
A Practical Approach to Groupjoin and Nested Aggregates
Philipp Fent

Technische Universität München
fent@in.tum.de

Thomas Neumann
Technische Universität München

neumann@in.tum.de

ABSTRACT
Groupjoins, the combined execution of a join and a subsequent
group by, are common in analytical queries, and occur in about 1/8
of the queries in TPC-H and TPC-DS. While they were originally
invented to improve performance, efficient parallel execution of
groupjoins can be limited by contention, which limits their useful-
ness in a many-core system. Having an efficient implementation
of groupjoins is highly desirable, as groupjoins are not only used
to fuse group by and join but are also introduced by the unnesting
component of the query optimizer to avoid nested-loops evalu-
ation of aggregates. Furthermore, the query optimizer needs be
able to reason over the result of aggregation in order to sched-
ule it correctly. Traditional selectivity and cardinality estimations
quickly reach their limits when faced with computed columns from
nested aggregates, which leads to poor cost estimations and thus,
suboptimal query plans.

In this paper, we present techniques to efficiently estimate, plan,
and execute groupjoins and nested aggregates. We propose two
novel techniques, aggregate estimates to predict the result distribu-
tion of aggregates, and parallel groupjoin execution for a scalable
execution of groupjoins. The resulting system has significantly bet-
ter estimates and a contention-free evaluation of groupjoins, which
can speed up some TPC-H queries up to a factor of 2.

PVLDB Reference Format:
Philipp Fent and Thomas Neumann. A Practical Approach to Groupjoin
and Nested Aggregates. PVLDB, 14(11): 2383 - 2396, 2021.
doi:10.14778/3476249.3476288

1 INTRODUCTION
Joins and aggregations are the backbone of query engines. A com-
mon query pattern, which we observe in many benchmarks [7, 45]
and industry applications [58], is a join with grouped aggregation
on the same key:
SELECT cust.id, COUNT(*), SUM(s.value)
FROM customer cust, sales s
WHERE cust.id = s.c_id
GROUP BY cust.id

In a traditional implementation, we answer the query by building
two hash tables on the same key, one for the hash join and one for
the group-by. However, we can speed up this query by reusing the
join’s hash table to also store the aggregate values. This combined
execution of join and group-by is called a groupjoin [42].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476288

SQL
Query �����������������

Result

Improved Cardinality
Estimates of Aggregates

Plan
Γ Γ

A B C

Contention-free Parallel
Groupjoin Execution

Γ
�

Figure 1: Missing components for practical groupjoins. Our
improvements to estimation and parallel execution enable
efficient evaluation of queries with nested aggregates.

The primary reason to use a groupjoin, is its performance. We
spend less time building hash tables, use less memory, and improve
the responsiveness of this query. However, groupjoins are also
more capable than regular group-bys, as we can create the groups
explicitly. Consider the following nested query, with subtly different
semantics:

SELECT cust.id, cnt, s
FROM customer cust, (

SELECT COUNT(*) AS cnt, SUM(s.value) as s
FROM sales s
WHERE cust.id = s.c_id

)

Here, nested the query calculates a COUNT(*) over the inner table,
which evaluates to zero when there are no join partners. Answering
that query without nested-loop evaluation of the inner query is
tricky, as a regular join plus group-by will produce wrong results
for empty subqueries, which is known as the COUNT bug [44]. A
groupjoin directly supports such queries by evaluating the static
aggregate for the nested side of the join, taking the groups from
the other side.

Despite their benefits, groupjoins are not widely in use. We
identify two problems and propose solutions that make groupjoins
more practical: First, existing algorithms for groupjoins do not scale
well for parallel execution. Since the groupjoin hash table contains
shared aggregation state, parallel updates of these need synchro-
nization, and can cause heavy memory contention. Furthermore,
current estimation techniques deal poorly with results of groupjoins
from unnested aggregates.

The unnesting of inner aggregation subqueries is very prof-
itable, since it eliminates nested-loops evaluation and improves
the asymptotic complexity of the query. However, this causes the
aggregates to be part of a bigger query tree, mangled between
joins, predicates and other relational operators. Query optimiza-
tion, specifically join ordering, depends on the quality of cardinality

2383

https://doi.org/10.14778/3476249.3476288
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476288

and selectivity estimates [37]. With unnested aggregates, the es-
timation includes group-by operations and aggregates, which are
notoriously hard [22, 32]. Consider the following nested aggregate
with a predicate:

SELECT ... GROUP BY x HAVING SUM(value) > 100

The result might have vastly different cardinality, depending on the
selectivity, which in turn influences the optimal execution order of
the query.

In our paper, we work on techniques that make combined join
and aggregation more efficient, e.g., with eager aggregation [54, 59]
and hash table sharing via groupjoins [19, 42]. In addition, we
propose a novel estimation framework for computed aggregate
columns, which improves the plan quality with nested aggregates.
We introduce this here as part of our work in groupjoins, but the
estimation framework is useful for queries with regular group-
by operators, too. We integrate our work in the high-performance
compiling query engine of our research database systemUmbra [47].
Figure 1 shows a high-level overview of our query optimizer. On the
way from an SQL query from a relational algebra query plan to the
query result, we focus on efficiently evaluating nested aggregates
with computed column estimates and parallel groupjoin execution.

The rest of this paper is structured as follows: First, we introduce
the groupjoin and its use in general unnesting in Section 2. Then, we
discuss and evaluate three parallel groupjoin execution strategies in
Section 3, and propose a cost model to choose the optimal execution
strategy. Afterwards, we introduce our estimations for computed
columns in Section 4. Section 5 shows our experimental results
based on the well-known TPC-H and TPC-DS benchmarks, before
we discuss related work in Section 6.

2 GROUPJOIN FOR NESTED AGGREGATES
Apart from better performance, the semantics of groupjoins are
useful to compute nested aggregates. Due to the versatile subqueries
in SQL, aggregates can appear in various places of the query plan. To
efficiently calculate such aggregates, it is important to unnest and
not evaluate them in nested-loops [4, 26, 48]. However, unnested
and decorrelated aggregates need a careful implementation and are
challenging in further query planning.

2.1 Groupjoin
We define a groupjoin Γ [42] as an equi-join with separate aggre-
gates over its binary inputs grouped by the join key.

𝑅 Γ𝑎1 =𝑎2 :𝑎𝑔𝑔 𝑆 ≔ {𝑟 ◦ [𝑔𝑟 : 𝐺𝑅] ◦ [𝑔𝑠 : 𝐺𝑆] | 𝑟 ∈ 𝑅,

𝐺𝑆 = 𝑎𝑔𝑔({𝑠 | 𝑠 ∈ 𝑆 ∧ 𝑟 .𝑎1 = 𝑠 .𝑎2}),
𝐺𝑅 = 𝑎𝑔𝑔({𝑟 | 𝑟 ∈ 𝑅 ∧ 𝑟 .𝑎1 = 𝑠 .𝑎2})}

We further require that 𝑎1 → 𝑅, i.e., that the join condition
functionally determines R. With this definition, we compute an
equi-join between R and S on a key of R, and compute aggregates
separately over the matching tuples, which can be beneficial since
we can avoid duplicate tuples of R and building a duplicate hash
table.

The intuitive use-case for groupjoins is an optimization to fuse a
join and a group by operator, given that the preconditions shown in

ΓR.id

R.id = S.r_id

1

R S
R.id→ {R.*}

2

ΓR.id = S.r_id⇒
R S

Figure 2: Preconditions to introduce a groupjoin.

Figure 2 are satisfied, and we can separately evaluate the aggregates:
1 The join and aggregation keys need to be equivalent, and 2
these keys are a superkey w.r.t. functional dependencies of the left
build side. In this case, introducing a groupjoin is usually considered
to be a net win [14, 19] and can reduce the cost of those operators
by up to 50% by eliminating intermediate results.

2.2 Correlated Subquery Unnesting
The groupjoin also supports the challenging edge cases of whole ta-
ble aggregates in a correlated subquery. Consider the correlated sub-
query from Section 1, where we calculate a whole-table COUNT(*)
on sales that is correlated with the outer query’s customer. Con-
ceptually, we need to calculate a whole table aggregate for each
customer, but ideally want to introduce a more efficient join. How-
ever, using an outer join is tricky, since we cannot directly translate
whole table aggregates to the join result. A groupjoin can instead
evaluate the left and right sides separately, where a careful initial-
ization can produce equivalent results to whole table aggregates.
For the COUNT(*) example, we initialize empty groups (e.g., cus-
tomers with no sales) as zero, and increment it with whole-table
tuple counting logic1.

Dependent join

R Γ

S

Γ

SR �

conceptual
unnesting

Γ

SR Γ: D

introduced
groupjoin

Figure 3: General Unnesting: Decorrelation of dependent sub-
queries containing an aggregation can introduce a groupjoin.

For the general case, we deliberately introduce a groupjoin to
separately calculate the aggregates of the correlated subquery, filter
unnecessary tuples, and avoid the COUNT bug [48]. Figure 3 shows
this unnesting for two arbitrary tables R and S, with the dependent
subquery-join on top and a nested whole table aggregate Γ in
the correlated right subtree. To decorrelate this aggregate, we first
compute the magic set º of relevant tuples for the correlated sub-
query [56]. To compute the set, we eliminate any duplicates of the
outer-side join key with a group-by Γ and get the precise domain
D of potentially equivalent keys for which we need to calculate the
inner aggregate. With this condensed set of outer keys, we satisfy

1COUNT(*) has some edge cases that are trivial in a groupjoin, but difficult in separate
operators. See Section 3.3 for an extended discussion.

2384

both preconditions to introduce a groupjoin, which we then use to
keep the aggregation of the subquery side S separate.

In the following, we parallelize groupjoins with on-the-fly adap-
tive data segmentation into morsels and contention-avoiding rela-
tional operators that allow dynamic work-stealing.

3 PARALLEL EXECUTION OF GROUPJOINS
The parallel execution of common relational operators is widely
studied and efficient parallel join and aggregation algorithms are
used in many systems that can scale analytical workloads [11,
30, 49]. Groupjoins, which fuse join with aggregation hash tables,
promise a significant speedup in comparison to separate operators
and are necessary for general unnesting. However, parallel execu-
tion of groupjoins can be a bottleneck due to contention. While
several publications have previously discussed groupjoins, they are
now well over a decade old and single-threaded [9, 12, 40].

Key Value

Key Value

Key Value

Hash join

Key Value LeftAggr. RightAggr.

Key Value LeftAggr. RightAggr.

Key Value LeftAggr. RightAggr.

Hash groupjoin

Figure 4: Single Threaded Groupjoin Hash Table. Aggregates
from either join side are materialized as hash table payload.

Figure 4 shows a basic, single-threaded implementation of a
groupjoin, and its similarity to a regular hash join. In this example,
we use a hash table to store the hash table payload, which includes
the accumulators for the aggregates of both sides. During the build
phase, we initialize these as empty to support the semantics of static
(whole table) aggregation.

In contrast to joins, the probe phase of groupjoins is not read-
only, but needs synchronization of the aggregate updates when us-
ing more than one thread. The shared state of the aggregates poses
a problem for parallel execution, and we need synchronization,
e.g., with fine-grained locking, to avoid data races. Unsurprisingly,
the synchronization overhead can quickly become a bottleneck,
especially in the presence of heavy-hitters [52]. While updating the
aggregates is generally a quick operation, and the critical section
only spans a couple of instructions, all threads will compete for
the same locks of the heavy-hitters. Even when eliding this lock
and updating the aggregates with lock-free atomic instructions,
memory contention, which is the root-cause for this bottleneck,
still remains a problem and causes suboptimal performance.

In the following, we propose three execution strategies for group-
joins that avoid synchronization between threads. For each imple-
mentation, we discuss, in which scenarios it is an efficient imple-
mentation of a groupjoin. Based on these insights, we propose a
cost-based strategy in Section 3.4, to choose the best physical plan,
depending on the underlying data distribution.

3.1 Eager Right Groupjoin
One well-known technique of aggregation queries is eager aggre-
gation [59]. A group-by can be pushed down, past a join, to reduce

the number of input tuples to the join. In the general case, this
needs an additional group-by after the join, since the join might
have a multiplying effect on the aggregate tuples. In this section,
we apply eager aggregation to groupjoins: When we can speculate
that almost every tuple finds a join partner, i.e., the relative-right
selectivity 𝜎𝑆 is close to 1, then eager aggregation will substantially
reduce the number of tuples that need to be processed by the join.

Γ

R S

Γ

R S

Γ

Γ Γ

R S

count(*)

Figure 5: Eager Grouping. While the middle groupjoin elimi-
nates the second hash table, the schematic eager aggregation
on the right can additionally eliminate the result scan.

When eagerly aggregating in a groupjoin, we can exploit several
facts that allow making eager aggregation very efficient: Precondi-
tion 2 (cf. Section 2.1) of the groupjoin guarantees that the join
and group key of the left-hand side functionally determine the left
tuples. In other words, the left side does not contain duplicates and,
thus, cannot have a multiplying effect on the right aggregation. As
sketched in Figure 5, we can exploit this fact by first eagerly execut-
ing the right aggregation. If there are any aggregates on attributes
of R, duplicate keys in S have a multiplying effect that duplicates
the keys but do not change their value. We account for this effect
with a count(*) aggregate on S, which we apply as multiplication
factor of the unique tuples of R. In result, we elide the final group-by
that would be needed for general eager aggregation as described
by Yan and Larson [59], and replace the result scan with a single
hash table probe.

Algorithm 1: Example code generated to execute an eager
right groupjoin.
initialize memory of Γ𝑠
for each tuple s in S

aggregate s as as in hash table of Γ𝑠
for each tuple r in R

if r has match as in Γ𝑠
ar ≔ agg(r * as.count(*))
output: r ◦ ar ◦ as

We eliminate the result scan, and improve the pipeline behavior,
by using the same precondition 2 . A group-by is a full pipeline
breaker [46], i.e., it materializes all incoming tuples and scans the
result when the last tuple was processed. However, this flushes all
data from CPU registers, or very hot cache, which makes pipeline
breakers expensive. Algorithm 1 shows pseudocode to execute this
operator, where each loop represents one pipeline. In the first loop,
we eagerly aggregate the whole right side S into the aggregation
hash table Γ𝑆 . The second loop probes with the left side R and
calculates the complete left aggregate in a single step with the

2385

probe result. Afterwards, the loop still is not terminated, but can
continue its pipeline with any next operations, in this case output.

In contrast to a lazily aggregated groupjoin, eager aggregation
requires no explicit synchronization through locks. Our implemen-
tation reuses the implementation of regular aggregation, which first
builds partitioned, thread-local aggregation hash tables [34, 35, 53].
A second step exchanges these partitions between threads and
merges them into a partitioned global result hash table. Afterwards,
the duplicate-free left side can exclusively read its matches in the
hash table, which allows contention-free and full parallel execution.

While it can be executed very efficiently, eager aggregation is no
one-size-fits-all solution. Depending on the relative right selectivity
of the join part, i.e., how many groups of the right-hand side are not
matched by the left, we might calculate many unneeded aggregates.
Therefore, we deem it necessary to only use this eager aggregation,
when a local cost-model predicts it to be beneficial.

The following cost function models the eager right groupjoin
and closely follows the presented algorithm:

𝐶eager = |𝑆 | + |𝑅 𝑆 |
First, we build the eager hash aggregation in two passes over the
data, which touches every tuple of S twice: 2 |𝑆 |. Then, we probe
the hash table with the left-hand side |𝑅 |, and check the matching
tuples |𝑅 𝑆 |, for equality. In our cost function 𝐶eager, we exclude
the initial passes over each input side |𝑅 |+ |𝑆 |, which are required by
any groupjoin implementation. Nevertheless, we include the result
scanning phase of pipeline breakers, to differentiate operator-fused
pipelines that don’t need to materialize their result.

3.2 Memoizing Groupjoin
Eagerly aggregating is very beneficial, when every right tuple finds
a join partner. The other extreme is also common, i.e., that many
tuples are filtered by the join. In this case, we want to filter right-
hand side tuples, before aggregating them. In the following, we
present a groupjoin implementation that builds filtered thread-local
aggregates and efficiently merges them to a groupjoin result.

The idea of this implementation is to optimistically use a shared
global aggregation hash table for aggregates with few tuples, but
aggregate heavy-hitters thread-locally. The global hash table resem-
bles the sketched single-threaded groupjoin in Figure 4, where we
first build a join hash table with the left-hand side R with additional
space for the aggregates. For synchronization, we use an atomic
set-on-first-use thread-id tag that assigns groups to the first thread
that updates it. Additionally, when we probe the hash table with S,
we memoize the payload pointer to avoid a duplicate lookup.

The intent behind this hybrid synchronization strategy is to
avoid tiny thread-local groups with very few tuples, while still
aggregating heavy-hitters thread-locally. With the thread-id tags,
singleton groups, and groups that are clustered on a single thread,
directly use the result hash table, which reduces the size of local
hash tables that would later need to be merged again. In effect, this
reduces the partial aggregates to the number of threads𝑛, compared
to 𝑛 + 1 for full thread-local preaggregation and merging into a
global hash table.

Algorithm 2 shows pseudocode for the described groupjoin probe
pipeline. The atomic operations here use a memory model akin to
the C++ model [6]. For our optimistic synchronization, we use a

Algorithm 2: Memoizing groupjoin probe pipeline with
ownership tagging.

1 Hashtable globalHt
2 // Omitted: Concurrent build of R hash table
3 thread_local localHt, tid
4 for each tuple s in S
5 hash ≔ hash(s.key)
6 *p ≔ globalHt.probe(hash, s.key)
7 if p not found
8 continue
9 owner ≔ p->tid.atomic_load(relaxed)
10 inPlace ≔ owner == tid;
11 // Is uninitialized?
12 if owner == 0
13 inPlace = p->tid.CAS(owner, tid)
14 if inPlace
15 p->aggregate(s)
16 else
17 localHt[hash, p].aggregate(s)

single atomic compare-and-swap (CAS), which is the only operation
that requires memory synchronization. The low-cost relaxed read
of the current tag in line 9 does not need synchronization and could
read stale data. For correctness, in the sense of being free of data
races, this read is not required. However, it is a vital optimization
for heavy-hitters, where the CAS synchronization would cause
memory contention. Instead, after the initial CAS, any heavy-hitters
will not take this branch again and all other operations are either
non-atomic or relaxed. In result, this thread-local preaggregation is
virtually contention free. Afterwards, when all input data was either
aggregated locally or globally, we exchange the local partitions
between threads.

In the thread-local aggregation, we reuse previously calculated
intermediates. The local hash table lookup reuses the hash of the
global hash table lookup, and, instead of comparing the full key
for equality, we only check if the pointer of the probe result from
line 6 matches. We also store just this pointer in the local tables,
which we also use as a shortcut for merging the aggregates. When
all probes from R are finished, we merge the thread-local groups by
following this memoized probe pointer, which reduces the number
of cache misses and avoids a second hash table lookup.

Compared to the eager right groupjoin, this memoizing approach
favors small left sides with a selective join. Expressed more formally
for our cost model, we use a two-pass build of the left hash table
2 |𝑅 |, probe once with the entire right side |𝑆 |, before checking the
matching tuples |𝑅 𝑆 | for equality. Then, we use these to build
thread-local aggregates, before merging them into their memoized
global bucket, 2 |𝑅 𝑆 |. Since this variant of the groupjoin is a full
pipeline breaker, we additionally need to scan the entire |𝑅 | hash
table to start the next pipeline, while omitting unjoined results. In
sum, we arrive at the following cost function:

𝐶memo = 2 |𝑅 | + 3 |𝑅 𝑆 |

2386

3.3 Separating Join and Group-By
As laid out in Section 2, groupjoin has its own semantics that is
useful for whole-table aggregates of unnested queries. An alter-
native to a dedicated operator would be to emulate this behavior
with reused join and group-by operators, which reduces the imple-
mentation overhead, but might build duplicate state in two hash
tables.

This duplicate state was the reason that previous work [14, 19,
42] considered a groupjoin as unconditionally advantageous to a
separate execution. However, a careful analysis of the involved
operations shows that there exist cases where a groupjoin is more
expensive than a separate inner join followed by a group-by. The
intuition behind this somewhat counter-intuitive finding is that
the groupjoin result set might be bigger than that of a separate
group-by. That is, when the join is selective on the left build side R,
then the join-reduced aggregate table will be significantly smaller
than the join table. In this case, it is cheaper to probe a separate
join table and build a densely populated aggregation table instead
of reusing the relatively sparse matches in the join table. In the
following, we show how a groupjoin can be rewritten as a join and
group-by, while still preserving the static aggregation semantics
that we need to unnest arbitrary queries (cf. Section 2.2).

While for most groupjoins, the separation into a join and group-
by is trivial, the ungrouped whole table aggregations that can ap-
pear in correlated subqueries require special care to preserve their
semantics [12]. We call this special case a static groupjoin. Consider
the following example of a query that we process with such a static
groupjoin:

SELECT r.id, cnt FROM R r, (
SELECT COUNT(*) cnt
FROM S s
WHERE r.id IS s.r_id

)

Our general unnesting resolves the correlated subquery with
a groupjoin. The following shows the resulting plan in SQL-like
syntax:

SELECT r.id, COUNT(S::*) FROM R r
STATIC LEFT GROUP JOIN S s
ON r.id IS s.r_id

The important distinction of the static groupjoin is between
empty inner tables and NULL values. Table 1 shows three cases,
where the aggregated count differs: A count(*) in a subquery
counts any matching tuple, even when its value is NULL. Executing
an outer join R S, produces additional NULL values that need
to be ignored by a count of S tuples. However, with a separate
aggregation operator, a naïve count cannot distinguish between
matches, where NULL IS NULL and padded tuples that did not
have a join partner. Even evaluating the aggregates before the join
would still require coalescing of NULL aggregates. To execute the
join before aggregating, we ensure the correctness of the aggregates
with a join marker that decides between ignored and NULL tuples:

SELECT r.id, COUNT(s.joinMarker)
FROM R r LEFT OUTER JOIN (

SELECT *, TRUE AS joinMarker FROM S

Table 1: Static count semantics. In separate operators
count(*) aggregates might produce different results.

R S count(*)
subquery

count(S)
after

count(*)
before

(NULL, NULL) 1 0 1
(1, 1) 1 1 1
(2, NULL) 0 0 NULL

) ON r.id = s.r_id
GROUP BY r.id

Rewriting such a groupjoin as LEFT JOIN is usually not bene-
ficial for performance, since it fixes the relative left selectivity to
one. On the other hand, most groupjoins do not need an outer join,
and might be cheaper executed in separate hash tables. For our cost
model calculation, we first two-pass build a 2 |𝑅 | hash table, then
probe with |𝑆 | and match |𝑅 𝑆 | right tuples. With the resulting
tuples, we build a separate aggregation table, again in two passes
2 |𝑅 𝑆 |, before we scan the |𝑅 𝑆 | matched aggregation groups.
The drawback in comparison to the memoizing approach is that we
do not know the size of the aggregation state beforehand. There-
fore, we need to additionally check if the aggregate already exists,
and dynamically allocate and initialize memory on demand. While
this can reduce resource usage for unmatched keys in R, the fine-
grained allocations are more expensive per match (|𝑅 𝑆 |) than a
bulk operation for all keys. In our simplified cost model, we express
this as a fixed factor, which we measured empirically as 𝑐 = 30 %
overhead. In total, we arrive at the following cost function:

𝐶separate = |𝑅 | + (3 + 𝑐) |𝑅 𝑆 | + |𝑅 𝑆 |

3.4 Choosing a Physical Implementation
To recap, we presented three parallel execution strategies for group-
joins. In Section 3.1, we presented an eagerly right aggregating
groupjoin, in Section 3.2 we use a combined join and aggregation
table with memoizing thread-local aggregations. Lastly, we showed
in Section 3.3, that we can rewrite arbitrary groupjoins as separate
join and group-by. All three implementations have different char-
acteristics, which we formalized as a cost model to compare their
relative performance:

𝐶eager = |𝑆 | + |𝑅 𝑆 |
𝐶memo = 2 |𝑅 | + 3 |𝑅 𝑆 |
𝐶separate = |𝑅 | + 3.3 |𝑅 𝑆 | + |𝑅 𝑆 |

Table 2: Example cost calculations of groupjoin implementa-
tions.

|R| |S| 𝜎𝑅 𝜎𝑆 |𝑅 𝑆 | |𝑅 𝑆 | 𝐶eager 𝐶memo 𝐶sep

100 200 80% 80% 80 160 280 680 708
100 200 80% 10% 80 20 280 260 246
100 100 100% 10% 100 10 200 230 233
100 500 100% 5% 100 25 600 275 283

2387

0

400

800

1200

1600

0% 25% 50% 75% 100%
Progress

U
se

d
M

em
or

y
[M

B
]

Method eager memoizing separate

Figure 6: Memory consumption of TPC-H SF 10 orders -
lineitem groupjoins.

The base of all three cost functions consists of the underlying
cardinalities |𝑅 | and |𝑆 |, and the semijoin reduced cardinalities
|𝑅 𝑆 | = |𝑅 | 𝜎𝑅 and |𝑅 𝑆 | = |𝑆 | 𝜎𝑆 . In Table 2 we go through some
exemplary calculations of this cost model. As the examples show,
the different implementations have significant differences in the
total cost of execution, depending on how much a side is reduced
with its relative selectivity 𝜎 .

When considering 𝐶eager, the differences are especially pro-
nounced. 𝐶memo and 𝐶separate are closer, since both approaches
implement similar logic. Their largest difference is the static vs.
dynamic memory allocation to compute the aggregates. Figure 6
shows the allocated memory in Umbra during the execution of a
groupjoin with our three implementations. In the shown case, every
input tuple finds a join partner, thus we need memory to store all
tuples. Both fused approaches store them in one hash table, either
statically allocated up front (memoizing), or dynamically during
eager aggregation of S. In contrast, separate execution allocates
a smaller initial hash table and dynamically builds the additional
aggregation table. In this example, the fused storage uses about
1GB peak memory, while separate execution consumes about 50 %
more.

However, depending on how many distinct aggregates we en-
counter (𝜎𝑅), the dynamic allocation of the separate executionmight
also use less memory. In our cost model, we encode this difference
as the simplified 30 % factor in 𝐶separate. However, this factor de-
pends on a few system characteristics, e.g., the cost to dynamically
allocate memory and the momentary scarcity of it. Additionally,
the number of aggregates also influences the hash table payload
sizes.

Like any cost-based optimization, this approach relies on esti-
mates of the underlying data. While this works well for base tables
and joins, the quality can deteriorate with nested groupjoins and
other aggregates.

4 AGGREGATE ESTIMATES
Good estimates for computed columns in nested aggregates are one
of the missing links in cost-based query optimization. Cardinality
and selectivity estimations for base table columns are well-known,
and despite some problems, work quite well in practice [36, 49].
While statistics on singular columns fail to capture correlations,
histograms, samples, and sketches provide a solid baseline, and re-
cently developed techniques using machine-learning work towards

Γ
lineitem?

customer

ordersσ
Γ

lineitem

a) Selective σ-Predicate

selective

Γ
lineitem?

customer

ordersσ
Γ

lineitem

b) Unselective σ-Predicate

unselective

Figure 7: Possible query plans for TPC-H Query 18. Depend-
ing on the 𝜎 filter selectivity, we use the customer relation as
hash-join build or probe side, which roughly leads to a 10%
difference in performance.

multi-column estimates [18, 33]. However, estimates for computed
columns such as aggregates are rarely used, which results in poor
cost-model calculations, and in turn suboptimal query plans.

We propose to extend existing approaches that work on base
table columns by calculating statistics, which allow deducing com-
puted column estimates. Our approach uses a lightweight statistical
model that can be piggybacked onto regular sampling or histogram-
based statistics. The key idea is to fit a skew-normal distribution to
the underlying data using a method of moments estimator, which
can be cheaply maintained on base tables, as well as for computa-
tions throughout the query tree. With this fitted distribution, we
then efficiently estimate the selectivity of predicates on computed
columns, and the resulting cardinality.

Surprisingly few systems consider the results of computed col-
umns in cardinality estimation, which is rather surprising consid-
ering this is a part of standard SQL, which even has a dedicated
HAVING syntax. After unnesting or in nested analytical views, it is
common to have aggregates and predicates on aggregates embedded
in lower parts of the algebra tree, where the resulting cardinality
has consequences for the quality of query plans. One example is
TPC-H Q18 shown in Figure 7, with the nested predicate HAVING
SUM(l_quantity) > 300. The estimated selectivity for the filter
𝜎 in the green pipeline has significant impact on the query per-
formance. Depending on the selectivity, the optimal query plan is
either, a) when the predicate is very selective, or b) if it is not.

In the figure, we use the convention to build the join hash tables
with the left and probe with the right side. For Q18, all data sources
except the aggregate result are unfiltered base tables, where car-
dinality estimation is trivial. The challenging part for cardinality
estimation is the join with the customer table ★, which is marked
with an asterisk. Since building a hash table is more expensive
than probing it, we estimate which side is smaller. In Q18, we esti-
mate if the 𝜎 filter condition produces less tuples than the entire
customer table. The base table cardinalities differ by an order of
magnitude (150 k customers and 1.6M distinct orders for scale fac-
tor 1), so simple heuristics most likely mispredict these cardinalities.
In preliminary experiments, this misprediction has roughly a 10 %
performance penalty for the whole query. To avoid this and get
closer to the real selectivity of 0.003 %, we need robust estimation
of computed columns.

2388

TPC-H customer balance Zipf 0.5 Metracritic rating IMDb movie rating

0 2500 5000 7500 10000

D
en

sit
y

25 50 75 100

D
en

sit
y

20 40 60 80

D
en

sit
y

2.5 5.0 7.5 10.0

D
en

sit
y

0 2500 5000 7500

C
D

F

25 50 75 100

C
D

F

20 40 60 80

C
D

F

2.5 5.0 7.5 10.0

C
D

F

Observed Data Calculated skew-normal fit

Synthetic Real World

Figure 8: Skew-Normal Fit. Histograms of several data sets, ranging from uniform synthetic to skewed real-world data sets. The
overlayed red distribution is a fitted skew-normal distribution.

In the following, we present our novel computed column esti-
mator, based on the method of moments for skew-normal distribu-
tions [51]. In result, we get orders of magnitude better estimates
for filters on computed columns and in turn generate better query
plans.

4.1 Skew Normal Distribution
Our key insight is that HAVING predicates are mostly on computed
values based on columns of “natural” numerical quantities, e.g.,
price, balance, counts, ratings, durations, etc. In contrast to predi-
cates on keys or identifiers, they are rarely compared for equality,
but more commonly with range predicates, e.g., ≤ or BETWEEN. In
the following, we propose an estimation model for computed col-
umns that roughly follow a normal distribution, i.e., most values
center around a mean, with relatively few outliers from that mean.
Additionally, we model a limited amount of skewness in the un-
derlying data to break the inherent symmetry of a pure Gaussian
normal distribution. The resulting selectivity estimation framework
then handles a wide variety of computed columns.

The centerpiece of our estimation framework is the skew-normal
distribution, as proposed by Azzalini [1], which combines the nor-
mality assumption with a better fit for skewed distributions. For our
estimation framework, the skew-normal is a good trade-off for a rea-
sonably robust, yet computationally simple statistical model. The
skew-normal 𝑠𝑛(𝜉, 𝜔, 𝛼) is closely related to the normal distribution
N(𝜇, 𝜎2), with an additional shape parameter 𝛼 , that allows some
asymmetry as skew. With the special case 𝑠𝑛(𝜇, 𝜎, 0) ∼ N (𝜇, 𝜎2),
the skew-normal represents a superset of the normal distribution.

To reason about computed columns, we first discuss how to fit the
distribution to existing columns, before defining transformations
that describe the calculation of new columns. For the base table
fit, we use the method of moments as proposed by Pewsey [51],
which uses the observed moments of a random sample. For our
approach, we piggyback this calculation of themoments, in the form

of descriptive statistics, onto regular table samples. To calculate
these, we take a sample 𝑋 of size 𝑛 of each numerical column and
calculate the statistics as follows:

Mean: 𝑥 =

∑︁
𝑋

𝑛

Standard deviation: �̄� =

√︃∑︁
𝑋 2

𝑛
− 𝑥2

Skewness: 𝛾 =

∑︁
𝑋 3

𝑛 − 3𝑥
∑︁
𝑋 2

𝑛 + 2𝑥3

�̄�3

Then, we transform the observed moments to the parameters of
the skew-normal 𝑠𝑛(𝜉, 𝜔, 𝛼), as described by Azzalini.

𝜉 = 𝑥 − 𝜔 ·𝑚

𝜔 =

√︃
�̄�2

1 −𝑚2

𝛼 =
𝛿

√
1 − 𝛿2

where

𝛿 =
√︁
𝜋/2 ·𝑚

𝑚 =
𝑛

√
1 + 𝑛2

𝑛 = ± 3
√︃

2|𝛾 |
4 − 𝜋

In Umbra, we default to a sample size of 1024 values, which we
keep up-to-date using reservoir sampling [5]. Our sampling process
also incrementally updates the observed moments, which means
that we can keep online statistics that always track the up-to-date
state of the database.

Figure 8 shows the calculated skew-normal fit over four data
sets. The two left distributions are both generated, i.e., uniform
random data from TPC-H and a sample of a moderately skewed
Zipf distribution [24]. Both distributions on the right are from real-
world data sets: Steam App statistics Metacritic ratings [50] and
IMDb movie ratings [37]. The figure shows the underlying data
as gray histogram in the top row, and the empirical distribution

2389

function in the bottom row. Overlayed in red, we plot the PDF and
the CDF, of our inferred skew-normal model.

Arguably, this method leads to a good fit of the underlying data.
However, the synthetic data also pinpoints a fundamental limit of
this approach. The skew-normal is unable to accurately capture
the “squareness” of the uniform random data with its heavy tails,
respectively “peakiness” of left edge of the Zipf distribution. More
formally, the skew normal cannot fit the kurtosis—the fourth statis-
tical moment. In addition, it can only fit a limited skewness within
its parameter space (𝛾max =

√
2(4−𝜋)

(𝜋−2)3/2 ≈ 0.9953 for 𝛼 → ∞ [2]). Ide-
ally, we would detect these edge cases and switch to a better fitting
distribution using a hyperparameter model. While such a more ad-
vanced model would probably produce a better fit, the trade-off we
take here has little overhead, while still fitting a CDF that produces
a relatively low error for selectivity estimates of predicates.

This resulting statistical distribution 𝑠𝑛(𝜉, 𝜔, 𝛼) has several ap-
plications for our estimations. The main use-case is the estimation
of ≤ predicates, like the one in TPC-H Q18, which follows naturally
from the CDF Φ𝑠𝑛 of the skew-normal:

Pr[𝑥 ≤ 𝑐] = Φ𝑠𝑛 (𝑐)
Estimating equality is only possible indirectly, since the probability
distribution is continuous. As approximation, we evaluate a range
predicate BETWEEN ± 𝜖 with default 𝜖 = 0.5 to get a bucket sized for
one integer.

4.2 Transformations on the Skew Normal
To reason about computed columns, we first define arithmetic trans-
formations on our statistics. Given two skew normal input distri-
butions, we model binary arithmetic expressions to estimate predi-
cates on computed columns. As an example, consider the following
condition on an analytical query that filters for orders exceeding
the customer’s current balance:

... WHERE part.price * ord.quantity > cust.balance

We estimate the resulting distribution of such algebraic expres-
sions using ◦ ∈ {+,−, ∗, /}with our statistical model. First, we piece-
wise transform the input moments, before fitting a skew-normal
distribution for the resulting computed column as follows:

𝜇𝑥◦𝑦 = 𝜇𝑥 ◦ 𝜇𝑦
𝜎2
𝑥◦𝑦 = 𝐸 [(𝑥 ◦ 𝑦)2] − 𝜇2

𝑥◦𝑦

𝛾𝑥◦𝑦 = 𝜎−3
𝑥◦𝑦 (𝐸 [(𝑥 ◦ 𝑦)3] − 3𝜇𝑥◦𝑦𝜎2

𝑥◦𝑦 − 𝜇3
𝑥◦𝑦)

4.3 Aggregate Estimation
We extend these statistical building blocks on binary expressions
to reason about the statistical distributions of aggregated n-ary
columns. Staying with a similar example as previously, consider a
query that builds an analysis on the biggest customers that have at
least a revenue of one million:

... GROUP BY cust.id
HAVING SUM(part.price * ord.quantity) > 1000000

In the following, we go over the standard SQL aggregate func-
tions, i.e., AVG, COUNT, MAX, MIN, and SUM, and discuss our estimates
for these. Figure 9 shows three examples of differently skewed input

columns X in green. We model the group sizes of these aggregates
as i.i.d. random variables within the domain of the estimated dis-
tinct values of the grouping key [22]. This results in a binomial
distribution of group sizes, which we again approximate using a
skew-normal distribution, plotted in blue. For COUNT aggregates,
this already estimates the result distribution. AVG aggregates are
similarly independent of the group size and follow the same distri-
bution as the input of the aggregation function.

More interesting are SUM aggregates, shown in the second col-
umn, which depend on both input statistical distributions: The
distribution of the summed-up column, and that of the group size.
We approximate the resulting computed column by a multiplication
via the previously discussed transformations, and plot the resulting
calculated estimate in red. To cross-validate the fit of this model, we
simulate the calculation of the aggregates and plot a histogram of
the resulting data in gray. For MIN and MAX aggregates, as displayed
in the following two columns, we additionally need to consider their
extreme value property, which we model with a Gumbel extreme
value distribution𝐺 [16]. Since the distributions of maximum and
minimum are symmetrical, we only detail the MAX case here, but
MIN behaves similarly with flipped signs.

Let𝑋 be a skew-normal distributed random variable with inverse
CDF quantile function Φ−1

𝑠𝑛 . Then we use the theorem of Fisher-
Tippet and Gnedenko [16] to find parameters for the extreme value
distribution 𝐺 (𝜇, 𝜎):

𝜇 = Φ−1
𝑠𝑛 (1 −

1
𝑛
)

𝜎 = Φ−1
𝑠𝑛 (1 −

1
𝑛
𝑒−1) − 𝜇

Then, we fit a skew-normal distribution to 𝐺 (𝜇, 𝜎) to make our
model closed. The resulting models provide insight on the expected
distribution of such computed columns. For our query optimization
pipeline, this means that we can provide accurate input for sub-
sequent cost-based join-ordering. Good estimates, in combination
with low-contention parallel execution, then produce near-optimal
query plans.

5 EVALUATION
In this chapter, we present the experimental evaluation of the pre-
sented groupjoins, and the quality of our aggregate estimations
in our research RDBMS Umbra [47]. We start with a study of the
behavior of parallel groupjoin execution in the TPC-H benchmark,
and if it corresponds to our presented cost model. Afterwards, we
answer the question of how much impact improved aggregate es-
timates have with a comparison of the estimated cardinalities for
predicates on aggregated columns. We compare our implementa-
tion to three other RDBMS, before isolating the effect of aggregate
estimation.

5.1 Groupjoin
As detailed in Section 3, groupjoins are commonly used in unnest-
ing, but we also apply them when they can improve performance.
For this evaluation, we consider the groupjoins in the well-known
analytical benchmark TPC-H, compare the performance of our
proposed implementations, and evaluate our cost model therein.

2390

Input Data SUM(X) MIN(X) MAX(X)

AVG(X)

COUNT(X)

0 5 10

D
en

sit
y

0 50 100

D
en

sit
y

-2 0 2 4 6

D
en

sit
y

4 6 8 10 12

D
en

sit
y

AVG(X) COUNT(X)

0 5 10 15

D
en

sit
y

0 50 100 150

D
en

sit
y

0 3 6

D
en

sit
y

0 5 10

D
en

sit
y

AVG(X)

COUNT(X)

0 10 20 30 40

D
en

sit
y

0 100 200 300 400

D
en

sit
y

10 20 30

D
en

sit
y

0 10 20 30 40

D
en

sit
y

Base Column X Group Size Simulated Calculated Estimate

Figure 9: Skew-Normal Fit of Aggregates. The first column shows three different distributions of base column and group size.
The next three columns compare simulated aggregates with a calculated fit of our skew-normal estimator.

Hypothesis For TPC-H, the selectivity and relative sizes do not
change when increasing the scale factor, thus our cost model pre-
sented should stay consistent relative to each variant. Since all
three proposed algorithms are virtually lock and contention free,
we expect no relative changes between algorithms under varying
parallelism or data size.
Setup of Performance Measurements We run all benchmarks
on a NUMA systemwith 2× Intel Xeon E5-2660v2 CPUwith 10 cores
each, 2× hyper-threads, and 256GB RAM. To measure performance
with warm caches, we repeat the executions 20 times and report the
median value. The typical run-to-run median absolute deviation
for this setup is about 1 %. In the first experiment, we limit the
amount of parallelism and observe the query performance with a
fixed groupjoin algorithm, and fixed TPC-H scale factor 10. The
second experiment uses all threads, but varies the scale factor. Note
that Umbra was already a system with state-of-the-art performance,
even without our contributions. As baseline for TPC-H, the speedup
of Umbra over MonetDB [8] is about 3.2× and about 101× over
PostgreSQL [57].
Cost Model We first go through the cost model calculations for
groupjoins in TPC-H, before evaluating if the model accurately
predicts the resulting performance. In TPC-H, we execute a total
of four queries using a groupjoin: Q3 is an organically occurring
groupjoin, where we first join and then group by the same key. Q13
has a similar groupjoin sequence, albeit in a nested query itself. In
contrast, the groupjoins in Q17 and Q18 are the result of unnesting.
We also provide an interactive query plan viewer for these queries
online2.

2https://umbra-db.com/interface/

Table 3: TPC-H Groupjoins. Cost model calculations with
four TPC-H groupjoin queries on scale factor 1.

Q |R| |S| 𝜎𝑅 𝜎𝑆 𝐶eager 𝐶memo 𝐶sep

3 147 k 3.24M 54% 6.8% 3.32M 956 k 954k
13 150 k 1.48M 63% 100% 1.58M 4.75M 5.14M
17 204 6.00M 100% 0.10% 6.00M 19.0 k 20.9 k
18 57 6.00M 100% 0.84% 6.00M 152k 167 k

The cost model calculations for these joins in Table 3 show our
predicted relative performance for these queries. Q3 has high selec-
tivity of the right-hand side, which favors the lazily aggregating
variants, and a moderate relative left selectivity, which puts sepa-
rate processing at an advantage. When we look at Q13, the join is
very unselective on the right side, which puts eager right aggrega-
tion at a clear advantage. Both unnested queries Q17 and Q18 only
compute the groupjoin on a small and highly selective left side,
which puts the hybrid memoizing groupjoin at a slight advantage.

In the following, we run two experiments of our algorithms
under a varying parallelism and data scale to validate these claims
and to show that the cost model calculations are robust under these
parameters. In contrast to the cost calculations from Table 3, which
only include the variable costs of the groupjoin implementation,
our benchmarks measure the throughput of the whole query.

Figure 10 shows the relative performance of the different group-
join implementations with increasing parallelism. We observe that,
as expected, the relative performance between the algorithms stays
the same. All three implementations show a linear speedup when
increasing the parallelism, with a tamping down speedup on hyper-
threads.

2391

https://umbra-db.com/interface/

SMT

SMT

SMT

SMT

Q17 Q18

Q3 Q13

4 8 12 16 20 30 40 4 8 12 16 20 30 40

0

50M

100M

0

500M

1G

0

500M

1G

0
1G
2G
3G
4G

Parallelism

T
hr

ou
gh

pu
t

(t
up

le
s

/
s)

Method eager memoizing separate

Figure 10: Parallel scale-out of TPC-HSF10 groupjoin queries.

Q17 Q18

Q3 Q13

1 5 10 15 20 25 30 1 5 10 15 20 25 30

80M

120M

160M

500M
750M

1G
1.25G

500M

750M

1G

1.25G

1G
2G
3G
4G
5G

Scale Factor

T
hr

ou
gh

pu
t

(t
up

le
s

/
s)

Method eager memoizing separate

Figure 11: Data size scale-out of groupjoins in TPC-H.

In Figure 11, we vary the amount of processed data via the scale
factor and see a similar picture. Again, the relative performance
stays unchanged and, apart from some effects when exceeding cache
sizes, the overall throughput stays relatively constant. All in all,
our cost model has proven to be robust in regard to variable system
parameters, and accurately predicts the most efficient groupjoin
implementation.

Overall, eager aggregation can bring over 2× improvement in
Q13, but is over an order of magnitude slower in Q17. The other
implementations are much closer to one another, mostly because
we build the hash table with the duplicate free left side, which is
orders of magnitude smaller than the right side. In comparison
to processing the large right side, building the relatively small
left hash table has only a minuscule impact on the overall query.
Nevertheless, a proper model will find the best execution plan and
significantly improve the efficiency.

Over the four queries in TPC-H that use a groupjoin, our cost
model based approach achieves a geometric mean speedup of 20 %
over a baseline that executes Join and group-by separately. We also
ran a similar experiment over TPC-DS, where we see similar results:
A total of 13 queries can use a groupjoin, with a geometric mean
speedup of 5 %.

Now, we validate the quality of our cost model recommendations.
This experiment compares the predicted cheapest to the actually

Fastest Recommended

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

25%

50%

75%

100%

σS

σ
R

Method eager memoizing separate

Figure 12: Comparison of fastest and cost model recom-
mended implementation for a TPC-H orders - lineitem
groupjoin.

measured fastest implementation. The setup is a micro benchmark
on the TPC-H SF 10 data set with a single orders-lineitem group-
join. To test the whole 𝜎𝑅 and 𝜎𝑆 parameter space, we prefilter
each of the tables in 1 % increments via the primary key. Figure 12
shows these 10 000 combinations, and plots the measured fastest
implementations as points in the left plot, in comparison to the cost
model recommended ones on the right.

This experiment shows that our prediction is a good indicator
of the actual fastest performance. As expected from the cost model,
the most impactful decision is, if we should aggregate eagerly. Our
cost model recommends this for the upper two-thirds of the 𝜎𝑆
range, while the measurements indicate that the break-even point
is already a bit lower. However, at this border the methods only
have minor performance differences. The memoizing and separate
executions are closer in their measured performance, since dynamic
memory allocation in Umbra is very cheap. To quantify this, we
pairwise compare the performance of the measured fastest method
with the, sometimes slower, cost model recommendation. Using the
recommendations results in a mean absolute percentage error of
only 1.7 % over the best performance.

5.2 Aggregate Estimations
In TPC-H, the only query with a nested aggregation is the Large
Volume Customer Query Q18, with a fairly simple HAVING predicate.
To focus on the quality of aggregate estimates, we only consider its
subquery in this experiment:
SELECT l_orderkey
FROM lineitem
GROUP BY l_orderkey
HAVING SUM(l_quantity) > THRESHOLD

The subquery sums the quantity of items in an order and only
selects the orders with the most numerous items. As described
in the TPC-H specification, the threshold over which an order is
considered large is a substitution parameter. In our experiment, we
extend the range of this parameter to vary the predicate selectivity
from 0% to 100 % and also consider more challenging expressions.
Systems Comparison In the first part of our evaluation of aggre-
gate estimates, we consider a total of four database management
systems: Tableau Hyper via its Python API 0.0.11952, DBMS X, Post-
greSQL 13.1, and our research system Umbra [47]. To get accurate

2392

sum(quantity * price) + correlation

sum(quantity) + skew

0 5M 10M 15M 20M 25M0 3M 6M 9M 12M

0 100 200 300 0 100 200 300
0

500K

1M

1.5M

0

500K

1M

1.5M

Threshold

Es
tim

at
ed

C
ar

di
na

lit
y

DBMS

Ground Truth Hyper DBMS X PostgreSQL Umbra

Figure 13: Estimates for TPC-H Q18 style subqueries.

cardinality estimates, we load the TPC-H scale factor 1 validation
data into an empty database. Then, we ensure that the DBMS has
accurate statistics over this data by issuing control commands to
regenerate statistics, if such commands exist. Afterwards, we ex-
ecute the subquery with the substituted constant and extract the
query plan. For this evaluation, we record the estimated, and the
true cardinality in four different scenarios that are similar to the
subquery of TPC-H Q18. First the regular Q18 aggregate over the
uniform random base column sum(quantity), and with a skewed
Zipf 0.5 quantity. As a slightly more complex aggregate, we use
sum(quantity * price), again on the uniform random base col-
umns, and with an additional anti-correlation (𝜌 = −0.7) between
quantity and price (i.e., the higher the price, the lower the quantity).
Note, that all these scenarios depend on group-size estimates, which
we do not consider in the scope of our work, but refer to previous
work [22].

Figure 13 shows this data, where the ground truth cardinality
describes a decreasing curve that corresponds to higher thresh-
olds. Our presented estimation framework in Umbra is close to
the ground truth over the whole range of the threshold, even for
complex predicates. In the simple scenarios with aggregates over a
single column, DBMS X behaves similar. However, it does not pub-
licly describe or document the underlying model. In addition, it falls
back to estimating “magic constants” for expressions referencing
more than one base column. That means, when the selectivity for
a predicate can’t be determined, the systems just estimate a fixed
fraction of the estimated input cardinality. Indeed, Hyper estimates
1/2 of its input estimate and PostgreSQL 1/3.
Isolating the Impact of Aggregate Estimates We established
that our estimates capture the cardinality of HAVING predicates. In
the following, we isolate the impact of these aggregate estimations,
and increase the complexity of queries and data sets. To eliminate
other factors, we emulate the selectivity estimation with a fixed
selectivity inside Umbra. This allows a more clear-cut evaluation
of the impact of Umbra’s skew-normal model on the estimation.

This evaluation uses queries on two real-world data sets. In
contrast to the generated TPC-H data, these are full of correlations
and non-uniform data distributions. The first data set is the Internet
Movie Database (IMDb), in a slightly modified form from the Join

IMDb Public BI

Q34 Q35 Q36 Q37 Q38
HashTags Hatred

IGlocations2
SalariesFrance

104

102

1

102

104

Queries

←
un

de
re

st
im

at
io

n
[lo

g]
ov

er
es

tim
at

io
n
→

Estimate
SkewNormal

Static 1/2

Figure 14: Estimation quality of aggregation queries. The
box plots show the log-scale q-error of our estimates in com-
parison to the static selectivity of Hyper. Our skew-normal
model reduces the geometric mean q-error by 46% from 45.8
to 24.7.

Order Benchmark (JOB)3: Since IMDb primarily stores facts as
strings, we extract a separate table that contains the vote count
and the user rating for movies, to allow statistics collection. On
these columns, we define five additional aggregation queries that
calculate statistics on the new numerical columns. Furthermore, we
also consider aggregation queries derived from public workbooks
in Tableau Public4. The query set is available online: https://db.in.
tum.de/~fent/data/aggEst.tgz

To measure the quality of the estimates, we report the q-error.
The q-error measures the factor that an estimate differs from the
ground truth. It captures the relative difference to the real value
and is symmetric and multiplicative. For example, a q-error of one
means that the estimate accurately captured the true cardinality,
and a q-error of 10 corresponds either an over- or underestimation
by a factor of 10. With a bounded q-error, it is also possible to give
a theoretical guarantee about the optimal query plan quality [43].

In Figure 14, we visualize the quality of our estimates from over
100 individual queries with predicates on aggregates. For the IMDb
queries, we vary a replacement parameter of a having predicate,
similar to the last experiment, to cover the whole range of 0 to
100 % true selectivity. From the public BI benchmark, we consider
all queries that evaluate a predicate on more than one aggregation
tuple. In total, this gives us 82 IMDb aggregation queries and 48
aggregation queries from the public BI benchmark. Each box in
this plot shows the median and the first and third quartiles, with
individual dots for outliers.

The quality of our estimates strongly depends on the calculated
statistics. For Q35 to Q38, the estimates are close to the true cardi-
nality, with occasional outliers on the tail edges of the distribution,
i.e., when the predicate is very selective. Our estimates, compared
to a static selectivity estimation, capture the shape of the aggregates
better and reduce over- as well as underestimation. Q34 shows one
of the shortcomings of our approach, where a sum aggregate com-
bines two distributions with heavy tails. In comparison to static
selectivity estimation, our skew-normal model improves the error,

3https://homepages.cwi.nl/~boncz/job/imdb.tgz
4https://github.com/cwida/public_bi_benchmark

2393

https://db.in.tum.de/~fent/data/aggEst.tgz
https://db.in.tum.de/~fent/data/aggEst.tgz
https://homepages.cwi.nl/~boncz/job/imdb.tgz
https://github.com/cwida/public_bi_benchmark

Q03 Q13 Q17 Q18 Q01 Q06 Q23a Q23b Q30 Q32 Q41 Q48 Q54

Q64 Q65

Q69

Q73

Q77 Q79 Q81

Q83

Q92

TPC-H TPC-DS

1

1.5

2

←
slo

w
er

sp
ee

du
p

fa
st

er
→

Figure 15: Overall Impact on TPC-H and TPC-DS.

but is limited by the quality of the baseline group size estimates.
We found that for static estimation, we get the least error with
the 1/2 fraction that Hyper uses, which we compare in Figure 14.
In comparison to this configuration, our skew-normal selectivity
estimation is a clear advantage and reduces the geometric mean of
the q-errors from 45.8 to 24.7, which eliminates the impact of bad
selectivity estimation.

To summarize, computed column estimates improve the esti-
mation quality of nested aggregates. In combination with efficient
parallel groupjoins, this can have significant impact on query per-
formance. Figure 15 shows a breakdown of the affected queries in
TPC-H and TPC-DS. Most queries see a moderate speedup, with
only one major slowdown in TPC-DS Q73. The slowdown arises
due to a worse logical plan, where previous the magic-constant
estimation had a lucky guess and canceled out an unrelated error
in group-size estimation. Nevertheless, we are convinced that it is
valuable to improve estimates so that they can capture the behavior
of nested aggregates. Over the affected queries, we get a geometric
mean speedup of 23 % in TPC-H and 6% in TPC-DS.

6 RELATEDWORK
As outlined in Section 2, our work relies on well-known work
on query unnesting, which enables aggregates to be embedded in
the query tree [15, 21, 31, 48]. Subquery unnesting to flatten the
query tree is well-known as one of the most important aspects of
query optimization [7, 17]. Galindo-Legaria and Joshi [23] describe
the comprehensive optimization of aggregation in Microsoft SQL
Server. They describe the reordering of group-by and outer-join,
where they use similar conditions to our groupjoin preconditions
(cf. Section 2.1) and also discuss the problems with COUNT in static
(scalar) aggregation. In contrast to our work on groupjoins, they
keep join and aggregation separate, where a pushed-down group-by
will still build a redundant hash table.

Bellamkonda et al. [4] describe the execution of correlated sub-
queries with window operations in Oracle. Hölsch et al. [27] use an
extended form of relational algebra to reason about nested queries
and are able to express more transformation on aggregations. To
incorporate unnested aggregations in cost models, practical imple-
mentations, e.g., in DB2, use statistical views [20]. However, each
query needs a matching view, which are relatively costly to create
and maintain, and are usually only created where missing statistics
lead to very poor plans.

Big data systems for approximate query processing have pro-
posed some approaches to answer aggregate queries [10, 13, 28, 60].

However, they use relatively large samples, which make them un-
suitable for cardinality estimation, or dedicated data structures
that are harder to use for ad hoc queries. A newer development
is using machine learning approaches to approximately answer
queries, which are cheap enough to also be used to estimate car-
dinalities [32, 33]. In DeepDB [25] Hilprecht et al. train Relational
Sum Product Networks that learn correlations from table samples
and joins, and capture the data distribution of independent subsets.
This allows them to accurately estimate even correlated predicates
and joins, and to calculate approximate answers to SUM, COUNT and
AVG aggregates. In contrast to our work, learned approaches have
significant training overhead and currently do not support MIN and
MAX aggregates.

In many real-world evaluations, join and aggregation are big
contributors to the overall workload [29, 58]. Consequently, there
is a large body of related work that optimizes hash joins [39, 49, 55]
and hash aggregations [38, 52, 61]. One often discussed question
is, if hash tables should be partitioned or non-partitioned [3]. Our
proposed approaches in Section 3 try to use a non-partitioned hash
table to avoid materializing data, while using thread-local parti-
tioning for heavy-hitters. Other recent work on the interaction of
multiple operators focused on memory access patterns to better
utilize the available hardware [14, 41]. We see this work as orthogo-
nal, and these ideas can work hand-in-hand with parallel groupjoin
execution.

7 CONCLUSION
In our paper, we presented our approach to efficiently evaluate
nested aggregates in a general-purpose relational database manage-
ment system. We improve two important pieces of the query engine
that previously have not worked well with unnested aggregates.
First, we presented a low overhead estimation of computed columns,
which significantly improves the estimation quality of predicates
on aggregates. The improved estimates then enable better query
plans with nested aggregates. While improvements for estimates
do not translate directly to improved query plans, they are an im-
portant requirement to find efficient execution plans in the query
optimizer. Our aggregate estimates result in a near 50 % reduction of
estimation error, without any changes to the underlying sampling
method.

Furthermore, we improved the parallel execution of groupjoin,
which commonly occur in unnested and regular aggregation queries.
Our contention-free parallel groupjoin execution allows them to
be more universally applicable, when they are beneficial. We also
demonstrated, theoretically and practically, that using a groupjoin
is not always advantageous, compared to separate join and aggrega-
tion. Our simple, yet effective cost model plans the best execution
strategy, which can result in a significant speedup.

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286).

2394

REFERENCES
[1] Adelchi Azzalini. 1985. A class of distributions which includes the normal ones.

Scandinavian journal of statistics (1985), 171–178.
[2] Adelchi Azzalini. 2013. The skew-normal and related families. Vol. 3. Cambridge

University Press.
[3] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition,

or Not to Partition, That is the Join Question in a Real System. In SIGMOD
Conference. ACM, 168–180.

[4] Srikanth Bellamkonda, RafiAhmed, AndrewWitkowski, Angela Amor,Mohamed
Zaït, and Chun Chieh Lin. 2009. Enhanced Subquery Optimizations in Oracle.
Proc. VLDB Endow. 2, 2 (2009), 1366–1377.

[5] Altan Birler, Bernhard Radke, and Thomas Neumann. 2020. Concurrent online
sampling for all, for free. In DaMoN. ACM, 5:1–5:8.

[6] Hans-Juergen Boehm and Sarita V. Adve. 2008. Foundations of the C++ concur-
rency memory model. In PLDI. ACM, 68–78.

[7] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark. In TPCTC
(Lecture Notes in Computer Science), Vol. 8391. Springer, 61–76.

[8] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB X100: Hyper-
Pipelining Query Execution. In CIDR. www.cidrdb.org, 225–237.

[9] Damianos Chatziantoniou, Michael O. Akinde, Theodore Johnson, and Samuel
Kim. 2001. The MD-join: An Operator for Complex OLAP. In ICDE. IEEE Com-
puter Society, 524–533.

[10] Surajit Chaudhuri, Gautam Das, and Vivek R. Narasayya. 2001. A Robust,
Optimization-Based Approach for Approximate Answering of Aggregate Queries.
In SIGMOD Conference. ACM, 295–306.

[11] John Cieslewicz and Kenneth A. Ross. 2007. Adaptive Aggregation on Chip
Multiprocessors. In VLDB. ACM, 339–350.

[12] Sophie Cluet and Guido Moerkotte. 1995. Efficient Evaluation of Aggregates on
Bulk Types. In DBPL (Electronic Workshops in Computing). Springer, 8.

[13] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine. 2012.
Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Found.
Trends Databases 4, 1-3 (2012), 1–294.

[14] AndrewCrotty, Alex Galakatos, and TimKraska. 2020. Getting Swole: Generating
Access-Aware Code with Predicate Pullups. In ICDE. IEEE, 1273–1284.

[15] Umeshwar Dayal. 1987. Of Nests and Trees: A Unified Approach to Processing
Queries That Contain Nested Subqueries, Aggregates, and Quantifiers. In VLDB.
Morgan Kaufmann, 197–208.

[16] Laurens De Haan and Ana Ferreira. 2007. Extreme value theory: an introduction.
Springer Science & Business Media.

[17] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proc. VLDB Endow.
13, 8 (2020), 1206–1220.

[18] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates using
Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044–1057.

[19] Marius Eich, Pit Fender, and Guido Moerkotte. 2018. Efficient generation of query
plans containing group-by, join, and groupjoin. VLDB J. 27, 5 (2018), 617–641.

[20] Amr El-Helw, Ihab F. Ilyas, and Calisto Zuzarte. 2009. StatAdvisor: Recommend-
ing Statistical Views. Proc. VLDB Endow. 2, 2 (2009), 1306–1317.

[21] Mostafa Elhemali, César A. Galindo-Legaria, Torsten Grabs, and Milind Joshi.
2007. Execution strategies for SQL subqueries. In SIGMOD Conference. ACM,
993–1004.

[22] Michael J. Freitag and Thomas Neumann. 2019. Every Row Counts: Combin-
ing Sketches and Sampling for Accurate Group-By Result Estimates. In CIDR.
www.cidrdb.org.

[23] César A. Galindo-Legaria and Milind Joshi. 2001. Orthogonal Optimization of
Subqueries and Aggregation. In SIGMOD Conference. ACM, 571–581.

[24] Jim Gray, Prakash Sundaresan, Susanne Englert, Kenneth Baclawski, and Peter J.
Weinberger. 1994. Quickly Generating Billion-Record Synthetic Databases. In
SIGMOD.

[25] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005.

[26] Denis Hirn and Torsten Grust. 2019. PgCuckoo: Laying Plan Eggs in PostgreSQL’s
Nest. In SIGMOD Conference. ACM, 1929–1932.

[27] Jürgen Hölsch, Michael Grossniklaus, and Marc H. Scholl. 2016. Optimization of
Nested Queries using the NF2 Algebra. In SIGMOD Conference. ACM, 1765–1780.

[28] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily Approximating
Complex AdHoc Queries in BigData Clusters. In SIGMOD Conference. ACM,
631–646.

[29] Martin Kersten, Panagiotis Koutsourakis, Niels Nes, and Ying Zhan. 2021. Bridg-
ing the Chasm between Science and Reality. In CIDR. www.cidrdb.org.

[30] Changkyu Kim, Eric Sedlar, Jatin Chhugani, Tim Kaldewey, Anthony D. Nguyen,
Andrea Di Blas, Victor W. Lee, Nadathur Satish, and Pradeep Dubey. 2009. Sort
vs. Hash Revisited: Fast Join Implementation on Modern Multi-Core CPUs. Proc.

VLDB Endow. 2, 2 (2009), 1378–1389.
[31] Won Kim. 1982. On Optimizing an SQL-like Nested Query. ACM Trans. Database

Syst. 7, 3 (1982), 443–469.
[32] Andreas Kipf, Michael Freitag, Dimitri Vorona, Peter Boncz, Thomas Neumann,

and Alfons Kemper. 2019. Estimating Filtered Group-By Queries is Hard: Deep
Learning to the Rescue. In AIDB.

[33] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR. www.cidrdb.org.

[34] André Kohn, Viktor Leis, and Thomas Neumann. 2021. Building Advanced SQL
Analytics From Low-Level Plan Operators. Proc. VLDB Endow. 14 (2021).

[35] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In SIGMOD Conference. ACM, 743–754.

[36] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[37] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the
looking glass, and what we found running the Join Order Benchmark. VLDB J.
27, 5 (2018), 643–668.

[38] Feilong Liu, Ario Salmasi, Spyros Blanas, and Anastasios Sidiropoulos. 2018.
Chasing Similarity: Distribution-aware Aggregation Scheduling. Proc. VLDB
Endow. 12, 3 (2018), 292–306.

[39] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald Koss-
mann. 2018. Many-query join: efficient shared execution of relational joins on
modern hardware. VLDB J. 27, 5 (2018), 669–692.

[40] Norman May and Guido Moerkotte. 2005. Main Memory Implementations for
Binary Grouping. InXSym (Lecture Notes in Computer Science), Vol. 3671. Springer,
162–176.

[41] Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. 2017. Relaxed Opera-
tor Fusion for In-Memory Databases: Making Compilation, Vectorization, and
Prefetching Work Together At Last. Proc. VLDB Endow. 11, 1 (2017), 1–13.

[42] Guido Moerkotte and Thomas Neumann. 2011. Accelerating Queries with Group-
By and Join by Groupjoin. PVLDB 4, 11 (2011), 843–851.

[43] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (2009), 982–993.

[44] M. Muralikrishna. 1992. Improved Unnesting Algorithms for Join Aggregate
SQL Queries. In VLDB. Morgan Kaufmann, 91–102.

[45] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS.
In VLDB. ACM, 1049–1058.

[46] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550.

[47] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

[48] Thomas Neumann and Alfons Kemper. 2015. Unnesting Arbitrary Queries. In
BTW (LNI), Vol. P-241. GI, 383–402.

[49] Thomas Neumann, Viktor Leis, and Alfons Kemper. 2017. The Complete Story
of Joins (in HyPer). In BTW (LNI), Vol. P-265. GI, 31–50.

[50] Mark O’Neill, Elham Vaziripour, Justin Wu, and Daniel Zappala. 2016. Condens-
ing Steam: Distilling the Diversity of Gamer Behavior. In Internet Measurement
Conference. ACM, 81–95.

[51] Arthur Pewsey. 2000. Problems of inference for Azzalini’s skewnormal distribu-
tion. Journal of applied statistics 27, 7 (2000), 859–870.

[52] Orestis Polychroniou and Kenneth A. Ross. 2013. High throughput heavy hitter
aggregation for modern SIMD processors. In DaMoN. ACM, 6.

[53] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis Pandis, Berni Schiefer,
David Sharpe, Richard Sidle, Adam J. Storm, and Liping Zhang. 2013. DB2 with
BLU Acceleration: So Much More than Just a Column Store. Proc. VLDB Endow.
6, 11 (2013), 1080–1091.

[54] Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q. Ngo, and
XuanLong Nguyen. 2019. A Layered Aggregate Engine for Analytics Workloads.
In SIGMOD Conference. ACM, 1642–1659.

[55] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. In SIGMOD Conference. ACM,
1961–1976.

[56] Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff Leung,
Raghu Ramakrishnan, Divesh Srivastava, Peter J. Stuckey, and S. Sudarshan.
1996. Cost-Based Optimization for Magic: Algebra and Implementation. In
SIGMOD Conference. ACM Press, 435–446.

[57] Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of Postgres. In
SIGMOD Conference. ACM Press, 340–355.

[58] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In DBTest@SIGMOD. ACM,

2395

1:1–1:6.
[59] Weipeng P. Yan and Per-Åke Larson. 1995. Eager Aggregation and Lazy Aggre-

gation. In VLDB. Morgan Kaufmann, 345–357.
[60] Ying Yan, Liang Jeff Chen, and Zheng Zhang. 2014. Error-bounded Sampling for

Analytics on Big Sparse Data. Proc. VLDB Endow. 7, 13 (2014), 1508–1519.

[61] Zuyu Zhang, Harshad Deshmukh, and Jignesh M. Patel. 2019. Data Partition-
ing for In-Memory Systems: Myths, Challenges, and Opportunities. In CIDR.
www.cidrdb.org.

2396

