
On Querying Historical K-Cores
Michael Yu

University of New South Wales

Australia

mryu@cse.unsw.edu.au

Dong Wen
∗

AAII, University of Technology

Sydney

Australia

dong.wen@uts.edu.au

Lu Qin

AAII, University of Technology

Sydney

Australia

lu.qin@uts.edu.au

Ying Zhang

AAII, University of Technology

Sydney

Australia

ying.zhang@uts.edu.au

Wenjie Zhang

University of New South Wales

Australia

zhangw@cse.unsw.edu.au

Xuemin Lin

University of New South Wales

Australia

lxue@cse.unsw.edu.au

ABSTRACT
Many real-world relationships between entities can be modeled as

temporal graphs, where each edge is associated with a timestamp or

a time interval representing its occurrence. 𝐾-core is a fundamental

model used to capture cohesive subgraphs in a simple graph and

have drawn much research attention over the last decade. Despite

widespread research, none of the existing works support the ef-

ficient querying of historical 𝑘-cores in temporal graphs. In this

paper, given an integer 𝑘 and a time window, we study the prob-

lem of computing all 𝑘-cores in the graph snapshot over the time

window. We propose an index-based solution and several pruning

strategies to reduce the index size. We also design a novel algorithm

to construct this index, whose running time is linear to the final

index size. Lastly, we conducted extensive experiments on several

real-world temporal graphs to show the high effectiveness of our

index-based solution.

PVLDB Reference Format:
Michael Yu, Dong Wen, Lu Qin, Ying Zhang, Wenjie Zhang, and Xuemin

Lin. On Querying Historical K-Cores. PVLDB, 14(11): 2033 - 2045, 2021.

doi:10.14778/3476249.3476260

1 INTRODUCTION
The 𝑘-core is a fundamental cohesive subgraph model and has

attracted a great amount of research interest over the last decade

[7, 16, 23, 32]. Given a graph 𝐺 , a 𝑘-core is a maximal connected

subgraph of 𝐺 in which every vertex has a degree of at least 𝑘 .

The 𝑘-core model has a broad spectrum of real-world applications,

such as network visualization [2], community detection [8, 20],

and system structure analysis [35]. Given an integer 𝑘 , all 𝑘-cores

of a graph 𝐺 can be computed in 𝑂 (𝑚) time where𝑚 represents

the number of edges in 𝐺 . Due to the linear computability, many

works use finding 𝑘-cores as a means to prune search space before

computing their respective complicated models [3, 5, 6, 31].

∗
DongWen is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476260

v3

v12

v5

v7

v8

v4

v6

v11

v9

v13

v10

v1
v2 1

4 2

2
2
3

4
3

3

5
56
7

7
8 7

8 6

8
5

72
6 7

6

2
8 3

1
7

2 56
6 6

42

Figure 1: The temporal graph G.
Many real-world graphs evolve over time and are naturally or-

ganized as temporal graphs in which each edge is associated with

a timestamp. Figure 1 presents an example of a temporal graph.

The value on each edge represents the occurring time. Given a

time window, we can derive a graph snapshot over the window by

taking edges inside the window and merging multiple edges with

same endpoints but different timestamps into a single unlabeled

edge in the snapshot. Existing works on computing 𝑘-cores can be

roughly categorized into two types. The first type computes 𝑘-cores

for all possible values of 𝑘 (a.k.a. core decomposition) in a simple

graph [7, 16, 32], which can be a snapshot of a temporal graph for

any specific duration. The second type studies algorithms t update

𝑘-cores when the time window changes and the corresponding

simple graph updates [21, 26, 36]. Given that graph snapshots may

vary considerably from one time window to the other, we natu-

rally wonder “what was the 𝑘-core of the snapshot for a particular
period?”. Unfortunately none of the existing research covers this

question. The problem of efficiently answering queries for a graph

snapshot of a specific time window is called historical graph queries

[17, 18, 25, 28–30]. In this paper, we study the problem of querying

historical 𝑘-cores. Specifically, given a temporal graph, an arbitrary

time window (a start time and an end time) and an integer 𝑘 , we

aim to design an index that allows for the efficient retrieval of all

𝑘-cores in the graph snapshot for the query time window.

Application. We provide several applications as follows.

Inherent 𝑘-Core Applications. Based on applications of the 𝑘-core

model, the historical 𝑘-core problem can be intrinsically applied

to many scenarios. For example, assume that we were to study

research communities from different periods of a collaboration

network (e.g.DBLP , where each edge is associated with a timestamp

representing the co-authorship of two researchers). Given that

2033

https://doi.org/10.14778/3476249.3476260
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476260

the 𝑘-core model is often used to capture community structures

[10, 19], a straightforward solution is to construct the snapshot and

compute 𝑘-cores from scratch for every time window concerned.

Our indexing techniques in the paper can be used and boost the

efficiency of querying historical 𝑘-cores.

Building Blocks of Querying Complex Models. There have been sev-

eral works that integrate the time labels of edges into the 𝑘-core

model and focus on mining cohesive subgraphs that continuously

exist for some time in a temporal graph [11, 20]. In particular, [11]

formulates the span-core, which is the 𝑘-core in the intersection

of snapshots over a set of discrete and contiguous time windows.

[20] defines the (𝜃, 𝜏)-persistent 𝑘-core — a temporal graph over a

period of 𝜏 in which the snapshot over every 𝜃 -width window is a

𝑘-core. Querying 𝑘-cores of a given time window serves as a build-

ing block and a foundational operator in the computing process of

such temporal variations of the 𝑘-core model.

Straightforward Solutions andChallenges.We can easily derive

an online solution of historical 𝑘-core query based on the existing

algorithms for 𝑘-cores computation [4, 16]. Specifically, given a

time window, we could first locate the edge with start time of the

window and derive the snapshot by sequentially scanning the edges

till the end time. We then compute 𝑘-cores by iteratively removing

all vertices with a degree less than 𝑘 . However, such online solution

requires accessing all edges in the window, and the query efficiency

is limited, especially when the window is wide.

In this paper, we aim to design an index-based solution to sup-

port the historical 𝑘-core query for every possible time window

and integer 𝑘 . Existing research normally maintains the 𝑘-cores

for all 𝑘 in a simple graph by keeping the core number of each

vertex [7, 32]. The core number of a vertex 𝑢 is the largest inte-

ger 𝑘 such that there exists a 𝑘-core containing 𝑢. Consequently,

the 𝑘-core query in a simple graph can be answered by collecting

all vertices with core numbers not less than 𝑘 . We immediately

have a straightforward index structure by maintaining the core

number of each vertex for every possible time window. However,

although the index supports a constant time complexity to identify

the core number of each vertex over a specific window, the index

takes𝑂 (𝑛 · 𝑡2𝑚𝑎𝑥) space where 𝑛 represents the number of appeared

vertices and 𝑡𝑚𝑎𝑥 represents the number of distinct times in the

graph. The index size is not acceptable given that 𝑡𝑚𝑎𝑥 can be very

large in practice.

Our Index-based Approach. We propose a novel index called

PHC-Index (Pruned Historical Core-Index) to answer historical 𝑘-

core queries. PHC-Index is designed to support a basic historical

𝑘-core containment query, which identifies whether 𝑢 is in the

𝑘-core of the query time window. We answer the historical 𝑘-core

query by performing the containment query for every vertex 𝑢.

Section 4.3 also provides several other queries that are extended

from the historical 𝑘-core containment query.

PHC-Index computes a set of timewindows for each possible core

number of each vertex. A historical 𝑘-core containment query can

be answered by comparing the indexed timewindows for the integer

𝑘 with the input query window. We first consider a subproblem

where the start time of the query window is given in advance and

never changes. The aforementioned naive index takes 𝑂 (𝑛 · 𝑡𝑚𝑎𝑥)
space for such case, additionally, we observe that the core number

of each vertex monotonically decreases when the end time of a

window decreases. This observation inspires us to define the core
time for a vertex 𝑢 and an integer 𝑘 , which is the earliest time such

that 𝑢 is contained in a 𝑘-core. Given an end time 𝑡 of a window

and an integer 𝑘 , we know that a vertex 𝑢 is in the 𝑘-core if the

corresponding core time of 𝑢 is earlier than 𝑡 . Let 𝐺 denote the

snapshot of a whole temporal graph. Based on the concept of core

time, we only store 𝑐𝑜𝑟𝑒 (𝑢)𝐺 core times for each vertex 𝑢 where

𝑐𝑜𝑟𝑒 (𝑢)𝐺 is the core number of 𝑢 in 𝐺 . Given 𝑐𝑜𝑟𝑒 (𝑢)𝐺 is bounded

by the degree of𝑢 in𝐺 , we reduce the index size for the subproblem

from 𝑂 (𝑛 · 𝑡𝑚𝑎𝑥) to 𝑂 (𝑚∗), where𝑚∗ is the number edges in 𝐺 .

Intuitively, there may exist 𝑡𝑚𝑎𝑥 core times for each integer 𝑘

and vertex 𝑢 since we have 𝑡𝑚𝑎𝑥 possible start times. To reduce

the index size, we observe that the core time for a specific 𝑘 and

a vertex monotonically increases when the start time increases.

Based on such monotonicity of the core time, we only preserve the

core time for a start time that is different from (larger than) that

for the previous start time. This strategy significantly reduces the

index size. The space complexity is𝑂 (𝑚∗ · 𝑡), where 𝑡 is the average
number of core times for each core number and each vertex. For

example, 𝑡 = 9 for the real-world dataset DBLP in our experiments.

Index Construction. The key step in constructing PHC-Index is

to compute the core time. Assume the core number of a vertex 𝑢

decreases from 𝑘 of the window [𝑡𝑠 , 𝑡𝑒] to 𝑘 − 1 of the window

[𝑡𝑠 , 𝑡𝑒 − 1]. We derive the core time of 𝑢 for 𝑘 and 𝑡𝑠 is 𝑡𝑒 . Therefore,

computing core times is equivalent to computing core numbers

of all windows. We can invoke the state-of-art algorithm for core

number maintenance and derive the core numbers of a window

from earlier results. However, even with the help of well-studied

core maintenance algorithms, the efficiency of index construction

is quite limited due to the vast volume of time windows.

To improve the indexing efficiency, we propose a new algorithm

to reduce the 𝑡2𝑚𝑎𝑥 magnitude of windows scanning to 𝑡𝑚𝑎𝑥 . In-

stead of maintaining core numbers, we iteratively increase the start

time and maintain core times of all vertices. Once the start time

increases, we design several rules to identify the validity of each

core number. When the core time is required to be updated, we also

design a new local strategy to compute the core time of a vertex by

only scanning all vertices and edges connecting to the vertex. The

optimization significantly improve the efficiency of index construc-

tion and reduces the time complexity to be linear to the index size

if the maximum degree in the graph is regarded as a constant.

Contribution. We summarize main contributions as follows.

• An index-based solution for historical 𝑘-core queries.We formulate

the problem of querying historical 𝑘-cores given a temporal

graph. As far as we know, the problem has never been studied.

• An elegant index structure. We design a novel index structure,

called PHC-Index. The index size is bounded by𝑂 (𝑚∗ · 𝑡), where
𝑡 ≪ 𝑡𝑚𝑎𝑥 in practice.

• An optimized index construction algorithm. We propose a new

paradigm to compute and update the core time of each vertex.

The running time of the optimized index construction algorithm

is bounded by 𝑂 (|PHC| · D𝑚𝑎𝑥), where |PHC| is the index
size and D𝑚𝑎𝑥 is the maximum vertex degree.

• Extensive experiments to show the effectiveness of our approach.We

conduct extensive experiments on 8 real-world networks. The

2034

v3

v12

v5

v7

v8

v4

v6

v11

v9 v13

v10
v1

v2

Figure 2: The snapshot of G over the time window [2, 7]
results show the effectiveness of PHC-Index and the efficiency

of the index construction algorithm.

2 PRELIMINARIES & RELATED WORK
We study an undirected temporal graph G(V, E). Each edge 𝑒 ∈ E
is a triplet (𝑢, 𝑣, 𝑡) representing an interaction between 𝑢 and 𝑣

at time 𝑡 . Edges are organized as a stream order ordered by the

occurrence times of edges. The projected graph (snapshot) of G
over a given time window [𝑡𝑠 , 𝑡𝑒], denoted by𝐺 [𝑡𝑠 ,𝑡𝑒] , is a unlabeled
graph where the vertex set 𝑉[𝑡𝑠 ,𝑡𝑒] = V and the edge set 𝐸 [𝑡𝑠 ,𝑡𝑒] =
{(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ E, 𝑡 ∈ [𝑡𝑠 , 𝑡𝑒]}. Without loss of generality, we

assume the earliest edge time is 1, and the latest edge time is 𝑡𝑚𝑎𝑥 in

G. We use 𝑛 and𝑚 to denote the number of vertices that appeared

and the number of temporal edges in the graph. We use 𝑚∗ to
denote the number of edges in the projected graph over [1, 𝑡𝑚𝑎𝑥].
Note that𝑚∗ can be much smaller than𝑚 in practice due to the

repeated interactions at different times. The degree of a vertex 𝑢

in a projected graph is denoted by 𝑑𝑒𝑔(𝑢). E𝑡 ′ denotes all edges
at time 𝑡 ′, i.e., E𝑡 ′ = {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ E, 𝑡 = 𝑡 ′}. Given a vertex 𝑢

and a window [𝑡𝑠 , 𝑡𝑒], N(𝑢) [𝑡𝑠 ,𝑡𝑒] denotes the neighbors of 𝑢 over

[𝑡𝑠 , 𝑡𝑒], i.e., N[𝑡𝑠 ,𝑡𝑒] (𝑢) = {⟨𝑣, 𝑡⟩|(𝑢, 𝑣, 𝑡) ∈ E, 𝑡 ∈ [𝑡𝑠 , 𝑡𝑒]}.

Example 2.1. Figure 1 shows a temporal graph, where 𝑡𝑚𝑎𝑥 =

8,𝑚 = 36, and𝑚∗ = 26. Given a time window [2, 7], the projected
graph of G is given in Figure 2. The isolated vertex 𝑣5 is omitted.

Definition 2.2. (K-Core) Given a graph 𝐺 and an integer 𝑘 , the

𝑘-core is a maximal connected induced subgraph of 𝐺 in which all

vertices have degree at least 𝑘 . [27]

Problem 1. Given a temporal graph G, a time window [𝑡𝑠 , 𝑡𝑒] and
an integer 𝑘 , we aim to identify all vertices contained in 𝑘-cores of

the projected graph of G over [𝑡𝑠 , 𝑡𝑒].

Example 2.3. The 3-core in Figure 2 is the induced subgraph of

{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7} in which every vertex has a degree value at

least 3. Given a temporal graph G in Figure 1, 𝑘 = 2 and a time

window [2, 4], the historical 𝑘-core query returns {𝑣1, 𝑣2, 𝑣3, 𝑣4}.

2.1 Core Decomposition
The 𝑘-core structures in a graph are usually maintained as core

numbers of all vertices [4, 32].

Definition 2.4. (Core Number) Given a graph 𝐺 and a vertex 𝑢,

the core number of 𝑢, denoted as 𝑐𝑜𝑟𝑒 (𝑢), is the largest possible 𝑘
such that 𝑢 is in a 𝑘-core of 𝐺 .

Example 2.5. Given the simple graph in Figure 2, the core num-

bers are 𝑐𝑜𝑟𝑒 (𝑣1) = 3, 𝑐𝑜𝑟𝑒 (𝑣2) = 3, 𝑐𝑜𝑟𝑒 (𝑣3) = 3, 𝑐𝑜𝑟𝑒 (𝑣4) = 3,

𝑐𝑜𝑟𝑒 (𝑣5) = 2, 𝑐𝑜𝑟𝑒 (𝑣6) = 3, 𝑐𝑜𝑟𝑒 (𝑣7) = 3, 𝑐𝑜𝑟𝑒 (𝑣8) = 2, 𝑐𝑜𝑟𝑒 (𝑣9) =
2, 𝑐𝑜𝑟𝑒 (𝑣10) = 2, 𝑐𝑜𝑟𝑒 (𝑣11) = 2, 𝑐𝑜𝑟𝑒 (𝑣12) = 2 and 𝑐𝑜𝑟𝑒 (𝑣13) = 2.

Algorithm 1: 𝐶𝑜𝑟𝑒𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐺 (𝑉 , 𝐸))
1 𝑐 ← 0;

2 while 𝑉 ≠ ∅ do
3 𝑢 ← argmin𝑣∈𝑉 𝑑𝑒𝑔(𝑣);
4 𝑐 ← max(𝑑𝑒𝑔(𝑢), 𝑐);
5 𝑐𝑜𝑟𝑒 (𝑢) ← 𝑐 , 𝑉 ← 𝑉 \ 𝑢;
6 foreach 𝑣 ∈ N (𝑢) do 𝑑𝑒𝑔(𝑣) ← 𝑑𝑒𝑔(𝑣) − 1 ;
7 return 𝑐𝑜𝑟𝑒 (𝑢) for all 𝑢;

All core numbers can be computed by a greedy method which

iteratively removes the vertex with the smallest degree [4]. The

pseudocode is given in Algorithm 1. The time complexity is 𝑂 (|𝐸 |)
by using bin-sort in line 3. [16] provides an efficient implementation

of Algorithm 1 using a flat array structure. The algorithm for 𝑘-core

computation adopts a similar idea. Instead of removing the vertex

with the minimum degree, we only iteratively remove all vertices

with degree less than 𝑘 . The algorithm terminates when the degree

of every remaining vertex is not less than 𝑘 .

Core Maintenance. [26] proposes an algorithm to maintain core

numbers when new edges are inserted or old edges are deleted in

streaming graphs. A similar work is done by [21]. [36] improves the

efficiency of core maintenance by arranging vertices in the degen-

eracy order. [1] and [32] consider core maintenance in distributed

environments and external memory, respectively.

Scalable Core Decomposition. [7] proposes an external-memory

algorithm for core decomposition, even though the memory size

cannot be well bounded. [16, 32] propose algorithms under the

semi-external memory setting where the memory size is bounded

by 𝑂 (𝑛). [9] proposes a parallel algorithm, and [23, 24] propose

distributed algorithms for core decomposition.

2.2 Other Related Works
Several variations of 𝑘-core have been formulated in temporal

graphs, which is closely related to our problem. The span-core

[11] and the persistent core model [20] have been mentioned in

Section 1. The span-core model differs from our setting in the for-

mulation of the graph snapshot for a given time window. Under

the span-core model, an edge is in the snapshot if it appears at

every time over the query window. The persistent core computes

a subgraph which is the 𝑘-core for the snapshot of every 𝜃 -length

sub-window. The snapshot is derived by considering all covered

edges which is same as ours. Therefore, given the same time win-

dow and the integer 𝑘 , both the span-core and the persistent core

is a subset of our result. [33] also considers 𝑘-cores in temporal

graphs. However, they omit the timestamps on edges and essen-

tially compute 𝑘-cores in a graph with multiple edges between

vertices. When computing 𝑘-cores, the degree of a vertex is the

number of edges connecting to that vertex. 𝑘-core has also been

studied in other various types of graphs, such as uncertain graphs

[34], directed graphs [14], weighted graphs [13], multi-layer graphs

[12] and random graphs [15, 22].

3 STRAIGHTFORWARD METHODS
3.1 Online Query Processing
An online solution can be easily derived based on the 𝑘-core com-

putation introduced in Section 2. Given a query time window, we

2035

Query Time Index Space Indexing Time

Online 𝑂 (log𝑚 +𝑚 [𝑡𝑠 ,𝑡𝑒]) ⊘ ⊘
Baseline 𝑂 (|𝑅 |) 𝑂 (𝑛 · 𝑡2𝑚𝑎𝑥) 𝑂 (𝑚 · 𝑡2𝑚𝑎𝑥)
Ours 𝑂 (𝑛 · log 𝑡) 𝑂 (𝑚∗ · 𝑡) 𝑂 (𝑚∗ · 𝑡 · D𝑚𝑎𝑥)

Table 1: Comparison of different solutions , where 𝑚 [𝑡𝑠 ,𝑡𝑒]
is the number of edges in the query window [𝑡𝑠 , 𝑡𝑒], |𝑅 | is
the result size, 𝑡 is theoretically bounded by 𝑡𝑚𝑎𝑥 but much
smaller in practice, and D𝑚𝑎𝑥 is the maximum degree.

can use a binary search to locate the first edge to fall in the window

and construct the corresponding projected graph for 𝑘-core compu-

tation. The time complexity is𝑂 (log𝑚 +𝑚 [𝑡𝑠 ,𝑡𝑒]), where𝑚 [𝑡𝑠 ,𝑡𝑒] is
the number of edges in G from 𝑡𝑠 to 𝑡𝑒 . The online algorithm works

but requires visiting the whole projected graph.

3.2 A Straightforward Index
Baseline. In this paper, we aim to design an index to efficiently

answer historical 𝑘-core queries for every possible input time win-

dow and 𝑘 . A straightforward index is to maintain core numbers

for the projected graph of every window. The index is named HC-

Index (Historical Core-Index) and takes 𝑂 (𝑛𝑡2𝑚𝑎𝑥) space, which is

extremely large given that 𝑡𝑚𝑎𝑥 can be very large in practice. Given

a window [𝑡𝑠 , 𝑡𝑒] and an integer 𝑘 , it takes constant time to identify

whether a vertex 𝑢 is in a 𝑘-core by comparing the core number of

𝑢 over [𝑡𝑠 , 𝑡𝑒] with 𝑘 . By sorting vertices in non-increasing order

of their core numbers, Problem 1 can be answered in optimal time.

HC-Index essentially precomputes and stores all possible query

results. We provide Table 1 to summarize and compare the online

solution, the baseline index-based solution and our final solution.

The Other Potential Idea. Intuitively, another potential idea is
to divide edges into a set of discrete and continuous time intervals.

We only maintain core numbers for each interval. For example,

the real-world dataset WikiTalk in our experiments records edges

over 2320 days. Assume that we only maintain core numbers of

vertices for every calendar month (e.g., 30 days for simplicity), and

the index would take about 𝑂 (77 · 𝑛) space where 𝑛 is the number

of vertices in WikiTalk. We will show why the idea does not work

as follows. First, it is easy to see that we can never use the index to

answer the query of an arbitrary window over different indexing

intervals, e.g., from the middle of a month to the end of the next

month. Second, answering the query of a short-period window

in a calendar month may benefit a little from the index since we

can first prune all vertices that cannot be a 𝑘-core in the graph of

the whole month. However, a peeling phase is still required which

iteratively removes all other vertices with degrees smaller than 𝑘 .

Third, even if we do not support any fine-granularity intervals and

only allow month-to-month queries, the index still does not work

for any window over multiple months. For example, assume that

we query all 𝑘-cores for two consecutive months. Given the core

numbers for each month, we only know that a vertex 𝑢 must be

in the result if the core number of 𝑢 is not smaller than 𝑘 in any

month. This would not help speed up 𝑘-core computation since

we do not have any vertex that are guaranteed not in the result.

Therefore, we still perform the same online algorithm in this case.

4 OUR SOLUTION
In this section, we investigate several characteristics of the historical

𝑘-core query and propose a novel index. With a little sacrifice of

v3

v12

v8v4 v11

v9

v13

v10v1v2

(a) 𝐺 [1,4]

v3

v7

v8v4

v1v2

v12v11

v9

v13

v10

(b) 𝐺 [1,5]

Figure 3: The projected graphs of [1, 4] and [1, 5], where the
3-core is marked in grey.
query efficiency compared with the optimal approach, we reduce

the index size from𝑂 (𝑛 ·𝑡2𝑚𝑎𝑥) to𝑂 (𝑚∗ ·𝑡) where 𝑡 is a small integer

and 𝑡 ≪ 𝑡𝑚𝑎𝑥 in practice.

4.1 Anchoring the Start Time
Our optimized index is called PHC-Index. It records a set of times

for each possible𝑘 of a vertex. It is designed to support the historical

𝑘-core containment query, which is formally defined as follows.

Problem 2. Given a temporal graph G, a time window [𝑡𝑠 , 𝑡𝑒], an
integer 𝑘 and a vertex 𝑢, the historical 𝑘-core containment query

aims to identify whether 𝑢 is contained in a 𝑘-core of the projected

graph over [𝑡𝑠 , 𝑡𝑒].
Assuming we answer the historical 𝑘-core containment query in

𝑂 (𝑓) time, then Problem 1 can also be answered in 𝑂 (𝑛 · 𝑓) time.

We start by considering a sub-problem where the starting time is

given in advance and remains unchanged for any query processed,

called start-anchored containment query for short. Assume that this

start time is always 𝑡𝑠 . According to the idea of the naive HC-Index,

we will maintain the core number of every vertex for the windows

[𝑡𝑠 , 𝑡𝑖] from 𝑡𝑖 = 𝑡𝑠 to 𝑡𝑖 = 𝑡𝑚𝑎𝑥 . However, we observe that the core

number of each vertex only monotonically updates and may stay

the same over consecutive windows as 𝑡𝑖 increases from 𝑡𝑠 to 𝑡𝑚𝑎𝑥 .

Lemma 4.1. Given a temporal graph 𝐺 , a vertex 𝑢 and two time
windows [𝑡𝑠 , 𝑡𝑒], [𝑡 ′𝑠 , 𝑡 ′𝑒], we have 𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡𝑒] ≤ 𝑐𝑜𝑟𝑒 (𝑢) [𝑡 ′𝑠 ,𝑡 ′𝑒] if
[𝑡𝑠 , 𝑡𝑒] ⊂ [𝑡 ′𝑠 , 𝑡 ′𝑒].

Proof. The lemma holds since all edges in the projected graph

of [𝑡𝑠 , 𝑡𝑒] must exist in that of [𝑡 ′𝑠 , 𝑡 ′𝑒]. The core number can never

decrease when new edges are inserted. □

Based on Lemma 4.1, we reduce the HC-Index by only recording

the times at which the core number changes for each vertex.

Definition 4.2. (Core Time) Given a temporal graph G and a

vertex 𝑢, the core time of 𝑢 for an integer 𝑘 and a start time 𝑡𝑠 ,

denoted as CT 𝑡𝑠 (𝑢)𝑘 , is the smallest time 𝑡𝑒 such that 𝑢 is in a

𝑘-core of the projected graph 𝐺 [𝑡𝑠 ,𝑡𝑒] .

Example 4.3. Given G in Figure 1, assume that the start time

𝑡𝑠 = 1 and 𝑘 = 3. We first consider the time window [1, 5] and
the corresponding projected graph shown in Figure 3. 𝑣1 is in the

3-core {𝑣1, 𝑣2, 𝑣3, 𝑣4} of 𝐺 [1,5] . However, a 3-core does not exist

in the projected graph of 𝐺 [1,4] . Therefore, the core time of 𝑣1 is

CT 1 (𝑣1)3 = 5. Similarly, we have CT 1 (𝑣1)2 = 3.

Lemma 4.4. Given a start time 𝑡𝑠 , a vertex 𝑢 and the core time
CT 𝑡𝑠 (𝑢)𝑘 of 𝑢 for the integer 𝑘 , 𝑢 is contained in the 𝑘-core of the
projected graph over [𝑡𝑠 , 𝑡𝑒] if CT 𝑡𝑠 (𝑢)𝑘 ≤ 𝑡𝑒 .

Given a start time 𝑡𝑠 , the core number of 𝑢 monotonically in-

creases from 𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡𝑠] to 𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡𝑚𝑎𝑥] when increasing the

end time from 𝑡𝑠 to 𝑡𝑚𝑎𝑥 . Therefore, we have 𝑂 (𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡𝑚𝑎𝑥])
possible core numbers for 𝑢 and 𝑡𝑠 . We record the core time of each

vertex for all core numbers. Based on Lemma 4.4, it takes constant

time to answer the start-anchored containment query.

2036

v1

[1,3],[3,6],[4,9]
[1,5],[3,9]
[1,8],[3,9]

v2

[1,3],[3,5],[5,9]
[1,5],[3,7],[5,9]
[1,8],[3,9]

v3

[1,4],[3,5],[5,6],[6,7],[7,9]
[1,5],[3,7],[5,8],[6,9]
[1,8],[3,9]

v4

[1,3],[3,5],[5,6],[6,9]
[1,5],[3,7],[5,9]
[1,8],[3,9]

v5

[1,7],[8,9]
[1,7],[5,8],[6,9]
[1,8],[3,9]

v8

[1,6],[3,8],[7,9]
[1,8],[3,9]

v6

[1,6],[5,7],[8,9]
[1,7],[5,8],[6,9]
[1,8],[3,9]

v7

[1,5],[3,6],[6,7],[8,9]
[1,7],[5,8],[6,9]
[1,8],[3,9]

v9

[1,6],[4,7],[7,9]
[1,8],[3,9]

v10

[1,6],[4,7],[7,9]
[1,8],[3,9]

v11

[1,6],[3,9]
v12

[1,6],[3,9]
v13

[1,6],[3,9]

k=4 k=3 k=2

Figure 4: PHC-Index for the temporal graph G

Example 4.5. Given 𝑡𝑠 = 1 and vertex 𝑣1, we have four possible

core times for 𝑣1 since the core number of 𝑣1 in 𝐺 [1,8] reaches to
4. The core times are CT 1 (𝑣1)1 = 1, CT 1 (𝑣1)2 = 3, CT 1 (𝑣1)3 = 5,

and CT 1 (𝑣1)4 = 8. Given a query time window [1, 4] and 𝑘 = 3, 𝑣1
is not in the 3-core of 𝐺 [1,4] since CT 1 (𝑣1)3 = 5 > 4.

Lemma 4.6. Given a start time 𝑡𝑠 , the core times of each vertex 𝑢
for all possible core numbers take 𝑂 (∑𝑢∈𝑉 𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡𝑚𝑎𝑥]) space,
where 𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡𝑚𝑎𝑥] is the core number of 𝑢 in the projected graph
over [𝑡𝑠 , 𝑡𝑚𝑎𝑥].

Proof. Based on Lemma 4.1, the core number of a vertex 𝑢 for

any window starting form 𝑡𝑠 is not larger than 𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡𝑚𝑎𝑥] .
Therefore, the lemma holds. □

Given that 𝑐𝑜𝑟𝑒 (𝑢) ≤ 𝑑𝑒𝑔(𝑢), we have ∑𝑢∈𝑉 𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡𝑚𝑎𝑥] ≤∑
𝑢∈𝑉 𝑑𝑒𝑔(𝑢) [1,𝑡𝑚𝑎𝑥] = 2 ·𝑚∗. Therefore, the index space for the

start-anchored containment query is also loosely bounded by𝑂 (𝑚∗).

4.2 The Index Structure
Given the index for the start-anchored containment query, we have

𝑡𝑚𝑎𝑥 possible start times, which intuitively incurs 𝑂 (𝑚∗ · 𝑡𝑚𝑎𝑥)
index space to support an arbitrary time window [𝑡𝑠 , 𝑡𝑒]. To reduce
the index size, we further exploit the monotonicity of the core time.

Lemma 4.7. Given a temporal graph G, an integer 𝑘 , a vertex 𝑢
and two start time 𝑡𝑠 , 𝑡 ′𝑠 , we have CT 𝑡𝑠 (𝑢)𝑘 ≤ CT 𝑡 ′𝑠 (𝑢)𝑘 if 𝑡𝑠 < 𝑡 ′𝑠 .

Proof. Given that 𝑡𝑠 < 𝑡 ′𝑠 , all edges in the projected graph

of [𝑡 ′𝑠 , CT 𝑡𝑠 (𝑢)𝑘] must exist in that of [𝑡𝑠 , CT 𝑡𝑠 (𝑢)𝑘]. The core

number of 𝑢 over [𝑡 ′𝑠 , CT 𝑡𝑠 (𝑢)𝑘 − 1] is smaller than 𝑘 based on

Definition 4.2. Therefore, the lemma holds. □

Based on Lemma 4.7, the core time of a vertex 𝑢 for an integer 𝑘

never decreases as the start time 𝑡𝑠 increases. For each vertex and

each possible core number, our index aims to store a set of pairs

of a start time and a corresponding core time for query processing.

Instead of storing pairs for all start times, we prune unnecessary

pairs whose core numbers remains the same when increasing the

start time. Our final index is formally defined as follows.

Definition 4.8. Given a temporal graph G(V, E), for each ver-

tex 𝑢 and each integer 2 ≤ 𝑘 ≤ 𝑐𝑜𝑟𝑒 (𝑢) [1,𝑡𝑚𝑎𝑥] , the PHC-Index

maintains a sequence of windows PHC(𝑢)𝑘 such that:

(1) for each [𝑡𝑠 , 𝑡𝑒] ∈ PHC(𝑢)𝑘 , 𝑡𝑒 = CT 𝑡𝑠 (𝑢)𝑘 ;
(2) for each 1 ≤ 𝑡𝑠 ≤ 𝑡𝑚𝑎𝑥 and corresponding CT 𝑡𝑠 (𝑢)𝑘 , there

exists one and only one window [𝑡 ′𝑠 , 𝑡 ′𝑒] in PHC(𝑢)𝑘 such that

𝑡 ′𝑒 = CT 𝑡𝑠 (𝑢)𝑘 and 𝑡 ′𝑠 ≤ 𝑡𝑠 .
(3) 𝑡𝑖𝑠 > 𝑡𝑖−1𝑠 where 𝑡𝑖𝑠 is the start time of the 𝑖-th window;

The first condition guarantees the correctness of each time win-

dow. The second condition guarantees the completeness and the

minimality for the pairs of start time and core time. The third condi-

tion is used to improve the query efficiency, which will be discussed

in Section 4.3. Note that we do not need to support the case of 𝑘 = 1

since the historical 𝑘-core containment query is equivalent to check-

ing whether there exists an edge containing the query vertex in the

time window.

Example 4.9. The PHC-Index for the temporal graph G in Fig-

ure 1 is given in Figure 4. For each vertex, the first line, the second

line and the third line show the windows for 𝑘 = 2, 𝑘 = 3 and 𝑘 = 4,

respectively. For example, given a vertex 𝑣5 and 𝑘 = 2, the core

time for 𝑡𝑠 = 1 is 7. For the start time 1 < 𝑡𝑠 ≤ 7, the core times are

still 7 and are pruned in the index. When 𝑡𝑠 = 8, 𝑣5 cannot be any

2-core of the projected graph starting from 8, and we set the core

time for 8 as 𝑡𝑚𝑎𝑥 + 1 = 9.

Theorem 4.10. The size of PHC-Index is bounded by 𝑂 (𝑚∗ · 𝑡),
where 𝑡 is the average number of windows for a specific 𝑘 of a vertex.

The theorem can be easily proved based on Lemma 4.6. Theoret-

ically, 𝑡 can be 𝑡𝑚𝑎𝑥 in the worst case. Consider a special temporal

graph with the same set of edges at every time. We have 𝑡𝑚𝑎𝑥 core

times for each core number and each vertex in the index. However,

in real-world applications, temporal graphs are modeled to capture

the change of entities’ relationships over time. Such special case is

meaningless since it can be stored and analyzed as a simple unla-

beled graph. In practice, 𝑡 is a small integer value and 𝑡 ≪ 𝑡𝑚𝑎𝑥 . For

example, 𝑡 = 9 for the real-world dataset DBLP in our experiments,

and the largest 𝑡 is 150 for the dataset Email in our experiments.

The details for all other datasets can be found in Table 2.

4.3 Query Processing
The PHC-Index based query algorithm is named PHC-Query. Given
the sorted windows (condition 3 in Definition 4.8) in PHC-Index,

PHC-Query is supported by the following lemma.

Lemma 4.11. Given a temporal graph G, a vertex 𝑢, an integer 𝑘
and a timewindow [𝑡𝑠 , 𝑡𝑒], let [𝑡 ′𝑠 , 𝑡 ′𝑒] be the last window inPHC(𝑢)𝑘
such that 𝑡 ′𝑠 ≤ 𝑡𝑠 . The 𝑘-core of 𝐺 [𝑡𝑠 ,𝑡𝑒] contains 𝑢 if 𝑡 ′𝑒 ≤ 𝑡𝑒 .

Proof. According to Definition 4.8, 𝑡 ′𝑒 is the core time of 𝑢 for

𝑘 and the input 𝑡𝑠 . By Definition 4.2, 𝑢 is in the 𝑘-core of 𝐺 [𝑡𝑠 ,𝑡𝑒] if
the input 𝑡𝑒 is not smaller than the core time 𝑡 ′𝑒 . □

Example 4.12. Given the index in Figure 4, assume 𝑘 = 3 and the

time window is [2, 6]. We first consider 𝑣1. [1, 5] is the last window
in PHC(𝑣1)3 with 1 ≤ 2. We have 𝑣1 is in the 3-core of𝐺 [2,6] since
5 ≤ 6. Similarly, we have other results {𝑣2, 𝑣3, 𝑣4}.

2037

Lemma 4.13. Given a vertex 𝑢, an integer 𝑘 , an arbitrary time
window and the PHC-Index, the historical 𝑘-core containment query
can be answered in 𝑂 (log |PHC(𝑢)𝑘 |) time via a binary search.

Theorem 4.14. PHC-Query answers the historical 𝑘-core query
in 𝑂 (𝑛 · log 𝑡) time.

Proof. The historical 𝑘-core containment query of 𝑢 can be

answered in 𝑂 (log |PHC(𝑢)𝑘 |) time. Given that 𝑡 is the average

number of |PHC(𝑢)𝑘 | for all vertices 𝑢 and core number 𝑘 , the

final time complexity holds. □

Other Supported Queries. The historical 𝑘-core containment

query provides a basic operator, which also supports a series of

relevant problems as follows.

• Historical Core decomposition.Historical core decomposition com-

putes core numbers of all vertices in the projected graph of a

query time window [𝑡𝑠 , 𝑡𝑒]. Based on Lemma 4.13, the core num-

ber of a vertex𝑢 of [𝑡𝑠 , 𝑡𝑒] can be answered in𝑂 (log |𝑐𝑜𝑟𝑒 (𝑢) [1,𝑡𝑚𝑎𝑥] |·
log 𝑡) time. Therefore, the problem can be answered in 𝑂 (𝑛 ·
log𝑘𝑚𝑎𝑥 · log 𝑡) time.

• Historical 𝑘-Core Search. Given a time window [𝑡𝑠 , 𝑡𝑒], an integer

𝑘 and a vertex 𝑢, the problem of historical 𝑘-core search aims

to compute the 𝑘-core containing 𝑢 in the projected graph of

[𝑡𝑠 , 𝑡𝑒]. We can start from 𝑢 and add 𝑢 to the result set if 𝑢 is

in the 𝑘-core of [𝑡𝑠 , 𝑡𝑒]. Then, we iteratively explore the neigh-

bors of all unvisited resulting vertices and perform the historical

𝑘-core containment query for each neighbor. The search termi-

nates when no other vertices can be added to the result. The

time complexity of historical 𝑘-core search an be bounded by

𝑂 (|𝑅 | log 𝑡 + |𝑅 | logD + |𝑅 |D[𝑡𝑠 ,𝑡𝑒]). |𝑅 | is the size of resulting
vertices. 𝑂 (log 𝑡) is the time for historical 𝑘-core containment

query. D is the average number of edges containing the vertex

in the graph, and it takes 𝑂 (logD) time to locate the start edge

of a vertex in the query window. D[𝑡𝑠 ,𝑡𝑒] is the average number

of neighbors in the query window of all resulting vertices.

• Speedup for Other Models. As discussed in Section 2.2, the result

of a historical 𝑘-core is a superset of the span-core [11] and the

persistent core [20] for the same time window and the integer 𝑘 .

This property enables us to speed up querying them based on our

proposed PHC-Index. We take span-core as an example. Given

a query window [𝑡𝑠 , 𝑡𝑒], [11] first computes the intersection of

edges at all times in the window and then compute 𝑘-cores in the

snapshot of the intersection. The intersection phase is costly due

to a large number of hash join operations. Based on our index,

for each edge (𝑢, 𝑣, 𝑡), we can first test whether both 𝑢 and 𝑣 are

in the historical 𝑘-core of the window. If no, we safely remove

the edge since it cannot be in the span-core either. We conduct a

case study to show the effectiveness of this method in Section 6.

5 INDEX CONSTRUCTION
We propose algorithms for index construction in this section. We

give a basic index algorithm PHC-Construct in Section 5.1. Sec-

tion 5.2 then proposes an optimized algorithm PHC-Construct∗.

5.1 A Non-Trivial Baseline
A key step in PHC-Index construction is to compute the core time.

We give the following lemma to associate the core time with the

core number and well-studied core decomposition. The lemma is

straightforward based on the definition of core time.

Lemma 5.1. Given a start time 𝑡𝑠 and an integer 𝑘 , the core time
of 𝑢 for 𝑡𝑠 and 𝑘 is 𝑡 if 𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡] ≥ 𝑘 and 𝑐𝑜𝑟𝑒 (𝑢) [𝑡𝑠 ,𝑡−1] < 𝑘 .

Based on Lemma 5.1, an immediate idea is to compute the core

number of each vertex over all possible time windows and derive

the core time of each vertex by comparing the core number over

different time windows. Given the existing studies on core number

maintenance [21, 26, 32, 36], we dynamically update core num-

bers from a previous time window instead of computing the core

numbers from scratch. For example, given the core numbers of all

vertices in 𝐺 [𝑡𝑠 ,𝑡𝑒] , we can derive the core numbers of 𝐺 [𝑡𝑠 ,𝑡𝑒−1]
by performing an updating procedure for deleting all edges at 𝑡𝑒 .

Note that existing works for core maintenance consider the fully

dynamic setting. While in our case, we only need to perform one

type of edge update operations (either insertion or deletion). Ac-

cording to[21, 26, 36], updating core numbers for edge deletions is

much more efficient than that for edge insertions. Therefore, we

always first compute core numbers of relatively wide time windows

and derive core numbers of sub-windows in a decremental way.

Core Number Validity. The decremental maintenance of core

numbers requires an additional integer value maintained for each

vertex, which is defined as follows.

Definition 5.2. (Max-Core Degree)Given a graph𝐺 and a vertex

𝑢, the max-core degree of 𝑢, denoted by MCD(𝑢), is the number of

neighbors 𝑣 of 𝑢 such that 𝑐𝑜𝑟𝑒 (𝑢) ≤ 𝑐𝑜𝑟𝑒 (𝑣). [26, 36]
By the definition of 𝑘-core, we have MCD(𝑢) ≥ 𝑐𝑜𝑟𝑒 (𝑢) for

each vertex 𝑢. To update core numbers, we decrease MCD(𝑢)
by 1 if an edge (𝑢, 𝑣) is deleted and 𝑐𝑜𝑟𝑒 (𝑢) ≤ 𝑐𝑜𝑟𝑒 (𝑣). Once
MCD(𝑢) < 𝑐𝑜𝑟𝑒 (𝑢), we decrease 𝑐𝑜𝑟𝑒 (𝑢) by 1 and compute the

up-to-date MCD(𝑢). The correctness of this step is supported by

the observation in [26] that the core number of a vertex can decrease

at most 1 when removing one edge. However, the max-core degree

is used for a simple graph and cannot be straightforwardly used in

our setting. Assume that we update the core number for the time

window from [𝑡𝑠 , 𝑡𝑒] to [𝑡𝑠 , 𝑡𝑒−1]. Even though an edge (𝑢, 𝑣) ∈ E𝑡𝑒
with 𝑐𝑜𝑟𝑒 (𝑢) ≤ 𝑐𝑜𝑟𝑒 (𝑣), we cannot simply decrease MCD(𝑢) since
(𝑢, 𝑣) can be still in the projected graph over [𝑡𝑠 , 𝑡𝑒 −1]. An example

can be found in the temporal graph of Figure 1 and its snapshot of

[2, 7] shown in Figure 2. Assume we aim to update core numbers

from [2, 7] to [2, 6]. The edge (𝑣3, 𝑣10, 7) cannot be simply removed

since (𝑣3, 𝑣10) still exists at 6. Therefore, instead of an integer value,

we use a hash table structure to maintain the max-core degree of

each vertex in our algorithm, which is defined as follows.

Definition 5.3. (Core Neighbors) Given a temporal graph G, a
time window [𝑡𝑠 , 𝑡𝑒] and a vertex 𝑢, the core neighbor of 𝑢, denoted
by CN(𝑢) [𝑡𝑠 ,𝑡𝑒] , is a hash table where each key is a neighbor 𝑣 of 𝑢

with 𝑐𝑜𝑟𝑒 (𝑣) ≥ 𝑐𝑜𝑟𝑒 (𝑢) in𝐺 [𝑡𝑠 ,𝑡𝑒] , and the value of 𝑣 is the number

of edges (𝑢, 𝑣, 𝑡) with 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑒 .
We omit the subscript [𝑡𝑠 , 𝑡𝑒] of the core neighbor if it is clear

from context. Let |CN(𝑢) | be the number of keys.We have |CN(𝑢) | =
MCD(𝑢) in a projected temporal graph. When the value of a vertex

𝑣 in CN(𝑢) becomes 0, we implicitly remove the key 𝑣 from CN(𝑢)
and decrease |CN(𝑢) | by one.

The Algorithm. The pseudocode for PHC-Construct is presented
in Algorithm 2. We first compute the core numbers in 𝐺 [1,𝑡𝑚𝑎𝑥]

2038

Algorithm 2: PHC-Construct()
Input: a temporal graph G
Output: the PHC-Index of G

1 𝐶𝑜𝑟𝑒𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐺 [1,𝑡𝑚𝑎𝑥]);
2 initialize CN(𝑢) [1,𝑡𝑚𝑎𝑥] for all 𝑢 ∈ 𝑉 ;
3 foreach 1 ≤ 𝑡𝑠 ≤ 𝑡𝑚𝑎𝑥 do
4 foreach 𝑡 : from 𝑡𝑚𝑎𝑥 to 𝑡𝑠 + 1 do DelEdges(𝑡, 𝑡𝑠 , 𝑡 − 1) ;
5 reset CN(𝑢) and 𝑐𝑜𝑟𝑒 (𝑢) for all 𝑢 in line 4;

6 if 𝑡𝑠 < 𝑡𝑚𝑎𝑥 then DelEdges(𝑡𝑠 , 𝑡𝑠 + 1, 𝑡𝑚𝑎𝑥);

Algorithm 3: DelEdges(𝑡, 𝑡𝑠 , 𝑡𝑒)
1 𝑄 ← ∅;
2 foreach (𝑢, 𝑣) ∈ E𝑡 do
3 if 𝑐𝑜𝑟𝑒 (𝑢) ≤ 𝑐𝑜𝑟𝑒 (𝑣) then
4 decrease 𝑣 in CN(𝑢);
5 if |CN(𝑢) | < 𝑐𝑜𝑟𝑒 (𝑢) then 𝑄 ← 𝑄 ∪ {𝑢};
6 if 𝑐𝑜𝑟𝑒 (𝑣) ≤ 𝑐𝑜𝑟𝑒 (𝑢) then
7 decrease 𝑢 in CN(𝑣);
8 if |CN(𝑣) | < 𝑐𝑜𝑟𝑒 (𝑣) then 𝑄 ← 𝑄 ∪ {𝑣};

9 while 𝑄 ≠ ∅ do
10 𝑢 ← 𝑄.𝑝𝑜𝑝 (), 𝑜𝑙𝑑𝐶𝑜𝑟𝑒 ← 𝑐𝑜𝑟𝑒 (𝑢);
11 𝑐𝑜𝑟𝑒 (𝑢) ← LocalCore(𝑢, 𝑡𝑠 , 𝑡𝑒);
12 compute CN(𝑢) [𝑡𝑠 ,𝑡𝑒] ;
13 foreach 𝑘 : from 𝑜𝑙𝑑𝐶𝑜𝑟𝑒 to 𝑐𝑜𝑟𝑒 (𝑢) + 1 do
14 [𝑡 ′𝑠 , 𝑡 ′𝑒] ← the last item in PHC(𝑢)𝑘 ;
15 if PHC(𝑢)𝑘 = ∅ ∨ 𝑡𝑒 + 1 > 𝑡 ′𝑒 then
16 add [𝑡𝑠 , 𝑡𝑒 + 1] to PHC(𝑢)𝑘 ;

17 foreach distinct 𝑣 ∈ N (𝑢) [𝑡𝑠 ,𝑡𝑒] do
18 if 𝑐𝑜𝑟𝑒 (𝑢) < 𝑐𝑜𝑟𝑒 (𝑣) ≤ 𝑜𝑙𝑑𝐶𝑜𝑟𝑒 then
19 delete 𝑣 from CN(𝑢);
20 if |CN(𝑢) | < 𝑐𝑜𝑟𝑒 (𝑢) then 𝑄 ← 𝑄 ∪ {𝑢};

and initialize the corresponding core neighbors of each vertex in

line 1 and line 2 respectively. In the rest, we will maintain core

numbers and core neighbors for all sub-windows. Specifically, for

each 1 ≤ 𝑡𝑠 ≤ 𝑡𝑚𝑎𝑥 , we iteratively remove edges at 𝑡 and derive

the core numbers for [𝑡𝑠 , 𝑡 − 1] in line 4. In line 6, we update core

numbers for the window from [𝑡𝑠 , 𝑡𝑚𝑎𝑥] to [𝑡𝑠 + 1, 𝑡𝑚𝑎𝑥].
DelEdges() in Algorithm 3 accepts three parameters. Parameter

𝑡 refers to deleting all edges at time 𝑡 ; whereas 𝑡𝑠 and 𝑡𝑒 refer to the

start time and the end time of the updated window, respectively.

Other parameters are omitted for simplicity. DelEdges() processes
each deleted edge in lines 2–8. Given an edge (𝑢, 𝑣), we check the

validity of 𝑐𝑜𝑟𝑒 (𝑢) in lines 3–5. In line 4, to decrease 𝑣 refers to de-

creasing the value of key 𝑣 in CN(𝑢) by one. Note that |CN(𝑢) | will
drop when the value of 𝑣 in CN(𝑢) becomes zero. By Definition 5.3,

the core number of 𝑢 cannot be 𝑐𝑜𝑟𝑒 (𝑢) if |CN(𝑢) < 𝑐𝑜𝑟𝑒 (𝑢) |. All
vertices whose core numbers require updating are added to the

queue 𝑄 (lines 5 and 8).

Updating Core Number. DelEdges() computes the up-to-date

core numbers and core neighbors in line 11 and line 12, respectively.

Algorithm 4: LocalCore(𝑢, 𝑡𝑠 , 𝑡𝑒)
1 initialize 𝑐𝑛𝑡 [𝑘] = 0 for each 𝑘 from 1 to 𝑐𝑜𝑟𝑒 (𝑢);
2 foreach distinct 𝑣 ∈ N (𝑢) [𝑡𝑠 ,𝑡𝑒] do
3 𝑐𝑛𝑡 [min(𝑐𝑜𝑟𝑒 (𝑢), 𝑐𝑜𝑟𝑒 (𝑣))] + +;
4 𝑐𝑑 ← 0;

5 foreach 𝑘 : from 𝑐𝑜𝑟𝑒 (𝑢) to 1 do
6 𝑐𝑑 ← 𝑐𝑑 + 𝑐𝑛𝑡 [𝑘];
7 if 𝑘 ≤ 𝑐𝑑 then return 𝑘 ;

In the case of single edge deletion considered in existing core main-

tenance algorithms, the core number of each vertex decreases by at

most one for each edge deletion. However, in our problem, multiple

edges may exist at the same time, and the core number of a vertex

may decrease by over one. We adopt the following lemma to locally

compute the up-to-date core number.

Lemma 5.4. The core number of a vertex 𝑢 is the largest integer 𝑘
such that there exist at least 𝑘 neighbors 𝑣 with 𝑐𝑜𝑟𝑒 (𝑣) ≥ 𝑘 . [23]

Based on Lemma 5.4, we compute the core number of a vertex

by counting the number of neighbors in a non-increasing order

of their core numbers. The details are shown in the procedure

LocalCore(𝑢, 𝑡𝑠 , 𝑡𝑒) in Algorithm 4. Since the new core number

must be smaller than the old value 𝑐𝑜𝑟𝑒 (𝑢), a bucket-sort strategy
is used here, and there are 𝑐𝑜𝑟𝑒 (𝑢) buckets (line 1).

Lines 13-16 of Algorithm 3 add the core time of 𝑢 to the index

based on Lemma 5.1. Given the current window [𝑡𝑠 , 𝑡𝑒], the core
times of𝑢 for 𝑡𝑠 −1 and all possible 𝑘 have been computed in earlier

iterations. In line 15, PHC(𝑢)𝑘 = ∅ means 𝑡𝑠 = 1 and CT 1 (𝑢)𝑘
has not been computed. The condition 𝑡𝑒 + 1 > 𝑡 ′𝑒 prunes the cases

that the core time is same as that for the previous start time.

After updating 𝑐𝑜𝑟𝑒 (𝑢), lines 17–20 updateCN(𝑣) for each neigh-
bor 𝑣 of 𝑢 of the current time window and add 𝑣 to 𝑄 if 𝑐𝑜𝑟𝑒 (𝑣)
requires to be updated. Since the core numbers never increase in

DelEdges(), the neighbor 𝑣 is influenced if the old core number of

𝑢 contributes to the max-core degree of 𝑣 (i.e., 𝑐𝑜𝑟𝑒 (𝑣) ≤ 𝑜𝑙𝑑𝐶𝑜𝑟𝑒),
but the new 𝑐𝑜𝑟𝑒 (𝑢) drops below 𝑐𝑜𝑟𝑒 (𝑣) [32]. Note that unlike de-
creasing the value for 𝑣 in line 4, we directly delete the key 𝑣 from

CN(𝑢) since 𝑣 can never be the core neighbor of 𝑢 even though

(𝑢, 𝑣) may exist several times over the current window.

Efficient Neighbor Access. A frequent operation in the algorithm

PHC-Construct() is to scan the neighbors of each vertex over a

specific time window, like line 12, line 17 of Algorithm 3 and line

2 of Algorithm 4. Given a time window [𝑡𝑠 , 𝑡𝑒], a straightforward
implementation is performing a binary search to locate the first

neighbor since 𝑡𝑠 and breaking the iteration of neighbor access

once the neighbor time exceeding 𝑡𝑒 .

To improve pracitcal efficiency, we maintain an integer value

for each vertex 𝑢, which represents the offset of the first neighbor

of 𝑢 since the current 𝑡𝑠 . The offset for each vertex is initialized

as 1, which means the scanning of neighbors will start from the

first item. During the algorithm, we always scan neighbors of each

vertex starting from the offset since the start time 𝑡𝑠 monotonically

increases. For each new start time 𝑡𝑠 , we update the offset for every

vertex as a byproduct when scanning the neighbors of 𝑢. With the

offset value, we avoid the binary search of neighbors and a great

amount of unnecessary access.

2039

Algorithm 5: LocalCT(𝑢, 𝑡𝑠 , 𝑘, CT ,G)
1 𝑇 ← ∅, 𝑢𝑏 ← 0;

2 foreach ⟨𝑣, 𝑡⟩ ∈ N (𝑢) [𝑡𝑠 ,𝑡𝑚𝑎𝑥] do
3 if 𝑣 is visited then continue;
4 if |𝑇 | ≥ 𝑘 ∧ 𝑡 ≥ 𝑢𝑏 then break;
5 mark 𝑣 as visited;

6 𝑐𝑡 ← max(𝑡, CT (𝑣)𝑘);
7 𝑇 ← 𝑇 ∪ {𝑐𝑡};
8 if |𝑇 | ≤ 𝑘 then 𝑢𝑏 ← max(𝑢𝑏, 𝑐𝑡);
9 if 𝑘 ≤ |𝑇 | then return 𝑘-th smallest value in 𝑇 ;

10 𝑐𝑜𝑟𝑒 (𝑢) ← min(𝑐𝑜𝑟𝑒 (𝑢), 𝑘 − 1);
11 return∞;

Theorem 5.5. Given a temporal graph G, the running time of
Algorithm 2 is bounded by 𝑂 (𝑚 · 𝑘𝑚𝑎𝑥 · 𝑡𝑚𝑎𝑥), where 𝑘𝑚𝑎𝑥 is the
maximum core number in all projected graphs.

Proof. In DelEdges, lines 2–8 take 𝑂 (|E𝑡 |) time. The overall

time complexity of lines 2–8 is 𝑂 (𝑚 · 𝑡𝑚𝑎𝑥) time since we scan

𝑡𝑚𝑎𝑥 times of the graph (line 3 in Algorithm 2). Then we consider

lines 10–20 of the procedure DelEdges. Line 11 takes 𝑂 (|N (𝑢) |)
time, which is the dominant time complexity in lines 10–20. Given

a start time 𝑡𝑠 and a vertex 𝑢, LocalCore is only invoked when the

core number of 𝑢 updates. Given a start time 𝑡𝑠 , LocalCore can be

invoked at most 𝑂 (𝑘𝑚𝑎𝑥 · 𝑛) times, and the total time complexity

by invoking LocalCore is 𝑂 (∑𝑢∈V |N (𝑢) |𝑘𝑚𝑎𝑥) = 𝑂 (𝑚 · 𝑘𝑚𝑎𝑥).
Therefore, the overall time complexity is 𝑂 (𝑚 · 𝑘𝑚𝑎𝑥 · 𝑡𝑚𝑎𝑥). □

5.2 Optimized Index Construction
Drawbacks of Algorithm 2. Algorithm 2 works correctly but

surfers from a relatively poor scalability due to the factor𝑚 and

𝑡𝑚𝑎𝑥 in Theorem 5.5. Specifically, based on Lemma 4.7, the core time

of a vertex 𝑢 for a specific 𝑘 can be the same at different start times

𝑡𝑠 . However, Algorithm 2 computes the core times of all vertices at

every start time from 1 to 𝑡𝑚𝑎𝑥 , which incurs the factor 𝑡𝑚𝑎𝑥 in the

running time complexity. In addition, computing core times of all

vertices at a start time 𝑡𝑠 takes 𝑂 (𝑚 · 𝑘𝑚𝑎𝑥) time. While, possibly,

only a small number of core times at 𝑡𝑠 can be larger than that

at the previous start time (e.g., the second condition in line 15 of

Algorithm 3) and are added to the index. In other words, much time

is wasted in computing the same core times as those at previous

start times. Consider the example graph in Figure 1 with 8 distinct

times. We perform 8 iterations in line 3 and a total of 28 iterations

in line 4 of Algorithm 2.

To improve the efficiency of index construction, we propose an

algorithm that only computes the core times which are different

from their counterparts in earlier iterations. The computation of

each core time only relies on local information, which avoids the

𝑂 (𝑚 · 𝑘𝑚𝑎𝑥) time for all vertices at a start time 𝑡𝑠 .

Core Time Validity. Given the core time CT 𝑡𝑠 (𝑢)𝑘 of a vertex 𝑢,

when moving the start time from 𝑡𝑠 to 𝑡𝑠 + 1 (line 3 of Algorithm 2),

all edges in E𝑡𝑠 are deleted. We define an additional structure to

identify whether CT 𝑡𝑠+1 (𝑢)𝑘 = CT 𝑡𝑠 (𝑢)𝑘 .
Definition 5.6. (CT Degree) Given a vertex 𝑢 and its core time

CT 𝑡𝑠 (𝑢)𝑘 = 𝑡 , the CT (Core Time) degree of𝑢, denoted byCTD𝑡𝑠 (𝑢)𝑘 ,
is the number of neighbors in the 𝑘-core of 𝐺 [𝑡𝑠 ,𝑡] .

We always have CTD𝑡𝑠 (𝑢)𝑘 ≥ 𝑘 according to the definition of

core times. When removing edges, we assume the core time of

each vertex 𝑢 does not change and maintain the CT degree of 𝑢.

Consequently, we may have CTD𝑡𝑠 (𝑢)𝑘 < 𝑘 for some vertices 𝑢,

which means the core time of 𝑢 is not valid. To efficiently maintain

the CT degree of each vertex, we define the following hash table.

Definition 5.7. (CT Neighbors) Given a vertex 𝑢 and its core

time CT 𝑡𝑠 (𝑢)𝑘 = 𝑡𝑒 , the CT neighbors of 𝑢, denoted by CTN𝑡𝑠 (𝑢)𝑘 ,
is a hash table where each key is a vertex 𝑣 with CT 𝑡𝑠 (𝑢)𝑘 ≤ 𝑡𝑒
and (𝑢, 𝑣) ∈ 𝐺 [𝑡𝑠 ,𝑡𝑒] , and each value of 𝑣 is the number of edges

(𝑢, 𝑣, 𝑡) with 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑒 .
We use |CTN𝑡𝑠 (𝑢)𝑘 | to denote the number of keys (distinct ver-

tices). The following lemmas immediately hold.

Lemma 5.8. |CTN𝑡𝑠 (𝑢)𝑘 | = |CTD𝑡𝑠 (𝑢)𝑘 |.
Lemma 5.9. |CTN𝑡𝑠 (𝑢)𝑘 | ≥ 𝑘 .
The idea of PHC-Index is to maintain the CT neighbors for

each vertex 𝑢 in the index construction. Given a removed edge,

we use constant time to update the CT neighbor by assuming the

corresponding core time remains unchanged. Once |CTN𝑡𝑠 (𝑢)𝑘 | <
𝑘 , we recompute the up-to-date CT 𝑡𝑠 (𝑢)𝑘 and CTN𝑡𝑠 (𝑢)𝑘 .
Local Core Time Computation. We propose a new method to

compute the core time of a vertex 𝑢 instead of that in Algorithm 2,

which has a global order dependency.

Lemma 5.10. Given a start time 𝑡𝑠 and an integer 𝑘 , the core time
of a vertex 𝑢 is the smallest time 𝑡 such that there exist a set of
vertices 𝐶 satisfying (1) |𝐶 | ≥ 𝑘 ; (2) ∀𝑣 ∈ 𝐶 : CT 𝑡𝑠 (𝑣)𝑘 ≤ 𝑡 and
∃(𝑢, 𝑣) ∈ 𝐺 [𝑡𝑠 ,𝑡] .

Proof. Based on Definition 4.2, assume the core time of 𝑢 is

𝑡 . There are at least 𝑘 neighbors 𝑣 of 𝑢 with core number not less

than 𝑘 in the projected graph of [𝑡𝑠 , 𝑡] [23, 32]. There does not exist
a value 𝑡 ′ < 𝑡 satisfying the condition. Otherwise, the core time

would be 𝑡 ′. For each such neighbor 𝑣 , the core time of 𝑣 is not

larger than 𝑡 since 𝑐𝑜𝑟𝑒 (𝑣) ≥ 𝑘 over [𝑡𝑠 , 𝑡], and there must exist an

edge (𝑢, 𝑣) in the projected graph of [𝑡𝑠 , 𝑡]. □

Lemma 5.10 provides a method to compute the core time of 𝑢

by the core times of 𝑢’s neighbors. The detailed process is given

in Algorithm 5, which returns the core time of the input vertex 𝑢.

The start time 𝑡𝑠 , an integer 𝑘 , core times of other vertices CT and

the graph G are also given. The algorithm iteratively scans each

neighbor over the time window in line 2. Note that the neighbors

are naturally arranged in chronological order. The algorithm adopts

an early termination strategy in line 4 and line 8. Specifically, after

processing 𝑘 distinct neighbors, the variable 𝑢𝑏 in line 8 is the

largest value in 𝑇 and an upper bound of CT 𝑡𝑠 (𝑢)𝑘 . The iteration
is terminated if 𝑡 ≥ 𝑢𝑏 (line 4) since 𝑡 never decreases, and the 𝑘-th

smallest values in 𝑇 cannot change.

Lemma 5.11. Algorithm 5 correctly computes the core time of the
input vertex 𝑢 for 𝑡𝑠 and 𝑘 .

Proof. The correctness is supported by Lemma 5.10. In the

algorithm, 𝑐𝑡 in line 5 is the earliest time that the neighbor can

contribute to the 𝑘-core of 𝑢. When |𝑇 | = 𝑘 in line 8, the algorithm

has visited 𝑘 distinct neighbors. Now, the set of processed neighbors

has satisfied the two conditions in Lemma 5.10 where 𝑡 in the lemma

is assigned by 𝑢𝑏 in the algorithm. The following iterations will try

to find the smallest time in the lemma. Given that 𝑢𝑏 has been an

upper bound of the core time, the algorithm terminates if 𝑡 ≥ 𝑢𝑏 in

line 4 or all neighbors have been processed. □

2040

Algorithm 6: PHC-Construct∗ ()
Input: a temporal graph 𝐺

Output: the PHC-Index of 𝐺
1 𝐶𝑜𝑟𝑒𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝐺 [1,𝑡𝑚𝑎𝑥]);
2 foreach 𝑡 : from 𝑡𝑚𝑎𝑥 to 2 do DelEdges(𝑡, 1, 𝑡 − 1) ;
3 foreach 𝑢 ∈ 𝑉 do initialize CTN(𝑢)𝑘 for 1 ≤ 𝑘 ≤ 𝑐𝑜𝑟𝑒 (𝑢);
4 foreach 2 ≤ 𝑡𝑠 ≤ 𝑡𝑚𝑎𝑥 do
5 𝑄 ← ∅;
6 foreach (𝑢, 𝑣) ∈ 𝐸𝑡𝑠−1 do
7 foreach 1 ≤ 𝑘 ≤ min(𝑐𝑜𝑟𝑒 (𝑢), 𝑐𝑜𝑟𝑒 (𝑣)) do
8 DelCTN(𝑢, 𝑣, 𝑡𝑠 − 1, 𝑘,𝑄);
9 DelCTN(𝑣,𝑢, 𝑡𝑠 − 1, 𝑘,𝑄);

10 while 𝑄 ≠ ∅ do
11 ⟨𝑢, 𝑘⟩ ← 𝑄.𝑝𝑜𝑝 (), 𝑜𝑙𝑑𝐶𝑇 ← CT (𝑢)𝑘 ;
12 CT (𝑢)𝑘 ← LocalCT(𝑢, 𝑡𝑠 , 𝑘, CT ,G);
13 add [𝑡𝑠 , CT (𝑢)𝑘] to PHC(𝑢)𝑘 ;
14 compute CTN(𝑢)𝑘 for 𝑡𝑠 ;

15 foreach ⟨𝑣, 𝑡⟩ ∈ N (𝑢) [𝑡𝑠 ,𝑡𝑚𝑎𝑥] do
16 if 𝑣 is visited then continue;
17 if CT (𝑢)𝑘 ≤ 𝑡 then break;
18 mark 𝑣 as visited;

19 if max(𝑜𝑙𝑑𝐶𝑇, 𝑡) ≤ CT (𝑣)𝑘 < CT (𝑢)𝑘 then
20 delete 𝑢 from CTN(𝑣)𝑘 ;
21 if |CTN(𝑣)𝑘 | < 𝑘 then 𝑄 ← 𝑄 ∪ {⟨𝑣, 𝑘⟩};
22 reset all vertices as unvisited;

Algorithm 7: DelCTN(𝑢, 𝑣, 𝑡, 𝑘,𝑄)
1 if max(CT (𝑣)𝑘 , 𝑡) ≤ CT (𝑢)𝑘 then
2 decrease 𝑣 in CTN(𝑢)𝑘 ;
3 if |CTN(𝑢)𝑘 | < 𝑘 then 𝑄 ← 𝑄 ∪ {⟨𝑢, 𝑘⟩};

Example 5.12. Consider the graph in Figure 1. All temporal edges

connecting to 𝑣3 are in Figure 5. The gray area shows the core time

of each neighbor for 𝑘 = 3 and 𝑡𝑠 = 2. According to Lemma 5.10,

the core time of 𝑣3 is 5 since we have three neighbors {𝑣1, 𝑣2, 𝑣4}
with core time not later than 5 and connecting to 𝑣3 not later than

5. We cannot find any earlier time.

Lemma 5.13. The time complexity of Algorithm 5 is 𝑂 (|N (𝑢) |).
The Final Algorithm for Index Construction. The pseudocode
of the optimized algorithm for index construction is presented in

Algorithm 6. Line 2 initializes the core times of each vertex for all

possible core numbers at the start time 1. Lines 4–22 increase the

start time 𝑡𝑠 and update the corresponding core times if necessary.

Lines 6–9 process each removed edge from 𝑡𝑠 to 𝑡𝑠 + 1.
The procedureDelCTN() shown in Algorithm 7 is used to update

the CT neighbors. By Lemma 5.9, we add 𝑢 to the queue in line 3 of

DelCTN() if the core time of 𝑢 for 𝑘 requires to be updated.

In line 7 of Algorithm 6, for any integer𝑘 > min(𝑐𝑜𝑟𝑒 (𝑢), 𝑐𝑜𝑟𝑒 (𝑣)),
neither 𝑢 nor 𝑣 can be in the CT neighbor of the other according to

Definition 5.7. Line 12 recomputes the core time of 𝑢 for 𝑘 and 𝑡𝑠 .

Unlike Algorithm 2, the computed core time in line 12 is never the

same as that for previous start times, and can be safely added to

the index in line 13. Line 14 recomputes the CT neighbors of 𝑢 for

v1

2
v8

2
v2

4
v4

5
v7

5
v6 v9 v10 v10 v5

6 6 6 7 8

5 8 5 5 7 7 8 8 8 7

Figure 5: Neighbors of 𝑣3, and the core time of each neighbor
for 𝑘 = 3 and 𝑡𝑠 = 2 in the temporal graph G
𝑘 . Lines 15–21 update the status of neighbors. The CT neighbor of

a vertex 𝑣 removes the key vertex 𝑢 if the core time of 𝑢 increases

and never be in the CT neighbor of 𝑣 according to Definition 5.7.

In line 19, max(𝑜𝑙𝑑𝐶𝑇, 𝑡) ≤ CT (𝑣)𝑘 is equivalent to 𝑢 ∈ CTN(𝑣)𝑘 .
The vertex 𝑣 is added to 𝑄 to update the core time if necessary.

Similar to Algorithm 2, we also maintain an offset to indicate the

start position for the start time of the window. Consequently, it

takes 𝑂 (1) amortized time complexity to access the first neighbor

of a vertex for each start time 𝑡𝑠 .

Theorem 5.14. The running time of Algorithm 6 is bounded by
𝑂 (|PHC| · D𝑚𝑎𝑥), where D𝑚𝑎𝑥 is the maximum degree.

Proof. In calculating the time complexity of lines 11-22 in Algo-

rithm 6, Algorithm 5 is the dominant step. Algorithm 5 is invoked

when the core time of the vertex 𝑢 changes. In other words, Algo-

rithm 5 is invoked for each time window in PHC-Index according

to the definition of PHC-Index. Therefore, the total time complexity

of Algorithm 6 is 𝑂 (|PHC| · D𝑚𝑎𝑥), which can be also rewritten

as 𝑂 (𝑚∗ · 𝑡 · D𝑚𝑎𝑥). □

5.3 Supporting Time Intervals on Edges.
In real-world temporal graphs, e.g. social networks and communica-

tion networks, edges may be associated with a time interval [𝑡, 𝑡 ′]
(i.e., inserted at 𝑡 and removed at 𝑡 ′) instead of a single timestamp.

We call such dataset an interval-based temporal graph.

The Snapshot Model. An immediate question for interval-based

temporal graphs is which edges are considered in the snapshot

of the query window. We focus on a straightforward intersection

model in this paper. Specifically, given a query time window [𝑡𝑠 , 𝑡𝑒],
we derive a snapshot 𝐺 [𝑡𝑠 ,𝑡𝑒] by merging all edges whose time

intervals overlap with the window between any two vertices into a

single unlabeled edge, i.e.,𝐺 [𝑡𝑠 ,𝑡𝑒] = (V, {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡, 𝑡 ′) ∈ E, 𝑡 ≤
𝑡𝑒 ∧ 𝑡 ′ ≥ 𝑡𝑠 }). We will show later that the idea of PHC-Index can

naturally handle this situation.

An alternative model to formulate the snapshot is to take all

edges inserted during [𝑡𝑠 , 𝑡𝑒] but not removed until 𝑡𝑒 , i.e.,𝐺 [𝑡𝑠 ,𝑡𝑒] =
(V, {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡, 𝑡 ′) ∈ E, 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑒 ∧ 𝑡 ′ > 𝑡𝑒 }). Indexing histori-

cal𝑘-cores under this model is hard since themonotonicity property

(e.g., Lemma 4.1) does not hold. We leave it for future works. A

potential idea is to precompute the core numbers of each possi-

ble time window for a set of carefully selected vertices. In query

processing, we use the core numbers of these indexed landmark

vertices to speed up the 𝑘-core computation.

Several monotonicity properties (e.g. Lemma 4.1 and Lemma 4.7)

in the historical 𝑘-core problem still hold for the interval-based tem-

poral graph. Therefore, the index structure still works. To construct

the index for the interval-based temporal graph, we preprocess the

graph and derive two sorted list. The first list and the second list

arrange all start times and all end times of edge in chronological

order, respectively. Then, we modify Algorithm 6 based on the two

2041

CollegeMsg Email MathOverflow AskUbuntu SuperUser WikiTalk Youtube DBLP Flickr Wikipedia
𝑛 1,899 986 24,818 159,316 194,085 1,140,149 3,223,589 1,824,701 2,302,926 1,870,710

𝑚 59,835 332,334 506,550 964,437 1,443,339 7,833,140 9,375,374 29,487,744 33,140,017 39,953,145

𝑘𝑚𝑎𝑥 20 34 78 48 61 124 88 286 600 206

𝑡𝑚𝑎𝑥 58,911 207,880 390,157 725,568 1,106,768 6,088,535 5,201,409 2,612,156 134 2,198

𝑡 50.03 150.59 104.93 30.17 41.94 97.09 31.27 9.1 8.89 35.33

𝑚∗ 13,838 16,064 187,986 455,691 714,570 2,787,967 9,375,374 8,344,615 22,838,276 36,532,531

D𝑚𝑎𝑥 1,546 10,571 7,421 10,122 27,183 233,954 91,751 7,276 34,174 226,577

Table 2: Statistics of datasets.

lists. In line 2, we replace the single time of each vertex with the

start time of each vertex. Specifically, we start from the latest start

time and iteratively remove the corresponding edge when decreas-

ing the start times. Visiting a start time of an edge represents that

such edge cannot be considered in the current time window. After

performing line 2, we similarly derive the core time of each vertex

for the earliest start time. Recall that lines 4–22 of Algorithm 6 re-

move edges when the start time increases and update core times if

necessary. For the interval-based temporal graph, we only consider

the end times in line 4. We iteratively remove edges according to

the end time list in line 6 because the core time of a vertex updates

only if there exists an edge expiring at the current time.

6 EXPERIMENTS
We conduct extensive experiments to evaluate the performance of

our proposed algorithms. All algorithms are implemented in C++

and compiled using the g++ compiler at -O3 optimization level. We

run experiments on a Linux machine with an Intel Xeon 3.7GHz

CPU and 64GB RAM. All hash tables in our proposed algorithms

are implemented with C++ STL.

Datasets. We evaluate algorithms on eight real-world temporal

graphs. The detailed statistics are presented in Table 2, where 𝑘𝑚𝑎𝑥

is the largest possible core number of all vertices in the graph,

𝑡𝑚𝑎𝑥 is the number of distinct timestamps in the graph, and 𝑡 is

the average number of time windows for each 𝑘 of a vertex in our

PHC-Index. The first six datasets are derived from SNAP
1
, and the

last two datasets are derived from the KONECT project
2
.

10
1

10
2

10
3

10
4

10
5

10
6

CollegeM
sg

Email

M
athOverflow

AskUbuntu

SuperUser

W
ikiTalk

Youtube

DBLP

Flickr

W
iki

R
u
n

n
in

g
 t

im
e

(µ
s)

PHC-Query Online-Query

Figure 6: Running time of query algorithms

6.1 Query Processing
Parameters.We compare the proposed query processing algorithm

PHC-Query for historical𝑘-core problemwith the online algorithm,

called Online-Query. Regarding the input parameters, we vary the

size of the query time window as 5%, 10%, 20%, 40%, 60% and 80%

of 𝑡𝑚𝑎𝑥 for each dataset with 60% as default. We vary the integer

𝑘 as 20%, 40%, 60% and 80% of 𝑘𝑚𝑎𝑥 for each dataset with 60% as

1
http://snap.stanford.edu/

2
http://konect.cc/

default. Given the window size and 𝑘 , we randomly pick 1000 time

windows over [1, 𝑡𝑚𝑎𝑥] with the same size and record the average

running time of 1000 queries.

Overall Query Efficiency. The running times of both two algo-

rithms under the default parameters are reported in Figure 6. We

can see that the speedup of PHC-Query is obvious. PHC-Query
is at least one order of magnitude faster than Online-Query and

is over two orders of magnitude faster in several large datasets.

For example, inWikiTalk, PHC-Query takes average 2ms for each

query, while Online-Query takes up to 165ms.

PHC-Query Online-Query

10
3

10
4

10
5

10
6

5% 10% 20% 40% 60% 80%

4 8 17 35 52 70

R
u

n
n

in
g

 t
im

e
(µ

s)

k

(a) Youtube

10
3

10
4

10
5

10
6

5% 10% 20% 40% 60% 80%

14 28 57 114 171 228

R
u

n
n

in
g

 t
im

e
(µ

s)

k

(b) DBLP

Figure 7: Query time by varying 𝑘

VaryingParameters.The running times of algorithmsPHC-Query
and Online-Query by varying the parameter 𝑘 are reported in Fig-

ure 7. We report the results of two representative large datasets —

Youtube and DBLP . The results of other datasets show the similar

trends. The results show that PHC-Query considerably outperforms

Online-Query in all settings. The time of PHC-Query performs a

slightly downward trend, where is visible from the Youtube dataset.
The time decreases from 14ms at 𝑘 = 17 (𝑘𝑚𝑎𝑥 × 20%) to 5ms at

𝑘 = 70 (𝑘𝑚𝑎𝑥 ×80%), the reason is when 𝑘 is relatively large, the core
numbers of many vertices are smaller than 𝑘 even in the projected

graph of [1, 𝑡𝑚𝑎𝑥]. Therefore, it takes constant time to identify that

such vertices cannot be in the result instead of performing the bi-

nary search. The decrease of PHC-Query for DBLP is not obvious

since the decrease of the result size is not considerable when 𝑘

increases. By contrast, the running time of Online-Query is almost

stable, since the algorithm needs to scan the whole snapshot given

the fixed window size.

The running times of algorithms PHC-Query and Online-Query
by varying the window size are reported in Figure 8. We also show

the average snapshot size (number of edges in the corresponding

projected graph) of each query in Figure 9 when the window size

increases. In contrast to the results from varying 𝑘 , we can see

a remarkable increase of the running time of Online-Query. For
example, in DBLP , the running time of Online-Query increases

2042

http://snap.stanford.edu/
http://konect.cc/

PHC-Query Online-Query

10
3

10
4

10
5

10
6

5% 10% 20% 40% 60% 80%

26
0,

07
0

52
0,

14
0

1,
04

0,
28

2

2,
08

0,
56

4

3,
12

0,
84

5

4,
16

1,
12

7

R
u

n
n

in
g

 t
im

e
(µ

s)

Window size

(a) Youtube

10
3

10
4

10
5

10
6

5% 10% 20% 40% 60% 80%

13
0,

60
7

26
1,

21
5

52
2,

43
1

1,
04

4,
86

2

1,
56

7,
29

4

2,
08

9,
72

5

R
u

n
n

in
g

 t
im

e
(µ

s)

Window size

(b) DBLP

Figure 8: Query time by varying window size

10
5

10
6

10
7

5% 10% 20% 40% 60% 80%

26
0,

07
0

52
0,

14
0

1,
04

0,
28

2

2,
08

0,
56

4

3,
12

0,
84

5

4,
16

1,
12

7

A
v

er
ag

e
sn

ap
sh

o
t

si
ze

Window size

(a) Youtube

10
5

10
6

10
7

5% 10% 20% 40% 60% 80%

13
0,

60
7

26
1,

21
5

52
2,

43
1

1,
04

4,
86

2

1,
56

7,
29

4

2,
08

9,
72

5

A
v

er
ag

e
sn

ap
sh

o
t

si
ze

Window size

(b) DBLP

Figure 9: Average snapshot size by varying window size

10
0

10
1

10
2

10
3

10
4

10
5

10
6

CollegeM
sg

Email

M
athOverflow

AskUbuntu

SuperUser

W
ikiTalk

Youtube

DBLP

Flickr

W
iki

R
u

n
n
in

g
 t

im
e

(s
)

PHC-Construct
* PHC-Construct

Figure 10: Running time of index construction algorithms
from 87ms at 5% to 0.9s at 80%, the reason for this is because the

running time of Online-Query depends on the size of the graph

snapshot. However, the time of PHC-Query remains stable, since

PHC-Query only performs a binary search for every vertex, and

the running time is not sensitive to the size of graph snapshots.

6.2 Index Construction
We report the running time of our final index construction al-

gorithm PHC-Construct∗ in Figure 10 with PHC-Construct as a
comparison. Given that our PHC-Construct essentially computes

core numbers for all time windows, we omit tests on the naive

HC-Index construction algorithm, which is almost the same as

PHC-Construct. The results of PHC-Construct are not reported

for several large datasets since the algorithm cannot finish within

12hrs. We can see that PHC-Construct∗ is several orders of mag-

nitude faster than PHC-Construct thanks to our new strategy for

core time computation and maintenance. In the smallest dataset

CollegeMsg, the algorithm PHC-Construct∗ takes about 2.5s while
PHC-Construct takes up to 620s. For datasets DBLP and WikiTalk,
PHC-Construct∗ finishes in 14mins and in about 2hrs respectively.

10
2

10
3

10
4

20% 40% 60% 80% 100%

1,
87

5,
07

5

3,
75

0,
15

0

5,
62

5,
22

4

7,
50

0,
29

9

9,
37

5,
37

4

R
u

n
n

in
g

 t
im

e
(s

)

Sampling ratio

(a) Youtube

10
1

10
2

10
3

20% 40% 60% 80% 100%

5,
89

7,
54

9

11
,7

95
,0

98

17
,6

92
,6

46

23
,5

90
,1

95

29
,4

87
,7

44

R
u

n
n

in
g

 t
im

e
(s

)

Sampling ratio

(b) DBLP

Figure 11: Running time of index construction algorithms
for different sampling ratios

PHC-Index Graph

10
1

10
2

10
3

10
4

20% 40% 60% 80% 100%

5,
89

7,
54

9

11
,7

95
,0

98

17
,6

92
,6

46

23
,5

90
,1

95

29
,4

87
,7

44

S
iz

e
(M

B
)

Sampling ratio

(a) Youtube

10
1

10
2

10
3

20% 40% 60% 80% 100%

1,
87

5,
07

5

3,
75

0,
15

0

5,
62

5,
22

4

7,
50

0,
29

9

9,
37

5,
37

4

S
iz

e
(M

B
)

Sampling ratio

(b) DBLP

Figure 12: Index size for different sampling ratios

10
-1

10
0

10
1

10
2

10
3

10
4

CollegeM
sg

Email

M
athOverflow

AskUbuntu

SuperUser

W
ikiTalk

Youtube

DBLP

Flickr

W
iki

S
iz

e
(M

B
)

PHC-Index Graph

Figure 13: Index size for all datasets.
Scalability Testing. We evaluate the scalability of our index con-

struction algorithm on two representative datasets Youtube and
DBLP . For each dataset, all edges are arranged in chronological

order. We pick the first 20%, 40%, 60%, 80% of the edges from

the original graph to perform the algorithm. The running time

of PHC-Construct∗ by varying the sampling ratio is reported in

Figure 11, the results of PHC-Construct are not reported since it

does not finish within 12hrs even when sampling 20% of the original

graph. The index size and graph size by varying the sampling ratio

are also given in Figure 12. For DBLP , PHC-Construct∗ takes about
40s at 20% and reaches to 140s, 301s, and 534s at 40%, 60% and 80%

respectively. PHC-Index for DBLP takes 70MB, 159MB, 274MB and

409MB at 40%, 60% and 80%, respectively.

6.3 Index Size
We report the size of our PHC-Index in Figure 13 with the graph size

as a comparison, the peak memory usage of PHC-Construct∗ is also

2043

(a) DBLP (2011–2015)

(b) DBLP (2016–2020)

Figure 15: DBLP case study (6-core)

30

50

70

90

15 20 25 30

R
u

n
n

in
g

 t
im

e
(m

s)

k

Optimized Query

Baseline

Figure 16: Performance of span-core computation

10
1

10
2

10
3

10
4

CollegeM
sg

Email

M
athOverflow

AskUbuntu

SuperUser

W
ikiTalk

Youtube

DBLP

Flickr

W
iki

P
ea

k
 M

em
o
ry

 (
M

B
)

Figure 14: Peak memory usage of index construction
provided in Figure 14 as a reference. Among the datasets, the index

size for Wikipedia is about 9.1GB, which is the largest one among

all datasets. We can see that the pruning effectiveness of our index

structure depends on the practical graph structure. Compared with

Youtube and Wikipedia, whose index sizes are over ten times larger

than teh graph, the index sizes of DBLP and Flickr perform well

because a large of core times are pruned, and the average number

of time windows 𝑡 in Theorem 4.10 is small. Note that in our

experiments, PHC-Index is constructed to support all possible start

and end times by default based on the original Unix timestamps of

edges in each dataset. In some real-world scenarios, the number of

possible query windows may be reduced. For example, we may only

need to support time windows with clear semantics, like always

from the start of one calendar month to the end of the other. Or

the temporal graph has been preprocessed into a series of graph

snapshots. Our index still works in such cases, and the size can also

be significantly reduced. We do not show the space of HC-Index

since it is extremely large. Given 𝑡𝑚𝑎𝑥 and 𝑛 in Table 2, the size

of HC-Index can be easily computed. For example, even for the

smallest dataset CollegeMsg, HC-Index takes up to 12TB space.

6.4 Case Studies
In case studies, we generate a temporal graph by collecting the pub-

lication data of DBLP from 2011 to 2020. Each vertex is a researcher.

For each year, we create an edge with the year number between

two vertices if they have at least one common paper. As a result,

we have 𝑡𝑚𝑎𝑥 = 10 in the generated graph.

Historical 𝑘-Cores in DBLP. We show the 6-cores of Prof. Jiawei

Han’s ego network on the DBLP snapshots of 2011–2015 and 2016–

2020, respectively. Note that given the large number of publications,

we only keep edges between authors if they have at least three

common publications for clearness. Figure 15 presents the resulting

subgraphs, which shows a great difference between two times.

Accelerating Span-Core Computation. We evaluate the perfor-

mance of span-core computation [11] based on our PHC-Index on

the real-world dataset DBLP. Given a time window and the integer

𝑘 , the baseline algorithm first creates a graph snapshot by com-

puting the intersection of edges at all times with in the window.

Then, the algorithm derives the final 𝑘-core by iteratively removing

each vertices with a degree smaller than 𝑘 in the snapshot. The

optimized algorithm uses PHC-Index to prune all edges containing

a vertex that cannot be in the historical 𝑘-core of the query time

window before computing the intersection.

We set the window size as 2 and vary 𝑘 from 15 to 30. For each

𝑘 , we compute the 𝑘-core of every size-2 window and record the

average running time of all windows with a non-empty resulting

subgraph. The results are shown in Figure 16. In addition to the

significant speedup, we can find that the running time of the base-

line is stable when increasing 𝑘 since the dominating cost is in the

intersection operation.

7 CONCLUSION
In this paper, we study the problem of efficiently querying historical

𝑘-cores in a large temporal graph. Given a time window and an

integer 𝑘 , the problem aims to compute the 𝑘-core in the graph

snapshot of the query time window. We propose an index-based

solution for the problem. We propose an optimized algorithm to

efficiently construct the index. Several experiments are conducted

to show the efficiency of our solution. Several potential problems

are also opened. For example, given the highly dynamic graph,

algorithms can be designed to update the PHC-Index. A parallel

implementation of PHC-Construct∗ may also be done to further

improve the efficiency of index construction.

ACKNOWLEDGEMENT.
Ying Zhang is supported byARC FT170100128 andARCDP210101393.

Lu Qin is supported by ARC FT200100787 and DP210101347. Wen-

jie Zhang is supported by ARCDP180103096 and ARCDP200101116.

Xuemin Lin is supported byARCDP180103096 andARCDP170101628.

2044

REFERENCES
[1] Hidayet Aksu, Mustafa Canim, Yuan-Chi Chang, Ibrahim Korpeoglu, and Özgür

Ulusoy. 2014. Distributed 𝑘-Core View Materialization and Maintenance for

Large Dynamic Graphs. TKDE 26, 10 (2014), 2439–2452.

[2] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-

nani. 2005. Large scale networks fingerprinting and visualization using the

k-core decomposition. In NIPS. 41–50.
[3] Reid Andersen and Kumar Chellapilla. 2009. Finding Dense Subgraphs with Size

Bounds. In WAW, Konstantin Avrachenkov, Debora Donato, and Nelly Litvak

(Eds.), Vol. 5427. 25–37.

[4] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores

Decomposition of Networks. CoRR cs.DS/0310049 (2003).

[5] Lijun Chang. 2019. Efficient Maximum Clique Computation over Large Sparse

Graphs. InKDD, Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria

Terzi, and George Karypis (Eds.). 529–538.

[6] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang.

2013. Efficiently computing k-edge connected components via graph decompo-

sition. In SIGMOD, Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias

(Eds.). 205–216.

[7] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core

decomposition in massive networks. In ICDE, Serge Abiteboul, Klemens Böhm,

Christoph Koch, and Kian-Lee Tan (Eds.). 51–62.

[8] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search

of communities in large graphs. In SIGMOD, Curtis E. Dyreson, Feifei Li, and
M. Tamer Özsu (Eds.). 991–1002.

[9] LaxmanDhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne: A Framework

for Parallel Graph Algorithms usingWork-efficient Bucketing. In SPAA. 293–304.
[10] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective

Community Search for Large Attributed Graphs. PVLDB 9, 12 (2016), 1233–1244.

[11] Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco

Gullo. 2018. Mining (maximal) Span-cores from Temporal Networks. In CIKM.

107–116.

[12] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core Decom-

position and Densest Subgraph in Multilayer Networks. In CIKM. 1807–1816.

[13] Antonios Garas, Frank Schweitzer, and Shlomo Havlin. 2012. A k-shell decom-

position method for weighted networks. New Journal of Physics 14, 8 (2012),

083030.

[14] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2011. D-

cores: Measuring Collaboration of Directed Graphs Based on Degeneracy. In

ICDM. 201–210.

[15] Svante Janson and Malwina J. Luczak. 2007. A simple solution to the k-core
problem. Random Struct. Algorithms 30, 1-2 (2007), 50–62.

[16] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. 2015. K-Core

Decomposition of Large Networks on a Single PC. PVLDB 9, 1 (2015), 13–23.

[17] Udayan Khurana and Amol Deshpande. 2013. Efficient Snapshot Retrieval over

Historical Graph Data. In ICDE. 997–1008.

[18] Alan G. Labouseur, Paul W. Olsen, and Jeong-Hyon Hwang. 2013. Scalable

and Robust Management of Dynamic Graph Data. In BD3 VLDB 2013, Vol. 1018.
43–48.

[19] Rong-Hua Li, Lu Qin, Fanghua Ye, Jeffrey Xu Yu, Xiaokui Xiao, Nong Xiao, and

Zibin Zheng. 2018. Skyline Community Search in Multi-valued Networks. In

SIGMOD. 457–472.
[20] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persistent

Community Search in Temporal Networks. In ICDE. 797–808.
[21] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in

Large Dynamic Graphs. TKDE 26, 10 (2014), 2453–2465.

[22] Tomasz Luczak. 1991. Size and connectivity of the k-core of a random graph.

Discret. Math. 91, 1 (1991), 61–68.
[23] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2013. Dis-

tributed k-Core Decomposition. TPDS 24, 2 (2013), 288–300.
[24] Katerina Pechlivanidou, Dimitrios Katsaros, and Leandros Tassiulas. 2014.

MapReduce-Based Distributed K-Shell Decomposition for Online Social Net-

works. In SERVICES. 30–37.
[25] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. 2011. On

Querying Historical Evolving Graph Sequences. PVLDB 4, 11 (2011), 726–737.

[26] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,

and Ümit V. Çatalyürek. 2013. Streaming Algorithms for k-core Decomposition.

PVLDB 6, 6 (2013), 433–444.

[27] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks 5, 3 (1983), 269–287.

[28] Konstantinos Semertzidis and Evaggelia Pitoura. 2016. Durable graph pattern

queries on historical graphs. In ICDE. 541–552.
[29] Konstantinos Semertzidis, Evaggelia Pitoura, and Kostas Lillis. 2015. TimeReach:

Historical Reachability Queries on Evolving Graphs. In EDBT. 121–132.
[30] Dong Wen, Yilun Huang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin

Lin. 2020. Efficiently Answering Span-Reachability Queries in Large Temporal

Graphs. In ICDE. 1153–1164.
[31] DongWen, Lu Qin, Ying Zhang, Lijun Chang, and Ling Chen. 2019. Enumerating

k-Vertex Connected Components in Large Graphs. In ICDE. 52–63.
[32] DongWen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2016. I/O efficient

Core Graph Decomposition at web scale. In ICDE. 133–144.
[33] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and

Hejun Wu. 2015. Core decomposition in large temporal graphs. In BigData.
649–658.

[34] Bohua Yang, Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Rong-Hua Li.

2019. Index-Based Optimal Algorithm for Computing K-Cores in Large Uncertain

Graphs. In ICDE. 64–75.
[35] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010. Using the

k-core decomposition to analyze the static structure of large-scale software

systems. J. Supercomput. 53, 2 (2010), 352–369.
[36] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. 2017. A Fast Order-Based

Approach for Core Maintenance. In ICDE. 337–348.

2045

