertex in R, i.e., va. By
moving vz from R to C, we get C = {v1,v¢,v2}, which is a feasible
community with minimum degree 2. Thus we update k as 2 and
H as {v1,00,v2}. The search continues in a similar way until all
the feasible communities are explored. Finally, we get the optimal
solution H = {v1, vg, v2, v3, v4} with minimum degree 3. O

The time complexity of Enum is in the order of nP, where n is the
number of vertices in G and h is the size upper bound. To reduce n,
we preprocess the graph G before invoking Enum. The pseudocode
is given in Lines 1-8 of Algorithm 1. We first heuristically compute
a feasible community H, e.g., by invoking the heuristic algorithm
GreedyF [36] (Line 1), and set the lower bound k of the optimal min-
degree as the minimum degree of G[H] (Line 2). We also compute
the upper bound k of the optimal min-degree as min{cn(q), h — 1}
(Line 3-4); it is easy to see that the optimal min-degree cannot be
larger than h — 1 and also cannot be larger than cn(q). If k = k,
then H is already the optimal community. Otherwise, we shrink
the graph G by removing all unpromising vertices (i.e., the vertices
v with cn(v) < l;), and then invoke Enum on the reduced graph
(Lines 5-6). The overall algorithm is denoted SC-Enum. Note that,
to extend SC-Enum to handle multiple query vertices, we would
need to (1) initially put all query vertices into the partial solution
C at Line 7 and (2) check at Line 9 whether G[C] is connected (if
G[C] is not connected, then we do not update k and H at Line 10).

Limitations of the Baseline Approach. Despite the preprocess-
ing of SC-Enum which reduces the input graph size, SC-Enum is
still inefficient in processing large graphs. This is mainly due to the
following three limitations of Enum.

(1) Large Candidate Set. Enum considers all vertices of R one by one,
and in each recursion, it reduces the size of R only by one. Thus, the
size of the candidate set R remains large during the recursion. How-
ever, given the current lower bound k of the optimal min-degree,
many vertices of R will not be part of any feasible community of
Cc,r that has min-degree larger than k; thus, these vertices can be
removed from R to reduce the search space.

(2) No Pruning based on Upper Bounds. For a given instance (C, R),
Enum needs to enumerate all feasible communities of Cc g, i.e., all
subgraphs X such that C € X € CURand ¢ < |X| < h. However, if
we can compute an upper bound on the largest min-degree among
all feasible communities in Cc g, then we can terminate/prune this
instance if the upper bound is no larger than k. In this way, the
search space will be significantly reduced.

(3) Naive Branching Rule. Enum arbitrarily selects one vertex v € R
and then generates two recursions/branches, (C U {v},R \ {v})
and (C, R\ {v}). This may generate a large number of recursions.
Also, the ordering of generating the subinstances of Enum (i.e.,
via selecting the vertex of R to branch) may affect the speed of
tightening the lower bound k, and thus affect the search tree size.



4 A BRANCH-REDUCE-AND-BOUND
APPROACH

In this section, we propose a branch-reduce-and-bound algorithm
SC-BRB for solving the SCS problem. SC-BRB specifically addresses
the three limitations of Enum by proposing branching techniques,
reducing techniques, and upper bounding techniques. Note that
designing branching, reducing, and bounding techniques is the
standard approach (and usually the only approach) for exactly
solving NP-hard problems [2, 37]. In the following, we present
reducing techniques in Section 4.1, upper bounding techniques
in Section 4.2, and branching techniques in Section 4.3. Finally,
Section 4.4 presents the overall algorithm SC-BRB.

4.1 Reducing Techniques

Given an instance (C, R) of Enum, we propose reduction rules to
reduce the size of R by either removing unpromising vertices from
R or greedily moving promising vertices from R to C. Recall that,
given an instance (C, R), we aim to find the feasible community in
Ccr that has the largest min-degree if this min-degree is larger
than k. That is, among all feasible communities in Cc g, we are only
interested in the ones that have min-degree larger than k, as the
currently found best community has min-degree k.

The first reduction rule prunes a vertex v from R based on its
degree in C U R or its degree in C U {v}. All our proofs are omitted
due to limit of space, and can be found in the full version [1].

Reduction Rule 1 (Degree-based Reduction). Given an instance
(C,R) and any vertex v € R, if min{dcyr(v), dcy (o) (v) +h —|C| -

1} < k, then we can discard v from R, where dcur(v) is the degree
of v in the subgraph G[C UR].

The next reduction rule is based on a lower bound, as shown in
the lemma below, on the size (i.e., number of vertices) of a graph
that has minimum degree k and diameter D. The diameter of a
graph is the largest value among all pair-wise shortest distances,
i.e., max{distg(u,0) | u,0 € V(G)}, where distg(u,v) denotes the
shortest distance between u and v in G.

Lemma 4.1. Any graph of minimum degree k > 1 and diameter
D > 1 must have at least n(k, D) vertices, where

e D k+D if1<D<2ork=1 (la)
n(k.D) = {k+D+1+|_%J(k—2) otherwise (1b)

Moreover, this bound is tight; that is, for everyk > 1 and every D > 1,
there exists a graph with n(k, D) vertices that has minimum degree k
and diameter D.

Note that, the lower bound of Equation (1b) was stated in [15] for
the case D > 2 and k > 2, but without detailed proof. We provide a
detailed proof in the full version [1] for completeness. Our proof
shows that the lower bound of Equation (1b) only holds for D > 3
and k > 2. Specifically, consider the graph that is a (k + 2)-vertex
clique missing one edge which has minimum degree k and diameter
D = 2; however, Equation (1b) would imply a lower bound of k + 3
for D = 2 which is incorrect. Thus, we provide a correct and tight
lower bound of k + D for the special case 1 < D < 2ork = 1.

Moreover, instead of using a closed formula to upper bound
A | _ 1 in [15]) which is not

the diameter given h and k (i.e, [ 245
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Figure 3: A running example for illustrating reduction rules

tight, we obtain the upper bound numerically. That is, the diameter
is upper bounded by the largest D such that n(k, D) < h, which
can be computed by binary search on D. This is because, n(k, D)
monotonically increases with both k and D. For example, for h = 11
and k = 5, the closed formula of [15] gives an upper bound of 4
for D, while our approach computes the upper bound as 2. Also
note that, for a given size upper bound h, the maximum possible
diameter D of a feasible community monotonically decreases when
k increases. Computing the diameter, however, is computationally
expensive. We use the following distance-based reduction, as the
shortest distance between any pair of vertices is a lower bound of
the diameter.

Reduction Rule 2 (Distance-based Reduction). Given an instance
(C,R) and any v € R, if n(lz + 1,distcyr(u,v)) > h, then we can
discard o from R, where u is a vertex in C and n(-, -) is the function
defined in Lemma 4.1.

Besides discarding unpromising vertices from R, we can also
greedily move promising vertices from R to C. The next reduction
rule formulates such a condition.

Reduction Rule 3 (Inclusion-based Reduction). Given an instance

(C,R)andany u € C,if doyr(u) = k+1, then we can greedily move
to C all the vertices in R that are neighbors of u.

Example 4.1. Consider the graph in Figure 3, and suppose [¢, h] =
[5,7], C = {v3,v4,05,06} (grey-shadowed nodes) and R = {vg, v1,
v2,07,08,09} (white nodes), and k = 2. Recall that our aim is to
find a feasible community in Cc g with minimum degree at least
k+1=13. According to Reduction Rule 1, v1 can be discarded because
dcur(v1) =2 < l;; similarly, vg can be discarded. From Lemma 4.1,
we derive that the diameter of any feasible community with min-
degree at least 3 is at most 2; this is because n(3,3) = 8 > h. Thus,
vg can be discarded by Reduction Rule 2, since distg (v3,v3) = 3. At
last, as dcyr(v3) = k + 1, we move all neighbors of v3 in R (i.e., vy
and vy) to C. Similarly, we move the neighbors of vg in R (i.e., v7) to
C. As a result, we obtain a feasible community with min-degree 3
by the reduction rules, i.e., {vg, v2, v3, v4, V5, v6, V7 }. O

4.2 Upper Bounding Techniques

Let OptMD(C, R) denote the largest min-degree among all feasible
communities of Cc g. In this subsection, we aim to compute upper
bounds of OptMD(C, R) such that the instance (C, R) can be entirely
pruned if this upper bound is no larger than k. In the following,
we first present the general idea of upper bound computation in
Section 4.2.1, and then present three approaches to computing the
upper bound in Sections 4.2.2-4.2.4. Finally, we put the three upper
bounds together in Section 4.2.5.



4.2.1 General Idea of Upper Bounding. The reduction rules pre-
sented in Section 4.1 reduce the size of R by either discarding
vertices from R or greedily moving vertices from R to C. This is
achieved by inspecting individual vertices of C or R, and making
local decisions based on properties of the individual vertices. Up-
per bounding OptMD(C, R) in contrast aims to prune the entire
instance (C, R), by considering all vertices of C and R altogether.
Recall that computing OptMD(C, R) is to identify the X such that

Condition (1) C S X C CUR,

Condition (2) ¢ < |X| < h,and

Condition (3) min,cx dx (¢) is maximized.
Let X* be the best community in Cc g, i.e., satisfying the above
three conditions. Note that, computing OptMD(C, R) is NP-hard,
as OptMD({q}, V(G) \ {q}) is the optimal min-degree of the SCS
problem. Thus, we compute an upper bound of OptMD(C, R) by
relaxing condition (2) and/or using upper bounds of dx+ (u). Specif-
ically, we will compute an upper bound of min, ¢c dx+ (u) by only
considering the degrees of vertices of C, which obviously is an upper
bound of miny, cx+ dx+ (u).

It is worth mentioning that, for our algorithm, it suffices to check
whether the minimum degree of X* is at least k+1.N evertheless, we
present our techniques for computing upper bounds, as computing
upper bounds is more general in the sense that it could also be
potentially used in other search paradigms (e.g., best-first search).
We will show in Section 4.2.5 that, with simple modifications, the
upper bounding techniques can be used to efficiently check whether
the minimum degree of X* is at least k+1. Thus, we do not utilize
k in the following upper bounding techniques.

4.2.2 Degree-based Upper Bound. Firstly, we introduce the degree-
based upper bound, denoted by U, by considering each vertex
u € C individually and by upper bounding dx= (u).

Lemma 4.2 (Degree-based Upper Bound).
Uy = ming cc min{deor(w), de(w) +h - [CJ}
is an upper bound of OptMD(C, R).

The degree-based upper bound is in analogous to the degree-
based reduction rule presented in Section 4.1. But the degree-based
upper bound considers degrees of vertices of C, while the degree-
based reduction rule considers degrees of vertices of R.

Figure 4: A running example for illustrating upper bounds

Example 4.2. Consider the graph in Figure 4, and suppose [¢, h] =
[5,8], C = {vy,v3, 05,06, 07} and R = {vg, v1, v4, V8, V9, V10 }. We use
oi(u) to denote dc(u) + min{h — |C|, dgyy} (w)}, where h —|C| = 3.
The maximum possible degree of v; in X* is 4, i.e, d(vs) = 1+
min{3,3} = 4. For v3, as it has only 2 neighbors outside C, i.e.,
dRru{v;} (v3) = 2, we have 4(03) = 3 + min{3, 2} = 5. Similarly, we
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(%erive 4(05) = 3+ min{3,3} = 6, Ci(l)é) = 2+ min{3,2} = 4 and
d(v7) = 14 min{3,3} = 4. Finally, we get Uy = 4. O

Time Complexity. In the implementation, we incrementally main-
tain the degrees dcur(u) and dey(y,) (u) for each vertex u € C.
Thus, the time complexity of computing U, is O(|C]).

4.2.3 Neighbor Reconstruction-based Upper Bound. The degree-
based upper bound Uy ignored the degrees of vertices of R and
assumed that the degrees of vertices of X*\ C C R could be arbitrar-
ily large. Here, we design the neighbor reconstruction-based upper
bound, by explicitly considering the degrees of vertices of R. Specifi-
cally, we define the neighbor reconstruction problem: given a graph g,
b vertices vy, ...,vp € V(g), and b non-negative integers dj, . . ., dp,
how to add edges between V(g) and {vy, ...,v,} without parallel
edges, such that degrees of vy,...,0 are dy,...,d, € [0,|V(9)[],
respectively, and the minimum degree among vertices of g in the
resulting graph is maximized. Intuitively, by letting g = G[C],
b =h-|C|,{v1,...,vp} be the b vertices of R with the most number
of neighbors in C, and d; be the number of v;’s neighbors in C, then
the minimum degree obtained by neighbor reconstruction is an
upper bound of OptMD(C, R).

We propose a greedy approach to solve the neighbor reconstruc-
tion problem. As the objective is to maximize the minimum degree
among vertices of g in the reconstructed graph, v; intuitively should
be connected to vertices of g that have the smallest degrees. Thus,
we process vertices {v1,...,0,} in an arbitrary order, and when
processing v;, we connect v; to the d; vertices in V(g) that cur-
rently have the smallest degrees; note that, the degrees of V(g)
dynamically increase when new edges are added.

Algorithm 2: UB-NeighborReconstruct(C, R)

1 R « the h — |C| vertices in R that have the largest
{dcufoy (v) 10 € RY;
for eachu € Cdo dy, « dc(u);
for eachv € R’ do
C’ « the dcyqy) (v) vertices in C that have the smallest
{d, :ueC}
foreachu € C'"dody, «— dy, +1;

Unr < mingec dy;

return Uy,,;

The pseudocode of neighbor reconstruction-based upper bound
is shown in Algorithm 2, which is self-explanatory by following
the above discussions.

Lemma 4.3 (Neighbor Reconstruction-based Upper Bound). Algo-
rithm 2 returns a valid upper bound of OptMD(C, R).

Example 4.3. Consider the same setting as Example 4.2, Figure 5
illustrates the steps of computing Uy, by Algorithm 2. The initial
degrees d,, of vertices of C are {v2 : 1,03 : 3,05 : 3,06 : 2,07 :
1} and the vertices of R with their numbers of neighbors to be
reconstructed are {vg : 2,01 : 2,04 : 3,08 : 1,09 : 3,010 : 2}. The first
step is to select the h — |C| = 3 vertices of R that have the largest
number of neighbors to be reconstructed, and R’ = {v4, v9, v9}.
Then, we process the three vertices of R’ sequentially. In the first
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Figure 5: Neighbor reconstruction-based upper bound

iteration, we process v4 by connecting it to the dey(y,) (va) = 3
vertices of C that currently have the smallest degrees, and C’ =
{v2,v6, v7}; after processing vg4, the degrees of vertices of C become
{v2 : 2,03 : 3,05 : 3,06 : 3,07 : 2}. In second iteration, we process vg
similarly and the degrees of C’ = {v3,v6, 07} increase by one each.
In the third iteration, we process v and the degrees of C’ = {vs, v7}
increase by one each. Finally, the minimum degree of vertices of C
is 3, which is returned as the upper bound Uy,;. O

Time Complexity. Firstly, in our implementation of selecting R at
Line 1 of Algorithm 2, instead of considering all vertices of R which
can be of large quantity, we only consider the vertices of R that is
adjacent to some vertex of C. Thus, the time complexity of selecting
R’ is O(dcR) where dcg = Yec dru{u) (u); note that, selecting
top-k numbers from a list of unsorted numbers can be achieved
in linear time regardless of k [12]. Secondly, each vertex v € R’
can be processed in O(|C|) time. Thus, the total time complexity of
Algorithm 2 is O(dc g + (h — |C|)|C]).

4.2.4 Degree Classification-based Upper Bound. In the computa-
tion of Uy, we utilized the count of all v;’s neighbors in C, doy (4, (v1),
to decide the number of edges to be reconstructed between v; and C.
Let C”" = {u € C : dc(u) = Up,} be the set of vertices of C whose
degrees in C are already no smaller than Uy,. Even if we remove
all the edges between R and C”’ before the neighbor reconstruction
(equivalently, decrease the number of edges to be reconstructed
between v; and C), we intuitively will still get a valid (and likely
smaller) upper bound of OptMD(C, R).

Formally, let dpin (C) and dmax (C) be the minimum degree and
maximum degree of G[C], respectively, and let C=T be the set of
vertices of C whose degrees in C are at most T, ie., CsT={uecC:
dc(u) < t}. We prove a more general lemma in below.

Lemma 4.4. For any T € [dyin(C), dmax(C)], let Uy, be the result
of running Algorithm 2 with the following modifications: remove all
edges between R and C\ C=7, and replace C with C=" at Lines 4 and
6. Then, U,Y,. is a valid upper bound of OptMD(C, R).

Following Lemma 4.4, we can compute an upper bound Uy}, for
each T € [dpin(C), dmax(C)], and then return the minimum one
MiNe[d,. (C),dma (C)] Unr Which is also a valid upper bound of
OptMD(C, R). We call this upper bound, the degree classification-
based upper bound. Its pseudocode is shown in Algorithm 3, where
Lines 4-9 correspond to Lines 1-6 of Algorithm 2 with the mod-
ifications as described in Lemma 4.4; note that Line 11 should be
ignored at the moment.
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Algorithm 3: UB-DegreeClassification(C, R)

1 Uge « oo

2 for T « dpin (C) to dmax(C) do

3 C"—{ueC:dc(u) <t}
4 R’ « the h — |C] vertices in R that have the largest
{dcsty(ey(v) 10 €RY

5 for each u € C<" do d,, « dc(u);

6 for eachv € R’ do

7 C’ « the desw y(py (0) vertices in C=T that have the
smallest {d, : u € C<T};

8 foreachu € C'dod, «— d, +1;

9 Uy, < min,cco<r dy;

10 Uge < min{Uyg., Uy, };

u | if Uge <7+ 1then break;

12 return Ug;

Jolelclole
o=

o= —
o= —

Figure 6: Degree classification-based upper bound
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Corollary 4.5. The degree classification-based upper bound is tighter
than the neighbor reconstruction-based upper bound, i.e., Uy, < Uy
for any instance (C, R).

This directly follows from Lemma 4.4 and Algorithm 3, as C=" =
C when T = dpax ().

Example 4.4. Let’s reconsider Example 4.3. We have dpiy(C) =
1, dpax (C) = 3, C=! = {vg,07}, C=2 = {vg,05,07} and C=3 =
{v3, 05,06, 02,07}, as shown in Figure 6. For each T € [1,3], the
numbers of edges to be reconstructed for vertices of R (i.e., the
number of neighbors in C=7) are shown below the vertices in
Figure 6. For t = 1, the top-3 vertices of R are R’ = {v¢,v1,04}.
After the neighbor reconstruction operations as done by Lines 5-8
of Algorithm 3, d,, increases to 3 and d,, increases to 2, and thus
U}, = 2. Similarly, we will obtain U2, = 3 and U3, = 3; note that,
the computation of U2, is exactly the same as in Example 4.3, as
C=3 = C. Finally, we get Uy, = min{2,3,3} = 2. O

Optimization. To compute Uy, we may need to run neighbor
reconstruction (i.e., Lines 3—-10 of Algorithm 3) for dmax(C) times,
which in the worst case is |C| — 1. Thus, the computation of Uy, is
costly. In the lemma below, we propose an early stop condition for
computing Uy, which corresponds to Line 11 of Algorithm 3.

Lemma4.6. ForanyT € [dpyin(C), dmax(C)], ifmin;[:dmm(c) Ui, <

max (C) Uk, = min™

3 L
T+ 1, then min, T ) i=dyin (C) Uy

Example 4.5. Let’s continue Example 4.4. After computing Uy, =
2, it satisfies that U, < 2 = 7 + 1. Thus, we can terminate the
computation and return Uy, = 2 directly, without computing U2,
nor U3, O



Time Complexity. As Algorithm 3 in the worst-case runs a mod-
ification of Algorithm 2 for |C| — 1 times, the time complexity of
Algorithm 3 is O (|C| (dc,g + (h = |C])|C])). Note that, by the opti-
mization at Line 11, the number of iterations could be much smaller
than |C| — 1 in practice.

4.2.5 Putting the Upper Bounds Together. To maximally utilize
the pruning power, we use all the three upper bounding tech-
niques together and select the minimum one as UB, i.e, UB =
min{Uyg, Unr, Ug.}. In the implementation, we first compute Uy,
then Uy, and finally Uy, in increasing order of their time complexi-
ties. Once a computed upper bound is enough to prune the instance
(C,R), we terminate the upper bound computation immediately.

4.3 Branching Techniques

In this subsection, we propose two branching techniques, one for se-
lecting which vertex to branch on, and another for how to generate
the different branches.

Branching Vertex Selection. The lower bound k of the optimal
min-degree is critical to the search space size. Thus, we aim to
identify feasible communities with large min-degree as early as
possible. With this goal in mind, the vertex on which to branch
intuitively should satisfy the following two conditions: (1) it should
be connected to C; and (2) it should be adjacent to many low-degree
vertices in C. To quantify this, we define the connection score for
vertices of R.

Definition 4.1 (Connection Score). Given an instance (C, R), the
connection score of a vertex v € R is defined as

_ 1
6(0) = LueNcuw) (0) do(a)
Note that, if there is no edge between v and C, then §(v) = 0.

We choose the vertex of R that has the highest connection score,
denoted v*, to generate branches. Note that this naturally guaran-
tees that C is always a connected subgraph during the recursions.

Domination-based Branching. After choosing v* as described
above, instead of generating two branches (C U {v*}, R\ {0*}) and
(C,R\ {v*}), we propose a domination-based strategy to reduce
the number of generated branches.

Definition 4.2 (Vertex Domination). Given an instance (C,R),
vertex v € R dominates v’ € R, denoted v > v/, if every neighbor of
o’ (in C U R) is either a neighbor of v or is v itself.

For instance, for the graph in Figure 4, v4 dominates vy and vy,
and v9 dominates vg and v1j.

Lemma 4.7. Given an instance (C, R) and two vertices v,0’ € R, if
o dominates v’ (i.e., v > v’), then there is either a best community in
Ccr (i-e., with minimum degree OptMD(C, R)) that contains both v
andv’, or a best community in Cc R that does not contain v’.

Following Lemma 4.7, after choosing v* that has the highest
connection score, we generate branches as follows. If there is a
vertex v’ that is dominated by v*, then we generate three branches
(Cu{v*,v’},R\ {v*,v’}), (CU{v*},R\ {v*,0’}) and (C, R\ {0*,0"}),
which reduces the number of branches from 4, as generated by
the naive approach in Algorithm 1, to 3. Moreover, we generalize
this idea to the case that v* dominates multiple vertices. Let ® =
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{v1,...,0;} be the set of vertices of R that are dominated by v*.
Then, we generate the following branches:

e (CU {v*,ui},R\ {v*,ol,...,ui}) for1 <i<lL
o (CU{o*}, R\ {v*,01,...,01}).
e (C,R\ {v*,01,...,07}).

4.4 The SC-BRB Algorithm

Based on the techniques developed in the previous subsections,
we propose the BRB algorithm for solving an instance (C, R). The
pseudocode is shown in Algorithm 4, which is similar to Enum in
Algorithm 1, but incorporates our newly proposed techniques. We
first apply our reduction rules to reduce the size (C, R) (Line 1). If
C is a feasible community and its min-degree is larger than k, then
we update k and H by C (Lines 2-3). Next, if the instance is not
pruned by our upper bounding technique (Line 4), then we generate
branches as follows. We select the vertex v* from R that has the
highest connection score (Line 5), identify the set ® C R of vertices
that are dominated by v* (Line 6), and order the vertices in ® in
decreasing order based on their connections cores (Line 7). Finally,
we generate |®| + 2 branches/recursions.

Algorithm 4: BRB(C, R)

1 Reduce (C, R) by our reduction rules;
2 if £ < |C| < h and dmin(C) > k then
3 | ke dun(C);H G

4 if |C| < handR # 0 and UB(C,R)> k then

5 v* « the vertex in R with the highest connection score;

6 ® « the vertices of R that are dominated by v*;

7 Order the vertices of ® based on their connection scores, and
let the ordered vertices be vy, ..., ur;

8 fori—1,..., I do

9 L BRB(CU {v*,v; },R\ {0",01,...,0;});

10 BRB(CU {v*},R\ {0*,01,...,01});

11 BRB(C,R\ {v*,0y,..., o)

By replacing the invocation of Enum at Line 7 of Algorithm 1
with BRB, we have our branch-reduce-and-bound algorithm SC-
BRB for the SCS problem.

5 A HEURISTIC APPROACH

In this section, we propose a heuristic algorithm SC-Heu for the SCS
problem, which enforces that the size of the returned community is
between ¢ and h. We replace GreedyF with SC-Heu in Algorithm 1
for efficiently computing an initial feasible community.

The pseudocode of SC-Heu is shown in Algorithm 5. We consider
two cases. If the degree of ¢ in G is no smaller than h—1 (Line 2), then
we adopt the shrinking approach. It starts with the ego-network of
q (Line 3) and then iteratively shrinks the graph by removing the
vertex with the minimum degree (Line 7); the one with the largest
min-degree among all generated feasible communities is returned
as the result (Lines 5-6). Here, the ego-network of g in G is the
subgraph of G induced by {q} U N(q). If the degree of q in G is
smaller than h — 1 (Line 8), then we use the expanding approach. It
starts with the subgraph {q} (Line 9) and then iteratively expands



Algorithm 5: SC-Heu(G, g, ¢, h)

1 H « 0 k 0;
2 if dg(q) > h—1then
S « the ego-network of g;
while |S| > ¢ do
if |S| < h and dmin (S) > k then
L ke dmin(S); H « S;

Delete from S the vertex with the minimum degree;

3
4
5
6

7

s else
S {qh
while |S| < h do
v* « the vertex with the highest connection score to S;
S—Su{v'};
if |S| > € and dmin(S) > k then
|k duin(S);H < S;

9
10
11
12
13
14

15 return H;

the subgraph by including the vertex with the highest connection
score into the subgraph (Line 11-12); the one with the largest min-
degree among all generated feasible communities is returned as the
result (Lines 13-14).

The time complexity of Algorithm 5 is O(m + nlogn). Lines 2-7
run in O(m) time similar to the peeling-based core decomposition
algorithm [5]. Lines 9-14 run in O(m + nlogn) time similar to Di-
jkstra’s algorithm for computing single-source shortest paths [12].

6 EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency of our
techniques for the size-bounded community search problem.

Algorithms. We compare the following algorithms.

e GreedyF and GreedyD: the two heuristic algorithms pro-
posed in [36]. Note that, it is straightforward to extend these
two algorithms to consider the size lower bound ¢.

o BS: the algorithm proposed in [29] for computing the size-
constrained k-core over edge-weighted graphs. We adapt BS
to our SCS problem by enumerating k and h.

o PSA: the progressive algorithm proposed in [26] for (approxi-
mately) computing a minimum k-core. We will describe how
to adapt PSA in Section 6.3.

e SC-Enum: our baseline algorithm presented in Algorithm 1.

e SC-BRB: our algorithm proposed in Section 4.4.

All algorithms are implemented in C++ and run in main memory.

Datasets. We evaluate the algorithms on ten real graphs. UK2002
and Webbase are downloaded from WebGraph [7], while all the
other graphs are downloaded from SNAP [25]. For each graph, we
removed self-loops, parallel edges, as well as the direction of edges.
Statistics of the graphs are shown in Table 2, where the graphs are
listed in increasing order regarding their numbers of edges; kmax is
the maximum k such that the graph contains a non-empty k-core.

Besides real graphs, we also generate synthetic graphs to eval-
uate the efficiency of the algorithms. Specifically, we generated
four power-law graphs PL1, PL2, PL3, PL4 by GTgraph [4], and
four graphs SBM1, SBM2, SBM3, SBM4 by the stochastic block
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Table 2: Statistics of real datasets

Dataset n m|  davg Gz || Domez
Email 36,692 183,831 | 10.02 1,383 43
HepPh 34, 546 420,877 | 24.36 846 30
DBLP 317,080 1,049, 866 6.62 343 113
YouTube 1,134,890 2,987, 624 5.26 | 28,754 51
Google 875,713 4,322,051 9.87 6,332 44
BerkStan 685, 230 6,649,470 | 19.40 | 84,230 201
Gplus 107,614 12,238,285 | 227.44 | 20,127 752
Flickr 1,715, 254 15,551,249 | 18.13| 27,224 568
UK2002 18,459, 128 261,556,721 | 28.33| 194,955 943
Webbase | 118,142,155 | 1,019, 903,190 | 17.26 | 816,127 | 1,506

model [14]. All the synthetic graphs have 10° vertices, and we vary
the number of edges from 10° (i.e., PL1 and SBM1) to 10° (i.e., PL4
and SBM4) with an increasing factor of 10. For the stochastic block
model graphs, the number of communities is set as 104, and thus
each community contains 100 vertices.

Parameters and Query Generation. We vary the size upper
bound A from 6 to 18 with increment 3. For each h, we set the
size lower bound ¢ to be h — 3. That is, the size constraint [, h] is
selected from {[3, 6], [6,9], [9, 12], [12, 15], [ 15, 18] }. For each size
constraint [#, h], we randomly generate 100 queries, where the
query vertex of each query is randomly selected from the set of
vertices with core number larger than 5; this is similar to previous
studies [17] and is to ensure that there is a meaningful community
containing the query vertex. Besides these queries, we also fix one
of £ and h and vary the other (see Sections 6.2 and 6.3 for details),
and we randomly select query vertices from different parts of the
graph (i.e., Dense and Sparse queries in Section 6.2).

For each [¢, h], the average result quality and processing time of
the 100 queries are reported. For each testing, we set a time limit of
two hours, and if an algorithm does not finish within the time limit,
we record its running time as inf. All experiments are conducted on
a machine with an Intel Core-i7 3.20GHz CPU and Ubuntu system.

6.1 Effectiveness of Our Algorithms

In this subsection, we evaluate the effectiveness of our exact algo-
rithm SC-BRB against the existing heuristic algorithms GreedyF
and GreedyD. We exclude BS, as it is an exact algorithm and thus
the minimum degrees of its reported communities are the same
as that of SC-BRB. We also compared the minimum degree, edge
density, and overlap ratio between the ground truth communities
and that returned by our algorithm SC-BRB, despite that the goal
of SC-BRB is not to recover the ground truth communities; the
results are reported in the full version [1].

Result Size. Figure 7 reports the sizes of the communities returned
by GreedyF, GreedyD, SC-Heu and SC-BRB, where the size con-
straint [£, h] varies from [3, 6] to [15, 18]. We can see that the result
sizes of GreedyF and both of our algorithms fall within the range
[£, h], but GreedyD reports communities with more than h vertices.
This is because GreedyF and our algorithms deliberately enforce
the size constraint, while GreedyD does not enforce that.

Result Quality. To evaluate the result quality, we report the mini-

mum degree and edge density (i.e., nZ_m) of the extracted commu-

(n-1)
nities. For both metrics, the larger the value, the better the quality.
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The results on Email and DBLP by varying [¢, h] are shown in Fig-
ure 8. We can see that GreedyD has a slightly higher result quality
than GreedyF, but at the cost of violating the size constraint. Nev-
ertheless, both of our algorithms significantly improve the result
quality compared with GreedyD, and our exact algorithm SC-BRB
has the highest result quality. The results on all the graphs by fixing
[£, k] = [9,12] are shown in Figure 9, which have similar trends as
in Figure 8. Compared with GreedyF, SC-BRB on average increases
the minimum degree by a factor of 2.41 (by absolute value 5.05), and
improves the edge density by a factor of 2.2. The average degrees
of the communities computed by these algorithms are reported in
the full version [1]. The results are similar to that for minimum
degree and edge density.
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Figure 10: Case studies

Case Study. We construct another coauthor graph, denoted DBLP s,
from the raw DBLP dataset 3 for case study. Each vertex corresponds
to an author, and two vertices are connected by an edge if the two
authors have coauthored at least five papers. The DBLPs graph
contains 424, 784 vertices and 888,392 edges. In the case study,
we search for the size-bounded community for “Jiawei Han”, a
renowned researcher in Data Mining. Firstly, the results returned
by GreedyF and SC-BRB for size constraint [5, 10] are shown in
Figure 10(a) and 10(b). We can see that the result by GreedyF is
sparse and has minimum degree 2 and edge density 0.48, while the
result by our algorithm SC-BRB has minimum degree 7 and edge
density 0.91. Figure 10(c) and 10(d) illustrate the results for size
constraint [15, 20]. The result by GreedyF has minimum degree 1
and edge density 0.15, while the result by SC-BRB has minimum
degree 5 and edge density 0.37.

Suppose Jiawei Han would like to assemble a team to identify
and tackle a grand problem in data mining. Then he can issue an
SCS query with ¢ and h being specified based on the team size. If
the ideal team size is between 5 and 10, then the best team could
be the one in Figure 10(b) as each member has collaborated with at
least 7 other members in the team. If the ideal team size is between
15 and 20, then the best team could be the one in Figure 10(d); note
that, with the size constraint [15, 20], there is no team such that
every member has collaborated with > 6 or > 7 other members.

6.2 Efficiency Testings

Against Baseline Algorithms. We first evaluate SC-BRB against
baseline algorithms SC-Enum and BS. We adapted BS proposed
in [29] to solve the SCS problem by enumerating k and x € [¢, h] to
find the largest k such that there is a k-core of size x. The running
time of these algorithms on DBLP and Google by varying [¢, h] is
shown in Figure 11. We can see that SC-BRB significantly outper-
forms SC-Enum and BS due to our powerful pruning and bounding
techniques. Moreover, BS due to lack of pruning and bounding
techniques is also outperformed by SC-Enum. Thus, we exclude
SC-Enum and BS from the remaining testings.

Shttps://dblp.uni-trier.de/xml/
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Figure 12: Evaluate our different techniques (vary [¢, h])

In Figure 11, we also include the running time of SC-Heu, GreedyD,

GreedyF, and community search w/o size constraint. These heuris-
tic algorithms run much faster than the exact algorithms. However,
as demonstrated in Section 6.1, the result quality of GreedyD and
GreedyF are not satisfactory. On the other hand, community search
w/o size constraint will return extremely large communities (e.g.,
almost the entire graph) [9]. Consider the significant improvements
on the result quality, it is cost-effective to apply SC-BRB. On the
other hand, if time efficiency is critical, then our heuristic algorithm
SC-Heu is recommended as it is superior than other alternatives.

Reducing, Upper Bounding, and Branching Technique. To
evaluate our different techniques, we also implemented SC-BRB/R
which is SC-BRB without our reduction rules, SC-BRB/U which is
SC-BRB without our upper bounding techniques, and SC-BRB/D
which is SC-BRB without our domination-based branching. Note
that, SC-BRB/D still uses our connection score-based branching
vertex selection. The running time of these algorithms on DBLP and
Google by varying [¢, h] is shown in Figure 12. We can see that the
running time of all algorithms increases when the size constraint
increases, this is because the search space becomes larger. Never-
theless, SC-BRB consistently outperforms all other algorithms. We
can also see that the running time increases, whenever any of the
reducing, upper bounding, and branching techniques is removed.
This confirms that all our techniques make a contribution to the
performance of SC-BRB.

The running time of the algorithms on all real and synthetic
graphs for [¢,h] = [9,12] is shown in Figure 13. The trends are
similar to Figure 12. For synthetic graphs, we also observe that the
running time increases when the number of edges (correspondingly,
density) of the graph increases. Nevertheless, the increase is sub-
linear; recall that the number of edges of PL4 (resp. SBM4) is 103
times that of PL1 (resp. SBM1).

Evaluate Different Reduction Rules. We evaluate the effective-
ness of the different reduction rules in reducing the running time.
For simplicity, we use R1, R2 and R3 to represent our three reduc-
tion rules. We incrementally integrate these reduction rules into
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SC-BRB/R. The results in Figure 14 show that each of the three
reduction rules reduces the running time.

Evaluate Different Upper Bounds. Figure 15 demonstrates the
effectiveness of the three upper bounds, Uy, Uy, and Uy, by in-
crementally adding them to SC-BRB/U. Each of the upper bounds
reduces the running time. Thanks to the degree classification strat-
egy, Uy, produces a tighter upper bound and is most powerful.

Evaluate Different Branching Vertex Selection. Figure 16 eval-
uates the effectiveness of the branching vertex selection. All our
algorithms adopt connection score-based vertex selection, denoted
d(-). Besides &(-), we also implement two other strategies: Random,
and #Link, which selects the vertex of R that has the most number of
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links to C. The results demonstrate that the connection score-based
strategy improves the efficiency significantly.

Evaluate Different Query-Range Sizes. We now evaluate the
performance of SC-BRB under different query-range sizes. We fix
h = 15 and increase ¢ from 3 to 15. Figure 17 shows that the running
time increases along with the increasing of ¢. This is because, when
¢ increases, it becomes harder to find a high-quality solution at
early stages. Nevertheless, the influence of £ on the running time
is not as strong as that of h (e.g., as shown in Figure 11), as the
running time of SC-BRB is upper bounded by nh.

Evaluate Different Query Types. We evaluate the efficiency of
SC-BRB for different query types: Dense, Sparse and Random. Ran-
dom queries are generated as described at the beginning of this
section. Dense query vertices are uniformly selected from the last
10% of the degeneracy ordering of all vertices (i.e., from dense parts
of the graph), while Sparse query vertices are uniformly selected
from the first 10% of the degeneracy ordering with core number at
least 5 (i.e., from sparse parts of the graph). The running time on
all graphs for [¢, h] = [9, 12] is shown in Figure 18. We can see that
Dense queries are the easiest to process, because we are more likely
to find a high quality heuristic solution for Dense queries. Thus, our
reduction rules and upper bounding techniques can significantly
reduce the search space. Due to opposite reasons, Sparse queries
are the hardest to process. Random queries are in between because
they contain both Dense and Sparse queries.

6.3 SCS without Size Lower Bound

In this subsection, we evaluate SC-BRB against PSA for the problem
of SCS without size lower bound. PSA was originally proposed for
(approximately) computing the minimum k-core for a user-given
integer k and query vertex g [26], i.e., the smallest one among all
subgraphs that contain g and have minimum degree at least k. In
addition, PSA accepts a parameter ¢ > 1 to strike a balance between
the result quality and running time. Specifically, PSA returns a
subgraph that is at most ¢x (the optimal size), instead of the optimal
one. Intuitively, the smaller the value of ¢, the longer the running
time. We adapt PSA for SCS without size lower bound, by computing
an approximate minimum k-core for an iteratively increasing k until
the size of the identified subgraph is larger than h. We report the
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penultimate k value as the result quality of PSA. The source code
of PSA is obtained from the authors of [26].

The running time and result quality of PSA(1.01), PSA(1.2) and
SC-BRB on Email and HepPh by varying h are shown in Figure 19,
where PSA(1.01) and PSA(1.2), respectively, represent PSA with
¢ = 1.01 and ¢ = 1.2. We can see that PSA(1.01) has the same
result quality as SC-BRB due to the small value of ¢ = 1.01, but is
much slower than PSA(1.2) and SC-BRB and thus is not practical
for large graphs. SC-BRB outperforms PSA(1.2) in terms of both
result quality and running time.

Figure 20 shows the minimum degrees of the communities re-
turned by PSA(1.2) and SC-BRB on all the graphs for A = 10. We
can see that SC-BRB consistently outperforms PSA(1.2).

7 CONCLUSION

In this paper, we studied the problem of size-bounded community
search which has both size lower bound and size upper bound, and
aims to maximize the minimum degree of the returned subgraph.
We proposed a branch-reduce-and-bound algorithm SC-BRB for
solving the problem over large real graphs. SC-BRB outputs the
optimal results. The efficiency of SC-BRB is due to our newly devel-
oped reducing techniques, upper bound techniques, and branching
techniques. Extensive experiments on large real graphs demon-
strate that SC-BRB significantly improves the result quality over
the existing algorithms, and SC-BRB can efficiently process large
graphs thanks to our advanced techniques. As a possible direction
of future work, it will be interesting to adapt our techniques to
speed up the computation for the problems studied in [26] and [29].
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