Towards Cost-Effective and Elastic Cloud Database Deployment
via Memory Disaggregation

Yingqiang Zhang¥, Chaoyi Ruan®', Cheng Li', Xinjun Yang*, Wei Cao*, Feifei Li*, Bo Wang*, Jing
Fangi, Yuhui Wangi, Jingze Huo*", Chao Bi*'
yingqiang.zyq@alibaba-inc.com, rcy@mail.ustc.edu.cn, chengli7@ustc.edu.cn, {xinjun.y, mingsong.cw, lifeifei,
xiangluo.wb, hangfeng fj, yuhui.wyh, jingze.hjz}@alibaba-inc.com, bc233333@mail.ustc.edu.cn
*Alibaba Group and "University of Science and Technology of China

ABSTRACT

It is challenging for cloud-native relational databases to meet the
ever-increasing needs of scaling compute and memory resources
independently and elastically. The recent emergence of memory
disaggregation architecture, relying on high-speed RDMA network,
offers opportunities to build cost-effective and elastic cloud-native
databases. There exist proposals to let unmodified applications
run transparently on disaggregated systems. However, running
relational database kernel atop such proposals experiences notable
performance degradation and time-consuming failure recovery,
offsetting the benefits of disaggregation.

To address these challenges, in this paper, we propose a novel
database architecture called LegoBase, which explores the co-design
of database kernel and memory disaggregation. It pushes the mem-
ory management back to the database layer for bypassing the Linux
I/O stack and re-using or designing (remote) memory access opti-
mizations with an understanding of data access patterns. LegoBase
further splits the conventional ARIES fault tolerance protocol to
independently handle the local and remote memory failures for fast
recovery of compute instances. We implemented LegoBase atop
MySQL. We compare LegoBase against MySQL running on a stan-
dalone machine and the state-of-the-art disaggregation proposal
Infiniswap. Our evaluation shows that even with a large fraction of
data placed on the remote memory, LegoBase’s system performance
in terms of throughput (up to 9.41% drop) and P99 latency (up to
11.58% increase) is comparable to the monolithic MySQL setup, and
significantly outperforms (1.99%x-2.33X%, respectively) the deploy-
ment of MySQL over Infiniswap. Meanwhile, LegoBase introduces
an up to 3.87x and 5.48x speedup of the recovery and warm-up
time, respectively, over the monolithic MySQL and MySQL over
Infiniswap, when handling failures or planned re-configurations.

PVLDB Reference Format:

Yinggiang Zhang, Chaoyi Ruan, Cheng Li, Xinjun Yang, Wei Cao, Feifei Li,
Bo Wang, Jing Fang, Yuhui Wang, Jingze Huo, Chao Bi. Towards
Cost-Effective and Elastic Cloud Database Deployment via Memory
Disaggregation. PVLDB, 14(10): 1900 - 1912, 2021.
doi:10.14778/3467861.3467877

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 10 ISSN 2150-8097.
doi:10.14778/3467861.3467877

1 INTRODUCTION

With the increasing migration of applications from on-premise data
centers to clouds, cloud-native relational databases have become a
pivotal technique for cloud vendors. By leveraging modern cloud
infrastructures, they provide equivalent or superior performance to
traditional databases at a lower cost and higher elasticity. As a con-
sequence, in recent years, major cloud vendors have launched their
own cloud-native databases, such as Amazon Aurora[42], Azure Hy-
perscale [15, 30], Google Spanner [14] and Alibaba PolarDB[9, 10].

However, even the state-of-the-art cloud-native databases still
embrace the monolithic server architecture where CPU and mem-
ory are tightly coupled. This makes it hard to fulfill the ever-
growing and highly elastic resource demands from web-scale appli-
cations [36, 38]. For example, analytic queries favor a large amount
of memory, which may exceed the capacity of a single machine,
and would experience significant performance degradation when
the working set does not fit into memory. In addition, the CPU uti-
lization of database instances could be low most of the time [11, 32],
but occasionally may reach high levels when handling bursty traffic
, e.g., a promotion event. With the monolithic architecture, scaling
down/up the memory or CPU resources after provisioning them
in a server may cause resource fragmentation or failure [20, 43].
Furthermore, since the memory resource occupied by a single in-
stance cannot be allocated across server boundaries, the unused
and available memory resource scattered across the cluster are not
easily harvested and utilized, resulting in a waste of resources. For
example, one of the Alibaba clusters’ memory utilization varies
between 5%-60% over 80% of its running time [11].

With the rapid evolution of networking techniques, there is great
potential for building a cost-effective and elastic cloud-native data-
base based on memory disaggregation. Most of the recent proposals
such as LegoOS [40] and Infiniswap [22] are implemented in the
operating system layer, hiding accesses to remote memory resource
within interfaces like virtual block device interfaces and virtual
memory mapping, and expose them transparently to unmodified
memory-intensive applications. In this paper, we pay attention to
apply these general-purpose proposals to support databases and
understand their performance implications. Interestingly, the inte-
gration results in a significant performance loss. This performance
gap stems from two factors: (1) every remote page access needs to
go through the full Linux I/O stack, which takes nearly an order of
magnitude longer than the network latency; and (2) the database-
oblivious memory management (e.g. cache eviction) neglects the

*Yinggiang Zhang and Chaoyi Ruan equally contributed to this work.

1900

https://doi.org/10.14778/3467861.3467877
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3467861.3467877

unique data access patterns of database workloads, resulting in
significantly higher cache miss ratio.

Last but not least, another advantage of memory disaggregation
is to enable fine-grained failure handling of CPU and memory re-
sources, since they are decoupled and disseminated, and will not fail
at the same time. However, the database kernel is still monolithic
and cannot use the advantage of disaggregation to improve avail-
ability. In particular, the current fault tolerance mechanism prevents
from handling failures of local and remote memory independently,
and leads to a time-consuming failure recovery.

To address the above problems, we propose LegoBase, a novel
cloud-native database architecture to exploit the full potential of
memory disaggregation, with the following contributions:

First, we advocate to co-design database kernel with disaggrega-
tion. Unlike general purpose solutions that emphasize transparency
for database, we instead extend the buffer pool management mod-
ule in database kernel to be aware of remote memory, which could
entirely bypass the cumbersome Linux I/O stack. Furthermore, it
allows us to explore optimization opportunities brought by tracking
data access patterns for database workloads, and utilize well studied
optimizations that already exist in database kernel, such as the LRU
mechanism for page management in the buffer pool.

Second, we propose a novel two-tier ARIES protocol to handle
failures of compute nodes and the remote memory, independently.
Since the compute node and the remote memory are unlikely to
fail at the same time, we can use the data cached in the remote
memory to accelerate the reboot process of the compute node. This
protocol evolves the traditional ARIES algorithm by tiering the
operations of flushing dirty page and creating checkpoint into two
layers. The compute node treats the remote buffer as a persistence
layer, and flushes dirty pages and creates first-tier checkpoints to it
at a high frequency. Furthermore, we offload the duty of ensuring
data persistence to the remote memory, which directly flushes dirty
pages to underlying storage and create second-tier checkpoints.

Finally, we implement a prototype system of LegoBase on the
codebase of MySQL. We intensively evaluate LegoBase with TPC-
C, TPC-H, Sysbench and a production workload. Our evaluation
results show that even with a large fraction of data placed in the re-
mote memory, LegoBase’s system performance in terms of through-
put and latency is comparable to the monolithic MySQL setup, and
significantly outperforms running MySQL over Infiniswap. Mean-
while, the recovery and warm-up time for LegoBase is much faster
than both the monolithic MySQL and MySQL over Infiniswap, dur-
ing failure handling or elastic re-configurations.

2 BACKGROUND AND MOTIVATION

2.1 Cloud-native Relational Databases

A number of cloud-native database systems have been proposed
and designed, for example, Amazon Aurora[42], Microsoft Azure
SQL Database [15, 30], Google Spanner [14] and Alibaba PolarDBJ[9,
10]. They offer similar interfaces as the traditional ones but with
significant innovations to leverage the modern cloud infrastructures
for better performance, scalability, availability and elasticity [31, 41].
Thus, they have become the building blocks for hosting data and
serving queries for a wide range of applications such as e-payment,
e-commerce, online education, and gaming.

1901

Compute Node Compute Node

Monolithic DB Monolithic DB
Network
[l Data | | Log | |Checkpoint|] Storage

Figure 1: Architecture of cloud-native relational databases.
100%

50%

0%

2020-12-26 2020-12-28 2020-12-30

Figure 2: The varied CPU utilization of a representative Al-
ibaba workload within 7 days.

Figure 1 illustrates the architecture of a typical cloud-native re-
lational database. It consists of two major system components: (1)
a scale-out persistent storage layer hosts the actual data and write-
ahead logs for achieving fault tolerance, which is often a distributed
file system or object store; and (2) a compute instance running in
a container, which still includes most of the software modules of
a traditional database kernel such as SQL execution engine, trans-
action manager, recovery daemon, etc. To offer fast responses, the
compute instance caches data loaded from the storage layer in its
local memory buffer as much as possible.

2.2 Elastic Resource Demands

A large number of applications relying on databases are memory-
intensive. Our study and other work [2, 22] identified that they favor
a large amount of memory allocation and suffer from significant
performance loss when their working sets cannot fit into memory.
In addition, their CPU utilizations vary a lot from time to time.
Figure 2 shows the 7-day CPU usage ratios of a representative
workload from Alibaba cloud with high variation. Most of the time,
the CPU utilization is below 50% or even lower. However, it can
reach up to 91.27% at peak for short time periods.

Customers who pay for the use of cloud-native databases would
expect an elastic deployment, which enables to scale up/down mem-
ory and CPU resources independently for achieving sustained high
throughput and low latency when adapting to workload changes
under their monetary constraints. Similarly, cloud vendors also ap-
preciate flexible resource allocation to better meet various customers’
requirements, improve hardware utilization, and reduce hardware
investment. However, the current monolithic server-centric re-
source allocation and software design pattern are not a good fit for
the fast-changing cloud hardware, software, and cost needs.

2.3 Resource Disaggregation

With the rapid development of scalable and fast network technolo-
gies such as RDMA, resource disaggregation, where hardware re-
sources in traditional server are distributed into network-connected
isolated components, is a promising solution to meet the elastic re-
source allocation demands and has started to gain wide support and

30 T T T 500 T T T

_ 100%
0251 _400f 75% =1
E_zo L o 50% .
- >300 | R
215} 2

= 2200 - b
10 s

£ st 100 - 1

0

50%

100%
(a) TPC-C Infiniswap

75% Q3 Q12 Q15

(b) TPC-H Infiniswap

Figure 3: Performance numbers of TPC-C and TPC-H
achieved by running MySQL over Infiniswap with its work-
ing set in memory (possibly spanning across local and re-
mote buffer). Here, we have three memory configurations
with 100%, 75% and 50% local memory buffer ratios. For TPC-
C, we set the warehouse parameter to 200 and use a 20GB
dataset, while setting the scale factor to 30 and populating
the database with 40GB data for TPC-H.

popularity [3, 19, 40]. Here, we focus on memory disaggregation,
which is in high demand for memory intensive database applica-
tions and the start-of-the-art cloud-native databases already decou-
ple storage from computation. Recent proposals like Infiniswap[22]
and Leap [2] fall into this category and expose a remote memory
paging system to unmodified applications, or some proposals like
LegoOS [40] design a new OS architecture for hardware resource
disaggregation. However, when applying the start-of-the-art mem-
ory disaggregated architectures to the database context, we find
that they fail to achieve promising benefits in terms of performance
gains and elastic deployment.

First, to understand the performance bottlenecks, we run MySQL
over Infiniswap with two widely used workloads TPC-C and TPC-H.
Figure 3 summarizes the impact of the local buffer size on through-
put and query latency of the two workloads. Across all memory
configurations, memory space may span over local and remote
buffer but the working set of the corresponding workload can al-
ways fit into memory. We observe that moving more data from
local buffer to remote memory has negative impacts on the overall
performance. For instance, with regard to TPC-C, we observe a
39.5% drop in system throughput when allocating 25% remote mem-
ory, compared to the monolithic architecture (denoted by “100%”),
where all memory space is local. Furthermore, decreasing the local
memory ratio from 75% to 50%, the performance becomes worse
and is only 49.8% of the best performing monolithic architecture.
Similar performance degradation trends are observed for TPC-H.
Here, we report the latency comparison of three selective queries.
Overall, the query latency significantly increases as the local mem-
ory ratio decreases. For instance, the query latencies of the “75%”
and “50%” memory allocation are 1.59 - 2.93 X and 1.87 - 3.72 X of
that of “100%”, respectively.

The performance inefficiencies are mainly contributed by the
ignorance of the unique characteristics of a database system with a
general and transparent memory disaggregated architecture. First,
to avoid introducing significant changes to hosting applications,
Infiniswap manifests itself as a Linux kernel module. However, this
transparent design imposes extra high overhead due to its slow
data path. For example, accessing a remote 4KB page in Infiniswap
takes roughly 40 us [2], while the latency of a one-sided RDMA
4KB write/read operation takes only 4-6 ps. Second, Infiniswap

1902

200 T T T T
Recovery mmmm
Warm-up 1
150 - 1
z
- L
.§100
=
50

MysQL 1s-75% 1s-50%

LegoBase-50%

Figure 4: The recovery performance comparison when re-
booting a MySQL instance with TPC-C atop three setups,
namely, the monolithic architecture, Infiniswap (Is), and our
system LegoBase. The database size is 50GB.

achieves low cache hit ratios and introduces a significant number of
RDMA operations, which are still much slower than local memory
accesses. The reasons are three-fold: (1) it is not aware of data access
patterns inside a database kernel, and may place in the remote buffer
temporary or client session related data that occupy a small fraction
of memory space but are frequently visited; (2) we find that the
OS LRU cache algorithms are less effective to keep hot data locally
and find candidates for page eviction, compared to the highly-
optimized ones used by databases. However, the general solution
sitting in OS cannot use these advanced algorithms; and (3) Virtual
memory in OS exposes fixed-sized pages to applications (typically
4KB). However, database data exhibits variable page sizes ranging
between 2KB to 16KB. It would cause multiple RDMA operations
for a single database page access. Throughout our measurement,
the RDMA operation latency is not proportional to the page sizes,
e.g., with the 25Gbps RDMA, accessing a 16KB remote page takes
11.2 ps, only 30% higher than that of an 8KB page.

Apart from the performance issue, though disaggregated re-
sources like CPU and memory are the unit of independent allocation
and failure handling by concept, the state-of-the-art solutions fail to
provide fast responses to failures or planned hardware operations,
which are considered to be more important when running mission-
critical and memory-intensive applications. To understand this, we
crash a MySQL instance atop Infiniswap with the TPC-C workload
and different remote memory ratios when its system performance
becomes stable, and measure the fail-over time costs. We measure
the recovery time corresponding to the process to restore the in-
consistency states right before crashes to the latest checkpoint. We
also measure the warm-up time, which corresponds to the time
spent in populating all local and remote memory buffers. We also
compare the time costs against the monolithic architecture and our
proposal LegoBase. In Figure 4, both monolithic architecture and
Infiniswap take a long time to recover inconsistent states, e.g., 160
seconds. Similarly, they also experience a much longer warm-up
time, e.g., 50-61 seconds. However, Infiniswap introduces a 45.7%-
55.7% increase in the warm-up time. This is because there are a
significant number of RDMA operations for filling in the remote
memory buffer with memory pages that need to be swapped out
from the local memory buffer (which is already full). Again, the
higher remote memory ratio leads to a longer warm-up time. Finally,
unlike these baselines, our novel memory disaggregated solution
LegoBase significantly enables fast rebooting. For instance, with
50% remote memory, it introduces a up to 3.87X and 5.48% speedups

of the recovery and warm-up time, respectively, compared to both
monolithic and Infiniswap.

We identify the above inefficiency stemming from mismatches
between the memory disaggregated architecture and the conven-
tional monolithic software design, particularly, the traditional fault
tolerance mechanism. Though memory is split across local and
memory buffers in the context of memory disaggregation, the con-
ventional designs such as Infiniswap still treat the two buffers as an
entirety. Therefore, when a local compute node crashes, the whole
memory space should be recovered by replaying the write-ahead
logs. This would result in slow recovery considering the remote
buffers are much larger than local ones and contain a large num-
ber of dirty pages. In addition, this precludes the opportunities to
reuse the data already cached in the remote buffers when scaling
up/down the compute node.

3 DISAGGREGATED DATABASE
ARCHITECTURE

3.1 Design Rationale

Based on the aforementioned problems, in this paper, we advocate
the co-design of database kernel and memory disaggregation to
exploit the full potential of flexible memory and CPU resource
allocation in the context of cloud-native database, and we are the
first to materialize it in practice. We propose LegoBase, a novel
cloud-native relational database architecture. It evolves the state-of-
the-art designs such as Aurora, HyperScale and PolarDB, where the
persistent storage is already decoupled from the rest of database
logic, to further remove the binding between CPU and memory
resources. LegoBase significantly differs from the existing general
memory disaggregation proposals like LegoOS, Infiniswap and Leap
by the following design considerations.

The first consideration is to close the performance gap between
the monolithic setups and memory disaggregated ones. To do so,
we push the memory management and remote memory access back
to the database layer rather than the underlying Linux kernel. This
provides us with three benefits for achieving better performance
compared to the aforementioned database-oblivious solutions: 1) we
make the remote memory page access completely bypass the time-
consuming kernel data path and avoid the benefits of using RDMA
to be offset by the kernel traversing time cost (usually 30 ps [2]);
(2) we can retain the sophisticated design of the LRU mechanism
used in the conventional relational database such as MySQL, which
we find much more effective than the similar counterparts used
in the Linux kernel; and (3) we could explore database-specific
optimizations such as clever metadata caching and dynamic page
alignment w.r.t access patterns and data layout for reducing the
number of remote communication steps.

Second, to mitigate the problems related to fault tolerance, we re-
architecture the fault tolerance mechanism, which enables the local
and remote node to handle faults independently as much as possible.
In more detail, changes to both local and remote memory need to be
protected via dirty page flushing and checkpointing. We treat the
remote memory as another persistence layer and first flush dirty
pages in the local buffer to remote memory and create checkpoints
there. This can be done efficiently at high speed since flushing
to remote memory via RDMA is two orders of magnitude faster

1903

Compute Node (cNode) Global Memory Cluster

[SQL Engine]
Read
S TRead S Write E Remote
i Buffer
Local Buffer : Manager
ioeg Light Fauit Remote Buffer Pool
i Tolerance Flush
R‘"'Rffef,'," oy Daemon) Heavy Fauit Tolerance
i Daemon
R(-?ad Read/Write Log Flush

Persistent Shared Storage

Figure 5: LegoBase overview. Three components are con-
nected by our highly-optimized RDMA library.

than flushing to the persistent shared storage. When only the local
buffer crashes, its recovery from the checkpoints stored on remote
memory can be extremely fast since only quite a few pages that
need to be restored between the last checkpoint and the crash point.
However, we still need to handle remote memory crashes, which
may lead to data loss. To do so, we introduce another level of fault
tolerance mechanism to the remote memory side, which flushes
dirty pages shipped from the local memory and the generated big
checkpoints to persistent storage. When remote memory crashes,
its recovery process resorts to the traditional database recovery.

3.2 Overall Architecture

Figure 5 gives a high-level overview of LegoBase. This new struc-
ture consists of three key components, namely, (1) Persistent Shared
Storage (pStorage), which employs the replication protocols for stor-
ing write-ahead logs, checkpoints and database tables, (2) Compute
Node (cNode), which performs SQL queries by consuming data from
pStorage, and (3) Global Memory Cluster (gmCluster), which could
allocate infinite remote memory to hold the bulk of cNode’s working
set that cannot fit into its local memory. All these three components
are connected by RDMA network for fast data access. Note that
we rely on pStorage to offer data availability and database crash
consistency in the presence of failures.

Within cNode, we retain the design of a traditional relational
database, where a SQL engine executes SQL queries by interacting
with a Local Buffer Manager, which manages a small amount of
local memory buffer (e.g., 64MB-1GB) for hosting some hot memory
pages. However, different from its original monolithic setup, the
bulk of its memory pages are stored in the remote buffer pools
allocated and managed by gmCluster. Thus, we then introduce a
Remote Buffer Agent, which acts as the proxy of gmCluster, caches
the necessary metadata (such as remote page addresses and identi-
fiers) and performs fast reads and writes to the remote buffer pools
managed by gmCluster. Additionally, to support fast recovery of
cNode, here LegoBase augments cNode with a Light Fault Tolerance
Daemon, which performs exactly the same logic with the following
changes. It persists write-ahead logs (WAL) to pStorage as usual,
but pushes checkpoints and dirty pages at higher frequency to
gmCluster rather than pStorage.

gmCluster spans across multiple physical servers and harvests
their spare memory to form a number of Remote Buffer Pools,
each of which consists of a large number of memory pages and is

PagelD Location

Table1-p2 p2_ptr

SQL Execution
Engine

—————>| Tablel-p1

pi_ptr

PID:Table1-p2
LDP:NULL

PHASH_LBP

:
EEmm= R
O0xFD OxFF O0xBA 0xCB

Local Buffer Pool (LBP)

Local
Page Allocator

PagelD Location

Table1-p2 p2_ptr

i PHASH_RBP.

Persistent Shared Storage

Figure 6: Local and remote memory management in LegoBase. The dotted arrows represent page accesses from local buffer
pool, while the solid arrows correspond to the remote page accesses via the locally cached remote address pointers. And the
dashed arrows indicate page accesses from persistent shared storage.

allocated for one cNode upon request. We employ a Remote Buffer
Manager to take care of all these pages and serve the read and write
requests from cNode. Finally, to retain the fault tolerance guarantees,
we offload the original checkpointing and dirty page flushing logics
from cNode to the Heavy Fault Tolerance Daemon residing on the
memory node of gmCluster, which allows independent recovery of
local and remote buffers and easy re-usage of remote buffers. Due
to its light management cost, gmCluster does not require dedicated
servers; instead, it can co-locate with other workloads.

Figure 6 also depicts the different types of LegoBase I/O traffics.
When the SQL Engine needs to read a memory page, it first con-
sults the Local Buffer Manager to locate the target page in local
memory buffer. If missed, it continues to ask the Remote Buffer
Agent to read the target page remotely. When the requested page
is neither in local nor remote buffer, cNode reads it from pStorage.
Upon the completion of a write request, cNode writes its WAL log
entries to pStorage to prevent data loss in presence of failures. ¢cN-
ode treats gmCluster as another layer of persistence, and its Light
Fault Tolerance Daemon periodically flushes cold dirty pages in its
local buffer to its remote buffer pool on gmCluster, as well as the
corresponding checkpoints. On the remote side, the Heavy Daemon
also periodically collects dirty pages from the Remote Buffer Pool
and flushes them to pStorage for generating checkpoints.

4 DATABASE-AWARE MEMORY
DISAGGREGATION

4.1 Local and Remote Memory Management

In Figure 6, we introduce two layered buffer pools to the compute
node for hosting hot data pages in both local and remote memory
spaces. When booting a compute node, we first allocate its local
buffer pool as a contiguous memory space with a pre-defined size.
In addition, gmCluster aggregates memory space from multiple
physical servers together to form a distributed shared memory.
LegoBase’s remote shared memory space consists of many remote
buffer pools that are the unit of address mapping, the unit of recov-
ery, and the unit of registration for RDMA-enabled NICs. When a
cNode is launching, we also allocate a remote buffer pool consisting
of the requested number of memory pages for it. It is worth noting

1904

that the local buffer pool is small and serves as a cache of the most
recently used pages for the remote large buffer pool.

Each page has a metadata frame, which includes a page identifier
(e.g., table id in the database namespace plus the offset of the target
page in that table) inherited from the upper SQL execution engine,
and two address pointers pointing to its address in either local and
remote buffer. Free pages’ page identifiers are NULL, while cached
pages’ metadata attributes are properly set. We appoint a Local
Page Allocator for cNode and a Remote Page Allocator for
gmCluster with similar logics to manage metadata frames of and
allocate free pages when accessing pages that are either not locally
cached or only on pStorage.

We employ two LRU lists in cNode to organize metadata frames
of most recently used memory pages for local and remote buffer
pools, respectively. LRU_LBP links metadata frames of pages that
are cached in both local and remote buffer pools, while LRU_RBP
manages metadata of pages that have already been evicted from
local to remote. This design allows us not only to enjoy the existing
database-optimized LRU implementation for managing the local
memory buffer, but also to cache necessary metadata of remote
memory pages (e.g., their remote memory addresses) for enabling
fast RDMA one-sided operations. We make the Remote Buffer Agent
manage LRU_RBP in cNode.

Finally, to quickly locate a page requested by the upper SQL
execution engine, cNode contains a hash-table PHASH_LBP, which
maps a page identifier to the metadata frame of the relevant page
in two LRU lists. Non-existence results from the hash table lookups
indicate the requested pages are not cached and should be loaded
from pStorage. There is a similar hash table PHASH_RBP in gmCluster,
which is used to accelerate the remote page address lookups when
cNode reboots and its LRU_RBP is not populated yet.

cNode includes four RDMA-based operations to communicate
with gmCluster to co-manage remote memory pages as follows:

o Register: When cNode loads a non-cached page from pStorage, it
must register that page in both remote and local buffer. To do so,
cNode sends the page id to gmCluster’s Remote Page Allocator,
which then allocates a free remote page and updates PHASH_RBP.
Next, gmCluster returns the page’s remote address directly to
cNode by a one-sided RDMA Write operation. Finally, Local

Page Allocator finds a free local page and places its metadata
frame with both local and remote addresses set onto LRU_LBP.
DeRegister: When the remote buffer pool is full, we need to
recycle remote memory space. To achieve this, cNode collects a
few candidate pages from LRU_RBP and sends their page ids to
gmCluster. Upon arrival, Remote Page Allocator initiates the
space recycling task, which will be jointly executed by our page
eviction (Section 4.3) and flushing mechanisms (Section 5.1).
Read: Since the pages’ remote addresses are cached in LRU_RBP
most of the time, when cNode wants to read a remotely cached
page, it goes through the fast path, and just needs to use a RDMA
Read to directly access gmCluster’s memory with no gmClus-
ter CPU involvement. However, when the remote address is not
cached, remote reads will execute the normal path, where gmClus-
ter should be involved for performing the PHASH_RBP lookups.
Flush: We allow cNode to flush dirty pages to its remote buffer
pool for either space recycling or fault tolerance (Section 5).

4.2 Memory Page Access

Read paths. When reading a memory page, the upper layer SQL
engine first queries PHASH_LBP to obtain the target page’s metadata
organized by the two LRU lists. In total, there are three major read
paths in LegoBase (Figure 6). First, if the page metadata tells this
page is locally cached, then LegoBase reads that page directly from
the local buffer pool using its local address pointer. Upon loading a
remotely cached page, Local Page Allocator on cNode first tries
to get a local free page which will be filled with remote content
via an RDMA read operation. Next, it needs to finalize this remote
loading by removing its metadata frame from LRU_RBP, which is
then injected to LRU_LBP with the local address pointers set.

Finally, where the requested page is not found in both buffer
pools, we need to read it from pStorage. Similar to the above remote
page reading, we first obtain a free local page pjocq from Local
Page Allocator and create a connection between the requested
page id and pj,q4;’s metadata frame in PHASH_LBP for future visits.
Then, we overwrite this free page by the content loaded from pStor-
age. Next, cNode registers this page to the remote buffer pool by
making Remote Page Allocator to allocate a free remote page for
accommodating the newly read data with PHASH_RBP accordingly
updated. In the end, cNode properly sets the address pointers of
Plocal s metadata frame, which is then linked into LRU_LBP.

It is worth mentioning that we assume that there are always
free pages left for allocation requests along the above paths. With
regard to cases where no free pages are available, we have to trigger
the page eviction process either locally or remotely (Section 4.3).
Write paths. The way we handle write requests looks quite similar
to reads, since writing a page needs to pull the old content to the
local buffer pool via one of the three read paths presented above.
Once the requested page is prepared, we overwrite its content and
flag it as “dirty”. The background flush threads are responsible for
writing dirty pages to gmCluster for fault tolerance, and we will
expand the discussion on dirty page flushing in Section 5.

4.3 LRU and Page Eviction

We manage the two LRU lists differently. First, we apply a similar
least recently used (LRU) algorithm used in MySQL [34], highly

1905

optimized for relational database workloads, to manage LRU_LBP.
When the room is needed to add a new page to the local buffer
pool, the least recently used page is evicted and a new page is
added to the middle of that list. This midpoint insertion strategy
partitions LRU_LBP into two parts, namely, the young sub-list (at
head) containing most recently accessed pages, while the old sub-
list (at tail) including aged pages. The position of the middle point
is configurable to adapt to different temporal and spatial localities.
Accessing a cached page makes it become “young”, moving it to
the head of the young sub-list. For local memory reclamation, we
just need to evict pages from the tail of the old sub-list.

Unlike LRU_LBP, we use a simpler LRU algorithm to manage
LRU_RBP with no midpoint insertion strategy. This is because all
pages in that list are retiring from LRU_LBP and we do not insert
new pages to it. When no free remote pages are left, for making
room for new pages in the remote buffer, cNode needs to recycle
pages from the tail of LRU_RBP. For dirty pages, we have to flush
them back to pStorage for data persistence.

There exist two types of LRU eviction, namely, LRU_LBP eviction
and LRU_RBP eviction. Concerning the LRU_LBP eviction, when no
free pages are available in the local buffer, cNode will scan the tail
of the old sub-list of LRU_LBP to find the coldest page as an eviction
candidate. There are two possible cases. First, if the selected eviction
page is unmodified, we will simply move its metadata frame from
LRU_LBP to LRU_RBP. Second, if that page is dirty, then we have
to flush its content to the remote buffer, followed by returning it
to Local Page Allocator for future allocation and moving its
metadata frame from LRU_LBP to LRU_RBP.

The LRU_RBP eviction looks slightly different from the LRU_LBP
counterpart. When all free pages of the remote buffer are used
up, cNode will find a remote page eviction candidate premore from
the tail of LRU_RBP and execute a DeRegister operation against
gmCluster with premote’s page id as the parameter. If this page is
unmodified, we simply return it back to Remote Page Allocator
and delete its relevant entries from both PHASH_RBP and PHASH_LBP.
However, when premore is dirty, we have to additionally make
gmCluster flush its content to pStorage prior to executing the similar
steps as the unmodified pages.

Finally, page eviction can take longer when it involves dirty page
flushing. To remove its negative performance impact on the SQL
query processing critical path, we appoint a background thread
to periodically release cold pages whenever needed. To trigger
this procedure, we reserve a fixed number of free pages for cheap
allocation. In our practice, we find setting it to 100 is sufficient.
When the number of free pages drops below that threshold, the
background thread will be woken up to scan both LRU lists and
recycle least used pages, possibly flushing dirty pages from local to
remote or remote to pStorage.

4.4 Efficient RDMA-based Communication

We rely on fast RDMA network to close the performance gap be-
tween local and remote page accesses. However, unlike the tradi-
tional usage of RDMA, we adapt it to take into account the unique
I/O characteristics of databases as follows.

One-sided RDMA operations. We intensively use one-sided RDMA
operations issued by cNode to gmCluster to achieve high perfor-
mance with low CPU overhead. However, the difficulty we face
here is to notify gmCluster when the corresponding operations
complete. There are two possible notification techniques such as
memory address polling and event driven, which behave differently
and have various system implications. First, the polling method
incurs negligible overhead at a high cost of gmCluster’s CPU utiliza-
tion. Therefore, we assign it to handle latency-sensitive LegoBase
operations such as register, read and write, which will affect user
experience. In contrast, second, the event driven method consumes
little CPU resource but incurs high latency. Thus, we use it for the
background evict operations.

Variable-sized database pages. The page sizes in modern data-
base systems range from 2 to 16 KB. However, it is difficult to enable
dynamic variable-sized page allocation, since using RDMA requires
us to register the remote memory space when bootstrapping cN-
ode. Therefore, LegoBase uses fixed-size pages (typically 16KB) as
the unit of memory management. This design avoids splitting one
database page remote access into a few RDMA operations, which is
instead performed by OS-level disaggregated solutions. However,
this also introduces two challenges to handle pages smaller than
16KB. First, when accessing a 2KB page, one would read the entire
16KB remote page, resulting in poor network performance and un-
necessary bandwidth usage. To address this, we allow each RDMA
operation to take a length parameter to indicate its actual data size
and ignore the padding data when transferring data from gmCluster
to cNode. Second, using fixed-sized paging for variable-sized pages
would lead to memory fragmentation. Here, we adopt the buddy
algorithm [28] to reassemble the unused space of allocated pages
into 16KB free pages again in the background.

5 FAULT TOLERANCE AND STATE
RECOVERY

Memory disaggregation offers a great opportunity to consider the
local and remote state separately to accelerate the recovery stage.
However, the current fault tolerance mechanism such as ARIES[33]
still treats the two separated memory spaces as an entirety, and
thus fails to exploit such opportunity. To address this fundamental
inefficiency, we extend the success of hardware disaggregation to
the software context to recover local and remote states indepen-
dently. In particular, we would re-use the large alive remote buffer
when only cNode crashes. The challenge here is to help ¢cNode ob-
tain a consistent view of states residing in the remote buffer. To do
so, we introduce a novel Two-tier ARIES Fault Tolerance protocol,
where each tier summarizes and protects either local or remote
memory space. The first tier involves the interactions between
cNode and gmCluster for fast recovery, while the second tier is
between gmCluster and pStorage for normal recovery when the
whole application including local and remote space crashes.

5.1 Two-tier ARIES Protocol

Figure 7 illustrates the workflow of our two-tier ARIES mechanism.
When receiving modification requests (e.g., insert, update and delete)
from a transaction executed by the upper transaction manager, to
prevent data loss, we follow the original design to make cNode

1906

Transaction Manager ‘

(1) modification (@) ack
N N

Local Buffer Poo! (LBP)

®

LFT Daemon

Log buffer
commit

WAL l Checkpoints |

Persistent Shared Storage

Figure 7: The two-tier ARIES protocol workflow. ©-® corre-
spond to the execution of updating queries, while the rest
are background flushing, checkpointing and log purging
among cNode, gmCluster and pStorage. LFT and HFT stands
for Light and Heavy Fault Tolerance, respectively.

first update the relevant pages in the local buffer and write the
corresponding log entries to Log Buffer (D-®@). Then, cNode places
metadata frames of the relevant modified pages onto the flush
list FLUSH_LBP for being flushed in background (®). FLUSH_LBP is
sorted by Log Sequence Number (LSN), which is assigned uniquely
to different transactions and represents the address of the log entry
in WAL for the corresponding transaction. Next, cNode notifies the
upper layer of the completion of the corresponding requests (®).
Finally, when transaction commit arrives, the relevant entries in
Log Buffer will be written to the WAL persisted on pStorage.

In background, our LFT Daemon collects a batch of dirty pages
associated with oldest LSN numbers from FLUSH_LBP every T mil-
liseconds (®), and writes their contents to the remote buffer (®).
Once dirty pages are written to gmCluster by cNode, we need to
create a tier-1 checkpoint to summarize all these successful changes
and associate it with the largest LSN among those pages (®).

For dirty pages shipped from cNode, gmCluster continues to place
their metadata entries onto the remote buffer flush list FLUSH_RBP
for final persistence (®). Again, similar to cNode, we also employ
a background daemon thread to perform bulk flushing. However,
unlike the tier-1 flushing to memory, HFT Dameon writes a batch of
modified pages gathered from FLUSH_RBP from the remote buffer
pool to the data files on pStorage at once (@-®). Upon completion,
HFT Daemon creates a tier-2 checkpoint on persistent storage.

It is worth mentioning that when a tier-1 checkpoint chpt;; is
created, we cannot delete log entries whose LSN numbers are older
than chpt;1’s LSN in WAL, since the corresponding pages are just
in remote buffer and not yet persisted to underlying pStorage. We
delay this until a tier-2 checkpoint is built. At that moment, we
report its LSN back to ¢cNode (@2). In the end, LFT Daemon can safely
purge log entries prior to that LSN on pStorage (€3).

5.2 Consistent and Fast Flushes

There are two challenges LegoBase faces when considering to en-
able fast flushes initiated by cNode and gmCluster, respectively.
First, potential conflicts exist when cNode and gmCluster flush the
same dirty page simultaneously. A naive solution would use dis-
tributed locks to coordinate the two types of activities. However,
it would introduce performance loss and complexities to handle

lock coherence. Second, we face a partial remote memory write
problem when cNode crashes in the middle of flushing. We address
the two problems by not directly applying changes to pages in the
remote buffer, instead, accommodating writes from c¢Node into a
separated memory buffer on gmCluster. Here, we use the RDMA
connection buffer. Once the full contents of pages are received, we
notify gmCluster to copy to their memory locations. This design
reduces the distributed locks into local locks at the remote memory
side to coordinate local reads and writes by gmCluster. Meanwhile,
it precludes partial page writes since the connection buffer will be
discarded when cNode crashes during flushing.

We further optimize the above design by making gmCluster
actively pull dirty pages from cNode via RDMA read operations.
Compared to the naive design, where cNode performs RDMA writes
to and explicitly notifies gmCluster, the optimized design is more
efficient. Furthermore, the limited and precious RDMA connection
resources may be wasted when the corresponding dirty pages are
copied from cNode but the write locks on remote pages cannot be
obtained due to background flushing. In such case, we will intro-
duce an extra memory copy, which loads content in the RDMA
connection buffer to another memory buffer, and release RDMA
connections immediately. Finally, once the dirty pages from the
additional memory space are written back to the remote buffer pool,
we can clear them up at once for accommodating subsequent flush
activities from cNode to gmCluster.

5.3 Failure Handling and State Recovery

After disaggregation, cNode, memory nodes of gmCluster and pStor-
age can fail independently. As the underlying persistent storage
often employs fault tolerance protocols such as 3-way replication
[44] or erasure coding [23, 37, 39], we omit the failure handling for
data on pStorage. Therefore, here, we focus on recovering memory
state from the following two crash scenarios.

First, we consider the case where cNode crashes but its remote
memory buffer is still available. The recovery is rather straightfor-
ward. When rebooting from such a crash, cNode first attaches its
remote buffer via initiating an RDMA connection to gmCluster with
IP address presented in its configuration file. Next, LFT Daemon
reads the latest tier-1 checkpoint created before crash in its remote
buffer. Then, it continues to traverse the WAL on pStorage and apply
changes with higher LSN than the latest tier-1 checkpoint to its local
memory. This will re-construct LRU_LBP. However, this recovery
can be done quickly, since we allow a high flushing rate for cNode
and the changes contained in checkpoint are few.

Second, we consider a more complex case where cNode and the
memory node hosting the remote buffer of cNode both crash. When
this happens, we reboot ¢cNode and allocate a new remote buffer
for it. Next, we resort to the traditional recovery process identical
to the one used for recovering applications in a monolithic server.
In short, cNode reads tier-2 checkpoint from pStorage and use its
LSN to determine relevant changes, which will be then applied.
This recovery would result in many misses in the remote buffer.
Considering the remote buffer is much larger than the local one,
a long cold start would be expected. To mitigate this problem, we
could leverage memory replication when monetary budget permits,
i.e., allocating a backup remote buffer for cNode on another physical

1907

memory node in gmCluster, to mask the remote memory failure, as
LegoOS did [40].

Optimization for elastic deployment. Datacenter applications
expect cloud-native databases to offer the elasticity feature, which
provisions and de-provisions resources such as CPU and memory,
adapting workload changes. In the context of memory disaggre-
gation, with all the above mechanisms, we can quickly migrate a
hardware setup to another for meeting the elastic goal. Scaling up
and down the remote memory allocation by gmCluster is rather
straightforward. However, changing the CPU resource allocation
on c¢Node would result in a planned shutdown and reboot. To op-
timize this, before stopping it, we make c¢Node flush all its dirty
pages to gmCluster and create a tier-1 checkpoint. When rebooting
from another physical server with new hardware configurations,
cNode easily attaches its remote buffer and bypasses the crash re-
covery process. This can be done very efficiently, and performance
evaluation numbers are presented in Section 7.6.

6 IMPLEMENTATION DETAILS

We implemented LegoBase on top of MySQL, with around 10000
lines of C++ code for its core functionality. The underlying storage
layer is PolarFS [10], a distributed file system at Alibaba.

6.1 RDMA Library

We build our RDMA library on IB Verbs and RDMA CM APL We
first use RDMA CM API to initialize the RDMA device context. Then
we use the Verbs API to perform the memory buffer registration
between two connected parties (i.e., cNode and memory node in gm-
Cluster), and to post one-sided RDMA requests to target nodes via
a RDMA connection. However, the establishment of RDMA connec-
tions between gmCluster and cNode can be expensive when facing
a large number of concurrent requests due to the multiple round-
trips required by the protocol and the memory buffer allocation
and registration for performing remote writes. To eliminate this
potential bottleneck, we maintain a RDMA connection pool shared
between gmCluster and cNode for connection re-usage. For each
remote memory access, cNode will grab an available connection
and specify the remote memory address and the unique identifier
of the target pages. For the sake of performance, we further align
the registered memory address and let dedicated CPU cores poll
the specific tag to inspect the status of ongoing remote requests.

6.2 Modifications to MySQL

cNode runs a modified MySQL database with the following changes.
Memory management module. We introduce a two-tier LRU im-
plementation, where the first tier is the ordinary LRU list of MySQL,
while the second tier is used to manage the remote pages’ metadata.
In addition, we extend the page metadata structure to include two
fields, namely, remote memory address and LRU position. The LRU
position tells if a page is cached locally. These two fields are used to
implement different data access paths presented in Section 4.2. For
a local hit, the target page can be directly served. However, when a
page is stored remotely, a RDMA request will be issued to read it
from gmCluster, taking the remote memory address field as input.
ARIES protocol. We remain the WAL writing path unchanged.
Unlike this, for the dirty page and checkpoint flushing requests, we

intercept the original calls to file system, and redirect the requests to
the remote buffer via RDMA operations. For state recovery, we add
an additional fast recovery path to read checkpoints from gmCluster
and replay WAL entries between them and the crashed point.

6.3 Limitations and Discussions

LegoBase organizes the memory space in a hierarchy rather than a
flat structure, where LBP is the cache of RBP. This design choice
stems from the need for fast scaling up/down the CPU resources.
With this setup, LegoBase will bring significant performance gains
for workloads with large working sets, whose sizes are far beyond
the memory capacity of the physical server that hosts the corre-
sponding cNode. In the future, we will explore the chances to apply
optimizations such as page prefetching [2] to balance the trade-off
between local buffer sizes and overall performance.

Though the current LegoBase implementation is bound to MySQL,
we believe it is not difficult to make LegoBase support other ARIES
databases such as PostgreSQL [21], PolarDB [9, 10], etc. The inte-
gration requires modifying the codebase of these databases to add
an additional data path to fetch remote pages and to adapt their
ARIES-based fault tolerance protocols to be aware of the check-
points stored in gmCluster (Section 6.2).

To prototype LegoBase, we only support the single-instance de-
ployment of MySQL. This says that LegoBase offers data availability
and crash consistency in the presence of failures via the joint work
of the two-tier ARIES protocol and the replication carried out by
the underlying storage (i.e., PolarFS). To enable the database service
failover, we need to employ database redundancy, e.g., deploying a
stand-by MySQL instance in the background to catch up with the
in-memory state mutations of the foreground active instance. We
leave this exploration as future work.

7 EVALUATION
7.1 Experimental Setup

Platform. We run all experiments on three physical machines,
each with two Intel Xeon CPU E5-2682 v4 processors, 512GB DDR4
DRAM, and one 25Gbps Mellanox ConnectX-4 network adapter;
The Linux version we use is AliOS7.

Baselines. We compare the performance of LegoBase to the best
performing monolithic setup, in which a MySQL instance running
in a Docker container does not have remote memory allocation,
denoted by “MySQL”. We also choose MySQL atop Inifiniswap as
the natural memory disaggregation baseline, which leverages a
remote paging system via Linux kernel, denoted by "Infiniswap".
And PolarFS is used as underlying storage for “MySQL” and "In-
finiswap". We use two machines to host LegoBase’s gmCluster and
Infiniswap’s remote paging sub-system with a total of 200GB mem-
ory space, respectively. Additionally, we use another machine to
host the MySQL data compute instances (cNode). Note that all ma-
chines are used in a shared mode with other workloads.

We focus on the single-instance performance, and use Docker[25]
to control the resource allocation of cNode. We allocate remote
memory using the APIs offered by Infiniswap’s paging system and
LegoBase. Unless stated otherwise, we consider three memory con-
figurations, namely 100%, 75%, and 50%. The 100% configuration
corresponds to the monolithic MySQL setup, where we create a

1908

1 MySQL-100% [LegoBase-75% [LegoBase-50%
I Infiniswap-75% BB Infiniswap-50%
T T T T T 50

N W B O
o ©o o o

Thpt (103 tpmC)

-
o

o

2 4 8
Number of Threads
(b) P99-Latency

2 4 8
Number of Threads
(a) Throughput

Figure 8: Performance comparison of the TPC-C benchmark
between LegoBase and Infiniswap with varied memory allo-
cation configurations

Docker with enough local memory to fit the entire working set
in memory for a target workload. We measure the peak memory
usage of the monolithic MySQL configuration, and run 75% and
50% configurations of LegoBase and Infiniswap by creating Dockers
with enough local memory to fit the corresponding fractions of
their peak usage and allocating remote memory for the remaining
working sets. We do not further decrease the local memory ratio
for Infiniswap since it fails to run when this ratio drops below 50%.
However, LegoBase does not have such limitation and we even test
it with a considerably low local memory ratio, e.g., 10%. By default,
we allocate 8 cores for each containerized instance.

Workloads and datasets. We use two widely used benchmarks
TPC-H [6] and TPC-C [5], which represent an OLAP and OLTP
workload, respectively. We populate the database with 20GB records
for TPC-C, and set the warehouse parameter to 200. Regarding TPC-
H, we set its scale factor to 30, and use a 40GB database. Additionally,
we use an Alibaba production workload, with a profile of 3:2:5
insert:update:select ratio. We also use Sysbench [29], a popular
benchmark stressing DBMS systems, as a workload to evaluate the
fast recovery and elasticity feature of LegoBase.

7.2 Overall Performance

TPC-C results. Figure 8 presents the throughput (measured as
tpmC, the transactions per minute) and P99 latency comparison
among three systems for the TPC-C. Here, 20GB memory space is
sufficient to fit the entire working set. We also vary the number
of concurrent workload threads to increase the workload density
level. Clearly, across all test cases, the throughput and P99 latency
of Infiniswap worsen by up to 2.01 X and 2.35X%, respectively, com-
pared to the best-performed monolithic MySQL setup. Furthermore,
decreasing the local memory size plays a strongly negative impact
on the overall performance of Infiniswap. For example, with 16
threads, Infiniswap-50% introduces a 20.52% drop in throughput
and a 29.93% increase in P99 latency, compared to Infiniswap-75%.
The reasons for this performance loss can be found in Section 2.
Unlike Infiniswap, LegoBase delivers comparable performance as
MySQL across all cases, even with 50% memory placed remotely. For
instance, LegoBase-75% lowers (increases) MySQL-100%'’s through-
put (P99 latency) by only up to 3.82% (4.42%). Surprisingly, LegoB-
ase with smaller local buffer size has moderate performance loss,
e.g., we observe a 0.74% throughput drop and a 1.51% P99 latency
increase with 8 threads, when switching from LegoBase-75% to
LegoBase-50%. In the end, LegoBase significantly outperforms the

1 MySQL-100% [LegoBase-75%
I Infiniswap-75% BB Infiniswap-50%

[LegoBase-50%
2500

T T T T

2000

0
1500
o
8
21000
-

500

Jﬂmimwl ml.ﬁ]ﬂliiﬂj].ﬂ].[[lﬂ

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q14Q15Q18Q19 Q21

o

Figure 9: Query latency comparison of the TPC-H bench-
mark between LegoBase and Infiniswap with varied mem-
ory allocation configurations

‘MySQL‘ ‘ Legoéase-10%

MySQL-10%

800 1000 1200 1400 1600

Time/s

200 400 600 1800
Figure 10: The system throughput comparison of an Alibaba

production workload as time goes.

general database-oblivious Infiniswap by up to 1.99x and 2.33X in
terms of throughput and P99 latency, respectively.

TPC-H results. Figure 9 shows the latency comparison of selected
TPC-H queries among the three systems. The peak memory usage of
TPC-H queries is 40GB. We exclude Q2, Q13, Q16, Q17, Q20 and Q22
queries from this figure for clarity since they behave similarly but
run incredibly shorter or longer than others. We can draw similar
performance conclusions for TPC-H as TPC-C. Overall, MySQL-
100% delivers the lowest query latency, while Infiniswap achieves
the highest ones. Across all queries, LegoBase-75%'s latencies are
closer to the ones of MySQL-100%, while LegoBase-50% introduces
a slight increase in query latency. However, regardless of the local
buffer size, LegoBase significantly performs better than the two
variants of Infiniswap. Take the 11th query as an example, LegoBase-
50% runs only 4.54% slower than MySQL-100%, but 45.4% and 75.7%
faster than Infiniswap-75% and Infiniswap-50%, respectively.
Alibaba production workload result. In addition to synthetic
workloads, we evaluate LegoBase with a trading service workload
at Alibaba, which is very memory-intensive and contains a signif-
icant number of update transactions. The peak memory usage of
this workload is 256GB. We further stress LegoBase with a much
smaller local buffer size. Here, we set it to 10%. Figure 10 shows
the performance comparison between MySQL and LegoBase. At a
glance, LegoBase achieves a sustained high throughput (measured
as queries per second) and its average throughput is 27904.8, which
is just 9.96% lower than MySQL. We also deployed a monolithic
MySQL variant with only 10% local memory space, denoted by
“MySQL-10%”. Surprisingly, its performance is only around 39% of
that of the best performing MySQL. The difference between MySQL-
10% and LegoBase-10% implies that the amount of most used pages
already exceeds the local memory space, and the remote memory in
LegoBase is heavily used and important for performance enhance-
ment, while MySQL-10% experiences IO inefficiencies when reading

1909

1 MySQL-100%
N LegoBase-25%
T T T T T

[LegoBase-75%
I | egoBase-10%
50 T

[LegoBase-50%

o
o

[Z I
o o

n
o

Thpt (103 tpmC)

-
o

o

2 4 8 16
Number of Threads

(b) P99-Latency

2 4 8
Number of Threads
(a) Throughput

Figure 11: Performance of TPC-C running over MySQL and

LegoBase with different local memory buffer sizes.
C—1 MySQL-100% [LegoBase-75% =0 LegoBase-50%
2500— LegoBase-25% BN LegoBase-10%
— T

T T T T T

2000

y(s)
13,
3

-
=3
=3
o

Latenc

a
=3
o

il il

0 il kil
Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q14Q15Q18Q19 Q21

Figure 12: Performance of TPC-H running over MySQL and
LegoBase with different local memory buffer sizes.

data from the persistent storage. Thus, LegoBase is well-suited the
cloud-native environments and can offer comparable performance
even with large memory space placed remotely.

7.3 Impact of Local Memory Buffer Size

Next, we focus on the influence of local memory buffer sizes on
the performance of LegoBase. Here, we continue to use TPC-C and
TPC-H as benchmarks. The experiment setups are the same as the
above ones. We change the local memory buffer sizes from 10% to
100% of the peak memory usage.

Figure 11 summarizes the system throughput and P99 latency
numbers performance of TPC-C with LegoBase w.r.t different local
memory buffer sizes, and we compare these numbers against the
best performing MySQL. We do not compare with Infiniswap since
it does not accept less than 50% local memory ratios. With 1 to 2
threads, LegoBase achieves similar performance as MySQL, across
all memory configurations. This is because that the system is lightly
loaded and almost the entire working set can fit into the local
buffer. However, with the increasing number of threads, smaller
local buffer sizes have visible but moderate performance loss. For
instance, even only having 10% of data available in local memory,
LegoBase still achieves up to 91% of MySQL’s throughput and its
P99 latency by up to 10%, under 16 threads. The performance loss is
a direct consequence of the number of unavoidable remote memory
accesses to pages that are not cached in the local buffer.

Figure 12 shows the measured latency of TPC-H queries with
varied local buffer ratios ranging from 10% to 100%. For all se-
lected queries, decreasing the local buffer ratio would result in
different degrees of performance degradation. For most queries
except Q4 and Q10, LegoBase increases their latency numbers by
7.61%-62.7% across all memory configurations. However, we ob-
serve up to 2Xx worse performance achieved by LegoBase for Q4
and Q10, compared to MySQL. This is because the two queries are

Infiniswap ———1
LegoBase mmmm |

N
=

&
Ji H:\ l
3
€ 10
3
o
3
1 L
0 = |
Q1 Q3 Q4 Q7 Q@ Q12 Q2
Figure 13: The number of remote accesses of TPC-H Queries
aoF . : .
| wlo LRU_RBP 1 w/ LRU_RBP]
7
%30 r 1
o 251 |
S20} 1
815} |
S10f 1
5 L 4
0

10%-local 25%-local 50%-local

Figure 14: Throughput comparison with LRU_RBP switched
off/on, using LegoBase with Sysbench oltp_read_write.

more memory-intensive than the rest with less temporal locality.
Thus, we observe that a large number of remote memory accesses
were introduced when the local buffer size is limited for the two
queries. This set of results points out there exists a trade-off among
query patterns, performance, and local buffer sizes. We leave this
exploration as future work. Finally, in spite of the performance gap
between LegoBase and the best performing MySQL, we observe that
LegoBase significantly outperforms the worst-performing MySQL
with a limited local buffer, whose size is a fraction of its peak mem-
ory consumption. For instance, LegoBase-10% introduces a 1.48%
and 1.41x latency speedup than MySQL-10% for Q4 and Q10, re-
spectively. This is because loading data from a remote buffer is still
much faster than from the underlying storage.

7.4 Breakdown Analysis

Reduction in communication steps. Even with RDMA, a remote
page access is still much longer than a local one. Therefore, the pri-
mary optimization enabled by our solution is to reduce the number
of communication steps. To understand this, we plot the total num-
ber of round-trips of executing a set of selected TPC-H queries with
Infiniswap and LegoBase in Figure 13. Here, the system configura-
tions are looking identical to Figure 9. Across all queries, Infiniswap
introduces significantly more network activities than LegoBase. For
example, the number of round-trips of Infiniswap is 5.5%, 10.8X%,
and 4.11X of LegoBase’s, for Q1,in Q3 and Q4, respectively. The
superior performance of LegoBase is because of its co-design of
memory disaggregation and database engine.

Impact of LRU_RBP. We use LRU_RBP as a remote metadata cache
to reduce the number of remote address lookups. To understand
this, we evaluate the impact of this optimization w.r.t different
memory configurations. Here, we switch on and off the LRU_RBP
and consider the following memory configurations, namely, 10%,
25% to 50%. We use the sysbench oltp_read_write workload with
uniform distribution. Figure 14 reports the throughput number
comparison. As expected, switching off LRU_RBP would result in
significant performance loss. For example, the optimized LegoBase
outperforms the counterpart without LRU_RBP by 47%, 43% and

1910

—— MysQL
LegoBase-50%

—— LegoBase-10% LegoBase-25%
LegoBase-10% (all memory crash)

50

o

% a0l LegoBase |
P

S v ST

= P

H v

£ 20

= MySQL Ap MySQL Warm-up

-

=

50 150 200 250
Time/s

300

Figure 15: The comparison of the time to recover from crash
failures and warm up the rebooted compute instances.

21.6%, when the local memory buffer ratio is 10%, 25% and 50% of
the peak memory usage, respectively. This is because with LRU_RBP,
we can directly obtain the locally missed pages’ remote memory
address without network operations. Furthermore, smaller memory
buffer sizes observe better performance improvement, since they
result in more cache misses than other memory configurations.

7.5 Fast State Recovery

To investigate LegoBase’s recovery performance, we run the sys-
bench oltp_read_write workload with both MySQL and LegoBase.
For LegoBase, we vary its memory configurations from 10% to 50%.
We inject a crash failure to bring the database compute instance
down at 80 second, and observe the recovery process. We first
measure the recovery time, which corresponds to the time spent
between rebooting a new instance after a crash and bringing its
states to be consistent again. We then measure the warm-up time,
which corresponds to the time from being able to serve requests to
the point the peak throughput reaches.

In Figure 15, MySQL takes 50s to recover crash states and is able
to serve requests again at 130 second. It also takes another 70s to
populate all its memory space to reach its 90% of highest perfor-
mance again. In contrast to MySQL, the downtime of LegoBase
is very short. For instance, it takes only 2s to recover states for
LegoBase-10% and LegoBase-25%, and 3s for LegoBase-50%. This is
because the first-tier ARIES protocol enables a quick recovery of
the compute node by reading checkpoints from gmCluster. Note
that we only require a limited amount of computational resources
in gmCluster since the recovery process still runs on cNode, while
gmCluster just needs to buffer dirty pages and checkpoints, and
flush them to storage.Furthermore, LegoBase takes up to 16s to
achieve 90% of its peak throughput across all three memory config-
urations, and its warm-up time is up to 4.38x shorter than that of
MySQL. This is because the vast majority of memory pages cached
in the large remote buffer do not need to be recovered and loaded,
instead, they are re-used by LegoBase’s compute node.

Additionally, we inject another failure to bring a remote node in
gmCluster down at the 80s, and measure the state recovery time of
the victim cNode. As illustrated by the LegoBase-10%(all memory
crash) curve, its recovery behavior looks similar to that of MySQL,
and experienced 52-second downtime. This is because when the re-
mote buffer crashes, we allocate a new remote buffer for cNode, and
then resort to the original MySQL recovery procedure to populate
both local and remote buffer again by loading the newest persisted
checkpoint and replaying WAL records from the storage layer.

N
a
S

N

=1

S
T

Thpt (103 QPS)

0 50 100 1;0 260 250 300 350 4;]0
Time (s)

Figure 16: Performance of LegoBase when adapting CPU al-

locations to three workload changes (vertical dashed lines)

7.6 Elasticity and Cost-Effectiveness

Finally, to evaluate LegoBase’s quick elastic deployment feature,
we again use a multi-phase sysbench oltp_read_write to stimulate
time-varying user behaviors in the production environment. From
0-95s, we use 6 workload generation threads, double the thread
number between 96-195s, and use 24 threads in the 196-300s time
interval. Finally, we reduce the number of threads from 24 to 6 in
the final time interval (300-430s). When a sudden increase in traffic
is detected, LegoBase will accordingly increase the CPU resource
provision by migrating the target application to another container
with more CPU cores. Figure 16 portraits the request throughput.

During phase 1, LegoBase achieves a stable throughput, which
is about 43000 queries per second. At the 100 second, we observe
that LegoBase’s throughput drops to zero but the downtime is just
2 seconds. This connects to the container migration that responses
to the first workload change. Because LegoBase flushes all dirty
pages to the remote buffer before migration, the state recovery
is very fast. During phase 2, the new LegoBase obtains 16 CPU
cores and thus brings its peak throughput to 93188.84. Again, at
the 200 second, to react to the second workload change, migration
takes place again and introduces only a 2-second downtime. During
phase 3, due to plenty of CPU cores, the LegoBase’s performance
reaches 167953.26 and is nearly 4.0x of the one achieved in phase
1. The phase 4 starts at the 300 second, where we shut down most
of sysbench threads and only use 6 threads to generate workload.
When detecting this change, we do not immediately de-provision
LegoBase’s CPU cores. Instead, we introduce a graceful time period
of 30 seconds. This says that at the 330 second, we start to remove
2 CPU cores from the running container (rather than migrating to
a new one) every two seconds until only 8 cores left. We observe
that LegoBase’s throughput drops to the level of the phase 1 right
after the workload change, and then remains unchanged.
Cost-effectiveness. In the end, we try to calculate the cost saving
with the elastic deployment. With regard to experiments in Fig-
ure 16, thank to the support of LegoBase’s elasticity feature, we
use 7800 (core X seconds) in total. However, using the traditional
resource provision method to avoid server overloaded, one has to
allocate 32 CPU cores all the time during four phases, which results
in a total number of 13760 (core X seconds). Therefore, LegoBase
reduces the monetary cost by 44% for the end-users.

8 RELATED WORK

General Resource Disaggregation. The recent proposals falling
into the resource disaggregation category include LegoOS[40],
dRedBox[27], Firebox[4], HP “The Machine”[13, 18], IBM system[12],

1911

Facebook Disaggregated Rack[17], Intel Rack Scale Architecture[26],
etc. Among these proposals, LegoOS is most relevant to LegoBase,
but they significantly differ in remote memory management. LegoB-
ase manages remote memory mostly by the database kernel in the
compute instance. This design choice brings benefits of by-passing
OS kernel, re-using database-specific optimizations like sophisti-
cated LRU algorithms, and leveraging data access patterns to derive
new optimizations such as variable-sized RDMA operations.
Infiniswap[22] is an RDMA memory paging system and exposes
unused memory in remote servers to applications. Leap[2] further
explores the prefetching strategy to improve the cache efficiency.
Remote Region[1] proposes a file-like new abstraction for memory
in the remote server. However, our study in Section 2 plus the
recent study [45] identifies the significant performance loss when
directly applying resource disaggregation techniques to the context
of cloud-native databases, because these techniques are unaware
of unique characteristics of databases. Therefore, we advocate the
need for co-designing database and disaggregation architectures
for fully exploiting the benefits of resource disaggregation.
Disaggregated Databases. Amazon Aurora moves logging and
storage to distributed storage systems [42]. Alibaba PolarDB decou-
ples the compute and storage resources [31]. TiDB [24] separates
SQL layer from the underlying key-value storage engine. Further-
more, HailStorm[7] disaggregates and scales independently storage
and computation for distributed LSM-tree-based databases. Though
promising, they only consider the resource decoupling between
the compute and persistent storage resources and neglect memory,
which we find more important than other resources for database
applications. Therefore, we propose a novel memory-disaggregated
cloud-native relational database architecture and offer a holistic
system approach to optimize its performance.
Distributed Shared Memory. Existing works [8, 16, 35] provide a
global shared memory model abstracted from the distributed mem-
ory interconnected with RDMA network. However, most of these
approaches either expose inappropriate interfaces for or require
substantial rewriting of our targeted cloud-native databases. In con-
trast, LegoBase includes distributed shared memory as one of its key
components, but encompasses many new database-oriented opti-
mizations such as adopting page abstraction, two-tier LRU caching,
and two-tier ARIES protocol.

9 CONCLUSION

LegoBase is a novel memory-disaggregated cloud-native database
architecture. Experimental results with various workloads demon-
strate that LegoBase is able to scale CPU and memory capacities
independently with comparable performance as the monolithic
setup without using remote memory, and achieves faster state re-
covery and is more cost-effective than state-of-the-art baselines.

ACKNOWLEDGMENTS

We sincerely thank all anonymous reviewers for their insightful
feedback. This work was supported in part by National Nature
Science Foundation of China (61802358, 61832011), USTC Research
Funds of the Double First-Class Initiative (YD2150002006), and
Alibaba Group through Alibaba Innovative Research (AIR) Program.

REFERENCES

[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,

[11

[12

[13

[14

(15

(16

[17

[18

[19

[20

]

]

]

]

[21]

[22

Stanko Novakovi¢, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh,
Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2018. Remote re-
gions: a simple abstraction for remote memory. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA, 775-787.
Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively prefetching remote
memory with leap. In 2020 USENIX Annual Technical Conference (USENIX ATC
20). 843-857.

Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. 2020. Disaggregation and
the Application. In 12th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20). USENIX Association.

Krste Asanovi¢. 2014. Firebox: A hardware building block for 2020 warehouse-
scale computers. (2014).

TPC Benchmark. 2020. TPC-C. http://www.tpc.org/tpce/. "[accessed-Dec-2020]".
TPC Benchmark. 2020. TPC-H. http://www.tpc.org/tpch/. "[accessed-Dec-2020]".
Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel. 2020. Hailstorm:
Disaggregated Compute and Storage for Distributed LSM-based Databases. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 301-316.

Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen,
Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and Sheng Wang. 2018. Effi-
cient distributed memory management with RDMA and caching. Proceedings of
the VLDB Endowment 11, 11 (2018), 1604-1617.

Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Lingiang
Ouyang, Peng Wang, Yijing Wang, Ray Kuan, et al. 2020. POLARDB Meets Com-
putational Storage: Efficiently Support Analytical Workloads in Cloud-Native
Relational Database. In 18th USENIX Conference on File and Storage Technologies
(FAST 20). 29-41.

Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui
Wang, and Guoging Ma. 2018. PolarFS: an ultra-low latency and failure resilient
distributed file system for shared storage cloud database. Proceedings of the VLDB
Endowment 11, 12 (2018), 1849-1862.

Yue Cheng, Ali Anwar, and Xuejing Duan. 2018. Analyzing alibaba’s co-located
datacenter workloads. In 2018 IEEE International Conference on Big Data (Big
Data). IEEE, 292-297.

I-Hsin Chung, Bulent Abali, and Paul Crumley. 2018. Towards a composable com-
puter system. In Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region. 137-147.

HP Development Company. 2020. The Machine: A New Kind of Computer.
https://www.hpLhp.com/research/systems-research/themachine/. "[accessed-
Oct-2020]".

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1-22.

Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic, Vivek R
Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit Chaudhuri.
2019. Automatically indexing millions of databases in microsoft azure sql database.
In Proceedings of the 2019 International Conference on Management of Data. 666—
679.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.
2014. FaRM: Fast remote memory. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 401-414.

Facebook. 2013. Future rack technology. https://newsroom.intel.com/news-
releases/intel-facebook- collaborate- on-future-data- center-rack-technologies/.
"[accessed-Oct-2020]".

Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. 2015.
Beyond processor-centric operating systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS XV).

Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network require-
ments for resource disaggregation. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). 249-264.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. 2014. Multi-resource packing for cluster schedulers. ACM SIG-
COMM Computer Communication Review 44, 4 (2014), 455-466.

The PostgreSQL Global Development Group. 2021. PostgreSQL. https://www.
postgresql.org/. "[accessed-April-2021]".

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G
Shin. 2017. Efficient memory disaggregation with infiniswap. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). 649-667.

1912

[23

'S
&

[34

(35]

[36

[37

[38

[39

[40

[41

[42

[43

[44

S
&

Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure coding in windows azure
storage. In Presented as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12). 15-26.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072-3084.

Docker Inc. 2020. Docker. https://www.docker.com/. "[accessed-Dec-2020]".
Intel. 2020. Rack Scale Architecture. https://www.intel.com/content/www/us/
en/architecture-and-technology/rack-scale-design-overview.html. "[accessed-
Oct-2020]".

Kostas Katrinis, Dimitris Syrivelis, Dionisios Pnevmatikatos, Georgios Zervas,
Dimitris Theodoropoulos, Iordanis Koutsopoulos, K Hasharoni, Daniel Raho,
Christian Pinto, F Espina, et al. 2016. Rack-scale disaggregated cloud data cen-
ters: The dReDBox project vision. In 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 690-695.

Kenneth C Knowlton. 1965. A fast storage allocator. Commun. ACM 8, 10 (1965),
623-624.

Alexey Kopytov. 2012. Sysbench manual. MySQL AB (2012), 2-3.

Willis Lang, Frank Bertsch, David] DeWitt, and Nigel Ellis. 2015. Microsoft azure
SQL database telemetry. In Proceedings of the Sixth ACM Symposium on Cloud
Computing. 189-194.

Feifei Li. 2019. Cloud-native database systems at Alibaba: Opportunities and
challenges. Proceedings of the VLDB Endowment 12, 12 (2019), 2263-2272.

Huan Liu. 2011. A measurement study of server utilization in public clouds. In
2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure
Computing. IEEE, 435-442.

Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. 1992. ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging. ACM Transactions on
Database Systems (TODS) 17, 1 (1992), 94-162.

MySQL. 2015. MySQL Buffer Pool LRU Algorithm. https://dev.mysql.com/doc/
refman/5.7/en/innodb-buffer-poolhtml. "[accessed-Dec-2020]".

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. 2015. Latency-tolerant software distributed shared
memory. In 2015 {USENIX} Annual Technical Conference ({USENIX}{ATC} 15).
291-305.

Joe Novak, Sneha Kumar Kasera, and Ryan Stutsman. 2020. Auto-Scaling Cloud-
Based Memory-Intensive Applications. In 2020 IEEE 13th International Conference
on Cloud Computing (CLOUD). IEEE, 229-237.

James S Plank. 1997. A tutorial on Reed-Solomon coding for fault-tolerance in
RAID-like systems. Software: Practice and Experience 27, 9 (1997), 995-1012.
Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2018. Auto-scaling web
applications in clouds: A taxonomy and survey. ACM Computing Surveys (CSUR)
51, 4 (2018), 1-33.

Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300-304.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A
Disseminated, Distributed OS for Hardware Resource Disaggregation. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX Association, 69-87.

Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian Dragusanu,
Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Christian Lemke, Sebastian
Seifert, et al. 2019. Native store extension for SAP HANA. Proceedings of the
VLDB Endowment 12, 12 (2019), 2047-2058.

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design considerations
for high throughput cloud-native relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data. 1041-1052.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems. 1-17.
Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. 2006. Ceph: A Scalable, High-Performance Distributed File System. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation
(Seattle, Washington) (OSDI "06). USENIX Association, USA, 307-320.

Qizhen Zhang, Yifan Cai, Xinyi Chen, Sebastian Angel, Ang Chen, Vincent Liu,
and Boon Thau Loo. 2020. Understanding the effect of data center resource
disaggregation on production DBMSs. Proceedings of the VLDB Endowment 13, 9
(2020), 1568-1581.

http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/
https://www.hpl.hp.com/research/systems-research/themachine/
https://newsroom.intel.com/news-releases/intel-facebook-collaborate-on-future-data-center-rack-technologies/
https://newsroom.intel.com/news-releases/intel-facebook-collaborate-on-future-data-center-rack-technologies/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.docker.com/
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool.html

