
Fast Augmentation Algorithms for Network Kernel Density
Visualization∗

Tsz Nam Chan

Hong Kong Baptist University

edisonchan@comp.hkbu.edu.hk

Zhe Li

Hong Kong Polytechnic University

richie.li@connect.polyu.hk

Leong Hou U

University of Macau

SKL of Internet of Things

for Smart City

ryanlhu@um.edu.mo

Jianliang Xu

Hong Kong Baptist University

xujl@comp.hkbu.edu.hk

Reynold Cheng

The University of Hong Kong

Guangdong-Hong Kong-Macau Joint

Laboratory for Smart Cities

ckcheng@cs.hku.hk

ABSTRACT
Network kernel density visualization, or NKDV, has been exten-

sively used to visualize spatial data points in various domains,

including traffic accident hotspot detection, crime hotspot detec-

tion, disease outbreak detection, and business and urban planning.

Due to a wide range of applications for NKDV, some geographical

software, e.g., ArcGIS, can also support this operation. However,

computing NKDV is very time-consuming. Although NKDV has

been used for more than a decade in different domains, existing

algorithms are not scalable to million-sized datasets. To address this

issue, we propose three efficient methods in this paper, namely ag-

gregate distance augmentation (ADA), interval augmentation (IA),

and hybrid augmentation (HA), which can significantly reduce the

time complexity for computing NKDV. In our experiments, ADA,

IA and HA can achieve at least 5x to 10x speedup, compared with

the state-of-the-art solutions.

PVLDB Reference Format:
Tsz Nam Chan, Zhe Li, Leong Hou U, Jianliang Xu, and Reynold Cheng.

Fast Augmentation Algorithms for Network Kernel Density Visualization.

PVLDB, 14(9): 1503-1516, 2021.

doi:10.14778/3461535.3461540

1 INTRODUCTION
Data visualization is an important tool for understanding a dataset

[17, 63, 67]. An important class of methods, collectively known

as kernel-density-estimation-based visualization (or kernel density

∗
This work was supported by the National Key Research and Development Plan

of China (No.2019YFB2102100), the Science and Technology Development Fund

Macau (SKL-IOTSC-2021-2023, 0015/2019/AKP), University of Macau (MYRG2019-

00119-FST), Guangdong Basic and Applied Basic Research Foundation (Project No.

2019B1515130001), the Research Grants Council of Hong Kong (RGC Projects HKBU

12201018, HKU 17229116 and 17205015), University of Hong Kong (Projects 104005858,

104005994), HKU-TCL Joint Research Center for Artificial Intelligence (Project no.

200009430), and Guangdong-Hong Kong-Macau Joint Laboratory Program 2020

(Project No: 2020B1212030009).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 9 ISSN 2150-8097.

doi:10.14778/3461535.3461540

visualization (KDV)) [13], has been extensively used in a wide

range of applications, including traffic accident hotspot detection

[30, 38, 71, 77], crime hotspot detection [12, 31, 60], disease outbreak

detection [2, 20, 80], and business and urban planning [45, 61, 78].

Geoscientists [30, 71] utilize KDV to visualize the spatial distri-

bution of traffic accidents. Criminologists [12, 31] utilize KDV to

identify crime hotspots (e.g., motor vehicle thefts in Figure 1). Pub-

lic health experts [2, 80] utilize KDV to identify disease outbreak.

Due to its wide range of applications, KDV is supported in many

data analytics systems, including ArcGIS [1], QGIS [7], Scikit-learn

[52], and KDV-Explorer [14].

Figure 1: Planar KDV for visualizing the crime distribution
(motor vehicle thefts) in Arlington, Texas (from [13, 31]).

In the literature, most of the existing work mainly focuses on

planar KDV [13, 16, 31, 32, 53, 82–84] (cf. Figure 1), in which they

useM×N pixels (e.g., 2560×1920) to represent the visualized region.

They color each pixel q based on the following kernel aggregation

function FP (q) (cf. Equation 1), where P denotes the set of two-

dimensional data points pi in the plane (e.g., black dots in Figure 1),

w is the normalization constant and K(q, pi) is the kernel function
between two points.

FP (q) =
∑
pi∈P

w · K(q, pi) (1)

Table 1 summarizes the commonly-used kernel functions

K(q, pi). Here, we denote dist(q, pi) as the Euclidean distance and

1503

https://doi.org/10.14778/3461535.3461540
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3461535.3461540

(a) Planar KDV (b) Network KDV

Figure 2: Differences between planar KDV and network KDV for visualizing the density of traffic accidents in Bowling Green,
Kentucky (from [72]).

the parameter γ is used to control the bandwidth (i.e.,
1

γ) of the

kernel functions [72]. If the distance value dist(q, pi) is bigger than
the bandwidth, the kernel function value is zero.

Table 1: Commonly-used kernel functions (K(q, pi)).
Kernel K (q, pi) Used in

Triangular

{
1 − γdist (q, pi) if dist (q, pi) ≤ 1

γ

0 otherwise

[10, 38]

Epanechnikov

{
1 − γ 2dist (q, pi)2 if dist (q, pi) ≤ 1

γ

0 otherwise

[10, 80]

Quartic

{
(1 − γ 2dist (q, pi)2)2 if dist (q, pi) ≤ 1

γ

0 otherwise

[38, 73]

However, there are two drawbacks for using the planar KDV

to analyze the location distribution of traffic accidents or crime

activities. Here, we use the traffic accidents in Bowling Green, Ken-

tucky as an example (cf. Figure 2). In Figure 2a, we can only know

the rough spatial regions that have a high density for traffic acci-

dents. However, it is hard to identify which road segments are the

hotspot regions. Moreover, two positions q1 and q2 that are close
in terms of Euclidean distance can be far away in the road network

(cf. Figure 3). Therefore, the distribution of points around these

two positions might be very different (e.g., there are many traffic

accidents near q1, but there are very few traffic accidents near q2).
Since planar KDV does not consider the topology of road network

for estimating the density, it is possible for planar KDV to estimate

that these two positions have a similar density (as q1 and q2 are
close) and assign the same color to them.

q2

q1

Figure 3: The positions q1 and q2 are close and far from each
other in terms of Euclidean distance and the shortest path
distance (network distance), respectively.

To achieve a more detailed and accurate visualization, existing

studies [20, 30, 38, 47, 48, 60, 61, 72, 73] replace the Euclidean dis-

tance with the network distance in the kernel functions (cf. Table

1) and only visualize the densities of the positions in the road net-

work (cf. Figure 2b). Here, we term this approach as network kernel
density visualization (NKDV). Instead of outputting a large region

with high density (i.e., black color) in Figure 2a, Figure 2b clearly

shows which road segments contain more traffic accidents (i.e.,

hotspots). In addition, unlike Figure 2a, some road segments which

are close to the hotspot region in terms of Euclidean distance may

not necessarily have a high density. Therefore, NKDV can avoid

overestimating the density for those road segments, which provides

more accurate visualization.

q1q

Figure 4: The 300m road (Road 2 in Figure 3) is segmented
into four basic units (with 75m), called lixels. Each lixel is
colored based on the kernel aggregation function, where the
red color and green color denote the highest and lowest den-
sity values, respectively.

In order to obtain the NKDV in a region, we need to first segment

each road of the road network into a set of basic units, called lixels

(cf. Figure 4), the analogy of pixels [72]. Then, we need to color

each lixel q, based on evaluating the kernel aggregation function

(cf. Equation 1 with network distance in the kernel function) [72].

In practice, Okabe et al. [47, 48] have developed the plug-in, called

SANET [8], for ArcGIS to handle this NKDV with the simple algo-

rithm, which will be discussed in Section 2. However, generating

the NKDV is computationally expensive. Using the dataset of traffic

accidents in New York city (with nearly 1.3M data points) [5] as an

example, the state-of-the-art approaches [47, 57, 72, 73] take more

than 3 hours to generate the visualization. As such, many recent

studies also complain about the inefficiency issue for using NKDV.

• “...the shortest-path distance can be used as an alternative to
the Euclidean one, and since this distance strongly depends on
the structure of the linear network, it adds a point of difficulty
to the computation. Hence, having efficient approaches to an-
alyze spatial point patterns on linear networks is a welcome
issue." [43]

1504

• “Previous implements on network kernel density estimation
have so far been done, but due to the computational complexity
of the shortest-path distance calculating, these methods all tend
to be very time consuming, especially for large datasets.” [78]
• “Kernel smoothing of point events, which is simple to define
and very fast to compute in two dimensions (Diggle 1985),
is mathematically complicated and can be extremely time-
consuming to perform on a network...” [57]

To reduce the time complexity of the state-of-the-art NKDV

methods [47, 57, 72, 73], we propose a novel idea of augmenting

each edge with distance statistics. Following this idea, we develop

three efficient augmentation methods, namely (1) aggregate dis-

tance augmentation (ADA), (2) interval augmentation (IA), and (3)

hybrid augmentation (HA), which wisely combines ADA and IA.

Our theoretical analysis shows that all these methods can lower the

time complexity for computing NKDV, compared with the state-

of-the-art methods [47, 57, 72, 73]. Additionally, our experiments,

based on five large-scale datasets, show that our methods ADA, IA

and the best method HA (with the lowest time complexity) outper-

form the state-of-the-art methods [47, 57, 72, 73] by at least 5x to

10x speedup.

The rest of the paper is organized as follows. In Section 2, we

formally define the problem of NKDV and present the baseline

solutions for computing NKDV. Then, we proceed to discuss the

three augmentation methods, which are ADA, IA and HA, and

analyze their time complexity in Section 3. Next, we present the

experimental results for all methods for computing NKDV with

five large-scale datasets in Section 4. Then, we discuss the related

work in Section 5. Lastly, we conclude and discuss the future work

in Section 6.

2 PRELIMINARIES
In this section, we first formally define the concepts which are

related to NKDV in Section 2.1. Then, we review the two-step

framework [47, 72, 73] for computing the NKDV in Section 2.2.

Lastly, we present two baseline methods, which are based on the

two-step framework, namely range-query-based solution (RQS)

[47, 72, 73] and shortest path sharing (SPS) [57], in Sections 2.3 and

2.4, respectively.

2.1 Basic Concepts for NKDV
Recall from Section 1, we need to obtain the kernel aggregation

function value for each lixel (cf. Figure 4) in the road network in

order to compute NKDV. Here, we first define the road network in

Definition 1.

Definition 1. A road network is a graph G = (V , E) such that:
(1) each node v ∈ V is augmented with the (x,y)-coordinate to repre-
sent its position.
(2) each edge e ∈ E may contain one or more data points (events).

Then, we formally define the concept of lixel (cf. Definition 2),

as shown in Figure 4. These lixels can be obtained by dividing each

edge of the road network with the same length, e.g., 75m.

Definition 2. (Lixel) Given a road networkG = (V , E), each edge
e ∈ E is divided into a set of small fixed-length segments. We represent

each small segment as lixel, where its center point q ((x,y)-coordinate)
represents the location of this lixel.

Once we obtain the set of lixels, we can formally define the

kernel aggregation function in network setting (cf. Definition 3).

Here, we use Epanechnikov kernel (cf. Table 1) as an example.

Definition 3. Given a road network G = (V , E), a lixel with
center point q in G and a set P of data points, we define the kernel
aggregation function FP (q) as:

FP (q) =
∑
pi∈P

w ·

{
1 − γ 2distG (q, pi)2 if distG (q, pi) ≤ 1

γ
0 otherwise

(2)

where distG (q, pi) is the shortest path distance from q to pi and 1

γ
denotes the bandwidth of the Epanechnikov kernel.

In the following sections, we refer to a lixel q with a lixel with

center point q for convenience.

2.2 Two-Step Framework for Computing
NKDV

In order to compute NKDV, existing studies [47, 72, 73] adopt a

two-step framework (cf. Figure 5) to obtain FP (q) for each lixel q,
which are (1) computing the shortest path distance from q to each

node in V and (2) computing FP (q) (cf. Equation 2), based on the

shortest path distance value from q to each pi.

c d

q

pi

distG(c,pi) distG(d,pi)

Figure 5: Illustration of two-step framework for comput-
ing FP (q) (cf. Equation 1), where distG (q, c) and distG (q, d)
(dashed lines) are computed by the shortest path algorithm
and distG (c, pi) and distG (d, pi) are augmented in the point pi
(solid line).

In the first step, we can utilize the shortest-path (SP) algorithm

for obtaining the shortest path distance from q to each node in

V , which takes O(TSP) time. As a remark, even though existing

studies [47, 72, 73] utilize the Dijkstra’s algorithm [18], where

TSP = |V | log |V | + |E |, for computing the shortest path distances,

we can also utilize other efficient algorithms (e.g., [23, 40]) for find-

ing the shortest path distances, which will be discussed in our

related work (cf. Section 5). Once we obtain these distance values

(e.g., distG (q, c) and distG (q, d) in Figure 5), we can compute FP (q),
based on obtaining the shortest path distance distG (q, pi), using
the following equation:

distG (q, pi) = min

{
distG (q, c) + distG (c, pi)
distG (q, d) + distG (d, pi)

(3)

As such, the computational time in the second step takesO(n) time

for each lixel q.
Suppose that we have L lixels in total in the graphG , this straight-

forward implementation (for step 1 and step 2) takes O(L(TSP + n))
time for generating NKDV.

1505

2.3 Baseline 1: Range-Query-based Solution
(RQS)

Recall from Equation 2, each data point pi can contribute to the ker-

nel aggregation function FP (q), only if pi is within the bandwidth

of the lixel q, i.e., distG (q, pi) ≤ 1

γ . Therefore, instead of finding

the shortest path distances from the lixel q to all data points in the

two-step framework, Xie et al. [72, 73] and Okabe et al. [47] modify

the shortest path algorithm, namely SPγ , which only finds those

nodes from q that are within the bandwidth (
1

γ) in step 1 (cf. yellow

nodes in Figure 6), and then filters those data points that are larger

than the bandwidth (i.e., black points in Figure 6) in step 2. In this

paper, we term this method as RQS in which the pseudocode is

described in Algorithm 1
1
.

b

d

SPD(q).a=50

SPD(q).c=50

a

q

c

Figure 6: Illustration of using RQS for generating NKDV,
where yellow nodes and blue points are within the band-
width 1

γ = 100 meters from q (red lines).

Algorithm 1 Range-Query-based Solution for NKDV

1: procedure RQS(G = (V , E), P = {p1, p2, ..., pn}, weight w ,

parameter γ)
2: for each edge e ∈ E do
3: for each lixel q ∈ e do
4: SPD(q) ← SPγ (G, q)
5: R.q← 0 ◃ Result for position q
6: for each edge ẽ := (c, d) ∈ E do
7: if SPD(q).c ≤ 1

γ or SPD(q).d ≤ 1

γ then
8: for each pi ∈ ẽ do
9: ∆← distG (q, pi) ◃ Equation 3

10: R.q← R.q +max(1 − γ 2∆2, 0)

Even though RQS can improve the practical efficiency for gener-

ating NKDV, the response time can still be large, once we have a

large bandwidth
1

γ . Theoretically, the worst case time complexity

of RQS is still in O(L(TSP + n)), which is the same as the straight-

forward implementation of Equation 2, as the bandwidth can be

arbitrarily large.

2.4 Baseline 2: Shortest Path Sharing (SPS)
In the two-step framework (cf. Section 2.2), we need to evaluate

L-times shortest path algorithm for all lixels q in order to obtain

every shortest path distance distG (q, pi), which can be very time-

consuming. Recently, Rakshit et al. [57] propose the shortest path

1
In practical implementation, we can also sort the data points in advance for each edge,

e.g., sort the data points pi in the edge (a, b) of Figure 6, based on the ascending order

of distG (a, pi). Then, once we scan the data point pi with distG (q, pi) > 1

γ (e.g.,

the third point in the edge (a, b) in Figure 6), we can terminate the scanning process

in this edge. To simplify the presentation, we omit this early-stop technique in line 10.

sharing (SPS) method, which can significantly reduce the number

of shortest path computations. Similar ideas, e.g., shortest path

caching [35, 68], can be also found in the database community.

a b

c d

q

distG(b,d)distG(a,c)

pi
distG(c,pi) distG(d,pi)

Figure 7: There are at most four possible routes for the lixel
q to reach the data point pi.

Figure 7 summarizes the general idea of this method. Here, q
and pi can be in two edges

2
, which are (a, b) and (c, d), respectively.

In this case, there are at most four routes for q to reach the data

point pi, which are (1) q→ a→ c→ pi, (2) q→ a→ d→ pi, (3)
q→ b→ c→ pi and (4) q→ b→ d→ pi. As such, the shortest
path distance between q and pi is:

distG (q, pi) = min

distG (q, a) + distG (a, c) + distG (c, pi)
distG (q, a) + distG (a, d) + distG (d, pi)
distG (q, b) + distG (b, c) + distG (c, pi)
distG (q, b) + distG (b, d) + distG (d, pi)

(4)

Since distG (c, pi) and distG (d, pi) only depend on the position

of the point pi in the edge (c, d), they can compute these distance

values and augment them in the point pi in advance. Then, they

adopt the modified shortest path algorithm, i.e., SPγ (cf. Section 2.3),

with the initial nodes a and b to obtain distG (a, c)/distG (a, d) and
distG (b, c)/distG (b, d), respectively, i.e., the dash lines in Figure 7.

Once they store all these shortest path distance values from nodes

a and b in the memory, they can evaluate distG (q, pi), for all lix-
els q in the edge (a, b), by only computing distG (q, a), distG (q, b)
and performing the lookup operations for other distance values in

Equation 4. Hence, instead of calling the SPγ algorithm per lixel,

they only need to call this algorithm per edge and reuse these dis-

tance values. Therefore, this method can reduce the worst case time

complexity to O(|E |TSP + nL) (cf. Theorem 1), which is better than

the method RQS (cf. Section 2.4). The detailed pseudocode is shown

in Algorithm 2
3
.

Theorem 1. The time complexity of Algorithm 2 isO(|E |TSP+nL).

3 FAST NKDV VIA AUGMENTATION
Even though existing methods RQS and SPS (cf. Sections 2.3 and

2.4, respectively) can improve the efficiency for using the two-

step framework (cf. Section 2.2) to generate the NKDV, the worst

case time complexity of the state-of-the-art method SPS [57] is

still very high, which is O(|E |TSP + nL) (cf. Theorem 1). Moreover,

the running time in step 2 of the methods RQS and SPS occupies

2
We omit the case when q and pi are in the same edge, since we can easily compute

distG (q, pi) in O (1) time.

3
As a remark, this method can further reduce the time complexity toO (|V |TSP +nL),
once it computes and stores shortest path distance values for all pairs of nodes in

advance. However, this approach needs O (|V |2) space for storing all these values,

which is infeasible in practice.

1506

Algorithm 2 Shortest-Path-Sharing-Based NKDV Algorithm

1: procedure SPS(G = (V , E), P = {p1, p2, ..., pn}, weight w ,

parameter γ)
2: for each edge e := (a, b) ∈ E do
3: SPD(a) ← SPγ (G, a), SPD(b) ← SPγ (G, b)
4: for each lixel q ∈ e do
5: R.q← 0

6: for each edge ẽ := (c, d) ∈ E do
7: τa ←

1

γ − distG (q, a), τb ←
1

γ − distG (q, b)

8: if SPD(a).c ≤ τa or SPD(a).d ≤ τa
or SPD(b).c ≤ τb or SPD(b).d ≤ τb

then

9: for each pi ∈ ẽ do
10: ∆← distG (q, pi) ◃ Equation 4

11: R.q← R.q +max(1 − γ 2∆2, 0)

12: SPD(a) ← ϕ, SPD(b) ← ϕ ◃ Clear memory

more than 80% of the total time for computing NKDV in large-

scale datasets (i.e., large n), which will be discussed in detail (cf.

Figure 17) in Section 4. Therefore, we ask a question, can we further

reduce the time complexity in step 2, i.e., O(nL), in the two-step

framework for generating the NKDV? In this section, we propose

aggregate distance augmentation (ADA), interval augmentation (IA)

and its combination, hybrid augmentation (HA), in Sections 3.1 - 3.3,

which can significantly boost the efficiency for computing FP (q)
(cf. Equation 2), i.e., step 2. We theoretically show that all these

methods can improve the time complexity for evaluating NKDV,

against the state-of-the-art methods RQS (cf. Section 2.3) and SPS

(cf. Section 2.4). We summarize the space and time complexity of

all methods in Section 3.4.

3.1 Aggregate Distance Augmentation (ADA)
To illustrate the idea of aggregate distance augmentation (ADA),

we let the point set of the edge e in graph G be P(e).

Definition 4. Given an edge e in the graph G = (V , E), we let
P(e) be the set of points in the edge e .

With the above definition, we can decompose the kernel aggre-

gation function with respect to P(e) for each edge e (cf. Lemma 1).

Due to its simplicity, we omit the proof of this lemma.

Lemma 1. Let fe (q) be the kernel aggregation function for the edge
e , where:

fe (q) =
∑

pi∈P (e)

w ·

{
1 − γ 2distG (q, pi)2 if distG (q, pi) ≤ 1

γ
0 otherwise

(5)

We have:
FP (q) =

∑
e ∈E

fe (q) (6)

Observe from Equation 6, since FP (q) only depends on fe (q)
for each edge e , we focus on evaluating fe (q) efficiently. Figure 8

illustrates the general idea of ADA. Here, we denote P(c, pi) and
P(d, pi) to be two sets of points from c to pi and d to pi, respectively.
Observe that each point pi is augmented by the aggregation of

distance values with degree deд from the vertices c and d to pi, i.e.,

a
(deд)
P (c,pi)

and a
(deд)
P (d,pi)

, respectively, where:

a
(deд)
P (c,pi)

=
∑

pj∈P (c,pi)

distG (c, pj)deд (7)

a
(deд)
P (d,pi)

=
∑

pj∈P (d,pi)

distG (d, pj)deд (8)

c d

q

𝐩𝐣∈𝑃(𝐜,𝐩𝐢)

𝑑𝑖𝑠𝑡𝐺(𝐜, 𝐩𝐣)
𝑑𝑒𝑔

𝐩𝐢

𝐩𝐣∈𝑃(𝐝,𝐩𝐢)

𝑑𝑖𝑠𝑡𝐺(𝐝, 𝐩𝐣)
𝑑𝑒𝑔

Figure 8: Aggregate distance augmentation (ADA) for each
data point pi in the edge e = (c, d), where deд is the degree
(depends on the kernel function).

Table 2 summarizes which degrees of a
(deд)
P (c,pi)

and a
(deд)
P (d,pi)

we

should augment for pi in different kernel functions.

Table 2: Summarization of the augmented values for differ-
ent kernel functions.

Kernel Augmented values for each point pi Chosen deд

Triangular a(1)P (c,pi), a
(1)

P (d,pi)
1

Epanechnikov a(1)P (c,pi), a
(1)

P (d,pi)
, a(2)P (c,pi), a

(2)

P (d,pi)
1,2

Quartic a(1)P (c,pi), a
(1)

P (d,pi)
, a(2)P (c,pi), a

(2)

P (d,pi)
1,2,3,4

a(3)P (c,pi), a
(3)

P (d,pi)
, a(4)P (c,pi), a

(4)

P (d,pi)

Once we have these augmented values for each pi (cf. Table 2),
we can evaluate fe (q) in O(log |P(e)|) time (cf. Lemma 2), based on

the binary search method [18], if we have obtained the shortest

path distances from q to c and q to d, i.e., distG (q, c) and distG (q, d),
respectively.

Lemma 2. Given the edge e = (c, d), a lixel q and the shortest
path distance values distG (q, c) and distG (q, d), if we have the aggre-
gate distance augmentation (cf. Table 2) and D(pi) = distG (c, pi) −
distG (d, pi) for each pi, we can compute fe (q) in O(log |P(e)|) time,
using the kernel functions in Table 1.

Proof. In this proof, we focus on Epanechnikov kernel function.

However, this proof can be easily extended to other kernel functions

in Table 1. In order to obtain the correct proof for this lemma, we

need to consider the following four possible cases for the shortest

path distances, which are: (1) distG (q, c) > 1

γ and distG (q, d) > 1

γ ,

(2) distG (q, c) ≤ 1

γ and distG (q, d) > 1

γ , (3) distG (q, c) >
1

γ and

distG (q, d) ≤ 1

γ and (4) distG (q, c) ≤ 1

γ and distG (q, d) ≤ 1

γ .

Case 1
(
distG (q, c) > 1

γ and distG (q, d) > 1

γ

)
:

Recall from Equation 3, we have:

distG (q, pi) = min

{
distG (q, c) + distG (c, pi)
distG (q, d) + distG (d, pi)

≥ min(distG (q, c),distG (q, d)) >
1

γ

1507

Hence, based on Equation 5, we can conclude that fe (q) = 0 and

we can directly ignore all data points in this edge.

Case 2
(
distG (q, c) ≤ 1

γ and distG (q, d) > 1

γ

)
:

Based on the condition of Equation 5, each point pi can contribute
to the value of fe (q) only if distG (q, pi) ≤ 1

γ . Therefore, we only

consider each point pi such that:

1: the shortest path from q to pi should pass through c (but not
d).

2: distG (c, pi) ≤ 1

γ − distG (q, c)
From the second condition, we need to find the position of the

data point pl such that it just fulfills this condition (cf. Figure 9).

Since each point pi is augmented by two distance valuesdistG (c, pi)
and distG (d, pi) (cf. Figure 5), we can use the binary search method

[18] to obtain this data point pl, with O(log |Pe |) time.

c d
𝐩𝐥

𝑑𝑖𝑠𝑡𝐺(𝐜, 𝐩𝐥) ≤
1

𝛾
− 𝑑𝑖𝑠𝑡𝐺(𝐪, 𝒄)

Figure 9: All data points from node c to the data point pl can
contribute to fe (q).

Once we have known the position of pl, we can compute fe (q)
for this edge e = (c, d):
fe (q)

=
∑

pi∈P (c ,pl)

w · (1 − γ 2distG (q, pi)2)

=
∑

pi∈P (c ,pl)

w · (1 − γ 2(distG (q, c) + distG (c, pi))2)

= w (1 − γ 2distG (q, c)2) |P (c, pl) | − 2wγ 2distG (q, c)a
(1)

P (c,pl)
−wγ 2a(2)P (c,pl)

Since the values a
(1)

P (c,pl)
and a

(2)

P (c,pl)
can be computed in advance,

we can reuse these values for evaluating fe (q). As such, computing

fe (q) only takes O(1) time.

Case 3
(
distG (q, c) > 1

γ and distG (q, d) ≤ 1

γ

)
:

The proof for this case is same as the one in Case 2, except that

we consider only the shortest path from q to the node d, rather
than q to the node c.

Case 4
(
distG (q, c) ≤ 1

γ and distG (q, d) ≤ 1

γ

)
:

Observe from Figure 10, suppose that we can find pl and pr such
that they just fulfilldistG (c, pl) ≤ 1

γ −distG (q, c) anddistG (d, pr) ≤
1

γ −distG (q, d), respectively, and these two sets P(c, pl) and P(d, pr)
do not have any intersection. Then, we can conclude that fe (q) can
be computed inO(log |P(e)|) time, based on the combination of the

solutions of Cases 2 and 3.

However, unlike Figure 10, it is possible that these two sets

P(c, pl) and P(d, pr) may have the intersection with each other

(cf. Figure 11). As such, for each point in between pr and pl, it is
inconclusive which node (c or d) the shortest path (from q) to this

point should pass through. In this case, there exist the point pv in

between pr and pl such that the following inequality just holds:

distG (q, c) + distG (c, pv) ≤ distG (q, d) + distG (d, pv)

c d
𝐩𝐥 𝐩𝐫

𝑑𝑖𝑠𝑡𝐺(𝐜, 𝐩𝐥) ≤
1

𝛾
− 𝑑𝑖𝑠𝑡𝐺(𝐪, 𝐜) 𝑑𝑖𝑠𝑡𝐺(𝐝, 𝐩𝐫) ≤

1

𝛾
− 𝑑𝑖𝑠𝑡𝐺(𝐪, 𝐝)

Figure 10: No intersection between two sets P(c, pl) and
P(d, pr).

Here, we regard D(pv) = distG (c, pv) − distG (d, pv), we only

need to find pv such that this inequality D(pv) ≤ distG (q, d) −
distG (q, c) just holds. Once we have stored the value D(pi) for each
point pi in advance, we can utilize the binary search method to find

this pv in O(log(|Pe |)) time.

c d𝐩𝐥𝐩𝐫

𝑑𝑖𝑠𝑡𝐺(𝐜, 𝐩𝐥) ≤
1

𝛾
− 𝑑𝑖𝑠𝑡𝐺(𝐪, 𝐜)

𝑑𝑖𝑠𝑡𝐺(𝐝, 𝐩𝐫) ≤
1

𝛾
− 𝑑𝑖𝑠𝑡𝐺(𝐪, 𝐝)

𝐩𝐯

Figure 11: The sets P(c, pl) and P(d, pr) have the intersection.
After we have found this pv, we can compute fe (q) inO(1) time,

by adopting the similar approach in Case 2. �

Based on Lemma 2, we do not need to evaluate each point pi
one by one in each edge e , which can significantly improve the

efficiency for computing NKDV. Algorithm 3 shows the detailed

pseudocode of this method.

Algorithm 3 Aggregate Distance Augmentation Algorithm

1: procedure ADA(G = (V , E),P = {p1, p2, ..., pn})
2: //Preprocessing (Used for fe (q))
3: for each edge e := (c, d) ∈ E do
4: for each point pi ∈ P(e) do
5: Compute a

(deд)
P (c,pi)

◃ Table 2

6: Compute a
(deд)
P (d,pi)

◃ Table 2

7: Compute D(pi) := distG (c, pi) − distG (d, pi)
8: //Computing NKDV

9: for each edge e := (a, b) ∈ E do
10: SPD(a) ← SPγ (G, a), SPD(b) ← SPγ (G, b)
11: for each lixel q ∈ e do
12: R.q← 0 ◃ Result for position q
13: for each edge e ∈ E do
14: R.q← R.q + fe (q) ◃ Lemma 2

15: SPD(a) ← ϕ, SPD(b) ← ϕ ◃ Clear memory

In Theorem 2, we formally show that ADA (cf. Algorithm 3) only

takes O
(
|E |

(
TSP + L log

(n
|E |

)))
time, which can be significantly

faster than the existing methods RQS (cf. Section 2.3) and SPS (cf.

Section 2.4).

Theorem 2. The time complexity of Algorithm 3 is O
(
|E |

(
TSP +

L log
(n
|E |

)))
.

Proof. In this proof, we mainly focus on showing that the time

complexity for the evaluation of one lixel q (cf. lines 12-14 in Algo-

rithm 3) isO
(
|E | log

(n
|E |

))
, given the known shortest path distances

(cf line 10 in Algorithm 3).

1508

Recall from Lemma 1, for each edge e ∈ E, it takes O(log |P(e)|)
time for evaluating fe (q). Therefore, the time complexity for

evaluating fe (q) with all edges in E takes O(
∑
e ∈E log |P(e)|) =

O(log(
∏

e ∈E |P(e)|)) time. Since the number of points in the road

network is n, we also have the constraint

∑
e ∈E |P(e)| = n. To an-

alyze the worst case time complexity of our method, we need to

find the maximum possible value of log(
∏

e ∈E |P(e)|), which can

be formulated as the following optimization problem (T).

max

P (e)
log

(∏
e ∈E
|P(e)|

)
such that

∑
e ∈E
|P(e)| = n

|P(e)| ≥ 0 for each e ∈ E

(T)

Based on the AM–GM inequality [64], we have:∑
e ∈E |P(e)|

|E |
≥ |E |

√∏
e ∈E
|P(e)| ⇐⇒

∏
e ∈E
|P(e)| ≤

(n

|E |

) |E |
Therefore, we have:

log

(∏
e ∈E
|P(e)|

)
≤ log

(n

|E |

) |E |
= |E | log

(n

|E |

)
Therefore, we can show that the worst case time complexity is

O
(
|E | log

(n
|E |

))
for each lixel q, given the known shortest path dis-

tances (cf. line 10 in Algorithm 3). As a remark, we can theoretically

achieve this worst case time complexity, if the number of points in

each edge e ∈ E is the same, i.e., |P(e)| = n
|E | , and the bandwidth

1

γ →∞.

Since there are in total L lixels in the road network G, the time

complexity for lines 11 to 14 in Algorithm 3 is O
(
L|E | log

(n
|E |

))
.

By combining the time complexity (O(|E |TSP)) for computing the

shortest path distances, we can prove that Algorithm 3 only takes

O
(
|E |

(
TSP + L log

(n
|E |

)))
time. �

As a remark, in terms of big-O notation, we know that:

O
(
log

(n

|E |

))
< O

(n

|E |

)
O
(
|E |L log

(n

|E |

))
< O(nL)

Therefore, we know that the time complexity of ADA (cf. Theorem

2) is theoretically faster than SPS (cf. Theorem 1) and RQS (with

O(L(TSP + n)) time).

3.2 Interval-based Augmentation (IA)
Even though ADA can significantly reduce the time complexity for

evaluating NKDV, this method still needs to perform the binary

search for each edge, which incurs O
(
log

(n
|E |

))
term in the time

complexity (cf. Theorem 2). In this section, we develop the method,

called interval-based augmentation (IA), which can further remove

this logarithmic factor, at the expense of a higher preprocessing

time and space.

Observe from Figures 12 and 13, we first obtain the small-

est distance between any two consecutive data points in each

edge (distG (pi∗ , pi∗+1) in Figure 12) and then obtain the intervals,

I1, I2, ..., IN , with the same length (cf. Figure 13), except for the last

interval IN , where:

N =

⌈
distG (c, d)

distG (pi∗ , pi∗+1)

⌉
(9)

With this set of intervals, we can observe that each interval can

only contain at most one data point (cf. Figure 13). In Lemma 3, we

claim that it is always true. As a remark, we omit the case that the

interval IN can have smaller length, compared with other intervals

in edge e = (c, d), in Lemma 3, due to simplicity.

c d

𝐩𝒊∗ 𝐩𝒊∗+𝟏

𝑑𝑖𝑠𝑡𝐺(𝐩𝒊∗ , 𝐩𝒊∗+𝟏)

Figure 12: The smallest distance distG (pi∗ , pi∗+1) between two
consecutive data points in the edge e = (c, d).

c d

𝐩𝒊∗

𝑑𝑖𝑠𝑡𝐺(𝐩𝒊∗ , 𝐩𝒊∗+𝟏)

𝐩𝒊∗+𝟏

𝐼1 𝐼2 …… 𝐼𝑁−1 𝐼𝑁

Figure 13: Augment the intervals I1, I2, ..., IN (with length
distG (pi∗ , pi∗+1) (except for IN)) from the node c in the edge
e = (c, d).

Lemma 3. Suppose that we have a set of equal-length and contigu-
ous intervals in the edge e = (c, d), where the length of each interval is
distG (pi∗ , pi∗+1) (the smallest distance between any two consecutive
points in P(e)), each interval can only contain at most one data point
in P(e).

Proof. Suppose that there exists an interval which contains

more than one point. Therefore, there exist two data points, e.g., pi
and pj, such that they are in the same interval, i.e.,

distG (pi, pj) < distG (pi∗ , pi∗+1)

However, we know that distG (pi∗ , pi∗+1) must be the smallest dis-

tance value between any two consecutive points in P(e). As such,
it leads to contradiction. �

Based on Lemma 3, given any distance value from the node c (or
node d), instead of using the binary search to find the data point pi
in ADA (cf. Section 3.1), we can useO(1) time to identify the interval,

since the interval size is fixed (distG (pi∗ , pi∗+1), except for IN). Once

we further augment the following distance aggregation values
4
,

i.e., a
(deд)
P (∪kv=1Iv)

(cf. Equation 10) and a
(deд)
P (∪Nv=k Iv)

(cf. Equation 11),

which are the analogy of Equations 7 and 8, respectively, for each

interval Ik in the edge e , we can further reduce the time complexity

for computing fe (q) from O(log |P(e)|) time (cf. Lemma 2) to O(1)
time (cf. Lemma 4).

a
(deд)
P (∪kv=1Iv)

=
∑

pj∈∪kv=1Iv

distG (c, pj)deд (10)

a
(deд)
P (∪Nv=k Iv)

=
∑

pj∈∪Nv=k Iv

distG (d, pj)deд (11)

4
We can choose the same degrees based on Table 2 for different kernel functions. For

example, we choose deд = 1, 2 for Epanechnikov kernel.

1509

Lemma 4. Given the edge e = (c, d), a lixel q and the shortest path
distance values distG (q, c) and distG (q, d), if we have the interval-
based augmentation (cf. Equations 10 and 11), we can compute fe (q)
in O(1) time, using the kernel functions in Table 1.

We omit the proof of Lemma 4, as the proof is similar to the one

in Lemma 2. Instead, we focus on finding the interval (with O(1)
time, based on Lemma 3) for those four cases. Here, we summa-

rize our method IA in Algorithm 4. Theorem 3 illustrates the time

complexity of this algorithm.

Algorithm 4 Interval-based Augmentation Algorithm (IA)

1: procedure IA(G = (V , E),P = {p1, p2, ..., pn})
2: //Preprocessing (Used for fe (q))
3: for each edge e := (a, b) ∈ E do
4: Compute distG (pi∗ , pi∗+1) ◃ O(|P(e)|) time

5: Compute N (e) ◃ Equation 9

6: for k ← 1 to N (e) do
7: Compute a

(deд)
P (∪kv=1Iv)

◃ Table 2

8: Compute a
(deд)
P (∪Nv=k Iv)

◃ Table 2

9: //Computing NKDV (Same as lines 9-15 in Algorithm 3)

Theorem 3. Given the number N (e) of intervals for each edge e ∈
E (cf. Equation 9), the time complexity of Algorithm 4 is O(|E |(TSP +
L) +

∑
e ∈E N (e)).

Compared with the time complexity of ADA, which takes

O
(
|E |

(
TSP+L log

(n
|E |

)))
(cf. Theorem 2), IA can further remove this

log

(n
|E |

)
term, with the additional construction (or preprocessing)

cost

∑
e ∈E N (e) for intervals. Once the construction cost

∑
e ∈E N (e)

is low, IA can further improve the efficiency for generating NKDV,

compared with the method ADA.

3.3 Hybrid Augmentation (HA)
As discussed in Section 3.2, IA needs to augment the intervals for

each edge e ∈ E. Observe from Figure 14, once the length of the road

is very long and the smallest distance between two consecutive

points is very small, we need to augment many intervals N (e) into
this edge e (cf. Equation 9) for using the method IA, which can

incur both high preprocessing time and space.

c d……

𝑑𝑖𝑠𝑡𝐺(𝐩𝒊∗ , 𝐩𝒊∗+𝟏) = 𝟎. 𝟏

𝑑𝑖𝑠𝑡𝐺 𝒄, 𝐝 = 𝟏𝟎𝟎𝟎𝟎
Figure 14: Many intervals (e.g., 100000) can be augmented in
the edgewith (1) the long length of the road (e.g.,distG (c, d) =
10000) and (2) the small distance value between two consecu-
tive points with the smallest distance (e.g., distG (pi∗ , pi∗+1) =
0.1).

In this section, we develop a method, called hybrid augmentation

(HA), that can wisely select which method, ADA (cf. Section 3.1)

or IA (cf. Section 3.2), we should choose for each edge e ∈ E, based
on the estimation of the minimum cost. Recall from Section 3.1,

ADA takes O(log(|P(e)|)) time in the worst case to evaluate fe (q)

(cf. Lemma 2) for each lixel q and there are totally L lixels. As such,

we can model the cost for this edge e as:

Cost(ADA(e)) = L × log(|P(e)|) (12)

On the other hand, IA takes N (e) time to construct the intervals

in edge e and takes O(1) time to obtain the interval for each lixel q.
Therefore, we can model the cost for this edge e in the worst case

as:

Cost(IA(e)) = N (e) + L (13)

Based on these cost functions, HA chooses the method

for each edge e which can provide minimum cost, i.e.,

min(Cost(ADA(e)),Cost(IA(e))), in advance. Even though this com-

bination is simple, we can theoretically show that HA can further

reduce the worst case time complexity of evaluating NKDV (cf.

Theorem 4).

Theorem 4. Given the number N (e) of intervals for each edge
e ∈ E (cf. Equation 9), the time complexity of HA is O

(
|E |TSP +

min

(
L|E | log

(n
|E |

)
, L|E | +

∑
e ∈E N (e)

))
.

Proof. Since HA can choose the edge with minimum cost in

advance, we have the following cost (in the worst case):∑
e∈E

min(Cost (ADA(e)),Cost (IA(e)))

=
∑
e∈E

min(L log(|P (e) |), N (e) + L)

≤ min

(∑
e∈E

L log(|P (e) |),
∑
e∈E

(N (e) + L)
)

≤ min

(
L × |E | log

(n
|E |

)
, L |E | +

∑
e∈E

N (e)
)

Here, the last inequality is based on the proof in Theorem 2. Since

we know O(|E |TSP) is the worst case time complexity in step 1

(cf. Section 2.4) andO(
∑
e ∈E min(Cost(ADA(e)),Cost(IA(e)))) is the

worst case time complexity in step 2 in the two-step framework, we

can conclude that HA takes O
(
|E |TSP +min

(
L|E | log

(n
|E |

)
, L|E | +∑

e ∈E N (e)
))

time for computing NKDV. �

3.4 Summarization of the Theoretical Results
of All Methods

In this section, we summarize the worst case time and space com-

plexity of all methods. Here, we denote ISP as the space for the

SP algorithm, e.g., ISP = O(|V |) for Dijkstra’s algorithm [18].

Observe from Table 3, once we restrict the space consumption

to be O(|V | + |E | + n + ISP), which can be much smaller than

O(|V | + |E | + n + ISP +
∑
e ∈E N (e)), the method ADA is theoreti-

cally the most efficient algorithm, compared with other methods.

Moreover, once the term

∑
e ∈E N (e) is very large, ADA can be the-

oretically faster than IA, as IA needs to use O(
∑
e ∈E N (e)) time to

construct the intervals for each edge e .
However, as discussed in Section 3.2, if the construction cost∑
e ∈E N (e) is small, the time complexity of IA, i.e.,O(|E |(TSP +L)+∑
e ∈E N (e)), can be smaller than the time complexity of the method

ADA, i.e., O
(
|E |

(
TSP + L log

(n
|E |

)))
, at the expense of higher space

complexity O(|V | + |E | + n + ISP +
∑
e ∈E N (e)).

By combining both the advantages of ADA and IA, HA can

theoretically provide the smallest time complexity for evaluating

NKDV (cf. Table 3).

1510

Table 3: Time and space complexity of all methods for computing NKDV.
Method Time complexity Space complexity Ref.

RQS O (L(TSP + n)) O (|V | + |E | + n + ISP) Section 2.3 [47, 72, 73]

SPS O (|E |TSP + nL) O (|V | + |E | + n + ISP) Section 2.4 [57]

ADA O
(
|E |

(
TSP + L log

(n
|E |

)))
O (|V | + |E | + n + ISP) Section 3.1

IA O (|E |(TSP + L) +
∑
e∈E N (e)) O (|V | + |E | + n + ISP +

∑
e∈E N (e)) Section 3.2

HA O
(
|E |TSP +min

(
L |E | log

(n
|E |

)
, L |E | +

∑
e∈E N (e)

))
O (|V | + |E | + n + ISP +

∑
e∈E N (e)) Section 3.3

4 EXPERIMENTAL EVALUATION
We first introduce the experimental setting in Section 4.1. Then,

we compare the efficiency performance of all methods in Section

4.2, using Epanechnikov kernel. After that, we further investigate

the efficiency performance of all methods in other kernel functions,

e.g., triangular and quartic kernels, in Section 4.3.

4.1 Experimental Setting
We utilize three categories, police call, crime and traffic accident, of

large-scale real point datasets (with latitude and longitude for each

point) in our experiments. These datasets are the open data (last ac-

cessed: 15
th

October, 2020) from the local governments of different

cities, including Johns Creek [3], Seattle [9], Los Angeles [4] and

New York [5]. For each point dataset, we extract the corresponding

road network from the OpenStreetMap [6]. After that, we integrate

the point dataset into the road network, using the software OSMnx
5

[11]. To further test the scalability of different methods, we also

randomly generate a large-scale synthetic dataset with four million

data points and integrate it into the New York road network. Table

4 summarizes the details of the integrated datasets.

Table 4: Integrated datasets.
Dataset n |V| |E| Category

Johns Creek [3] 609423 3529 8124 Police call

Seattle [9] 862873 11371 31433 Crime

Los Angeles [4] 1255668 36715 111670 Crime

New York [5] 1294779 41467 116081 Traffic accident

New York
Synthetic

4000000 41467 116081 Synthetic

In our experiments, we compare the baseline solutions RQS [47,

72, 73] and SPS [57] with our methods, ADA, IA and HA, as shown

in Table 3. We implemented all methods
6
with C++ and conducted

experiments on an Intel i7 3.19GHz PC with 32GB memory. In this

paper, we use the response time (sec) to measure the efficiency of

all methods and only report the results in which the response time

is smaller than 14400sec (i.e., 4 hours).

4.2 Efficiency Performance of NKDV
Even though our methods can theoretically achieve better efficiency

for computing NKDV (cf. Section 3.4), we do not know the practical

improvement of our methods, compared with the state-of-the-art

methods (i.e., RQS and SPS in Table 3). In this section, we investigate

the practical efficiency of all methods for computing NKDV.

Response time of all methods under the default setting of pa-
rameters: In this experiment, we follow [72] and choose 1000m as

the default bandwidth, i.e.,
1

γ = 1000 and γ = 0.001, and 10m as

the default lixel size for testing. Table 5 summarizes the response

time of all methods. Since ADA, IA and HA achieve lower time

5
https://github.com/gboeing/osmnx

6
The source codes of all methods can be found in this Github repository https://github.

com/edisonchan2013928/Network-Kernel-Density-Visualization-NKDV-Code.

complexity for solving NKDV (cf. Table 3), these three methods

achieve at least 5x speedup, compared with RQS and SPS. We omit

the results of RQS and SPS in the New York
Synthetic

dataset, since

these methods could not generate NKDV within 14400sec.

Table 5: Response time (sec) of all methods with γ = 0.001

and 10m lixel size.
Dataset RQS SPS ADA IA HA

Johns Creek 55.51 52.31 7.49 7.14 7.35

Seattle 894.35 848.43 193.04 174.98 188.51

Los Angeles 12185.39 10818.48 2017.88 1842.09 1868.93

New York 13233.35 11526.83 2116.32 1969.71 1976.91

New York
Synthetic

n.a. n.a. 5128.63 2177.61 2719.18

Varying the lixel size: In this experiment, we vary the lixel size

(5m, 10m, 15m, 20m, 25m and 30m) and measure the response

time of all methods (cf. Table 3). Here, we adopt the default value

γ = 0.001. In Figure 15, once we vary the lixel size from 30m to 5m,

the number of lixels in each edge of the graphG increases. Therefore,

the response time of all methods also increases. However, since

ADA, IA and HA achieve much smaller time complexity, compared

with the methods RQS and SPS, these three methods can provide

5x to 10x speedup in all datasets.

Varying the parameter γ (or bandwidth of kernel function):
We proceed to investigate how the parameterγ affects the efficiency

performance of different methods. We choose five γ values, 0.00005,

0.0001, 0.0002, 0.0005 and 0.001, which correspond to the bandwidth

values, 20000m, 10000m, 5000m, 2000m and 1000m, of the kernel

function (bandwidth = 1

γ), respectively, in this experiment. With

the smaller γ value, i.e., higher bandwidth value, each algorithm

needs to process more data points and edges. As such, once we

vary γ from 0.001 to 0.00005, the response time of all methods can

increase (cf. Figure 16). Observe that no matter which γ we choose

in this range, our methods, ADA, IA and HA can significantly

outperform the state-of-the-art methods, RQS and SPS, by at least

5x (large γ) to 71x (small γ) in all datasets.

Distribution of the response time in different methods: In this

section, we further investigate the response time of two compo-

nents, i.e., shortest path computation in step 1 and FP (q) compu-

tation in step 2, in the two-step framework (cf. Section 2.2) for all

methods. Here, we use two datasets, Johns Creek and Seattle, with

γ = 0.001 andγ = 0.0001 (i.e., 1000m and 10000m bandwidth values,

respectively), for testing. Observe from Figure 17, the computation

time in step 1 (shortest path computation) of RQS method is nor-

mally much smaller, compared with step 2 (FP (q) computation),

where the response time of step 2 occupies more than 80% of the

overall response time. The main reason is that the method RQS

needs to scan more data points, compared with the vertices and

edges, as the number n of data points is much larger than the num-

bers of vertices and edges, i.e., |V | and |E |, respectively, in these

1511

https://github.com/gboeing/osmnx
https://github.com/edisonchan2013928/Network-Kernel-Density-Visualization-NKDV-Code
https://github.com/edisonchan2013928/Network-Kernel-Density-Visualization-NKDV-Code

 0

 20

 40

 60

 80

 100

 120

5 10 15 20 25 30

Ti
m

e
(s

ec
)

lixel size

RQS
SPS
ADA

IA
HA

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

5 10 15 20 25 30

Ti
m

e
(s

ec
)

lixel size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

5 10 15 20 25 30

Ti
m

e
(s

ec
)

lixel size

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

5 10 15 20 25 30

Ti
m

e
(s

ec
)

lixel size

 0

 2000

 4000

 6000

 8000

 10000

 12000

5 10 15 20 25 30

Ti
m

e
(s

ec
)

lixel size

(a) Johns Creek (b) Seattle (c) Los Angeles (d) New York (e) New York
Synthetic

Figure 15: Response time for NKDV with γ = 0.001, varying the lixel size.

 0

 500

 1000

 1500

 2000

 2500

 3000

0.00005 0.0001 0.0002 0.0005 0.001

Ti
m

e
(s

ec
)

γ

RQS
SPS
ADA

IA
HA

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.00005 0.0001 0.0002 0.0005 0.001

Ti
m

e
(s

ec
)

γ

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0.00005 0.0001 0.0002 0.0005 0.001

Ti
m

e
(s

ec
)

γ

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.00005 0.0001 0.0002 0.0005 0.001

Ti
m

e
(s

ec
)

γ

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

0.00005 0.0001 0.0002 0.0005 0.001

Ti
m

e
(s

ec
)

γ

(a) Johns Creek (b) Seattle (c) Los Angeles (d) New York (e) New York
Synthetic

Figure 16: Response time for NKDV with 10m lixel size, varying the parameter γ (or the bandwidth of kernel function).

 0

 20

 40

 60

 80

 100

RQ
S

SP
S

AD
A IA HA

Pe
rc

en
ta

ge
 (

%
)

Method

Step 1 Step 2

 0

 20

 40

 60

 80

 100

RQ
S

SP
S

AD
A IA HA

Pe
rc

en
ta

ge
 (

%
)

Method

Step 1 Step 2

 0

 20

 40

 60

 80

 100

RQ
S

SP
S

AD
A IA HA

Pe
rc

en
ta

ge
 (

%
)

Method

Step 1 Step 2

 0

 20

 40

 60

 80

 100

RQ
S

SP
S

AD
A IA HA

Pe
rc

en
ta

ge
 (

%
)

Method

Step 1 Step 2

(a) Johns Creek (γ = 0.001) (b) Seattle (γ = 0.001) (c) Johns Creek (γ = 0.0001) (d) Seattle (γ = 0.0001)

Figure 17: Percentage of the response time for step 1 and step 2 in the two-step framework for all methods, with γ = 0.001

(1000m bandwidth) and γ = 0.0001 (10000m bandwidth).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

250 500 750 1000 1250

Ti
m

e
(s

ec
)

Data size (x103)

RQS
SPS
ADA

IA
HA

 0

 1000

 2000

 3000

 4000

 5000

 6000

2000 2500 3000 3500 4000

Ti
m

e
(s

ec
)

Data size (x103)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

250 500 750 1000 1250

Sp
ac

e
(M

B)

Data size (x103)

 0

 500

 1000

 1500

 2000

 2500

2000 2500 3000 3500 4000

Sp
ac

e
(M

B)

Data size (x103)

(a) New York (time) (b) New York
Synthetic

(time) (c) New York (space) (d) New York
Synthetic

(space)

Figure 18: Response time (a and b) and space consumption (c and d) for all methods with γ = 0.001 and 10m lixel size, varying
the data size.

 0

 10

 20

 30

 40

 50

 60

0.2 0.4 0.6 0.8 1

Ti
m

e
(s

ec
)

Ratio

RQS
SPS
ADA

IA
HA

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

0.2 0.4 0.6 0.8 1

Ti
m

e
(s

ec
)

Ratio

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0.2 0.4 0.6 0.8 1

Ti
m

e
(s

ec
)

Ratio

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0.2 0.4 0.6 0.8 1

Ti
m

e
(s

ec
)

Ratio

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.2 0.4 0.6 0.8 1

Ti
m

e
(s

ec
)

Ratio

(a) Johns Creek (b) Seattle (c) Los Angeles (d) New York (e) New York
Synthetic

Figure 19: Response time for NKDVwithγ = 0.001 and 10m lixel size, varying the ratio (i.e., size) of the rectangle (i.e., visualized
region).

two road networks (cf. Table 4). Therefore, even though SPS can

reduce the time complexity in step 1, SPS does not show significant

improvement in the efficiency performance, compared with the

RQS method (cf. Figures 15 and 16). On the other hand, since ADA,

IA and HA can significantly improve the efficiency performance in

step 2, the percentage of response time in step 1 for these methods

significantly increases (cf. Figure 17).

Varying the size of the dataset: In this experiment, we test how

the size of the dataset affects the response time and the space

consumption of all methods. Here, we use two datasets for test-

ing, which are New York and New York
Synthetic

. In the New York

dataset, we randomly sample five subsets of data points, where the

sample sizes are 250K, 500K, 750K, 1000K and 1250K. In the New

York
Synthetic

dataset, we randomly generate 2000K, 2500K, 3000K,

1512

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5

Ti
m

e
(s

ec
)

visualized region number

RQS
SPS
ADA

IA
HA

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5

Ti
m

e
(s

ec
)

visualized region number

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 3 4 5

Ti
m

e
(s

ec
)

visualized region number

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1 2 3 4 5

Ti
m

e
(s

ec
)

visualized region number

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5

Ti
m

e
(s

ec
)

visualized region number

(a) Johns Creek (b) Seattle (c) Los Angeles (d) New York (e) New York
Synthetic

Figure 20: Response time for NKDVwith γ = 0.001 and 10m lixel size, using different rectangles (i.e., visualized regions), which
are generated by uniform distribution.

 0

 20

 40

 60

 80

 100

 120

5 10 15 20 25 30

Ti
m

e
(s

ec
)

lixel size

RQS
SPS
ADA

IA
HA

 0

 20

 40

 60

 80

 100

 120

5 10 15 20 25 30

Ti
m

e
(s

ec
)

lixel size

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

5 10 15 20 25 30

Ti
m

e
(s

ec
)

lixel size

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

5 10 15 20 25 30

Ti
m

e
(s

ec
)

lixel size

(a) Johns Creek (Triangular) (b) Johns Creek (Quartic) (c) Seattle (Triangular) (d) Seattle (Quartic)

Figure 21: Response time for NKDV with γ = 0.001, varying the lixel size and using triangular and quartic kernel functions.

 0

 500

 1000

 1500

 2000

 2500

 3000

0.00005 0.0001 0.0002 0.0005 0.001

Ti
m

e
(s

ec
)

γ

RQS
SPS
ADA

IA
HA

 0

 500

 1000

 1500

 2000

 2500

 3000

0.00005 0.0001 0.0002 0.0005 0.001

Ti
m

e
(s

ec
)

γ

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.00005 0.0001 0.0002 0.0005 0.001

Ti
m

e
(s

ec
)

γ

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.00005 0.0001 0.0002 0.0005 0.001

Ti
m

e
(s

ec
)

γ

(a) Johns Creek (Triangular) (b) Johns Creek (Quartic) (c) Seattle (Triangular) (d) Seattle (Quartic)

Figure 22: Response time for NKDV with 10m lixel size, varying the parameter γ and using triangular and quartic kernel
functions.

3500K and 4000K data points for testing. By default, we choose the

parameter γ = 0.001 and the lixel size as 10m. Observe from Figure

18a and Figure 18b, once we increase the size of the dataset, all

methods need to process more data points. As such, the response

time of all methods increase. Since all our methods ADA, IA and

HA are not linearly scalable to the number of data points n (cf.

Table 3), the response time of ADA, IA and HA does not signifi-

cantly increase, compared with the methods RQS and SPS. Observe

that once the data size is larger (e.g., New York
Synthetic

dataset), IA

and HA can further outperform ADA by a visible margin. Figure

18c and Figure 18d report the space consumption of all methods.

Compared with other methods, we observe that IA consumes much

more memory. Since HA further improves the efficiency, compared

with ADA, without consuming huge amounts of memory space, we

consider HA, which combines both the advantages of ADA and IA,

to be the best method for large-scale datasets.

Varying the size of the visualized region: In practice, the users

can also zoom in and visualize the density of different sub-regions

in a city. Therefore, we proceed to test the efficiency performance

of all methods, by adopting different visualized regions.

In the first experiment, we first specify the minimum bounding

rectangle, which covers the whole region of each city (e.g., Johns

Creek in Table 4). This rectangle can represent the visualized region.

Then, we vary the size of this rectangle by multiplying its height

and width with these five values of ratio, 0.2, 0.4, 0.6, 0.8 and 1 (the

original one). As a remark, we utilize the same center for all these

five rectangles. With the smaller value of ratio, the rectangle (i.e.,

visualized region) can cover smaller number of edges (i.e., smaller

number of lixels), which can reduce the response time of different

methods. Observe from Figure 19, our methods ADA, IA and HA

can achieve at least 5x to 10x speedup in all datasets, compared with

the baseline solutions, RQS and SPS, in different sizes, by varying

the ratio, of the visualized region.

In the second experiment, we randomly generate five rectangles

(visualized regions), based on the uniform distribution, inside the

minimum bounding rectangle of each city. Then, we report the

response time of each method, using the increasing order of the

visualized region size (i.e., smaller visualized region number means

that this region has smaller size.), in Figure 20. Observe that our

methods ADA, IA and HA can consistently achieve better efficiency

in all datasets, compared with the state-of-the-art methods RQS

and SPS, no matter which visualized regions we use.

4.3 NKDV with Other Kernel Functions
In this section, we further test the efficiency performance of all

methods with other kernel functions, including triangular and quar-

tic kernels. Here, we use two datasets, which are Johns Creek and

Seattle, for testing. Observe from Figure 21, no matter which kernel

function, either triangular or quartic kernel, we use, our methods

ADA, IA and HA can also achieve at least 5x to 10x speedup with

different lixel sizes, compared with other methods. In addition, since

the time complexity of all methods (cf. Table 3) does not depend

on the chosen kernel function in Table 1, we observe that the same

method can provide similar response time (cf. Figure 21), using the

triangular and quartic kernels.

1513

We proceed to investigate how the response time of all methods

changes, once we change the parameter γ of triangular and quartic

kernel functions. Here, we fix the lixel size as 10m. Observe from

Figure 22, once we vary the parameter γ from 0.001 to 0.00005, i.e.,

larger bandwidth value of the kernel functions, the response time of

all methods increase. However, our methods ADA, IA and HA can

significantly outperform the state-of-the-art methods, including

RQS and SPS, by at least 5x to 73x for both triangular and quartic

kernel functions. Since our methods ADA, IA and HA can reduce

the time complexity for generating NKDV, we also expect that this

time gap can also increase, compared with the baseline methods,

once we further reduce the γ value.

5 RELATEDWORK
Kernel density estimation (KDE) [24, 69] or kernel density visual-

ization (KDV) [13] has been the de facto nonparametric statistical

method for a wide range of applications in different domains, espe-

cially for hotspot detection (cf. Figure 1). However, KDE/KDV is a

very time-consuming operation, which is not scalable to large-scale

datasets [13, 53]. As such, many efficient algorithms have been de-

veloped for evaluating exact or approximate KDE/KDV. Zheng et al.

[82–84] and Phillips et al. [54–56] utilize the sampling methods to

reduce the size of the dataset and then apply the exact KDV method

for the reduced dataset. On the other hand, Chan et al. [13–16],

Gan et al. [22] and Gray et al. [25] develop the efficient and tight

bound functions of FP (q) for different kernel functions (e.g., Gauss-
ian kernel). Raykar et al. [58] and Yang et al. [74] adopt the fast

Gauss transform to efficiently and approximately compute FP (q).
Some researchers also utilize the modern hardware [24, 79] and

parallel/distributed algorithms [82] to further boost the efficiency

for computing FP (q). Although most of these research studies can

improve the efficiency of KDE/KDV, they only regard the events

in the plane. However, most of these events (e.g., traffic accidents

or crime events) are mainly in or alongside the road network [48].

As such, using this planar KDV can provide the inaccurate density

estimation in many geographical applications [20, 30, 38, 48, 60, 73].

In order to provide more accurate density visualization, geo-

graphical researchers [47, 72] propose to only visualize the density

in the road network and replace the Euclidean distance dist(q, p)
by the shortest path distance distG (q, p) in the kernel functions

(cf. Table 1), in which we term this approach as network kernel

density visualization (NKDV). After they formally define NKDV,

many criminologists [34, 60], geoscientists [30, 71] and business

planners [45, 61, 78] have utilized NKDV to identify the hotspot

region. Due to its wide range of applications, Okabe et al. [47]

further develop the plug-in, called SANET [8], for the ArcGIS soft-

ware [1], which can support the evaluation of NKDV. However, like

KDV, computing NKDV is computationally expensive, which has

been complained by many recent studies [43, 57, 78]. Even though

many efficient algorithms have been developed for KDV, there is

no efficient algorithm for computing NKDV which is scalable to

million-sized datasets, to the best of our knowledge.

As discussed in Section 2.2, existing studies [47, 72] adopt the

two-step framework to evaluate NKDV, (1) shortest path distance

computation and (2) FP (q) computation (cf. Equation 2). In step 1,

even though many advanced and efficient algorithms, e.g., hierar-

chical indexing [23], hub labeling [40] and shortest path caching

[35, 68] can significantly improve the practical efficiency for com-

puting the shortest path distance, step 1 is not the bottleneck for

computing NKDV (smaller than 20% in the overall performance for

the baseline solutions RQS and SPS (cf. Figure 17)), especially for

the large-scale dataset P . As such, we still adopt the traditional Dijk-
stra’s method [18] for obtaining the shortest path distance. In step

2, even though many research studies have focused on improving

the efficiency for computing FP (q) in planar KDV (cf. Figure 2a),

e.g., [13, 16, 22, 82, 84], all these research studies do not consider the

network distance in the kernel functions (cf. Table 1). Therefore, it

is not trivial to directly extend these methods in this setting. To the

best of our knowledge, this is the first work which can provide the

theoretically efficient algorithms for computing NKDV, compared

with the state-of-the-art methods RQS [47, 72] (cf. Section 2.3) and

SPS [57] (cf. Section 2.4).

In spatial database community, many research studies also pro-

pose different analytic tasks in the road network, including clus-

tering [75], nearest neighbor queries [50, 76], hotspot detection

[65, 66], route planning [39, 44, 49], traffic analysis [19, 37, 46]

and trajectory analysis [28, 29, 81]. However, most of these studies

either do not need to consider the density of different positions

of the road network or do not utilize the kernel density function

for generating the density. As such, all of these studies cannot be

easily extended to support the NKDV operation, which is used in

geographical applications (e.g., [72]) extensively and supported by

ArcGIS software [1] (via SANET [8]). Among most of the research

studies in spatial database community, Romano et al. [59] develop

the system for supporting spatial-temporal network kernel density

visualization, which can be regarded as the generalization of NKDV.

However, this work does not propose any efficient algorithm for

evaluating the kernel aggregation function.

There are also many other types of visualization techniques

[21, 26, 27, 33, 36, 41, 42, 51, 62, 70], which are not based on NKDV.

However, geographical users [30, 38, 47, 48, 60, 72, 73] mainly utilize

the NKDV to detect the hotspots in road networks. As such, these

research studies cannot be directly applied for this scenario.

6 CONCLUSION
In this paper, we study network kernel density visualization

(NKDV), which has been extensively used in many geographi-

cal applications. However, existing algorithms are not scalable to

million-sized datasets. To achieve significant speedup over the state-

of-the-art methods (RQS [47, 72] and SPS [57]) and existing soft-

ware (e.g., SANET [8] plugin for ArcGIS [1]), we develop three effi-

cient algorithms, namely aggregate distance augmentation (ADA),

interval-based augmentation (IA) and hybrid augmentation (HA).

Theoretically, we show that all our methods can provide lower

time complexity, compared with the state-of-the-art solutions (cf.

Table 3). In practice, ADA, IA and HA can achieve at least 5x to 10x

speedup for computing NKDV.

In the future, we will extend our methods for handling NKDV

with other commonly-used kernel functions. Moreover, like [14],

we also plan to develop an interactive network kernel density visu-

alization system for supporting some meaningful applications, e.g.,

visualizing the COVID-19 cases. Furthermore, we will extend this

work to support spatial-temporal network kernel density visualiza-

tion [59], which is the generalization of NKDV.

1514

REFERENCES
[1] ArcGIS. http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-

kernel-density-works.htm (last accessed: 2020-10-15).

[2] IKCEST: Disaster risk reduction. http://drr.ikcest.org/knowledge_service/ncp.

html (last accessed: 2020-10-15).

[3] Johns Creek open data. https://opendata.atlantaregional.com/datasets/

JohnsCreekGA::police-calls-for-service-archive-2009-to-2018 (last accessed:

2020-10-15).

[4] Los Angeles open data. https://data.lacity.org/A-Safe-City/Crime-Data-from-

2010-to-2019/63jg-8b9z (last accessed: 2020-10-15).

[5] NYC open data. https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-

Collisions-Crashes/h9gi-nx95 (last accessed: 2020-10-15).

[6] Openstreetmap. https://www.openstreetmap.org/ (last accessed: 2020-10-15).

[7] QGIS. https://docs.qgis.org/2.18/en/docs/user_manual/plugins/plugins_heatmap.

html (last accessed: 2020-10-15).

[8] SANET. http://sanet.csis.u-tokyo.ac.jp/ (last accessed: 2020-10-15).

[9] Seattle open data. https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-

Present/tazs-3rd5 (last accessed: 2020-10-15).

[10] M. Bíl, R. Andrášik, and Z. Janoška. Identification of hazardous road locations of

traffic accidents by means of kernel density estimation and cluster significance

evaluation. Accident Analysis & Prevention, 55:265 – 273, 2013.

[11] G. Boeing. Osmnx: New methods for acquiring, constructing, analyzing, and

visualizing complex street networks. Computers, Environment and Urban Systems,
65:126 – 139, 2017.

[12] S. Chainey, L. Tompson, and S. Uhlig. The utility of hotspotmapping for predicting

spatial patterns of crime. Security Journal, 21(1):4–28, Feb 2008.
[13] T. N. Chan, R. Cheng, and M. L. Yiu. QUAD: Quadratic-bound-based kernel

density visualization. In SIGMOD, pages 35–50, 2020.
[14] T. N. Chan, P. L. Ip, L. H. U, W. H. Tong, S. Mittal, Y. Li, and R. Cheng. KDV-

Explorer: A near real-time kernel density visualization system for spatial analysis.

Proc. VLDB Endow., 2021, (To appear).

[15] T. N. Chan, L. H. U, R. Cheng, M. L. Yiu, and S. Mittal. Efficient algorithms for

kernel aggregation queries. IEEE Transactions on Knowledge and Data Engineering,
pages 1–1, 2020.

[16] T. N. Chan, M. L. Yiu, and L. H. U. KARL: Fast kernel aggregation queries. In

ICDE, pages 542–553, 2019.
[17] W. Chen, F. Guo, and F. Wang. A survey of traffic data visualization. IEEE Trans.

Intelligent Transportation Systems, 16(6):2970–2984, 2015.
[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,

3rd Edition. MIT Press, 2009.

[19] D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, R. Yu, and Y. Liu. Latent space model

for road networks to predict time-varying traffic. In SIGKDD, pages 1525–1534,
2016.

[20] M. Deng, X. Yang, Y. Shi, J. Gong, Y. Liu, and H. Liu. A density-based approach

for detecting network-constrained clusters in spatial point events. International
Journal of Geographical Information Science, 33(3):466–488, 2019.

[21] A. Eldawy, M. F. Mokbel, and C. Jonathan. HadoopViz: A mapreduce framework

for extensible visualization of big spatial data. In ICDE, pages 601–612, 2016.
[22] E. Gan and P. Bailis. Scalable kernel density classification via threshold-based

pruning. In ACM SIGMOD, pages 945–959, 2017.
[23] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies:

Faster and simpler hierarchical routing in road networks. InWEA, pages 319–333,
2008.

[24] A. Gramacki. Nonparametric Kernel Density Estimation and Its Computational
Aspects. Studies in Big Data. Springer International Publishing, 2017.

[25] A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward compu-

tational tractability. In SDM, pages 203–211, 2003.

[26] T. Guo, K. Feng, G. Cong, and Z. Bao. Efficient selection of geospatial data on

maps for interactive and visualized exploration. In SIGMOD, pages 567–582, 2018.
[27] T. Guo, M. Li, P. Li, Z. Bao, and G. Cong. POIsam: a system for efficient selection

of large-scale geospatial data on maps. In SIGMOD, pages 1677–1680, 2018.
[28] B. Han, L. Liu, and E. Omiecinski. Road-network aware trajectory clustering:

Integrating locality, flow, and density. IEEE Trans. Mob. Comput., 14(2):416–429,
2015.

[29] B. Han, L. Liu, and E. Omiecinski. A systematic approach to clustering whole

trajectories of mobile objects in road networks. IEEE Trans. Knowl. Data Eng.,
29(5):936–949, 2017.

[30] H. Harirforoush and L. Bellalite. A new integrated gis-based analysis to detect

hotspots: A case study of the city of sherbrooke. Accident Analysis & Prevention,
130:62 – 74, 2019. Road Safety Data Considerations.

[31] T. Hart and P. Zandbergen. Kernel density estimation and hotspot mapping:

examining the influence of interpolation method, grid cell size, and bandwidth

on crime forecasting. Policing: An International Journal of Police Strategies and
Management, 37:305–323, 2014.

[32] S. C. Joshi, R. V. Kommaraju, J. M. Phillips, and S. Venkatasubramanian. Compar-

ing distributions and shapes using the kernel distance. In SOCG, pages 47–56,
2011.

[33] P. K. Kefaloukos, M. A. V. Salles, and M. Zachariasen. Declarative cartography:

In-database map generalization of geospatial datasets. In ICDE, pages 1024–1035,
2014.

[34] S. Khalid, F. Shoaib, T. Qian, Y. Rui, A. Bari, M. Sajjad, M. Shakeel, and J. Wang.

Network constrained spatio-temporal hotspot mapping of crimes in faisalabad.

Applied Spatial Analysis and Policy, 11:599–622, 9 2018.
[35] L. Li, M. Zhang, W. Hua, and X. Zhou. Fast query decomposition for batch

shortest path processing in road networks. In ICDE, pages 1189–1200, 2020.
[36] M. Li, Z. Bao, F. M. Choudhury, and T. Sellis. Supporting large-scale geographical

visualization in a multi-granularity way. In WSDM, pages 767–770, 2018.

[37] P. H. Li, M. L. Yiu, and K. Mouratidis. Discovering historic traffic-tolerant paths

in road networks. GeoInformatica, 21(1):1–32, 2017.
[38] Q. Li, T. Zhang, H. Wang, and Z. Zeng. Dynamic accessibility mapping using

floating car data: a network-constrained density estimation approach. Journal of
Transport Geography, 19(3):379 – 393, 2011. Special Issue : Geographic Information

Systems for Transportation.

[39] Y. Li, H. Su, U. Demiryurek, B. Zheng, T. He, and C. Shahabi. PaRE: A system for

personalized route guidance. In WWW, pages 637–646, 2017.

[40] Y. Li, L. H. U, M. L. Yiu, and N. M. Kou. An experimental study on hub labeling

based shortest path algorithms. Proc. VLDB Endow., 11(4):445–457, 2017.
[41] A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in scatter plots.

IEEE Transactions on Visualization and Computer Graphics, 19(9):1526–1538, Sept
2013.

[42] L. Micallef, G. Palmas, A. Oulasvirta, and T. Weinkauf. Towards perceptual

optimization of the visual design of scatterplots. IEEE Trans. Vis. Comput. Graph.,
23(6):1588–1599, 2017.

[43] M. M. Moradi, F. J. Rodríguez-Cortés, and J. Mateu. On kernel-based intensity

estimation of spatial point patterns on linear networks. Journal of Computational
and Graphical Statistics, 27(2):302–311, 2018.

[44] K. Mouratidis, Y. Lin, and M. L. Yiu. Preference queries in large multi-cost

transportation networks. In ICDE, pages 533–544, 2010.
[45] J. Ni, T. Qian, C. Xi, Y. Rui, and J. Wang. Spatial distribution characteristics

of healthcare facilities in nanjing: Network point pattern analysis and correla-

tion analysis. International journal of environmental research and public health,
13(8):833, 2016.

[46] J. Ni and C. V. Ravishankar. Pointwise-dense region queries in spatio-temporal

databases. In ICDE, pages 1066–1075, 2007.
[47] A. Okabe, T. Satoh, and K. Sugihara. A kernel density estimation method for

networks, its computational method and a gis-based tool. International Journal
of Geographical Information Science, 23(1):7–32, 2009.

[48] A. Okabe and K. Sugihara. Spatial Analysis Along Networks: Statistical and
Computational Methods. Statistics in Practice. Wiley, 2012.

[49] D. Oliver, S. Shekhar, J. M. Kang, R. Laubscher, V. Carlan, and A. Bannur. A

k-main routes approach to spatial network activity summarization. IEEE Trans.
Knowl. Data Eng., 26(6):1464–1478, 2014.

[50] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial

network databases. In VLDB, pages 802–813, 2003.
[51] Y. Park, M. J. Cafarella, and B. Mozafari. Visualization-aware sampling for very

large databases. In ICDE, pages 755–766, 2016.
[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning

in python. Journal of Machine Learning Research, 12:2825–2830, 2011.
[53] A. Perrot, R. Bourqui, N. Hanusse, F. Lalanne, and D. Auber. Large interactive

visualization of density functions on big data infrastructure. In LDAV, pages
99–106, 2015.

[54] J. M. Phillips. ϵ -samples for kernels. In SODA, pages 1622–1632, 2013.
[55] J. M. Phillips and W. M. Tai. Improved coresets for kernel density estimates. In

SODA, pages 2718–2727, 2018.
[56] J. M. Phillips and W. M. Tai. Near-optimal coresets of kernel density estimates.

In SOCG, pages 66:1–66:13, 2018.
[57] S. Rakshit, A. Baddeley, and G. Nair. Efficient code for second order analysis of

events on a linear network. Journal of Statistical Software, Articles, 90(1):1–37,
2019.

[58] V. C. Raykar, R. Duraiswami, and L. H. Zhao. Fast computation of kernel estima-

tors. Journal of Computational and Graphical Statistics, 19(1):205–220, 2010.
[59] B. Romano and Z. Jiang. Visualizing traffic accident hotspots based on spatial-

temporal network kernel density estimation. In SIGSPATIAL, pages 98:1–98:4,
2017.

[60] G. Rosser, T. O. Davies, K. Bowers, S. D. Johnson, and T. Cheng. Predictive crime

mapping: Arbitrary grids or street networks? Journal of Quantitative Criminology,
33:569 – 594, 2017.

[61] Y. Rui, Z. Yang, T. Qian, S. Khalid, N. Xia, and J. Wang. Network-constrained and

category-based point pattern analysis for suguo retail stores in nanjing, china.

International Journal of Geographical Information Science, 30(2):186–199, 2016.
[62] A. D. Sarma, H. Lee, H. Gonzalez, J. Madhavan, and A. Y. Halevy. Efficient spatial

sampling of large geographical tables. In SIGMOD, pages 193–204, 2012.

1515

http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/ how-kernel-density-works.htm
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/ how-kernel-density-works.htm
http://drr.ikcest.org/knowledge_service/ncp.html
http://drr.ikcest.org/knowledge_service/ncp.html
https://opendata.atlantaregional.com/datasets/JohnsCreekGA::police-calls-for-service-archive-2009-to-2018
https://opendata.atlantaregional.com/datasets/JohnsCreekGA::police-calls-for-service-archive-2009-to-2018
https://data.lacity.org/A-Safe-City/Crime-Data-from-2010-to-2019/63jg-8b9z
https://data.lacity.org/A-Safe-City/Crime-Data-from-2010-to-2019/63jg-8b9z
https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95
https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95
https://www.openstreetmap.org/
https://docs.qgis.org/2.18/en/docs/user_manual/plugins/plugins_heatmap. html
https://docs.qgis.org/2.18/en/docs/user_manual/plugins/plugins_heatmap. html
http://sanet.csis.u-tokyo.ac.jp/
https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/tazs-3rd5
https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/tazs-3rd5

[63] D. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. A
Wiley-interscience publication. Wiley, 1992.

[64] J. Steele. The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathe-
matical Inequalities. MAA problem books series. Cambridge University Press,

2004.

[65] X. Tang, E. Eftelioglu, and S. Shekhar. Detecting isodistance hotspots on spatial

networks: A summary of results. In SSTD, pages 281–299, 2017.
[66] X. Tang, J. Gupta, and S. Shekhar. Linear hotspot discovery on all simple paths:

A summary of results. In SIGSPATIAL, pages 476–479, 2019.
[67] A. C. Telea. Data Visualization: Principles and Practice, Second Edition. A. K.

Peters, Ltd., Natick, MA, USA, 2nd edition, 2014.

[68] J. R. Thomsen, M. L. Yiu, and C. S. Jensen. Effective caching of shortest paths for

location-based services. In SIGMOD, pages 313–324, 2012.
[69] M. Wand and M. Jones. Kernel Smoothing. Chapman & Hall/CRC Monographs

on Statistics & Applied Probability. Taylor & Francis, 1994.

[70] D. Wilkie, J. Sewall, and M. C. Lin. Transforming GIS data into functional

road models for large-scale traffic simulation. IEEE Trans. Vis. Comput. Graph.,
18(6):890–901, 2012.

[71] K. Xie, K. Ozbay, A. Kurkcu, and H. Yang. Analysis of traffic crashes involving

pedestrians using big data: Investigation of contributing factors and identification

of hotspots. Risk Analysis, 37(8):1459–1476, 2017.
[72] Z. Xie and J. Yan. Kernel density estimation of traffic accidents in a network

space. Computers, Environment and Urban Systems, 32(5):396 – 406, 2008.

[73] Z. Xie and J. Yan. Detecting traffic accident clusters with network kernel density

estimation and local spatial statistics: an integrated approach. Journal of Transport
Geography, 31:64 – 71, 2013.

[74] C. Yang, R. Duraiswami, and L. S. Davis. Efficient kernel machines using the

improved fast gauss transform. In NIPS, pages 1561–1568, 2004.
[75] M. L. Yiu and N. Mamoulis. Clustering objects on a spatial network. In SIGMOD,

pages 443–454, 2004.

[76] M. L. Yiu, N. Mamoulis, and D. Papadias. Aggregate nearest neighbor queries in

road networks. IEEE Trans. Knowl. Data Eng., 17(6):820–833, 2005.
[77] H. Yu, P. Liu, J. Chen, and H. Wang. Comparative analysis of the spatial analysis

methods for hotspot identification. Accident Analysis and Prevention, 66:80 – 88,

2014.

[78] W. Yu, T. Ai, and S. Shao. The analysis and delimitation of central business

district using network kernel density estimation. Journal of Transport Geography,
45:32–47, 2015.

[79] G. Zhang, A. Zhu, and Q. Huang. A GPU-accelerated adaptive kernel density

estimation approach for efficient point pattern analysis on spatial big data. Inter-
national Journal of Geographical Information Science, 31(10):2068–2097, 2017.

[80] Z. Zhang, D. Chen, W. Liu, J. Racine, S.-H. Ong, Y. Chen, G. Zhao, and Q. Jiang.

Nonparametric evaluation of dynamic disease risk: A spatio-temporal kernel

approach. PloS one, 6:e17381, 03 2011.
[81] Y. Zheng. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol.,

6(3), May 2015.

[82] Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality and efficiency for kernel

density estimates in large data. In SIGMOD, pages 433–444, 2013.
[83] Y. Zheng, Y. Ou, A. Lex, and J. M. Phillips. Visualization of big spatial data using

coresets for kernel density estimates. In IEEE Symposium on Visualization in Data
Science (VDS ’17), to appear. IEEE, 2017.

[84] Y. Zheng and J. M. Phillips. L∞ error and bandwidth selection for kernel density

estimates of large data. In SIGKDD, pages 1533–1542, 2015.

1516

